summaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Kconfig3
-rw-r--r--mm/Makefile2
-rw-r--r--mm/backing-dev.c18
-rw-r--r--mm/bootmem.c24
-rw-r--r--mm/filemap.c2
-rw-r--r--mm/highmem.c7
-rw-r--r--mm/hugetlb.c6
-rw-r--r--mm/init-mm.c6
-rw-r--r--mm/ksm.c71
-rw-r--r--mm/memblock.c541
-rw-r--r--mm/memcontrol.c55
-rw-r--r--mm/memory-failure.c33
-rw-r--r--mm/memory.c28
-rw-r--r--mm/mempolicy.c82
-rw-r--r--mm/migrate.c10
-rw-r--r--mm/mmap.c50
-rw-r--r--mm/oom_kill.c683
-rw-r--r--mm/page-writeback.c73
-rw-r--r--mm/page_alloc.c36
-rw-r--r--mm/percpu.c85
-rw-r--r--mm/rmap.c127
-rw-r--r--mm/shmem.c133
-rw-r--r--mm/slab.c5
-rw-r--r--mm/slob.c14
-rw-r--r--mm/slub.c87
-rw-r--r--mm/swapfile.c100
-rw-r--r--mm/truncate.c38
-rw-r--r--mm/util.c11
-rw-r--r--mm/vmalloc.c9
-rw-r--r--mm/vmscan.c543
-rw-r--r--mm/vmstat.c8
31 files changed, 1949 insertions, 941 deletions
diff --git a/mm/Kconfig b/mm/Kconfig
index 527136b22384..f4e516e9c37c 100644
--- a/mm/Kconfig
+++ b/mm/Kconfig
@@ -128,6 +128,9 @@ config SPARSEMEM_VMEMMAP
pfn_to_page and page_to_pfn operations. This is the most
efficient option when sufficient kernel resources are available.
+config HAVE_MEMBLOCK
+ boolean
+
# eventually, we can have this option just 'select SPARSEMEM'
config MEMORY_HOTPLUG
bool "Allow for memory hot-add"
diff --git a/mm/Makefile b/mm/Makefile
index 8982504bd03b..34b2546a9e37 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -15,6 +15,8 @@ obj-y := bootmem.o filemap.o mempool.o oom_kill.o fadvise.o \
$(mmu-y)
obj-y += init-mm.o
+obj-$(CONFIG_HAVE_MEMBLOCK) += memblock.o
+
obj-$(CONFIG_BOUNCE) += bounce.o
obj-$(CONFIG_SWAP) += page_io.o swap_state.o swapfile.o thrash.o
obj-$(CONFIG_HAS_DMA) += dmapool.o
diff --git a/mm/backing-dev.c b/mm/backing-dev.c
index 660a87a22511..f9fd3dd3916b 100644
--- a/mm/backing-dev.c
+++ b/mm/backing-dev.c
@@ -104,15 +104,13 @@ static int bdi_debug_stats_show(struct seq_file *m, void *v)
"b_more_io: %8lu\n"
"bdi_list: %8u\n"
"state: %8lx\n"
- "wb_mask: %8lx\n"
- "wb_list: %8u\n"
- "wb_cnt: %8u\n",
+ "wb_list: %8u\n",
(unsigned long) K(bdi_stat(bdi, BDI_WRITEBACK)),
(unsigned long) K(bdi_stat(bdi, BDI_RECLAIMABLE)),
K(bdi_thresh), K(dirty_thresh),
K(background_thresh), nr_wb, nr_dirty, nr_io, nr_more_io,
- !list_empty(&bdi->bdi_list), bdi->state, bdi->wb_mask,
- !list_empty(&bdi->wb_list), bdi->wb_cnt);
+ !list_empty(&bdi->bdi_list), bdi->state,
+ !list_empty(&bdi->wb_list));
#undef K
return 0;
@@ -340,14 +338,13 @@ int bdi_has_dirty_io(struct backing_dev_info *bdi)
static void bdi_flush_io(struct backing_dev_info *bdi)
{
struct writeback_control wbc = {
- .bdi = bdi,
.sync_mode = WB_SYNC_NONE,
.older_than_this = NULL,
.range_cyclic = 1,
.nr_to_write = 1024,
};
- writeback_inodes_wbc(&wbc);
+ writeback_inodes_wb(&bdi->wb, &wbc);
}
/*
@@ -668,19 +665,12 @@ int bdi_init(struct backing_dev_info *bdi)
bdi->max_ratio = 100;
bdi->max_prop_frac = PROP_FRAC_BASE;
spin_lock_init(&bdi->wb_lock);
- INIT_RCU_HEAD(&bdi->rcu_head);
INIT_LIST_HEAD(&bdi->bdi_list);
INIT_LIST_HEAD(&bdi->wb_list);
INIT_LIST_HEAD(&bdi->work_list);
bdi_wb_init(&bdi->wb, bdi);
- /*
- * Just one thread support for now, hard code mask and count
- */
- bdi->wb_mask = 1;
- bdi->wb_cnt = 1;
-
for (i = 0; i < NR_BDI_STAT_ITEMS; i++) {
err = percpu_counter_init(&bdi->bdi_stat[i], 0);
if (err)
diff --git a/mm/bootmem.c b/mm/bootmem.c
index 58c66cc5056a..142c84a54993 100644
--- a/mm/bootmem.c
+++ b/mm/bootmem.c
@@ -833,15 +833,24 @@ static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ void *ptr;
+
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
#ifdef CONFIG_NO_BOOTMEM
- return __alloc_memory_core_early(pgdat->node_id, size, align,
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ goal, -1ULL);
+ if (ptr)
+ return ptr;
+
+ ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, -1ULL);
#else
- return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
+ ptr = ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
#endif
+
+ return ptr;
}
void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
@@ -977,14 +986,21 @@ void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
unsigned long align, unsigned long goal)
{
+ void *ptr;
+
if (WARN_ON_ONCE(slab_is_available()))
return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
#ifdef CONFIG_NO_BOOTMEM
- return __alloc_memory_core_early(pgdat->node_id, size, align,
+ ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
+ goal, ARCH_LOW_ADDRESS_LIMIT);
+ if (ptr)
+ return ptr;
+ ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
#else
- return ___alloc_bootmem_node(pgdat->bdata, size, align,
+ ptr = ___alloc_bootmem_node(pgdat->bdata, size, align,
goal, ARCH_LOW_ADDRESS_LIMIT);
#endif
+ return ptr;
}
diff --git a/mm/filemap.c b/mm/filemap.c
index 20e5642e9f9f..3d4df44e4221 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -2238,14 +2238,12 @@ static ssize_t generic_perform_write(struct file *file,
do {
struct page *page;
- pgoff_t index; /* Pagecache index for current page */
unsigned long offset; /* Offset into pagecache page */
unsigned long bytes; /* Bytes to write to page */
size_t copied; /* Bytes copied from user */
void *fsdata;
offset = (pos & (PAGE_CACHE_SIZE - 1));
- index = pos >> PAGE_CACHE_SHIFT;
bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
iov_iter_count(i));
diff --git a/mm/highmem.c b/mm/highmem.c
index 66baa20f78f5..7a0aa1be4993 100644
--- a/mm/highmem.c
+++ b/mm/highmem.c
@@ -26,6 +26,7 @@
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/highmem.h>
+#include <linux/kgdb.h>
#include <asm/tlbflush.h>
/*
@@ -470,6 +471,12 @@ void debug_kmap_atomic(enum km_type type)
warn_count--;
}
}
+#ifdef CONFIG_KGDB_KDB
+ if (unlikely(type == KM_KDB && atomic_read(&kgdb_active) == -1)) {
+ WARN_ON(1);
+ warn_count--;
+ }
+#endif /* CONFIG_KGDB_KDB */
}
#endif
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 54d42b009dbe..b61d2db9f34e 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -2349,11 +2349,17 @@ retry_avoidcopy:
ptep = huge_pte_offset(mm, address & huge_page_mask(h));
if (likely(pte_same(huge_ptep_get(ptep), pte))) {
/* Break COW */
+ mmu_notifier_invalidate_range_start(mm,
+ address & huge_page_mask(h),
+ (address & huge_page_mask(h)) + huge_page_size(h));
huge_ptep_clear_flush(vma, address, ptep);
set_huge_pte_at(mm, address, ptep,
make_huge_pte(vma, new_page, 1));
/* Make the old page be freed below */
new_page = old_page;
+ mmu_notifier_invalidate_range_end(mm,
+ address & huge_page_mask(h),
+ (address & huge_page_mask(h)) + huge_page_size(h));
}
page_cache_release(new_page);
page_cache_release(old_page);
diff --git a/mm/init-mm.c b/mm/init-mm.c
index 57aba0da9668..1d29cdfe8ebb 100644
--- a/mm/init-mm.c
+++ b/mm/init-mm.c
@@ -7,6 +7,11 @@
#include <asm/atomic.h>
#include <asm/pgtable.h>
+#include <asm/mmu.h>
+
+#ifndef INIT_MM_CONTEXT
+#define INIT_MM_CONTEXT(name)
+#endif
struct mm_struct init_mm = {
.mm_rb = RB_ROOT,
@@ -17,4 +22,5 @@ struct mm_struct init_mm = {
.page_table_lock = __SPIN_LOCK_UNLOCKED(init_mm.page_table_lock),
.mmlist = LIST_HEAD_INIT(init_mm.mmlist),
.cpu_vm_mask = CPU_MASK_ALL,
+ INIT_MM_CONTEXT(init_mm)
};
diff --git a/mm/ksm.c b/mm/ksm.c
index 6c3e99b4ae7c..e2ae00458320 100644
--- a/mm/ksm.c
+++ b/mm/ksm.c
@@ -33,6 +33,7 @@
#include <linux/mmu_notifier.h>
#include <linux/swap.h>
#include <linux/ksm.h>
+#include <linux/hash.h>
#include <asm/tlbflush.h>
#include "internal.h"
@@ -153,8 +154,9 @@ struct rmap_item {
static struct rb_root root_stable_tree = RB_ROOT;
static struct rb_root root_unstable_tree = RB_ROOT;
-#define MM_SLOTS_HASH_HEADS 1024
-static struct hlist_head *mm_slots_hash;
+#define MM_SLOTS_HASH_SHIFT 10
+#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
+static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
static struct mm_slot ksm_mm_head = {
.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
@@ -269,28 +271,13 @@ static inline void free_mm_slot(struct mm_slot *mm_slot)
kmem_cache_free(mm_slot_cache, mm_slot);
}
-static int __init mm_slots_hash_init(void)
-{
- mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
- GFP_KERNEL);
- if (!mm_slots_hash)
- return -ENOMEM;
- return 0;
-}
-
-static void __init mm_slots_hash_free(void)
-{
- kfree(mm_slots_hash);
-}
-
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
struct mm_slot *mm_slot;
struct hlist_head *bucket;
struct hlist_node *node;
- bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
- % MM_SLOTS_HASH_HEADS];
+ bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
hlist_for_each_entry(mm_slot, node, bucket, link) {
if (mm == mm_slot->mm)
return mm_slot;
@@ -303,8 +290,7 @@ static void insert_to_mm_slots_hash(struct mm_struct *mm,
{
struct hlist_head *bucket;
- bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
- % MM_SLOTS_HASH_HEADS];
+ bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
mm_slot->mm = mm;
hlist_add_head(&mm_slot->link, bucket);
}
@@ -318,19 +304,14 @@ static void hold_anon_vma(struct rmap_item *rmap_item,
struct anon_vma *anon_vma)
{
rmap_item->anon_vma = anon_vma;
- atomic_inc(&anon_vma->external_refcount);
+ get_anon_vma(anon_vma);
}
-static void drop_anon_vma(struct rmap_item *rmap_item)
+static void ksm_drop_anon_vma(struct rmap_item *rmap_item)
{
struct anon_vma *anon_vma = rmap_item->anon_vma;
- if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
- int empty = list_empty(&anon_vma->head);
- spin_unlock(&anon_vma->lock);
- if (empty)
- anon_vma_free(anon_vma);
- }
+ drop_anon_vma(anon_vma);
}
/*
@@ -415,7 +396,7 @@ static void break_cow(struct rmap_item *rmap_item)
* It is not an accident that whenever we want to break COW
* to undo, we also need to drop a reference to the anon_vma.
