summaryrefslogtreecommitdiff
path: root/rust/kernel/list.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/list.rs')
-rw-r--r--rust/kernel/list.rs686
1 files changed, 686 insertions, 0 deletions
diff --git a/rust/kernel/list.rs b/rust/kernel/list.rs
new file mode 100644
index 000000000000..5b4aec29eb67
--- /dev/null
+++ b/rust/kernel/list.rs
@@ -0,0 +1,686 @@
+// SPDX-License-Identifier: GPL-2.0
+
+// Copyright (C) 2024 Google LLC.
+
+//! A linked list implementation.
+
+use crate::init::PinInit;
+use crate::sync::ArcBorrow;
+use crate::types::Opaque;
+use core::iter::{DoubleEndedIterator, FusedIterator};
+use core::marker::PhantomData;
+use core::ptr;
+
+mod impl_list_item_mod;
+pub use self::impl_list_item_mod::{
+ impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
+};
+
+mod arc;
+pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
+
+mod arc_field;
+pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
+
+/// A linked list.
+///
+/// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
+/// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
+/// prev/next pointers are not used for several linked lists.
+///
+/// # Invariants
+///
+/// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
+/// field of the first element in the list.
+/// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
+/// * For every item in the list, the list owns the associated [`ListArc`] reference and has
+/// exclusive access to the `ListLinks` field.
+pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
+ first: *mut ListLinksFields,
+ _ty: PhantomData<ListArc<T, ID>>,
+}
+
+// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
+// type of access to the `ListArc<T, ID>` elements.
+unsafe impl<T, const ID: u64> Send for List<T, ID>
+where
+ ListArc<T, ID>: Send,
+ T: ?Sized + ListItem<ID>,
+{
+}
+// SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
+// type of access to the `ListArc<T, ID>` elements.
+unsafe impl<T, const ID: u64> Sync for List<T, ID>
+where
+ ListArc<T, ID>: Sync,
+ T: ?Sized + ListItem<ID>,
+{
+}
+
+/// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
+///
+/// # Safety
+///
+/// Implementers must ensure that they provide the guarantees documented on methods provided by
+/// this trait.
+///
+/// [`ListArc<Self>`]: ListArc
+pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
+ /// Views the [`ListLinks`] for this value.
+ ///
+ /// # Guarantees
+ ///
+ /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
+ /// since the most recent such call, then this returns the same pointer as the one returned by
+ /// the most recent call to `prepare_to_insert`.
+ ///
+ /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
+ ///
+ /// # Safety
+ ///
+ /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
+ unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
+
+ /// View the full value given its [`ListLinks`] field.
+ ///
+ /// Can only be used when the value is in a list.
+ ///
+ /// # Guarantees
+ ///
+ /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
+ /// * The returned pointer is valid until the next call to `post_remove`.
+ ///
+ /// # Safety
+ ///
+ /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
+ /// from a call to `view_links` that happened after the most recent call to
+ /// `prepare_to_insert`.
+ /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
+ /// been called.
+ unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
+
+ /// This is called when an item is inserted into a [`List`].
+ ///
+ /// # Guarantees
+ ///
+ /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
+ /// called.
+ ///
+ /// # Safety
+ ///
+ /// * The provided pointer must point at a valid value in an [`Arc`].
+ /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
+ /// * The caller must own the [`ListArc`] for this value.
+ /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
+ /// called after this call to `prepare_to_insert`.
+ ///
+ /// [`Arc`]: crate::sync::Arc
+ unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
+
+ /// This undoes a previous call to `prepare_to_insert`.
+ ///
+ /// # Guarantees
+ ///
+ /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
+ ///
+ /// # Safety
+ ///
+ /// The provided pointer must be the pointer returned by the most recent call to
+ /// `prepare_to_insert`.
+ unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
+}
+
+#[repr(C)]
+#[derive(Copy, Clone)]
+struct ListLinksFields {
+ next: *mut ListLinksFields,
+ prev: *mut ListLinksFields,
+}
+
+/// The prev/next pointers for an item in a linked list.
+///
+/// # Invariants
+///
+/// The fields are null if and only if this item is not in a list.
