summaryrefslogtreecommitdiff
path: root/Documentation/locking/seqlock.rst
AgeCommit message (Collapse)Author
2020-12-09Documentation: seqlock: s/LOCKTYPE/LOCKNAME/gAhmed S. Darwish
Sequence counters with an associated write serialization lock are called seqcount_LOCKNAME_t. Fix the documentation accordingly. While at it, remove a paragraph that inappropriately discussed a seqlock.h implementation detail. Fixes: 6dd699b13d53 ("seqlock: seqcount_LOCKNAME_t: Standardize naming convention") Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20201206162143.14387-2-a.darwish@linutronix.de
2020-09-10seqlock: Introduce seqcount_latch_tAhmed S. Darwish
Latch sequence counters are a multiversion concurrency control mechanism where the seqcount_t counter even/odd value is used to switch between two copies of protected data. This allows the seqcount_t read path to safely interrupt its write side critical section (e.g. from NMIs). Initially, latch sequence counters were implemented as a single write function above plain seqcount_t: raw_write_seqcount_latch(). The read side was expected to use plain seqcount_t raw_read_seqcount(). A specialized latch read function, raw_read_seqcount_latch(), was later added. It became the standardized way for latch read paths. Due to the dependent load, it has one read memory barrier less than the plain seqcount_t raw_read_seqcount() API. Only raw_write_seqcount_latch() and raw_read_seqcount_latch() should be used with latch sequence counters. Having *unique* read and write path APIs means that latch sequence counters are actually a data type of their own -- just inappropriately overloading plain seqcount_t. Introduce seqcount_latch_t. This adds type-safety and ensures that only the correct latch-safe APIs are to be used. Not to break bisection, let the latch APIs also accept plain seqcount_t or seqcount_raw_spinlock_t. After converting all call sites to seqcount_latch_t, only that new data type will be allowed. References: 9b0fd802e8c0 ("seqcount: Add raw_write_seqcount_latch()") References: 7fc26327b756 ("seqlock: Introduce raw_read_seqcount_latch()") References: aadd6e5caaac ("time/sched_clock: Use raw_read_seqcount_latch()") Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200827114044.11173-4-a.darwish@linutronix.de
2020-07-29seqlock: Extend seqcount API with associated locksAhmed S. Darwish
A sequence counter write side critical section must be protected by some form of locking to serialize writers. If the serialization primitive is not disabling preemption implicitly, preemption has to be explicitly disabled before entering the write side critical section. There is no built-in debugging mechanism to verify that the lock used for writer serialization is held and preemption is disabled. Some usage sites like dma-buf have explicit lockdep checks for the writer-side lock, but this covers only a small portion of the sequence counter usage in the kernel. Add new sequence counter types which allows to associate a lock to the sequence counter at initialization time. The seqcount API functions are extended to provide appropriate lockdep assertions depending on the seqcount/lock type. For sequence counters with associated locks that do not implicitly disable preemption, preemption protection is enforced in the sequence counter write side functions. This removes the need to explicitly add preempt_disable/enable() around the write side critical sections: the write_begin/end() functions for these new sequence counter types automatically do this. Introduce the following seqcount types with associated locks: seqcount_spinlock_t seqcount_raw_spinlock_t seqcount_rwlock_t seqcount_mutex_t seqcount_ww_mutex_t Extend the seqcount read and write functions to branch out to the specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such compile-time type detection logic into a new, internal, seqlock header. Document the proper seqcount_LOCKTYPE_t usage, and rationale, at Documentation/locking/seqlock.rst. If lockdep is disabled, this lock association is compiled out and has neither storage size nor runtime overhead. Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
2020-07-29Documentation: locking: Describe seqlock design and usageAhmed S. Darwish
Proper documentation for the design and usage of sequence counters and sequential locks does not exist. Complete the seqlock.h documentation as follows: - Divide all documentation on a seqcount_t vs. seqlock_t basis. The description for both mechanisms was intermingled, which is incorrect since the usage constrains for each type are vastly different. - Add an introductory paragraph describing the internal design of, and rationale for, sequence counters. - Document seqcount_t writer non-preemptibility requirement, which was not previously documented anywhere, and provide a clear rationale. - Provide template code for seqcount_t and seqlock_t initialization and reader/writer critical sections. - Recommend using seqlock_t by default. It implicitly handles the serialization and non-preemptibility requirements of writers. At seqlock.h: - Remove references to brlocks as they've long been removed from the kernel. - Remove references to gcc-3.x since the kernel's minimum supported gcc version is 4.9. References: 0f6ed63b1707 ("no need to keep brlock macros anymore...") References: 6ec4476ac825 ("Raise gcc version requirement to 4.9") Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20200720155530.1173732-2-a.darwish@linutronix.de