*/
- drop_anon_vma(rmap_item);
+ ksm_drop_anon_vma(rmap_item);
down_read(&mm->mmap_sem);
if (ksm_test_exit(mm))
@@ -470,7 +451,7 @@ static void remove_node_from_stable_tree(struct stable_node *stable_node)
ksm_pages_sharing--;
else
ksm_pages_shared--;
- drop_anon_vma(rmap_item);
+ ksm_drop_anon_vma(rmap_item);
rmap_item->address &= PAGE_MASK;
cond_resched();
}
@@ -558,7 +539,7 @@ static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
else
ksm_pages_shared--;
- drop_anon_vma(rmap_item);
+ ksm_drop_anon_vma(rmap_item);
rmap_item->address &= PAGE_MASK;
} else if (rmap_item->address & UNSTABLE_FLAG) {
@@ -1566,7 +1547,7 @@ again:
struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
@@ -1589,7 +1570,7 @@ again:
if (!search_new_forks || !mapcount)
break;
}
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
if (!mapcount)
goto out;
}
@@ -1619,7 +1600,7 @@ again:
struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
@@ -1637,11 +1618,11 @@ again:
ret = try_to_unmap_one(page, vma,
rmap_item->address, flags);
if (ret != SWAP_AGAIN || !page_mapped(page)) {
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
goto out;
}
}
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
}
if (!search_new_forks++)
goto again;
@@ -1671,7 +1652,7 @@ again:
struct anon_vma_chain *vmac;
struct vm_area_struct *vma;
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
vma = vmac->vma;
if (rmap_item->address < vma->vm_start ||
@@ -1688,11 +1669,11 @@ again:
ret = rmap_one(page, vma, rmap_item->address, arg);
if (ret != SWAP_AGAIN) {
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
goto out;
}
}
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
}
if (!search_new_forks++)
goto again;
@@ -1943,15 +1924,11 @@ static int __init ksm_init(void)
if (err)
goto out;
- err = mm_slots_hash_init();
- if (err)
- goto out_free1;
-
ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
if (IS_ERR(ksm_thread)) {
printk(KERN_ERR "ksm: creating kthread failed\n");
err = PTR_ERR(ksm_thread);
- goto out_free2;
+ goto out_free;
}
#ifdef CONFIG_SYSFS
@@ -1959,7 +1936,7 @@ static int __init ksm_init(void)
if (err) {
printk(KERN_ERR "ksm: register sysfs failed\n");
kthread_stop(ksm_thread);
- goto out_free2;
+ goto out_free;
}
#else
ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
@@ -1975,9 +1952,7 @@ static int __init ksm_init(void)
#endif
return 0;
-out_free2:
- mm_slots_hash_free();
-out_free1:
+out_free:
ksm_slab_free();
out:
return err;
diff --git a/mm/memblock.c b/mm/memblock.c
new file mode 100644
index 000000000000..43840b305ecb
--- /dev/null
+++ b/mm/memblock.c
@@ -0,0 +1,541 @@
+/*
+ * Procedures for maintaining information about logical memory blocks.
+ *
+ * Peter Bergner, IBM Corp. June 2001.
+ * Copyright (C) 2001 Peter Bergner.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version
+ * 2 of the License, or (at your option) any later version.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/bitops.h>
+#include <linux/memblock.h>
+
+#define MEMBLOCK_ALLOC_ANYWHERE 0
+
+struct memblock memblock;
+
+static int memblock_debug;
+
+static int __init early_memblock(char *p)
+{
+ if (p && strstr(p, "debug"))
+ memblock_debug = 1;
+ return 0;
+}
+early_param("memblock", early_memblock);
+
+static void memblock_dump(struct memblock_region *region, char *name)
+{
+ unsigned long long base, size;
+ int i;
+
+ pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
+
+ for (i = 0; i < region->cnt; i++) {
+ base = region->region[i].base;
+ size = region->region[i].size;
+
+ pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
+ name, i, base, base + size - 1, size);
+ }
+}
+
+void memblock_dump_all(void)
+{
+ if (!memblock_debug)
+ return;
+
+ pr_info("MEMBLOCK configuration:\n");
+ pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size);
+ pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
+
+ memblock_dump(&memblock.memory, "memory");
+ memblock_dump(&memblock.reserved, "reserved");
+}
+
+static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
+ u64 size2)
+{
+ return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
+}
+
+static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
+{
+ if (base2 == base1 + size1)
+ return 1;
+ else if (base1 == base2 + size2)
+ return -1;
+
+ return 0;
+}
+
+static long memblock_regions_adjacent(struct memblock_region *rgn,
+ unsigned long r1, unsigned long r2)
+{
+ u64 base1 = rgn->region[r1].base;
+ u64 size1 = rgn->region[r1].size;
+ u64 base2 = rgn->region[r2].base;
+ u64 size2 = rgn->region[r2].size;
+
+ return memblock_addrs_adjacent(base1, size1, base2, size2);
+}
+
+static void memblock_remove_region(struct memblock_region *rgn, unsigned long r)
+{
+ unsigned long i;
+
+ for (i = r; i < rgn->cnt - 1; i++) {
+ rgn->region[i].base = rgn->region[i + 1].base;
+ rgn->region[i].size = rgn->region[i + 1].size;
+ }
+ rgn->cnt--;
+}
+
+/* Assumption: base addr of region 1 < base addr of region 2 */
+static void memblock_coalesce_regions(struct memblock_region *rgn,
+ unsigned long r1, unsigned long r2)
+{
+ rgn->region[r1].size += rgn->region[r2].size;
+ memblock_remove_region(rgn, r2);
+}
+
+void __init memblock_init(void)
+{
+ /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
+ * This simplifies the memblock_add() code below...
+ */
+ memblock.memory.region[0].base = 0;
+ memblock.memory.region[0].size = 0;
+ memblock.memory.cnt = 1;
+
+ /* Ditto. */
+ memblock.reserved.region[0].base = 0;
+ memblock.reserved.region[0].size = 0;
+ memblock.reserved.cnt = 1;
+}
+
+void __init memblock_analyze(void)
+{
+ int i;
+
+ memblock.memory.size = 0;
+
+ for (i = 0; i < memblock.memory.cnt; i++)
+ memblock.memory.size += memblock.memory.region[i].size;
+}
+
+static long memblock_add_region(struct memblock_region *rgn, u64 base, u64 size)
+{
+ unsigned long coalesced = 0;
+ long adjacent, i;
+
+ if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
+ rgn->region[0].base = base;
+ rgn->region[0].size = size;
+ return 0;
+ }
+
+ /* First try and coalesce this MEMBLOCK with another. */
+ for (i = 0; i < rgn->cnt; i++) {
+ u64 rgnbase = rgn->region[i].base;
+ u64 rgnsize = rgn->region[i].size;
+
+ if ((rgnbase == base) && (rgnsize == size))
+ /* Already have this region, so we're done */
+ return 0;
+
+ adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
+ if (adjacent > 0) {
+ rgn->region[i].base -= size;
+ rgn->region[i].size += size;
+ coalesced++;
+ break;
+ } else if (adjacent < 0) {
+ rgn->region[i].size += size;
+ coalesced++;
+ break;
+ }
+ }
+
+ if ((i < rgn->cnt - 1) && memblock_regions_adjacent(rgn, i, i+1)) {
+ memblock_coalesce_regions(rgn, i, i+1);
+ coalesced++;
+ }
+
+ if (coalesced)
+ return coalesced;
+ if (rgn->cnt >= MAX_MEMBLOCK_REGIONS)
+ return -1;
+
+ /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
+ for (i = rgn->cnt - 1; i >= 0; i--) {
+ if (base < rgn->region[i].base) {
+ rgn->region[i+1].base = rgn->region[i].base;
+ rgn->region[i+1].size = rgn->region[i].size;
+ } else {
+ rgn->region[i+1].base = base;
+ rgn->region[i+1].size = size;
+ break;
+ }
+ }
+
+ if (base < rgn->region[0].base) {
+ rgn->region[0].base = base;
+ rgn->region[0].size = size;
+ }
+ rgn->cnt++;
+
+ return 0;
+}
+
+long memblock_add(u64 base, u64 size)
+{
+ struct memblock_region *_rgn = &memblock.memory;
+
+ /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
+ if (base == 0)
+ memblock.rmo_size = size;
+
+ return memblock_add_region(_rgn, base, size);
+
+}
+
+static long __memblock_remove(struct memblock_region *rgn, u64 base, u64 size)
+{
+ u64 rgnbegin, rgnend;
+ u64 end = base + size;
+ int i;
+
+ rgnbegin = rgnend = 0; /* supress gcc warnings */
+
+ /* Find the region where (base, size) belongs to */
+ for (i=0; i < rgn->cnt; i++) {
+ rgnbegin = rgn->region[i].base;
+ rgnend = rgnbegin + rgn->region[i].size;
+
+ if ((rgnbegin <= base) && (end <= rgnend))
+ break;
+ }
+
+ /* Didn't find the region */
+ if (i == rgn->cnt)
+ return -1;
+
+ /* Check to see if we are removing entire region */
+ if ((rgnbegin == base) && (rgnend == end)) {
+ memblock_remove_region(rgn, i);
+ return 0;
+ }
+
+ /* Check to see if region is matching at the front */
+ if (rgnbegin == base) {
+ rgn->region[i].base = end;
+ rgn->region[i].size -= size;
+ return 0;
+ }
+
+ /* Check to see if the region is matching at the end */
+ if (rgnend == end) {
+ rgn->region[i].size -= size;
+ return 0;
+ }
+
+ /*
+ * We need to split the entry - adjust the current one to the
+ * beginging of the hole and add the region after hole.