+#[repr(transparent)]
+pub struct ListLinks<const ID: u64 = 0> {
+ // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
+ // list.
+ inner: Opaque<ListLinksFields>,
+}
+
+// SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
+// associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
+// move this an instance of this type to a different thread if the pointees are `!Send`.
+unsafe impl<const ID: u64> Send for ListLinks<ID> {}
+// SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
+// okay to have immutable access to a ListLinks from several threads at once.
+unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
+
+impl<const ID: u64> ListLinks<ID> {
+ /// Creates a new initializer for this type.
+ pub fn new() -> impl PinInit<Self> {
+ // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
+ // not be constructed in an `Arc` that already has a `ListArc`.
+ ListLinks {
+ inner: Opaque::new(ListLinksFields {
+ prev: ptr::null_mut(),
+ next: ptr::null_mut(),
+ }),
+ }
+ }
+
+ /// # Safety
+ ///
+ /// `me` must be dereferenceable.
+ #[inline]
+ unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
+ // SAFETY: The caller promises that the pointer is valid.
+ unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
+ }
+
+ /// # Safety
+ ///
+ /// `me` must be dereferenceable.
+ #[inline]
+ unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
+ me.cast()
+ }
+}
+
+/// Similar to [`ListLinks`], but also contains a pointer to the full value.
+///
+/// This type can be used instead of [`ListLinks`] to support lists with trait objects.
+#[repr(C)]
+pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
+ /// The `ListLinks` field inside this value.
+ ///
+ /// This is public so that it can be used with `impl_has_list_links!`.
+ pub inner: ListLinks<ID>,
+ // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
+ // `ptr::null()` doesn't work for `T: ?Sized`.
+ self_ptr: Opaque<*const T>,
+}
+
+// SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
+unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
+// SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
+// it's okay to have immutable access to a ListLinks from several threads at once.
+//
+// Note that `inner` being a public field does not prevent this type from being opaque, since
+// `inner` is a opaque type.
+unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
+
+impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
+ /// The offset from the [`ListLinks`] to the self pointer field.
+ pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
+
+ /// Creates a new initializer for this type.
+ pub fn new() -> impl PinInit<Self> {
+ // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
+ // not be constructed in an `Arc` that already has a `ListArc`.
+ Self {
+ inner: ListLinks {
+ inner: Opaque::new(ListLinksFields {
+ prev: ptr::null_mut(),
+ next: ptr::null_mut(),
+ }),
+ },
+ self_ptr: Opaque::uninit(),
+ }
+ }
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
+ /// Creates a new empty list.
+ pub const fn new() -> Self {
+ Self {
+ first: ptr::null_mut(),
+ _ty: PhantomData,
+ }
+ }
+
+ /// Returns whether this list is empty.
+ pub fn is_empty(&self) -> bool {
+ self.first.is_null()
+ }
+
+ /// Add the provided item to the back of the list.
+ pub fn push_back(&mut self, item: ListArc<T, ID>) {
+ let raw_item = ListArc::into_raw(item);
+ // SAFETY:
+ // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
+ // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
+ // the most recent call to `prepare_to_insert`, if any.
+ // * We own the `ListArc`.
+ // * Removing items from this list is always done using `remove_internal_inner`, which
+ // calls `post_remove` before giving up ownership.
+ let list_links = unsafe { T::prepare_to_insert(raw_item) };
+ // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
+ let item = unsafe { ListLinks::fields(list_links) };
+
+ if self.first.is_null() {
+ self.first = item;
+ // SAFETY: The caller just gave us ownership of these fields.
+ // INVARIANT: A linked list with one item should be cyclic.
+ unsafe {
+ (*item).next = item;
+ (*item).prev = item;
+ }
+ } else {
+ let next = self.first;
+ // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
+ // it's not null, so it must be valid.
+ let prev = unsafe { (*next).prev };
+ // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
+ // ownership of the fields on `item`.
+ // INVARIANT: This correctly inserts `item` between `prev` and `next`.
+ unsafe {
+ (*item).next = next;
+ (*item).prev = prev;
+ (*prev).next = item;
+ (*next).prev = item;
+ }
+ }
+ }
+
+ /// Add the provided item to the front of the list.
