diff options
Diffstat (limited to 'net/dccp/ccids/lib/tfrc_equation.c')
-rw-r--r-- | net/dccp/ccids/lib/tfrc_equation.c | 222 |
1 files changed, 139 insertions, 83 deletions
diff --git a/net/dccp/ccids/lib/tfrc_equation.c b/net/dccp/ccids/lib/tfrc_equation.c index 2601012383fb..ddac2c511e2f 100644 --- a/net/dccp/ccids/lib/tfrc_equation.c +++ b/net/dccp/ccids/lib/tfrc_equation.c @@ -18,10 +18,79 @@ #include "tfrc.h" #define TFRC_CALC_X_ARRSIZE 500 +#define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */ +#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE) -#define TFRC_CALC_X_SPLIT 50000 -/* equivalent to 0.05 */ - +/* + TFRC TCP Reno Throughput Equation Lookup Table for f(p) + + The following two-column lookup table implements a part of the TCP throughput + equation from [RFC 3448, sec. 3.1]: + + s + X_calc = -------------------------------------------------------------- + R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3)) + + Where: + X is the transmit rate in bytes/second + s is the packet size in bytes + R is the round trip time in seconds + p is the loss event rate, between 0 and 1.0, of the number of loss + events as a fraction of the number of packets transmitted + t_RTO is the TCP retransmission timeout value in seconds + b is the number of packets acknowledged by a single TCP ACK + + We can assume that b = 1 and t_RTO is 4 * R. The equation now becomes: + + s + X_calc = ------------------------------------------------------- + R * sqrt(p*2/3) + (12 * R * sqrt(p*3/8) * (p + 32*p^3)) + + which we can break down into: + + s + X_calc = --------- + R * f(p) + + where f(p) is given for 0 < p <= 1 by: + + f(p) = sqrt(2*p/3) + 12 * sqrt(3*p/8) * (p + 32*p^3) + + Since this is kernel code, floating-point arithmetic is avoided in favour of + integer arithmetic. This means that nearly all fractional parameters are + scaled by 1000000: + * the parameters p and R + * the return result f(p) + The lookup table therefore actually tabulates the following function g(q): + + g(q) = 1000000 * f(q/1000000) + + Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer + granularity for the practically more relevant case of small values of p (up to + 5%), the second column is used; the first one ranges up to 100%. This split + corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also + determines the smallest resolution possible with this lookup table: + + TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE + + The entire table is generated by: + for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) { + lookup[i][0] = g((i+1) * 1000000/TFRC_CALC_X_ARRSIZE); + lookup[i][1] = g((i+1) * TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE); + } + + With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1, + lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%) + lookup[M][0] = g(1000000) = 1000000 * f(100%) + lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%) + lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%) + + In summary, the two columns represent f(p) for the following ranges: + * The first column is for 0.002 <= p <= 1.0 + * The second column is for 0.0001 <= p <= 0.05 + Where the columns overlap, the second (finer-grained) is given preference, + i.e. the first column is used only for p >= 0.05. + */ static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = { { 37172, 8172 }, { 53499, 11567 }, @@ -525,85 +594,69 @@ static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = { { 243315981, 271305 } }; -/* Calculate the send rate as per section 3.1 of RFC3448 - -Returns send rate in bytes per second - -Integer maths and lookups are used as not allowed floating point in kernel - -The function for Xcalc as per section 3.1 of RFC3448 is: - -X = s - ------------------------------------------------------------- - R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p * (1+32*p^2))) - -where -X is the trasmit rate in bytes/second -s is the packet size in bytes -R is the round trip time in seconds -p is the loss event rate, between 0 and 1.0, of the number of loss events - as a fraction of the number of packets transmitted -t_RTO is the TCP retransmission timeout value in seconds -b is the number of packets acknowledged by a single TCP acknowledgement - -we can assume that b = 1 and t_RTO is 4 * R. With this the equation becomes: - -X = s - ----------------------------------------------------------------------- - R * sqrt(2 * p / 3) + (12 * R * (sqrt(3 * p / 8) * p * (1 + 32 * p^2))) - - -which we can break down into: - -X = s - -------- - R * f(p) - -where f(p) = sqrt(2 * p / 3) + (12 * sqrt(3 * p / 8) * p * (1 + 32 * p * p)) - -Function parameters: -s - bytes -R - RTT in usecs -p - loss rate (decimal fraction multiplied by 1,000,000) - -Returns Xcalc in bytes per second - -DON'T alter this code unless you run test cases against it as the code -has been manipulated to stop underflow/overlow. +/* return largest index i such that fval <= lookup[i][small] */ +static inline u32 tfrc_binsearch(u32 fval, u8 small) +{ + u32 try, low = 0, high = TFRC_CALC_X_ARRSIZE - 1; + + while (low < high) { + try = (low + high) / 2; + if (fval <= tfrc_calc_x_lookup[try][small]) + high = try; + else + low = try + 1; + } + return high; +} -*/ +/** + * tfrc_calc_x - Calculate the send rate as per section 3.1 of RFC3448 + * + * @s: packet size in bytes + * @R: RTT scaled by 1000000 (i.e., microseconds) + * @p: loss ratio estimate scaled by 1000000 + * Returns X_calc in bytes per second (not scaled). + * + * Note: DO NOT alter this code unless you run test cases against it, + * as the code has been optimized to stop underflow/overflow. + */ u32 tfrc_calc_x(u16 s, u32 R, u32 p) { int index; u32 f; u64 tmp1, tmp2; - if (p < TFRC_CALC_X_SPLIT) - index = (p / (TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE)) - 1; - else - index = (p / (1000000 / TFRC_CALC_X_ARRSIZE)) - 1; + /* check against invalid parameters and divide-by-zero */ + BUG_ON(p > 1000000); /* p must not exceed 100% */ + BUG_ON(p == 0); /* f(0) = 0, divide by zero */ + if (R == 0) { /* possible divide by zero */ + DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc."); + return ~0U; + } - if (index < 0) - /* p should be 0 unless there is a bug in my code */ - index = 0; + if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */ + if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */ + DCCP_WARN("Value of p (%d) below resolution. " + "Substituting %d\n", p, TFRC_SMALLEST_P); + index = 0; + } else /* 0.0001 <= p <= 0.05 */ + index = p/TFRC_SMALLEST_P - 1; - if (R == 0) { - DCCP_WARN("RTT==0, setting to 1\n"); - R = 1; /* RTT can't be zero or else divide by zero */ - } + f = tfrc_calc_x_lookup[index][1]; - BUG_ON(index >= TFRC_CALC_X_ARRSIZE); + } else { /* 0.05 < p <= 1.00 */ + index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1; - if (p >= TFRC_CALC_X_SPLIT) f = tfrc_calc_x_lookup[index][0]; - else - f = tfrc_calc_x_lookup[index][1]; + } + /* The following computes X = s/(R*f(p)) in bytes per second. Since f(p) + * and R are both scaled by 1000000, we need to multiply by 1000000^2. + * ==> DO NOT alter this unless you test against overflow on 32 bit */ tmp1 = ((u64)s * 100000000); tmp2 = ((u64)R * (u64)f); do_div(tmp2, 10000); do_div(tmp1, tmp2); - /* Don't alter above math unless you test due to overflow on 32 bit */ return (u32)tmp1; } @@ -611,33 +664,36 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) EXPORT_SYMBOL_GPL(tfrc_calc_x); /* - * args: fvalue - function value to match - * returns: p closest to that value + * tfrc_calc_x_reverse_lookup - try to find p given f(p) * - * both fvalue and p are multiplied by 1,000,000 to use ints + * @fvalue: function value to match, scaled by 1000000 + * Returns closest match for p, also scaled by 1000000 */ u32 tfrc_calc_x_reverse_lookup(u32 fvalue) { - int ctr = 0; - int small; + int index; - if (fvalue < tfrc_calc_x_lookup[0][1]) + if (fvalue == 0) /* f(p) = 0 whenever p = 0 */ return 0; - if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) - small = 1; - else if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) + /* Error cases. */ + if (fvalue < tfrc_calc_x_lookup[0][1]) { + DCCP_WARN("fvalue %d smaller than resolution\n", fvalue); + return tfrc_calc_x_lookup[0][1]; + } + if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) { + DCCP_WARN("fvalue %d exceeds bounds!\n", fvalue); return 1000000; - else - small = 0; - - while (fvalue > tfrc_calc_x_lookup[ctr][small]) - ctr++; + } - if (small) - return TFRC_CALC_X_SPLIT * ctr / TFRC_CALC_X_ARRSIZE; - else - return 1000000 * ctr / TFRC_CALC_X_ARRSIZE; + if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) { + index = tfrc_binsearch(fvalue, 1); + return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE; + } + + /* else ... it must be in the coarse-grained column */ + index = tfrc_binsearch(fvalue, 0); + return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE; } EXPORT_SYMBOL_GPL(tfrc_calc_x_reverse_lookup); |