+ */
+ rgn->region[i].size = base - rgn->region[i].base;
+ return memblock_add_region(rgn, end, rgnend - end);
+}
+
+long memblock_remove(u64 base, u64 size)
+{
+ return __memblock_remove(&memblock.memory, base, size);
+}
+
+long __init memblock_free(u64 base, u64 size)
+{
+ return __memblock_remove(&memblock.reserved, base, size);
+}
+
+long __init memblock_reserve(u64 base, u64 size)
+{
+ struct memblock_region *_rgn = &memblock.reserved;
+
+ BUG_ON(0 == size);
+
+ return memblock_add_region(_rgn, base, size);
+}
+
+long memblock_overlaps_region(struct memblock_region *rgn, u64 base, u64 size)
+{
+ unsigned long i;
+
+ for (i = 0; i < rgn->cnt; i++) {
+ u64 rgnbase = rgn->region[i].base;
+ u64 rgnsize = rgn->region[i].size;
+ if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
+ break;
+ }
+
+ return (i < rgn->cnt) ? i : -1;
+}
+
+static u64 memblock_align_down(u64 addr, u64 size)
+{
+ return addr & ~(size - 1);
+}
+
+static u64 memblock_align_up(u64 addr, u64 size)
+{
+ return (addr + (size - 1)) & ~(size - 1);
+}
+
+static u64 __init memblock_alloc_nid_unreserved(u64 start, u64 end,
+ u64 size, u64 align)
+{
+ u64 base, res_base;
+ long j;
+
+ base = memblock_align_down((end - size), align);
+ while (start <= base) {
+ j = memblock_overlaps_region(&memblock.reserved, base, size);
+ if (j < 0) {
+ /* this area isn't reserved, take it */
+ if (memblock_add_region(&memblock.reserved, base, size) < 0)
+ base = ~(u64)0;
+ return base;
+ }
+ res_base = memblock.reserved.region[j].base;
+ if (res_base < size)
+ break;
+ base = memblock_align_down(res_base - size, align);
+ }
+
+ return ~(u64)0;
+}
+
+static u64 __init memblock_alloc_nid_region(struct memblock_property *mp,
+ u64 (*nid_range)(u64, u64, int *),
+ u64 size, u64 align, int nid)
+{
+ u64 start, end;
+
+ start = mp->base;
+ end = start + mp->size;
+
+ start = memblock_align_up(start, align);
+ while (start < end) {
+ u64 this_end;
+ int this_nid;
+
+ this_end = nid_range(start, end, &this_nid);
+ if (this_nid == nid) {
+ u64 ret = memblock_alloc_nid_unreserved(start, this_end,
+ size, align);
+ if (ret != ~(u64)0)
+ return ret;
+ }
+ start = this_end;
+ }
+
+ return ~(u64)0;
+}
+
+u64 __init memblock_alloc_nid(u64 size, u64 align, int nid,
+ u64 (*nid_range)(u64 start, u64 end, int *nid))
+{
+ struct memblock_region *mem = &memblock.memory;
+ int i;
+
+ BUG_ON(0 == size);
+
+ size = memblock_align_up(size, align);
+
+ for (i = 0; i < mem->cnt; i++) {
+ u64 ret = memblock_alloc_nid_region(&mem->region[i],
+ nid_range,
+ size, align, nid);
+ if (ret != ~(u64)0)
+ return ret;
+ }
+
+ return memblock_alloc(size, align);
+}
+
+u64 __init memblock_alloc(u64 size, u64 align)
+{
+ return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
+}
+
+u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
+{
+ u64 alloc;
+
+ alloc = __memblock_alloc_base(size, align, max_addr);
+
+ if (alloc == 0)
+ panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
+ (unsigned long long) size, (unsigned long long) max_addr);
+
+ return alloc;
+}
+
+u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
+{
+ long i, j;
+ u64 base = 0;
+ u64 res_base;
+
+ BUG_ON(0 == size);
+
+ size = memblock_align_up(size, align);
+
+ /* On some platforms, make sure we allocate lowmem */
+ /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
+ if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
+ max_addr = MEMBLOCK_REAL_LIMIT;
+
+ for (i = memblock.memory.cnt - 1; i >= 0; i--) {
+ u64 memblockbase = memblock.memory.region[i].base;
+ u64 memblocksize = memblock.memory.region[i].size;
+
+ if (memblocksize < size)
+ continue;
+ if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
+ base = memblock_align_down(memblockbase + memblocksize - size, align);
+ else if (memblockbase < max_addr) {
+ base = min(memblockbase + memblocksize, max_addr);
+ base = memblock_align_down(base - size, align);
+ } else
+ continue;
+
+ while (base && memblockbase <= base) {
+ j = memblock_overlaps_region(&memblock.reserved, base, size);
+ if (j < 0) {
+ /* this area isn't reserved, take it */
+ if (memblock_add_region(&memblock.reserved, base, size) < 0)
+ return 0;
+ return base;
+ }
+ res_base = memblock.reserved.region[j].base;
+ if (res_base < size)
+ break;
+ base = memblock_align_down(res_base - size, align);
+ }
+ }
+ return 0;
+}
+
+/* You must call memblock_analyze() before this. */
+u64 __init memblock_phys_mem_size(void)
+{
+ return memblock.memory.size;
+}
+
+u64 memblock_end_of_DRAM(void)
+{
+ int idx = memblock.memory.cnt - 1;
+
+ return (memblock.memory.region[idx].base + memblock.memory.region[idx].size);
+}
+
+/* You must call memblock_analyze() after this. */
+void __init memblock_enforce_memory_limit(u64 memory_limit)
+{
+ unsigned long i;
+ u64 limit;
+ struct memblock_property *p;
+
+ if (!memory_limit)
+ return;
+
+ /* Truncate the memblock regions to satisfy the memory limit. */
+ limit = memory_limit;
+ for (i = 0; i < memblock.memory.cnt; i++) {
+ if (limit > memblock.memory.region[i].size) {
+ limit -= memblock.memory.region[i].size;
+ continue;
+ }
+
+ memblock.memory.region[i].size = limit;
+ memblock.memory.cnt = i + 1;
+ break;
+ }
+
+ if (memblock.memory.region[0].size < memblock.rmo_size)
+ memblock.rmo_size = memblock.memory.region[0].size;
+
+ memory_limit = memblock_end_of_DRAM();
+
+ /* And truncate any reserves above the limit also. */
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ p = &memblock.reserved.region[i];
+
+ if (p->base > memory_limit)
+ p->size = 0;
+ else if ((p->base + p->size) > memory_limit)
+ p->size = memory_limit - p->base;
+
+ if (p->size == 0) {
+ memblock_remove_region(&memblock.reserved, i);
+ i--;
+ }
+ }
+}
+
+int __init memblock_is_reserved(u64 addr)
+{
+ int i;
+
+ for (i = 0; i < memblock.reserved.cnt; i++) {
+ u64 upper = memblock.reserved.region[i].base +
+ memblock.reserved.region[i].size - 1;
+ if ((addr >= memblock.reserved.region[i].base) && (addr <= upper))
+ return 1;
+ }
+ return 0;
+}
+
+int memblock_is_region_reserved(u64 base, u64 size)
+{
+ return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
+}
+
+/*
+ * Given a <base, len>, find which memory regions belong to this range.
+ * Adjust the request and return a contiguous chunk.
+ */
+int memblock_find(struct memblock_property *res)
+{
+ int i;
+ u64 rstart, rend;
+
+ rstart = res->base;
+ rend = rstart + res->size - 1;
+
+ for (i = 0; i < memblock.memory.cnt; i++) {
+ u64 start = memblock.memory.region[i].base;
+ u64 end = start + memblock.memory.region[i].size - 1;
+
+ if (start > rend)
+ return -1;
+
+ if ((end >= rstart) && (start < rend)) {
+ /* adjust the request */
+ if (rstart < start)
+ rstart = start;
+ if (rend > end)
+ rend = end;
+ res->base = rstart;
+ res->size = rend - rstart + 1;
+ return 0;
+ }
+ }
+ return -1;
+}
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 20a8193a7af8..0576e9e64586 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -51,6 +51,8 @@
#include <asm/uaccess.h>
+#include <trace/events/vmscan.h>
+
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
struct mem_cgroup *root_mem_cgroup __read_mostly;
@@ -211,8 +213,6 @@ struct mem_cgroup {
*/
spinlock_t reclaim_param_lock;
- int prev_priority; /* for recording reclaim priority */
-
/*
* While reclaiming in a hierarchy, we cache the last child we
* reclaimed from.
@@ -858,35 +858,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
return ret;
}
-/*
- * prev_priority control...this will be used in memory reclaim path.
- */
-int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
-{
- int prev_priority;
-
- spin_lock(&mem->reclaim_param_lock);
- prev_priority = mem->prev_priority;
- spin_unlock(&mem->reclaim_param_lock);
-
- return prev_priority;
-}
-
-void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
-{
- spin_lock(&mem->reclaim_param_lock);
- if (priority < mem->prev_priority)
- mem->prev_priority = priority;
- spin_unlock(&mem->reclaim_param_lock);
-}
-
-void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
-{
- spin_lock(&mem->reclaim_param_lock);
- mem->prev_priority = priority;
- spin_unlock(&mem->reclaim_param_lock);
-}
-
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
{
unsigned long active;
@@ -1038,6 +1009,10 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
}
*scanned = scan;
+
+ trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
+ 0, 0, 0, mode);
+
return nr_taken;
}
@@ -1158,6 +1133,24 @@ static int mem_cgroup_count_children(struct mem_cgroup *mem)
}
/*
+ * Return the memory (and swap, if configured) limit for a memcg.
+ */
+u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
+{
+ u64 limit;
+ u64 memsw;
+
+ limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
+ total_swap_pages;
+ memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ /*
+ * If memsw is finite and limits the amount of swap space available
+ * to this memcg, return that limit.
+ */
+ return min(limit, memsw);
+}
+
+/*
* Visit the first child (need not be the first child as per the ordering
* of the cgroup list, since we track last_scanned_child) of @mem and use
* that to reclaim free pages from.
diff --git a/mm/memory-failure.c b/mm/memory-failure.c
index 620b0b461593..6b44e52cacaa 100644
--- a/mm/memory-failure.c
+++ b/mm/memory-failure.c
@@ -45,6 +45,7 @@
#include <linux/page-isolation.h>
#include <linux/suspend.h>
#include <linux/slab.h>
+#include <linux/swapops.h>
#include "internal.h"
int sysctl_memory_failure_early_kill __read_mostly = 0;
@@ -1296,3 +1297,35 @@ done:
/* keep elevated page count for bad page */
return ret;
}
+
+/*
+ * The caller must hold current->mm->mmap_sem in read mode.
+ */
+int is_hwpoison_address(unsigned long addr)
+{
+ pgd_t *pgdp;
+ pud_t pud, *pudp;
+ pmd_t pmd, *pmdp;
+ pte_t pte, *ptep;
+ swp_entry_t entry;
+
+ pgdp = pgd_offset(current->mm, addr);
+ if (!pgd_present(*pgdp))
+ return 0;
+ pudp = pud_offset(pgdp, addr);
+ pud = *pudp;
+ if (!pud_present(pud) || pud_large(pud))
+ return 0;
+ pmdp = pmd_offset(pudp, addr);
+ pmd = *pmdp;
+ if (!pmd_present(pmd) || pmd_large(pmd))
+ return 0;
+ ptep = pte_offset_map(pmdp, addr);
+ pte = *ptep;
+ pte_unmap(ptep);
+ if (!is_swap_pte(pte))
+ return 0;
+ entry = pte_to_swp_entry(pte);
+ return is_hwpoison_entry(entry);
+}
+EXPORT_SYMBOL_GPL(is_hwpoison_address);
diff --git a/mm/memory.c b/mm/memory.c
index 119b7ccdf39b..858829d06a92 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -307,7 +307,6 @@ void free_pgd_range(struct mmu_gather *tlb,
{
pgd_t *pgd;
unsigned long next;
- unsigned long start;
/*
* The next few lines have given us lots of grief...