+ pub fn push_front(&mut self, item: ListArc<T, ID>) {
+ let raw_item = ListArc::into_raw(item);
+ // SAFETY:
+ // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
+ // * If this requirement is violated, then the previous caller of `prepare_to_insert`
+ // violated the safety requirement that they can't give up ownership of the `ListArc`
+ // until they call `post_remove`.
+ // * We own the `ListArc`.
+ // * Removing items] from this list is always done using `remove_internal_inner`, which
+ // calls `post_remove` before giving up ownership.
+ let list_links = unsafe { T::prepare_to_insert(raw_item) };
+ // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
+ let item = unsafe { ListLinks::fields(list_links) };
+
+ if self.first.is_null() {
+ // SAFETY: The caller just gave us ownership of these fields.
+ // INVARIANT: A linked list with one item should be cyclic.
+ unsafe {
+ (*item).next = item;
+ (*item).prev = item;
+ }
+ } else {
+ let next = self.first;
+ // SAFETY: We just checked that `next` is non-null.
+ let prev = unsafe { (*next).prev };
+ // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
+ // ownership of the fields on `item`.
+ // INVARIANT: This correctly inserts `item` between `prev` and `next`.
+ unsafe {
+ (*item).next = next;
+ (*item).prev = prev;
+ (*prev).next = item;
+ (*next).prev = item;
+ }
+ }
+ self.first = item;
+ }
+
+ /// Removes the last item from this list.
+ pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
+ if self.first.is_null() {
+ return None;
+ }
+
+ // SAFETY: We just checked that the list is not empty.
+ let last = unsafe { (*self.first).prev };
+ // SAFETY: The last item of this list is in this list.
+ Some(unsafe { self.remove_internal(last) })
+ }
+
+ /// Removes the first item from this list.
+ pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
+ if self.first.is_null() {
+ return None;
+ }
+
+ // SAFETY: The first item of this list is in this list.
+ Some(unsafe { self.remove_internal(self.first) })
+ }
+
+ /// Removes the provided item from this list and returns it.
+ ///
+ /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
+ /// this means that the item is not in any list.)
+ ///
+ /// # Safety
+ ///
+ /// `item` must not be in a different linked list (with the same id).
+ pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
+ let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
+ // SAFETY: The user provided a reference, and reference are never dangling.
+ //
+ // As for why this is not a data race, there are two cases:
+ //
+ // * If `item` is not in any list, then these fields are read-only and null.
+ // * If `item` is in this list, then we have exclusive access to these fields since we
+ // have a mutable reference to the list.
+ //
+ // In either case, there's no race.
+ let ListLinksFields { next, prev } = unsafe { *item };
+
+ debug_assert_eq!(next.is_null(), prev.is_null());
+ if !next.is_null() {
+ // This is really a no-op, but this ensures that `item` is a raw pointer that was
+ // obtained without going through a pointer->reference->pointer conversion roundtrip.
+ // This ensures that the list is valid under the more restrictive strict provenance
+ // ruleset.
+ //
+ // SAFETY: We just checked that `next` is not null, and it's not dangling by the
+ // list invariants.
+ unsafe {
+ debug_assert_eq!(item, (*next).prev);
+ item = (*next).prev;
+ }
+
+ // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
+ // is in this list. The pointers are in the right order.
+ Some(unsafe { self.remove_internal_inner(item, next, prev) })
+ } else {
+ None
+ }
+ }
+
+ /// Removes the provided item from the list.
+ ///
+ /// # Safety
+ ///
+ /// `item` must point at an item in this list.
+ unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
+ // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
+ // since we have a mutable reference to the list containing `item`.
+ let ListLinksFields { next, prev } = unsafe { *item };
+ // SAFETY: The pointers are ok and in the right order.
+ unsafe { self.remove_internal_inner(item, next, prev) }
+ }
+
+ /// Removes the provided item from the list.
+ ///
+ /// # Safety
+ ///
+ /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
+ /// next` and `(*item).prev == prev`.