@@ -351,7 +350,6 @@ void free_pgd_range(struct mmu_gather *tlb,
if (addr > end - 1)
return;
- start = addr;
pgd = pgd_offset(tlb->mm, addr);
do {
next = pgd_addr_end(addr, end);
@@ -1394,10 +1392,20 @@ int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
return i ? : -EFAULT;
}
if (pages) {
- struct page *page = vm_normal_page(gate_vma, start, *pte);
+ struct page *page;
+
+ page = vm_normal_page(gate_vma, start, *pte);
+ if (!page) {
+ if (!(gup_flags & FOLL_DUMP) &&
+ is_zero_pfn(pte_pfn(*pte)))
+ page = pte_page(*pte);
+ else {
+ pte_unmap(pte);
+ return i ? : -EFAULT;
+ }
+ }
pages[i] = page;
- if (page)
- get_page(page);
+ get_page(page);
}
pte_unmap(pte);
if (vmas)
@@ -1998,11 +2006,10 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
{
pgd_t *pgd;
unsigned long next;
- unsigned long start = addr, end = addr + size;
+ unsigned long end = addr + size;
int err;
BUG_ON(addr >= end);
- mmu_notifier_invalidate_range_start(mm, start, end);
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
@@ -2010,7 +2017,7 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
if (err)
break;
} while (pgd++, addr = next, addr != end);
- mmu_notifier_invalidate_range_end(mm, start, end);
+
return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);
@@ -2620,6 +2627,7 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
swp_entry_t entry;
pte_t pte;
struct mem_cgroup *ptr = NULL;
+ int exclusive = 0;
int ret = 0;
if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
@@ -2714,10 +2722,12 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
pte = maybe_mkwrite(pte_mkdirty(pte), vma);
flags &= ~FAULT_FLAG_WRITE;
+ ret |= VM_FAULT_WRITE;
+ exclusive = 1;
}
flush_icache_page(vma, page);
set_pte_at(mm, address, page_table, pte);
- page_add_anon_rmap(page, vma, address);
+ do_page_add_anon_rmap(page, vma, address, exclusive);
/* It's better to call commit-charge after rmap is established */
mem_cgroup_commit_charge_swapin(page, ptr);
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 5bc0a96beb51..f969da5dd8a2 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -1275,33 +1275,42 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
const unsigned long __user *, new_nodes)
{
const struct cred *cred = current_cred(), *tcred;
- struct mm_struct *mm;
+ struct mm_struct *mm = NULL;
struct task_struct *task;
- nodemask_t old;
- nodemask_t new;
nodemask_t task_nodes;
int err;
+ nodemask_t *old;
+ nodemask_t *new;
+ NODEMASK_SCRATCH(scratch);
+
+ if (!scratch)
+ return -ENOMEM;
+
+ old = &scratch->mask1;
+ new = &scratch->mask2;
- err = get_nodes(&old, old_nodes, maxnode);
+ err = get_nodes(old, old_nodes, maxnode);
if (err)
- return err;
+ goto out;
- err = get_nodes(&new, new_nodes, maxnode);
+ err = get_nodes(new, new_nodes, maxnode);
if (err)
- return err;
+ goto out;
/* Find the mm_struct */
read_lock(&tasklist_lock);
task = pid ? find_task_by_vpid(pid) : current;
if (!task) {
read_unlock(&tasklist_lock);
- return -ESRCH;
+ err = -ESRCH;
+ goto out;
}
mm = get_task_mm(task);
read_unlock(&tasklist_lock);
+ err = -EINVAL;
if (!mm)
- return -EINVAL;
+ goto out;
/*
* Check if this process has the right to modify the specified
@@ -1322,12 +1331,12 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
task_nodes = cpuset_mems_allowed(task);
/* Is the user allowed to access the target nodes? */
- if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
+ if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
err = -EPERM;
goto out;
}
- if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
+ if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
err = -EINVAL;
goto out;
}
@@ -1336,10 +1345,13 @@ SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
if (err)
goto out;
- err = do_migrate_pages(mm, &old, &new,
+ err = do_migrate_pages(mm, old, new,
capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
out:
- mmput(mm);
+ if (mm)
+ mmput(mm);
+ NODEMASK_SCRATCH_FREE(scratch);
+
return err;
}
@@ -1712,6 +1724,50 @@ bool init_nodemask_of_mempolicy(nodemask_t *mask)
}
#endif
+/*
+ * mempolicy_nodemask_intersects
+ *
+ * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
+ * policy. Otherwise, check for intersection between mask and the policy
+ * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
+ * policy, always return true since it may allocate elsewhere on fallback.
+ *
+ * Takes task_lock(tsk) to prevent freeing of its mempolicy.
+ */
+bool mempolicy_nodemask_intersects(struct task_struct *tsk,
+ const nodemask_t *mask)
+{
+ struct mempolicy *mempolicy;
+ bool ret = true;
+
+ if (!mask)
+ return ret;
+ task_lock(tsk);
+ mempolicy = tsk->mempolicy;
+ if (!mempolicy)
+ goto out;
+
+ switch (mempolicy->mode) {
+ case MPOL_PREFERRED:
+ /*
+ * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
+ * allocate from, they may fallback to other nodes when oom.
+ * Thus, it's possible for tsk to have allocated memory from
+ * nodes in mask.
+ */
+ break;
+ case MPOL_BIND:
+ case MPOL_INTERLEAVE:
+ ret = nodes_intersects(mempolicy->v.nodes, *mask);
+ break;
+ default:
+ BUG();
+ }
+out:
+ task_unlock(tsk);
+ return ret;
+}
+
/* Allocate a page in interleaved policy.
Own path because it needs to do special accounting. */
static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
diff --git a/mm/migrate.c b/mm/migrate.c
index 4205b1d6049e..38e7cad782f4 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -639,7 +639,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private,
* exist when the page is remapped later
*/
anon_vma = page_anon_vma(page);
- atomic_inc(&anon_vma->external_refcount);
+ get_anon_vma(anon_vma);
}
}
@@ -682,12 +682,8 @@ skip_unmap:
rcu_unlock:
/* Drop an anon_vma reference if we took one */
- if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
- int empty = list_empty(&anon_vma->head);
- spin_unlock(&anon_vma->lock);
- if (empty)
- anon_vma_free(anon_vma);
- }
+ if (anon_vma)
+ drop_anon_vma(anon_vma);
if (rcu_locked)
rcu_read_unlock();
diff --git a/mm/mmap.c b/mm/mmap.c
index 456ec6f27889..31003338b978 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -452,12 +452,10 @@ static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
spin_lock(&mapping->i_mmap_lock);
vma->vm_truncate_count = mapping->truncate_count;
}
- anon_vma_lock(vma);
__vma_link(mm, vma, prev, rb_link, rb_parent);
__vma_link_file(vma);
- anon_vma_unlock(vma);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
@@ -506,6 +504,7 @@ int vma_adjust(struct vm_area_struct *vma, unsigned long start,
struct vm_area_struct *importer = NULL;
struct address_space *mapping = NULL;
struct prio_tree_root *root = NULL;
+ struct anon_vma *anon_vma = NULL;
struct file *file = vma->vm_file;
long adjust_next = 0;
int remove_next = 0;
@@ -578,6 +577,17 @@ again: remove_next = 1 + (end > next->vm_end);
}
}
+ /*
+ * When changing only vma->vm_end, we don't really need anon_vma
+ * lock. This is a fairly rare case by itself, but the anon_vma
+ * lock may be shared between many sibling processes. Skipping
+ * the lock for brk adjustments makes a difference sometimes.
+ */
+ if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
+ anon_vma = vma->anon_vma;
+ anon_vma_lock(anon_vma);
+ }
+
if (root) {
flush_dcache_mmap_lock(mapping);
vma_prio_tree_remove(vma, root);
@@ -617,6 +627,8 @@ again: remove_next = 1 + (end > next->vm_end);
__insert_vm_struct(mm, insert);
}
+ if (anon_vma)
+ anon_vma_unlock(anon_vma);
if (mapping)
spin_unlock(&mapping->i_mmap_lock);
@@ -1710,7 +1722,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address)
*/
if (unlikely(anon_vma_prepare(vma)))
return -ENOMEM;
- anon_vma_lock(vma);
+ vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
@@ -1721,7 +1733,7 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address)
if (address < PAGE_ALIGN(address+4))
address = PAGE_ALIGN(address+4);
else {
- anon_vma_unlock(vma);
+ vma_unlock_anon_vma(vma);
return -ENOMEM;
}
error = 0;
@@ -1734,10 +1746,12 @@ int expand_upwards(struct vm_area_struct *vma, unsigned long address)
grow = (address - vma->vm_end) >> PAGE_SHIFT;
error = acct_stack_growth(vma, size, grow);
- if (!error)
+ if (!error) {
vma->vm_end = address;
+ perf_event_mmap(vma);
+ }
}
- anon_vma_unlock(vma);
+ vma_unlock_anon_vma(vma);
return error;
}
#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
@@ -1762,7 +1776,7 @@ static int expand_downwards(struct vm_area_struct *vma,
if (error)
return error;
- anon_vma_lock(vma);
+ vma_lock_anon_vma(vma);
/*
* vma->vm_start/vm_end cannot change under us because the caller
@@ -1781,9 +1795,10 @@ static int expand_downwards(struct vm_area_struct *vma,
if (!error) {
vma->vm_start = address;
vma->vm_pgoff -= grow;
+ perf_event_mmap(vma);
}
}
- anon_vma_unlock(vma);
+ vma_unlock_anon_vma(vma);
return error;
}
@@ -2208,6 +2223,7 @@ unsigned long do_brk(unsigned long addr, unsigned long len)
vma->vm_page_prot = vm_get_page_prot(flags);
vma_link(mm, vma, prev, rb_link, rb_parent);
out:
+ perf_event_mmap(vma);
mm->total_vm += len >> PAGE_SHIFT;
if (flags & VM_LOCKED) {
if (!mlock_vma_pages_range(vma, addr, addr + len))
@@ -2466,23 +2482,23 @@ static DEFINE_MUTEX(mm_all_locks_mutex);
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
{
- if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
+ if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
/*
* The LSB of head.next can't change from under us
* because we hold the mm_all_locks_mutex.
*/
- spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
+ spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
/*
* We can safely modify head.next after taking the
- * anon_vma->lock. If some other vma in this mm shares
+ * anon_vma->root->lock. If some other vma in this mm shares
* the same anon_vma we won't take it again.
*
* No need of atomic instructions here, head.next
* can't change from under us thanks to the
- * anon_vma->lock.
+ * anon_vma->root->lock.
*/
if (__test_and_set_bit(0, (unsigned long *)
- &anon_vma->head.next))
+ &anon_vma->root->head.next))
BUG();
}
}
@@ -2573,7 +2589,7 @@ out_unlock:
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
{
- if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
+ if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
/*
* The LSB of head.next can't change to 0 from under
* us because we hold the mm_all_locks_mutex.
@@ -2584,12 +2600,12 @@ static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
*
* No need of atomic instructions here, head.next
* can't change from under us until we release the
- * anon_vma->lock.
+ * anon_vma->root->lock.
*/
if (!__test_and_clear_bit(0, (unsigned long *)
- &anon_vma->head.next))
+ &anon_vma->root->head.next))
BUG();
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
}
}
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 709aedfaa014..d3def05a33d9 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -4,6 +4,8 @@
* Copyright (C) 1998,2000 Rik van Riel
* Thanks go out to Claus Fischer for some serious inspiration and
* for goading me into coding this file...
+ * Copyright (C) 2010 Google, Inc.
+ * Rewritten by David Rientjes
*
* The routines in this file are used to kill a process when
* we're seriously out of memory. This gets called from __alloc_pages()
@@ -27,171 +29,188 @@
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/memcontrol.h>
+#include <linux/mempolicy.h>
#include <linux/security.h>
int sysctl_panic_on_oom;
int sysctl_oom_kill_allocating_task;
-int sysctl_oom_dump_tasks;
+int sysctl_oom_dump_tasks = 1;
static DEFINE_SPINLOCK(zone_scan_lock);
-/* #define DEBUG */
+
+#ifdef CONFIG_NUMA
+/**
+ * has_intersects_mems_allowed() - check task eligiblity for kill
+ * @tsk: task struct of which task to consider
+ * @mask: nodemask passed to page allocator for mempolicy ooms
+ *
+ * Task eligibility is determined by whether or not a candidate task, @tsk,
+ * shares the same mempolicy nodes as current if it is bound by such a policy
+ * and whether or not it has the same set of allowed cpuset nodes.
+ */
+static bool has_intersects_mems_allowed(struct task_struct *tsk,
+ const nodemask_t *mask)
+{
+ struct task_struct *start = tsk;
+
+ do {
+ if (mask) {
+ /*
+ * If this is a mempolicy constrained oom, tsk's
+ * cpuset is irrelevant. Only return true if its
+ * mempolicy intersects current, otherwise it may be
+ * needlessly killed.
+ */
+ if (mempolicy_nodemask_intersects(tsk, mask))
+ return true;
+ } else {
+ /*
+ * This is not a mempolicy constrained oom, so only
+ * check the mems of tsk's cpuset.
+ */
+ if (cpuset_mems_allowed_intersects(current, tsk))
+ return true;
+ }
+ } while_each_thread(start, tsk);
+
+ return false;
+}
+#else
+static bool has_intersects_mems_allowed(struct task_struct *tsk,
+ const nodemask_t *mask)
+{
+ return true;
+}
+#endif /* CONFIG_NUMA */
/*
- * Is all threads of the target process nodes overlap ours?
+ * If this is a system OOM (not a memcg OOM) and the task selected to be
+ * killed is not already running at high (RT) priorities, speed up the
+ * recovery by boosting the dying task to the lowest FIFO priority.
+ * That helps with the recovery and avoids interfering with RT tasks.
*/
-static int has_intersects_mems_allowed(struct task_struct *tsk)
+static void boost_dying_task_prio(struct task_struct *p,
+ struct mem_cgroup *mem)
{
- struct task_struct *t;
+ struct sched_param param = { .sched_priority = 1 };
+
+ if (mem)
+ return;
+
+ if (!rt_task(p))
+ sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
+}
+
+/*
+ * The process p may have detached its own ->mm while exiting or through
+ * use_mm(), but one or more of its subthreads may still have a valid
+ * pointer. Return p, or any of its subthreads with a valid ->mm, with
+ * task_lock() held.
+ */
+static struct task_struct *find_lock_task_mm(struct task_struct *p)
+{
+ struct task_struct *t = p;
- t = tsk;
do {
- if (cpuset_mems_allowed_intersects(current, t))
- return 1;
- t = next_thread(t);
- } while (t != tsk);
+ task_lock(t);
+ if (likely(t->mm))
+ return t;
+ task_unlock(t);
+ } while_each_thread(p, t);
- return 0;
+ return NULL;
+}
+
+/* return true if the task is not adequate as candidate victim task. */
+static bool oom_unkillable_task(struct task_struct *p, struct mem_cgroup *mem,
+ const nodemask_t *nodemask)
+{
+ if (is_global_init(p))
+ return true;
+ if (p->flags & PF_KTHREAD)
+ return true;
+
+ /* When mem_cgroup_out_of_memory() and p is not member of the group */
+ if (mem && !task_in_mem_cgroup(p, mem))
+ return true;
+
+ /* p may not have freeable memory in nodemask */
+ if (!has_intersects_mems_allowed(p, nodemask))
+ return true;
+
+ return false;
}
/**
- * badness - calculate a numeric value for how bad this task has been
+ * oom_badness - heuristic function to determine which candidate task to kill
* @p: task struct of which task we should calculate
- * @uptime: current uptime in seconds
- *
- * The formula used is relatively simple and documented inline in the
- * function. The main rationale is that we want to select a good task
- * to kill when we run out of memory.
+ * @totalpages: total present RAM allowed for page allocation
*
- * Good in this context means that:
- * 1) we lose the minimum amount of work done
- * 2) we recover a large amount of memory
- * 3) we don't kill anything innocent of eating tons of memory
- * 4) we want to kill the minimum amount of processes (one)
- * 5) we try to kill the process the user expects us to kill, this
- * algorithm has been meticulously tuned to meet the principle
- * of least surprise ... (be careful when you change it)
+ * The heuristic for determining which task to kill is made to be as simple and
+ * predictable as possible. The goal is to return the highest value for the
+ * task consuming the most memory to avoid subsequent oom failures.
*/
-
-unsigned long badness(struct task_struct *p, unsigned long uptime)
+unsigned int oom_badness(struct task_struct *p, struct mem_cgroup *mem,
+ const nodemask_t *nodemask, unsigned long totalpages)
{
- unsigned long points, cpu_time, run_time;
- struct mm_struct *mm;
- struct task_struct *child;
- int oom_adj = p->signal->oom_adj;
- struct task_cputime task_time;
- unsigned long utime;
- unsigned long stime;
+ int points;
- if (oom_adj == OOM_DISABLE)
+ if (oom_unkillable_task(p, mem, nodemask))
return 0;
- task_lock(p);
- mm = p->mm;
- if (!mm) {
- task_unlock(p);
+ p = find_lock_task_mm(p);
+ if (!p)
return 0;
- }
-
- /*
- * The memory size of the process is the basis for the badness.
- */
- points = mm->total_vm;
/*
- * After this unlock we can no longer dereference local variable `mm'
+ * Shortcut check for OOM_SCORE_ADJ_MIN so the entire heuristic doesn't
+ * need to be executed for something that cannot be killed.
*/
- task_unlock(p);
-
- /*
- * swapoff can easily use up all memory, so kill those first.
- */
- if (p->flags & PF_OOM_ORIGIN)
- return ULONG_MAX;
-
- /*
- * Processes which fork a lot of child processes are likely
- * a good choice. We add half the vmsize of the children if they
- * have an own mm. This prevents forking servers to flood the
- * machine with an endless amount of children. In case a single
- * child is eating the vast majority of memory, adding only half
- * to the parents will make the child our kill candidate of choice.
- */
- list_for_each_entry(child, &p->children, sibling) {
- task_lock(child);
- if (child->mm != mm && child->mm)
- points += child->mm->total_vm/2 + 1;
- task_unlock(child);
+ if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
+ task_unlock(p);
+ return 0;
}
/*
- * CPU time is in tens of seconds and run time is in thousands
- * of seconds. There is no particular reason for this other than
- * that it turned out to work very well in practice.
- */
- thread_group_cputime(p, &task_time);
- utime = cputime_to_jiffies(task_time.utime);
- stime = cputime_to_jiffies(task_time.stime);
- cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
-
-
- if (uptime >= p->start_time.tv_sec)
- run_time = (uptime - p->start_time.tv_sec) >> 10;
- else
- run_time = 0;
-
- if (cpu_time)
- points /= int_sqrt(cpu_time);
- if (run_time)
- points /= int_sqrt(int_sqrt(run_time));
-
- /*
- * Niced processes are most likely less important, so double
- * their badness points.
+ * When the PF_OOM_ORIGIN bit is set, it indicates the task should have
+ * priority for oom killing.
*/
- if (task_nice(p) > 0)
- points *= 2;
+ if (p->flags & PF_OOM_ORIGIN) {
+ task_unlock(p);
+ return 1000;
+ }
/*
- * Superuser processes are usually more important, so we make it
- * less likely that we kill those.
+ * The memory controller may have a limit of 0 bytes, so avoid a divide
+ * by zero, if necessary.
*/
- if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
- has_capability_noaudit(p, CAP_SYS_RESOURCE))
- points /= 4;
+ if (!totalpages)
+ totalpages = 1;
/*
- * We don't want to kill a process with direct hardware access.
- * Not only could that mess up the hardware, but usually users
- * tend to only have this flag set on applications they think
- * of as important.
+ * The baseline for the badness score is the proportion of RAM that each
+ * task's rss and swap space use.
*/
- if (has_capability_noaudit(p, CAP_SYS_RAWIO))
- points /= 4;
+ points = (get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS)) * 1000 /
+ totalpages;
+ task_unlock(p);
/*
- * If p's nodes don't overlap ours, it may still help to kill p
- * because p may have allocated or otherwise mapped memory on
- * this node before. However it will be less likely.
+ * Root processes get 3% bonus, just like the __vm_enough_memory()
+ * implementation used by LSMs.
*/
- if (!has_intersects_mems_allowed(p))
- points /= 8;
+ if (has_capability_noaudit(p, CAP_SYS_ADMIN))
+ points -= 30;
/*
- * Adjust the score by oom_adj.
+ * /proc/pid/oom_score_adj ranges from -1000 to +1000 such that it may
+ * either completely disable oom killing or always prefer a certain
+ * task.
*/
- if (oom_adj) {
- if (oom_adj > 0) {
- if (!points)
- points = 1;
- points <<= oom_adj;
- } else
- points >>= -(oom_adj);
- }
+ points += p->signal->oom_score_adj;
-#ifdef DEBUG
- printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
- p->pid, p->comm, points);
-#endif
- return points;
+ if (points < 0)
+ return 0;
+ return (points < 1000) ? points : 1000;
}
/*
@@ -199,12 +218,20 @@ unsigned long badness(struct task_struct *p, unsigned long uptime)
*/
#ifdef CONFIG_NUMA
static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
- gfp_t gfp_mask, nodemask_t *nodemask)
+ gfp_t gfp_mask, nodemask_t *nodemask,
+ unsigned long *totalpages)
{
struct zone *zone;
struct zoneref *z;
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ bool cpuset_limited = false;
+ int nid;
+
+ /* Default to all available memory */
+ *totalpages = totalram_pages + total_swap_pages;
+ if (!zonelist)
+ return CONSTRAINT_NONE;
/*
* Reach here only when __GFP_NOFAIL is used. So, we should avoid
* to kill current.We have to random task kill in this case.
@@ -214,26 +241,37 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
return CONSTRAINT_NONE;
/*
- * The nodemask here is a nodemask passed to alloc_pages(). Now,
- * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
- * feature. mempolicy is an only user of nodemask here.
- * check mempolicy's nodemask contains all N_HIGH_MEMORY
+ * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
+ * the page allocator means a mempolicy is in effect. Cpuset policy
+ * is enforced in get_page_from_freelist().