+ unsafe fn remove_internal_inner(
+ &mut self,
+ item: *mut ListLinksFields,
+ next: *mut ListLinksFields,
+ prev: *mut ListLinksFields,
+ ) -> ListArc<T, ID> {
+ // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
+ // pointers are always valid for items in a list.
+ //
+ // INVARIANT: There are three cases:
+ // * If the list has at least three items, then after removing the item, `prev` and `next`
+ // will be next to each other.
+ // * If the list has two items, then the remaining item will point at itself.
+ // * If the list has one item, then `next == prev == item`, so these writes have no
+ // effect. The list remains unchanged and `item` is still in the list for now.
+ unsafe {
+ (*next).prev = prev;
+ (*prev).next = next;
+ }
+ // SAFETY: We have exclusive access to items in the list.
+ // INVARIANT: `item` is being removed, so the pointers should be null.
+ unsafe {
+ (*item).prev = ptr::null_mut();
+ (*item).next = ptr::null_mut();
+ }
+ // INVARIANT: There are three cases:
+ // * If `item` was not the first item, then `self.first` should remain unchanged.
+ // * If `item` was the first item and there is another item, then we just updated
+ // `prev->next` to `next`, which is the new first item, and setting `item->next` to null
+ // did not modify `prev->next`.
+ // * If `item` was the only item in the list, then `prev == item`, and we just set
+ // `item->next` to null, so this correctly sets `first` to null now that the list is
+ // empty.
+ if self.first == item {
+ // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
+ // list, so it must be valid. There is no race since `prev` is still in the list and we
+ // still have exclusive access to the list.
+ self.first = unsafe { (*prev).next };
+ }
+
+ // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
+ // of `List`.
+ let list_links = unsafe { ListLinks::from_fields(item) };
+ // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
+ let raw_item = unsafe { T::post_remove(list_links) };
+ // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
+ unsafe { ListArc::from_raw(raw_item) }
+ }
+
+ /// Moves all items from `other` into `self`.
+ ///
+ /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
+ /// the last item of `self`.
+ pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
+ // First, we insert the elements into `self`. At the end, we make `other` empty.
+ if self.is_empty() {
+ // INVARIANT: All of the elements in `other` become elements of `self`.
+ self.first = other.first;
+ } else if !other.is_empty() {
+ let other_first = other.first;
+ // SAFETY: The other list is not empty, so this pointer is valid.
+ let other_last = unsafe { (*other_first).prev };
+ let self_first = self.first;
+ // SAFETY: The self list is not empty, so this pointer is valid.
+ let self_last = unsafe { (*self_first).prev };
+
+ // SAFETY: We have exclusive access to both lists, so we can update the pointers.
+ // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
+ // update `self.first` because the first element of `self` does not change.
+ unsafe {
+ (*self_first).prev = other_last;
+ (*other_last).next = self_first;
+ (*self_last).next = other_first;
+ (*other_first).prev = self_last;
+ }
+ }
+
+ // INVARIANT: The other list is now empty, so update its pointer.
+ other.first = ptr::null_mut();
+ }
+
+ /// Returns a cursor to the first element of the list.
+ ///
+ /// If the list is empty, this returns `None`.
+ pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
+ if self.first.is_null() {
+ None
+ } else {
+ Some(Cursor {
+ current: self.first,
+ list: self,
+ })
+ }
+ }
+
+ /// Creates an iterator over the list.
+ pub fn iter(&self) -> Iter<'_, T, ID> {
+ // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
+ // at the first element of the same list.
+ Iter {
+ current: self.first,
+ stop: self.first,
+ _ty: PhantomData,
+ }
+ }
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
+ fn default() -> Self {
+ List::new()
+ }
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
+ fn drop(&mut self) {
+ while let Some(item) = self.pop_front() {
+ drop(item);
+ }
+ }
+}
+
+/// An iterator over a [`List`].
+///
+/// # Invariants
+///
+/// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
+/// * The `current` pointer is null or points at a value in that [`List`].
+/// * The `stop` pointer is equal to the `first` field of that [`List`].