*/
- if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
+ if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask)) {
+ *totalpages = total_swap_pages;
+ for_each_node_mask(nid, *nodemask)
+ *totalpages += node_spanned_pages(nid);
return CONSTRAINT_MEMORY_POLICY;
+ }
/* Check this allocation failure is caused by cpuset's wall function */
for_each_zone_zonelist_nodemask(zone, z, zonelist,
high_zoneidx, nodemask)
if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
- return CONSTRAINT_CPUSET;
+ cpuset_limited = true;
+ if (cpuset_limited) {
+ *totalpages = total_swap_pages;
+ for_each_node_mask(nid, cpuset_current_mems_allowed)
+ *totalpages += node_spanned_pages(nid);
+ return CONSTRAINT_CPUSET;
+ }
return CONSTRAINT_NONE;
}
#else
static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
- gfp_t gfp_mask, nodemask_t *nodemask)
+ gfp_t gfp_mask, nodemask_t *nodemask,
+ unsigned long *totalpages)
{
+ *totalpages = totalram_pages + total_swap_pages;
return CONSTRAINT_NONE;
}
#endif
@@ -244,28 +282,18 @@ static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
*
* (not docbooked, we don't want this one cluttering up the manual)
*/
-static struct task_struct *select_bad_process(unsigned long *ppoints,
- struct mem_cgroup *mem)
+static struct task_struct *select_bad_process(unsigned int *ppoints,
+ unsigned long totalpages, struct mem_cgroup *mem,
+ const nodemask_t *nodemask)
{
struct task_struct *p;
struct task_struct *chosen = NULL;
- struct timespec uptime;
*ppoints = 0;
- do_posix_clock_monotonic_gettime(&uptime);
for_each_process(p) {
- unsigned long points;
+ unsigned int points;
- /*
- * skip kernel threads and tasks which have already released
- * their mm.
- */
- if (!p->mm)
- continue;
- /* skip the init task */
- if (is_global_init(p))
- continue;
- if (mem && !task_in_mem_cgroup(p, mem))
+ if (oom_unkillable_task(p, mem, nodemask))
continue;
/*
@@ -290,19 +318,16 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
* the process of exiting and releasing its resources.
* Otherwise we could get an easy OOM deadlock.
*/
- if (p->flags & PF_EXITING) {
+ if (thread_group_empty(p) && (p->flags & PF_EXITING) && p->mm) {
if (p != current)
return ERR_PTR(-1UL);
chosen = p;
- *ppoints = ULONG_MAX;
+ *ppoints = 1000;
}
- if (p->signal->oom_adj == OOM_DISABLE)
- continue;
-
- points = badness(p, uptime.tv_sec);
- if (points > *ppoints || !chosen) {
+ points = oom_badness(p, mem, nodemask, totalpages);
+ if (points > *ppoints) {
chosen = p;
*ppoints = points;
}
@@ -313,11 +338,11 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
/**
* dump_tasks - dump current memory state of all system tasks
- * @mem: target memory controller
+ * @mem: current's memory controller, if constrained
*
* Dumps the current memory state of all system tasks, excluding kernel threads.
* State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
- * score, and name.
+ * value, oom_score_adj value, and name.
*
* If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
* shown.
@@ -326,44 +351,43 @@ static struct task_struct *select_bad_process(unsigned long *ppoints,
*/
static void dump_tasks(const struct mem_cgroup *mem)
{
- struct task_struct *g, *p;
-
- printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
- "name\n");
- do_each_thread(g, p) {
- struct mm_struct *mm;
+ struct task_struct *p;
+ struct task_struct *task;
- if (mem && !task_in_mem_cgroup(p, mem))
+ pr_info("[ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name\n");
+ for_each_process(p) {
+ if (p->flags & PF_KTHREAD)
continue;
- if (!thread_group_leader(p))
+ if (mem && !task_in_mem_cgroup(p, mem))
continue;
- task_lock(p);
- mm = p->mm;
- if (!mm) {
+ task = find_lock_task_mm(p);
+ if (!task) {
/*
- * total_vm and rss sizes do not exist for tasks with no
- * mm so there's no need to report them; they can't be
- * oom killed anyway.
+ * This is a kthread or all of p's threads have already
+ * detached their mm's. There's no need to report
+ * them; they can't be oom killed anyway.
*/
- task_unlock(p);
continue;
}
- printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
- p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
- get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
- p->comm);
- task_unlock(p);
- } while_each_thread(g, p);
+
+ pr_info("[%5d] %5d %5d %8lu %8lu %3u %3d %5d %s\n",
+ task->pid, __task_cred(task)->uid, task->tgid,
+ task->mm->total_vm, get_mm_rss(task->mm),
+ task_cpu(task), task->signal->oom_adj,
+ task->signal->oom_score_adj, task->comm);
+ task_unlock(task);
+ }
}
static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
struct mem_cgroup *mem)
{
- pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
- "oom_adj=%d\n",
- current->comm, gfp_mask, order, current->signal->oom_adj);
task_lock(current);
+ pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
+ "oom_adj=%d, oom_score_adj=%d\n",
+ current->comm, gfp_mask, order, current->signal->oom_adj,
+ current->signal->oom_score_adj);
cpuset_print_task_mems_allowed(current);
task_unlock(current);
dump_stack();
@@ -374,72 +398,43 @@ static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
}
#define K(x) ((x) << (PAGE_SHIFT-10))
-
-/*
- * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
- * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
- * set.
- */
-static void __oom_kill_task(struct task_struct *p, int verbose)
+static int oom_kill_task(struct task_struct *p, struct mem_cgroup *mem)
{
- if (is_global_init(p)) {
- WARN_ON(1);
- printk(KERN_WARNING "tried to kill init!\n");
- return;
- }
-
- task_lock(p);
- if (!p->mm) {
- WARN_ON(1);
- printk(KERN_WARNING "tried to kill an mm-less task %d (%s)!\n",
- task_pid_nr(p), p->comm);
+ p = find_lock_task_mm(p);
+ if (!p) {
task_unlock(p);
- return;
+ return 1;
}
-
- if (verbose)
- printk(KERN_ERR "Killed process %d (%s) "
- "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
- task_pid_nr(p), p->comm,
- K(p->mm->total_vm),
- K(get_mm_counter(p->mm, MM_ANONPAGES)),
- K(get_mm_counter(p->mm, MM_FILEPAGES)));
+ pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
+ task_pid_nr(p), p->comm, K(p->mm->total_vm),
+ K(get_mm_counter(p->mm, MM_ANONPAGES)),
+ K(get_mm_counter(p->mm, MM_FILEPAGES)));
task_unlock(p);
+
+ set_tsk_thread_flag(p, TIF_MEMDIE);
+ force_sig(SIGKILL, p);
+
/*
* We give our sacrificial lamb high priority and access to
* all the memory it needs. That way it should be able to
* exit() and clear out its resources quickly...
*/
- p->rt.time_slice = HZ;
- set_tsk_thread_flag(p, TIF_MEMDIE);
-
- force_sig(SIGKILL, p);
-}
-
-static int oom_kill_task(struct task_struct *p)
-{
- /* WARNING: mm may not be dereferenced since we did not obtain its
- * value from get_task_mm(p). This is OK since all we need to do is
- * compare mm to q->mm below.
- *
- * Furthermore, even if mm contains a non-NULL value, p->mm may
- * change to NULL at any time since we do not hold task_lock(p).
- * However, this is of no concern to us.
- */
- if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
- return 1;
-
- __oom_kill_task(p, 1);
+ boost_dying_task_prio(p, mem);
return 0;
}
+#undef K
static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
- unsigned long points, struct mem_cgroup *mem,
+ unsigned int points, unsigned long totalpages,
+ struct mem_cgroup *mem, nodemask_t *nodemask,
const char *message)
{
- struct task_struct *c;
+ struct task_struct *victim = p;
+ struct task_struct *child;
+ struct task_struct *t = p;
+ unsigned int victim_points = 0;
if (printk_ratelimit())
dump_header(p, gfp_mask, order, mem);
@@ -449,40 +444,81 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
* its children or threads, just set TIF_MEMDIE so it can die quickly
*/
if (p->flags & PF_EXITING) {
- __oom_kill_task(p, 0);
+ set_tsk_thread_flag(p, TIF_MEMDIE);
+ boost_dying_task_prio(p, mem);
return 0;
}
- printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
- message, task_pid_nr(p), p->comm, points);
+ task_lock(p);
+ pr_err("%s: Kill process %d (%s) score %d or sacrifice child\n",
+ message, task_pid_nr(p), p->comm, points);
+ task_unlock(p);
- /* Try to kill a child first */
- list_for_each_entry(c, &p->children, sibling) {
- if (c->mm == p->mm)
- continue;
- if (mem && !task_in_mem_cgroup(c, mem))
- continue;
- if (!oom_kill_task(c))
- return 0;
+ /*
+ * If any of p's children has a different mm and is eligible for kill,
+ * the one with the highest badness() score is sacrificed for its
+ * parent. This attempts to lose the minimal amount of work done while
+ * still freeing memory.
+ */
+ do {
+ list_for_each_entry(child, &t->children, sibling) {
+ unsigned int child_points;
+
+ /*
+ * oom_badness() returns 0 if the thread is unkillable
+ */
+ child_points = oom_badness(child, mem, nodemask,
+ totalpages);
+ if (child_points > victim_points) {
+ victim = child;
+ victim_points = child_points;
+ }
+ }
+ } while_each_thread(p, t);
+
+ return oom_kill_task(victim, mem);
+}
+
+/*
+ * Determines whether the kernel must panic because of the panic_on_oom sysctl.
+ */
+static void check_panic_on_oom(enum oom_constraint constraint, gfp_t gfp_mask,
+ int order)
+{
+ if (likely(!sysctl_panic_on_oom))
+ return;
+ if (sysctl_panic_on_oom != 2) {
+ /*
+ * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
+ * does not panic for cpuset, mempolicy, or memcg allocation
+ * failures.
+ */
+ if (constraint != CONSTRAINT_NONE)
+ return;
}
- return oom_kill_task(p);
+ read_lock(&tasklist_lock);
+ dump_header(NULL, gfp_mask, order, NULL);
+ read_unlock(&tasklist_lock);
+ panic("Out of memory: %s panic_on_oom is enabled\n",
+ sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
}
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
{
- unsigned long points = 0;
+ unsigned long limit;
+ unsigned int points = 0;
struct task_struct *p;
- if (sysctl_panic_on_oom == 2)
- panic("out of memory(memcg). panic_on_oom is selected.\n");
+ check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, 0);
+ limit = mem_cgroup_get_limit(mem) >> PAGE_SHIFT;
read_lock(&tasklist_lock);
retry:
- p = select_bad_process(&points, mem);
+ p = select_bad_process(&points, limit, mem, NULL);
if (!p || PTR_ERR(p) == -1UL)
goto out;
- if (oom_kill_process(p, gfp_mask, 0, points, mem,
+ if (oom_kill_process(p, gfp_mask, 0, points, limit, mem, NULL,
"Memory cgroup out of memory"))
goto retry;
out:
@@ -509,7 +545,7 @@ EXPORT_SYMBOL_GPL(unregister_oom_notifier);
* if a parallel OOM killing is already taking place that includes a zone in
* the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
*/
-int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
+int try_set_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
{
struct zoneref *z;
struct zone *zone;
@@ -526,7 +562,7 @@ int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
/*
* Lock each zone in the zonelist under zone_scan_lock so a
- * parallel invocation of try_set_zone_oom() doesn't succeed
+ * parallel invocation of try_set_zonelist_oom() doesn't succeed
* when it shouldn't.
*/
zone_set_flag(zone, ZONE_OOM_LOCKED);
@@ -555,65 +591,40 @@ void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
}
/*
- * Must be called with tasklist_lock held for read.
+ * Try to acquire the oom killer lock for all system zones. Returns zero if a
+ * parallel oom killing is taking place, otherwise locks all zones and returns
+ * non-zero.
*/
-static void __out_of_memory(gfp_t gfp_mask, int order)
+static int try_set_system_oom(void)
{
- struct task_struct *p;
- unsigned long points;
-
- if (sysctl_oom_kill_allocating_task)
- if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
- "Out of memory (oom_kill_allocating_task)"))
- return;
-retry:
- /*
- * Rambo mode: Shoot down a process and hope it solves whatever
- * issues we may have.
- */
- p = select_bad_process(&points, NULL);
-
- if (PTR_ERR(p) == -1UL)
- return;
-
- /* Found nothing?!?! Either we hang forever, or we panic. */
- if (!p) {
- read_unlock(&tasklist_lock);
- dump_header(NULL, gfp_mask, order, NULL);
- panic("Out of memory and no killable processes...\n");
- }
+ struct zone *zone;
+ int ret = 1;
- if (oom_kill_process(p, gfp_mask, order, points, NULL,
- "Out of memory"))
- goto retry;
+ spin_lock(&zone_scan_lock);
+ for_each_populated_zone(zone)
+ if (zone_is_oom_locked(zone)) {
+ ret = 0;
+ goto out;
+ }
+ for_each_populated_zone(zone)
+ zone_set_flag(zone, ZONE_OOM_LOCKED);
+out:
+ spin_unlock(&zone_scan_lock);
+ return ret;
}
/*
- * pagefault handler calls into here because it is out of memory but
- * doesn't know exactly how or why.
+ * Clears ZONE_OOM_LOCKED for all system zones so that failed allocation
+ * attempts or page faults may now recall the oom killer, if necessary.
*/
-void pagefault_out_of_memory(void)
+static void clear_system_oom(void)
{
- unsigned long freed = 0;
-
- blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
- if (freed > 0)
- /* Got some memory back in the last second. */
- return;
-
- if (sysctl_panic_on_oom)
- panic("out of memory from page fault. panic_on_oom is selected.\n");
-
- read_lock(&tasklist_lock);
- __out_of_memory(0, 0); /* unknown gfp_mask and order */
- read_unlock(&tasklist_lock);
+ struct zone *zone;
- /*
- * Give "p" a good chance of killing itself before we
- * retry to allocate memory.
- */
- if (!test_thread_flag(TIF_MEMDIE))
- schedule_timeout_uninterruptible(1);
+ spin_lock(&zone_scan_lock);
+ for_each_populated_zone(zone)
+ zone_clear_flag(zone, ZONE_OOM_LOCKED);
+ spin_unlock(&zone_scan_lock);
}
/**
@@ -621,6 +632,7 @@ void pagefault_out_of_memory(void)
* @zonelist: zonelist pointer
* @gfp_mask: memory allocation flags
* @order: amount of memory being requested as a power of 2
+ * @nodemask: nodemask passed to page allocator
*
* If we run out of memory, we have the choice between either
* killing a random task (bad), letting the system crash (worse)
@@ -630,43 +642,68 @@ void pagefault_out_of_memory(void)
void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
int order, nodemask_t *nodemask)
{
+ struct task_struct *p;
+ unsigned long totalpages;
unsigned long freed = 0;
- enum oom_constraint constraint;
+ unsigned int points;
+ enum oom_constraint constraint = CONSTRAINT_NONE;
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
if (freed > 0)
/* Got some memory back in the last second. */
return;
- if (sysctl_panic_on_oom == 2) {
- dump_header(NULL, gfp_mask, order, NULL);
- panic("out of memory. Compulsory panic_on_oom is selected.\n");
+ /*
+ * If current has a pending SIGKILL, then automatically select it. The
+ * goal is to allow it to allocate so that it may quickly exit and free
+ * its memory.
+ */
+ if (fatal_signal_pending(current)) {
+ set_thread_flag(TIF_MEMDIE);
+ boost_dying_task_prio(current, NULL);
+ return;
}
/*
* Check if there were limitations on the allocation (only relevant for
* NUMA) that may require different handling.
*/
- constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
+ constraint = constrained_alloc(zonelist, gfp_mask, nodemask,
+ &totalpages);
+ check_panic_on_oom(constraint, gfp_mask, order);
+
read_lock(&tasklist_lock);
+ if (sysctl_oom_kill_allocating_task &&
+ !oom_unkillable_task(current, NULL, nodemask) &&
+ (current->signal->oom_adj != OOM_DISABLE)) {
+ /*
+ * oom_kill_process() needs tasklist_lock held. If it returns
+ * non-zero, current could not be killed so we must fallback to
+ * the tasklist scan.
+ */
+ if (!oom_kill_process(current, gfp_mask, order, 0, totalpages,
+ NULL, nodemask,
+ "Out of memory (oom_kill_allocating_task)"))
+ return;
+ }
- switch (constraint) {
- case CONSTRAINT_MEMORY_POLICY:
- oom_kill_process(current, gfp_mask, order, 0, NULL,
- "No available memory (MPOL_BIND)");
- break;
+retry:
+ p = select_bad_process(&points, totalpages, NULL,
+ constraint == CONSTRAINT_MEMORY_POLICY ? nodemask :
+ NULL);
+ if (PTR_ERR(p) == -1UL)
+ return;
- case CONSTRAINT_NONE:
- if (sysctl_panic_on_oom) {
- dump_header(NULL, gfp_mask, order, NULL);
- panic("out of memory. panic_on_oom is selected\n");
- }
- /* Fall-through */
- case CONSTRAINT_CPUSET:
- __out_of_memory(gfp_mask, order);
- break;
+ /* Found nothing?!?! Either we hang forever, or we panic. */
+ if (!p) {
+ dump_header(NULL, gfp_mask, order, NULL);
+ read_unlock(&tasklist_lock);
+ panic("Out of memory and no killable processes...\n");
}
+ if (oom_kill_process(p, gfp_mask, order, points, totalpages, NULL,
+ nodemask, "Out of memory"))
+ goto retry;
read_unlock(&tasklist_lock);
/*
@@ -676,3 +713,19 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
if (!test_thread_flag(TIF_MEMDIE))
schedule_timeout_uninterruptible(1);
}
+
+/*
+ * The pagefault handler calls here because it is out of memory, so kill a
+ * memory-hogging task. If a populated zone has ZONE_OOM_LOCKED set, a parallel
+ * oom killing is already in progress so do nothing. If a task is found with
+ * TIF_MEMDIE set, it has been killed so do nothing and allow it to exit.
+ */
+void pagefault_out_of_memory(void)
+{
+ if (try_set_system_oom()) {
+ out_of_memory(NULL, 0, 0, NULL);
+ clear_system_oom();
+ }
+ if (!test_thread_flag(TIF_MEMDIE))
+ schedule_timeout_uninterruptible(1);
+}
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
index 54f28bd493d3..df8202ebc7b8 100644
--- a/mm/page-writeback.c
+++ b/mm/page-writeback.c
@@ -495,7 +495,6 @@ static void balance_dirty_pages(struct address_space *mapping,
for (;;) {
struct writeback_control wbc = {
- .bdi = bdi,
.sync_mode = WB_SYNC_NONE,
.older_than_this = NULL,
.nr_to_write = write_chunk,
@@ -537,7 +536,7 @@ static void balance_dirty_pages(struct address_space *mapping,
* up.
*/
if (bdi_nr_reclaimable > bdi_thresh) {
- writeback_inodes_wbc(&wbc);
+ writeback_inodes_wb(&bdi->wb, &wbc);
pages_written += write_chunk - wbc.nr_to_write;
get_dirty_limits(&background_thresh, &dirty_thresh,
&bdi_thresh, bdi);
@@ -806,6 +805,41 @@ void __init page_writeback_init(void)
}
/**
+ * tag_pages_for_writeback - tag pages to be written by write_cache_pages
+ * @mapping: address space structure to write
+ * @start: starting page index
+ * @end: ending page index (inclusive)
+ *
+ * This function scans the page range from @start to @end (inclusive) and tags
+ * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
+ * that write_cache_pages (or whoever calls this function) will then use
+ * TOWRITE tag to identify pages eligible for writeback. This mechanism is
+ * used to avoid livelocking of writeback by a process steadily creating new
+ * dirty pages in the file (thus it is important for this function to be quick
+ * so that it can tag pages faster than a dirtying process can create them).
+ */
+/*
+ * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
+ */
+#define WRITEBACK_TAG_BATCH 4096
+void tag_pages_for_writeback(struct address_space *mapping,
+ pgoff_t start, pgoff_t end)
+{
+ unsigned long tagged;
+
+ do {
+ spin_lock_irq(&mapping->tree_lock);
+ tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
+ &start, end, WRITEBACK_TAG_BATCH,
+ PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
+ spin_unlock_irq(&mapping->tree_lock);
+ WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
+ cond_resched();
+ } while (tagged >= WRITEBACK_TAG_BATCH);
+}
+EXPORT_SYMBOL(tag_pages_for_writeback);
+
+/**
* write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
* @mapping: address space structure to write
* @wbc: subtract the number of written pages from *@wbc->nr_to_write
@@ -819,6 +853,13 @@ void __init page_writeback_init(void)
* the call was made get new I/O started against them. If wbc->sync_mode is
* WB_SYNC_ALL then we were called for data integrity and we must wait for
* existing IO to complete.
+ *
+ * To avoid livelocks (when other process dirties new pages), we first tag
+ * pages which should be written back with TOWRITE tag and only then start
+ * writing them. For data-integrity sync we have to be careful so that we do
+ * not miss some pages (e.g., because some other process has cleared TOWRITE
+ * tag we set). The rule we follow is that TOWRITE tag can be cleared only
+ * by the process clearing the DIRTY tag (and submitting the page for IO).
*/
int write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage,
@@ -834,6 +875,7 @@ int write_cache_pages(struct address_space *mapping,
pgoff_t done_index;
int cycled;
int range_whole = 0;
+ int tag;
pagevec_init(&pvec, 0);
if (wbc->range_cyclic) {
@@ -850,29 +892,19 @@ int write_cache_pages(struct address_space *mapping,
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
cycled = 1; /* ignore range_cyclic tests */
-
- /*
- * If this is a data integrity sync, cap the writeback to the
- * current end of file. Any extension to the file that occurs
- * after this is a new write and we don't need to write those
- * pages out to fulfil our data integrity requirements. If we
- * try to write them out, we can get stuck in this scan until
- * the concurrent writer stops adding dirty pages and extending
- * EOF.
- */
- if (wbc->sync_mode == WB_SYNC_ALL &&
- wbc->range_end == LLONG_MAX) {
- end = i_size_read(mapping->host) >> PAGE_CACHE_SHIFT;
- }
}
-
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag = PAGECACHE_TAG_TOWRITE;
+ else
+ tag = PAGECACHE_TAG_DIRTY;
retry:
+ if (wbc->sync_mode == WB_SYNC_ALL)
+ tag_pages_for_writeback(mapping, index, end);
done_index = index;
while (!done && (index <= end)) {
int i;
- nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
- PAGECACHE_TAG_DIRTY,
+ nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
@@ -1328,6 +1360,9 @@ int test_set_page_writeback(struct page *page)
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_DIRTY);
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_TOWRITE);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
} else {
ret = TestSetPageWriteback(page);
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 68319dd20bed..a9649f4b261e 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -1738,7 +1738,7 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
struct page *page;
/* Acquire the OOM killer lock for the zones in zonelist */
- if (!try_set_zone_oom(zonelist, gfp_mask)) {
+ if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
schedule_timeout_uninterruptible(1);
return NULL;
}
@@ -1759,6 +1759,9 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
/* The OOM killer will not help higher order allocs */
if (order > PAGE_ALLOC_COSTLY_ORDER)
goto out;
+ /* The OOM killer does not needlessly kill tasks for lowmem */
+ if (high_zoneidx < ZONE_NORMAL)
+ goto out;
/*
* GFP_THISNODE contains __GFP_NORETRY and we never hit this.