+#[derive(Clone)]
+pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
+ current: *mut ListLinksFields,
+ stop: *mut ListLinksFields,
+ _ty: PhantomData<&'a ListArc<T, ID>>,
+}
+
+impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
+ type Item = ArcBorrow<'a, T>;
+
+ fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
+ if self.current.is_null() {
+ return None;
+ }
+
+ let current = self.current;
+
+ // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
+ // dangling. There's no race because the iterator holds an immutable borrow to the list.
+ let next = unsafe { (*current).next };
+ // INVARIANT: If `current` was the last element of the list, then this updates it to null.
+ // Otherwise, we update it to the next element.
+ self.current = if next != self.stop {
+ next
+ } else {
+ ptr::null_mut()
+ };
+
+ // SAFETY: The `current` pointer points at a value in the list.
+ let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
+ // SAFETY:
+ // * All values in a list are stored in an `Arc`.
+ // * The value cannot be removed from the list for the duration of the lifetime annotated
+ // on the returned `ArcBorrow`, because removing it from the list would require mutable
+ // access to the list. However, the `ArcBorrow` is annotated with the iterator's
+ // lifetime, and the list is immutably borrowed for that lifetime.
+ // * Values in a list never have a `UniqueArc` reference.
+ Some(unsafe { ArcBorrow::from_raw(item) })
+ }
+}
+
+/// A cursor into a [`List`].
+///
+/// # Invariants
+///
+/// The `current` pointer points a value in `list`.
+pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
+ current: *mut ListLinksFields,
+ list: &'a mut List<T, ID>,
+}
+
+impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
+ /// Access the current element of this cursor.
+ pub fn current(&self) -> ArcBorrow<'_, T> {
+ // SAFETY: The `current` pointer points a value in the list.
+ let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
+ // SAFETY:
+ // * All values in a list are stored in an `Arc`.
+ // * The value cannot be removed from the list for the duration of the lifetime annotated
+ // on the returned `ArcBorrow`, because removing it from the list would require mutable
+ // access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
+ // on the cursor, which in turn holds a mutable borrow on the list, so any such
+ // mutable access requires first releasing the immutable borrow on the cursor.
+ // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
+ // reference, and `UniqueArc` references must be unique.
+ unsafe { ArcBorrow::from_raw(me) }
+ }
+
+ /// Move the cursor to the next element.
+ pub fn next(self) -> Option<Cursor<'a, T, ID>> {
+ // SAFETY: The `current` field is always in a list.
+ let next = unsafe { (*self.current).next };
+
+ if next == self.list.first {
+ None
+ } else {
+ // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
+ // `list`.
+ Some(Cursor {
+ current: next,
+ list: self.list,
+ })
+ }
+ }
+
+ /// Move the cursor to the previous element.
+ pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
+ // SAFETY: The `current` field is always in a list.
+ let prev = unsafe { (*self.current).prev };
+
+ if self.current == self.list.first {
+ None
+ } else {
+ // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
+ // `list`.
+ Some(Cursor {
+ current: prev,
+ list: self.list,
+ })
+ }
+ }
+
+ /// Remove the current element from the list.
+ pub fn remove(self) -> ListArc<T, ID> {
+ // SAFETY: The `current` pointer always points at a member of the list.
+ unsafe { self.list.remove_internal(self.current) }
+ }
+}
+
+impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
+
+impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
+ type IntoIter = Iter<'a, T, ID>;
+ type Item = ArcBorrow<'a, T>;
+
+ fn into_iter(self) -> Iter<'a, T, ID> {
+ self.iter()
+ }
+}
+
+/// An owning iterator into a [`List`].
+pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
+ list: List<T, ID>,
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
+ type Item = ListArc<T, ID>;
+
+ fn next(&mut self) -> Option<ListArc<T, ID>> {
+ self.list.pop_front()
+ }
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
+ fn next_back(&mut self) -> Option<ListArc<T, ID>> {
+ self.list.pop_back()
+ }
+}
+
+impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
+ type IntoIter = IntoIter<T, ID>;
+ type Item = ListArc<T, ID>;
+
+ fn into_iter(self) -> IntoIter<T, ID> {
+ IntoIter { list: self }
+ }
+}