* Sanity check for bare calls of __GFP_THISNODE, not real OOM.
@@ -2052,15 +2055,23 @@ rebalance:
if (page)
goto got_pg;
- /*
- * The OOM killer does not trigger for high-order
- * ~__GFP_NOFAIL allocations so if no progress is being
- * made, there are no other options and retrying is
- * unlikely to help.
- */
- if (order > PAGE_ALLOC_COSTLY_ORDER &&
- !(gfp_mask & __GFP_NOFAIL))
- goto nopage;
+ if (!(gfp_mask & __GFP_NOFAIL)) {
+ /*
+ * The oom killer is not called for high-order
+ * allocations that may fail, so if no progress
+ * is being made, there are no other options and
+ * retrying is unlikely to help.
+ */
+ if (order > PAGE_ALLOC_COSTLY_ORDER)
+ goto nopage;
+ /*
+ * The oom killer is not called for lowmem
+ * allocations to prevent needlessly killing
+ * innocent tasks.
+ */
+ if (high_zoneidx < ZONE_NORMAL)
+ goto nopage;
+ }
goto restart;
}
@@ -3634,6 +3645,9 @@ void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
int i;
void *ptr;
+ if (limit > get_max_mapped())
+ limit = get_max_mapped();
+
/* need to go over early_node_map to find out good range for node */
for_each_active_range_index_in_nid(i, nid) {
u64 addr;
@@ -4086,8 +4100,6 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat,
zone_seqlock_init(zone);
zone->zone_pgdat = pgdat;
- zone->prev_priority = DEF_PRIORITY;
-
zone_pcp_init(zone);
for_each_lru(l) {
INIT_LIST_HEAD(&zone->lru[l].list);
diff --git a/mm/percpu.c b/mm/percpu.c
index 6470e7710231..e61dc2cc5873 100644
--- a/mm/percpu.c
+++ b/mm/percpu.c
@@ -282,6 +282,9 @@ static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
*/
static void *pcpu_mem_alloc(size_t size)
{
+ if (WARN_ON_ONCE(!slab_is_available()))
+ return NULL;
+
if (size <= PAGE_SIZE)
return kzalloc(size, GFP_KERNEL);
else {
@@ -392,13 +395,6 @@ static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
old_size = chunk->map_alloc * sizeof(chunk->map[0]);
memcpy(new, chunk->map, old_size);
- /*
- * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
- * one of the first chunks and still using static map.
- */
- if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
- old = chunk->map;
-
chunk->map_alloc = new_alloc;
chunk->map = new;
new = NULL;
@@ -604,7 +600,7 @@ static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
struct pcpu_chunk *chunk;
- chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
+ chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
if (!chunk)
return NULL;
@@ -1013,20 +1009,6 @@ phys_addr_t per_cpu_ptr_to_phys(void *addr)
return page_to_phys(pcpu_addr_to_page(addr));
}
-static inline size_t pcpu_calc_fc_sizes(size_t static_size,
- size_t reserved_size,
- ssize_t *dyn_sizep)
-{
- size_t size_sum;
-
- size_sum = PFN_ALIGN(static_size + reserved_size +
- (*dyn_sizep >= 0 ? *dyn_sizep : 0));
- if (*dyn_sizep != 0)
- *dyn_sizep = size_sum - static_size - reserved_size;
-
- return size_sum;
-}
-
/**
* pcpu_alloc_alloc_info - allocate percpu allocation info
* @nr_groups: the number of groups
@@ -1085,7 +1067,7 @@ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
/**
* pcpu_build_alloc_info - build alloc_info considering distances between CPUs
* @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
+ * @dyn_size: minimum free size for dynamic allocation in bytes
* @atom_size: allocation atom size
* @cpu_distance_fn: callback to determine distance between cpus, optional
*
@@ -1103,8 +1085,8 @@ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
* On success, pointer to the new allocation_info is returned. On
* failure, ERR_PTR value is returned.
*/
-struct pcpu_alloc_info * __init pcpu_build_alloc_info(
- size_t reserved_size, ssize_t dyn_size,
+static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
+ size_t reserved_size, size_t dyn_size,
size_t atom_size,
pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
@@ -1123,13 +1105,17 @@ struct pcpu_alloc_info * __init pcpu_build_alloc_info(
memset(group_map, 0, sizeof(group_map));
memset(group_cnt, 0, sizeof(group_cnt));
+ /* calculate size_sum and ensure dyn_size is enough for early alloc */
+ size_sum = PFN_ALIGN(static_size + reserved_size +
+ max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
+ dyn_size = size_sum - static_size - reserved_size;
+
/*
* Determine min_unit_size, alloc_size and max_upa such that
* alloc_size is multiple of atom_size and is the smallest
* which can accomodate 4k aligned segments which are equal to
* or larger than min_unit_size.
*/
- size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
alloc_size = roundup(min_unit_size, atom_size);
@@ -1350,7 +1336,8 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
void *base_addr)
{
static char cpus_buf[4096] __initdata;
- static int smap[2], dmap[2];
+ static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
+ static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
size_t dyn_size = ai->dyn_size;
size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
struct pcpu_chunk *schunk, *dchunk = NULL;
@@ -1373,14 +1360,13 @@ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
} while (0)
/* sanity checks */
- BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
- ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
PCPU_SETUP_BUG_ON(!ai->static_size);
PCPU_SETUP_BUG_ON(!base_addr);
PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
+ PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
/* process group information and build config tables accordingly */
@@ -1532,7 +1518,7 @@ early_param("percpu_alloc", percpu_alloc_setup);
/**
* pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
* @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
+ * @dyn_size: minimum free size for dynamic allocation in bytes
* @atom_size: allocation atom size
* @cpu_distance_fn: callback to determine distance between cpus, optional
* @alloc_fn: function to allocate percpu page
@@ -1553,10 +1539,7 @@ early_param("percpu_alloc", percpu_alloc_setup);
* vmalloc space is not orders of magnitude larger than distances
* between node memory addresses (ie. 32bit NUMA machines).
*
- * When @dyn_size is positive, dynamic area might be larger than
- * specified to fill page alignment. When @dyn_size is auto,
- * @dyn_size is just big enough to fill page alignment after static
- * and reserved areas.
+ * @dyn_size specifies the minimum dynamic area size.
*
* If the needed size is smaller than the minimum or specified unit
* size, the leftover is returned using @free_fn.
@@ -1564,7 +1547,7 @@ early_param("percpu_alloc", percpu_alloc_setup);
* RETURNS:
* 0 on success, -errno on failure.
*/
-int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
+int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
size_t atom_size,
pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
pcpu_fc_alloc_fn_t alloc_fn,
@@ -1695,7 +1678,7 @@ int __init pcpu_page_first_chunk(size_t reserved_size,
snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
- ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
+ ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
if (IS_ERR(ai))
return PTR_ERR(ai);
BUG_ON(ai->nr_groups != 1);
@@ -1821,3 +1804,33 @@ void __init setup_per_cpu_areas(void)
__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
}
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
+
+/*
+ * First and reserved chunks are initialized with temporary allocation
+ * map in initdata so that they can be used before slab is online.
+ * This function is called after slab is brought up and replaces those
+ * with properly allocated maps.
+ */
+void __init percpu_init_late(void)
+{
+ struct pcpu_chunk *target_chunks[] =
+ { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
+ struct pcpu_chunk *chunk;
+ unsigned long flags;
+ int i;
+
+ for (i = 0; (chunk = target_chunks[i]); i++) {
+ int *map;
+ const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
+
+ BUILD_BUG_ON(size > PAGE_SIZE);
+
+ map = pcpu_mem_alloc(size);
+ BUG_ON(!map);
+
+ spin_lock_irqsave(&pcpu_lock, flags);
+ memcpy(map, chunk->map, size);
+ chunk->map = map;
+ spin_unlock_irqrestore(&pcpu_lock, flags);
+ }
+}
diff --git a/mm/rmap.c b/mm/rmap.c
index 38a336e2eea1..a7d0f5482634 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -132,9 +132,14 @@ int anon_vma_prepare(struct vm_area_struct *vma)
if (unlikely(!anon_vma))
goto out_enomem_free_avc;
allocated = anon_vma;
+ /*
+ * This VMA had no anon_vma yet. This anon_vma is
+ * the root of any anon_vma tree that might form.
+ */
+ anon_vma->root = anon_vma;
}
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
/* page_table_lock to protect against threads */
spin_lock(&mm->page_table_lock);
if (likely(!vma->anon_vma)) {
@@ -142,12 +147,12 @@ int anon_vma_prepare(struct vm_area_struct *vma)
avc->anon_vma = anon_vma;
avc->vma = vma;
list_add(&avc->same_vma, &vma->anon_vma_chain);
- list_add(&avc->same_anon_vma, &anon_vma->head);
+ list_add_tail(&avc->same_anon_vma, &anon_vma->head);
allocated = NULL;
avc = NULL;
}
spin_unlock(&mm->page_table_lock);
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
if (unlikely(allocated))
anon_vma_free(allocated);
@@ -170,9 +175,9 @@ static void anon_vma_chain_link(struct vm_area_struct *vma,
avc->anon_vma = anon_vma;
list_add(&avc->same_vma, &vma->anon_vma_chain);
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_add_tail(&avc->same_anon_vma, &anon_vma->head);
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
}
/*
@@ -224,9 +229,21 @@ int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
avc = anon_vma_chain_alloc();
if (!avc)
goto out_error_free_anon_vma;
- anon_vma_chain_link(vma, avc, anon_vma);
+
+ /*
+ * The root anon_vma's spinlock is the lock actually used when we
+ * lock any of the anon_vmas in this anon_vma tree.
+ */
+ anon_vma->root = pvma->anon_vma->root;
+ /*
+ * With KSM refcounts, an anon_vma can stay around longer than the
+ * process it belongs to. The root anon_vma needs to be pinned
+ * until this anon_vma is freed, because the lock lives in the root.
+ */
+ get_anon_vma(anon_vma->root);
/* Mark this anon_vma as the one where our new (COWed) pages go. */
vma->anon_vma = anon_vma;
+ anon_vma_chain_link(vma, avc, anon_vma);
return 0;
@@ -246,22 +263,29 @@ static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
if (!anon_vma)
return;
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_del(&anon_vma_chain->same_anon_vma);
/* We must garbage collect the anon_vma if it's empty */
empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
- if (empty)
+ if (empty) {
+ /* We no longer need the root anon_vma */
+ if (anon_vma->root != anon_vma)
+ drop_anon_vma(anon_vma->root);
anon_vma_free(anon_vma);
+ }
}
void unlink_anon_vmas(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc, *next;
- /* Unlink each anon_vma chained to the VMA. */
+ /*
+ * Unlink each anon_vma chained to the VMA. This list is ordered
+ * from newest to oldest, ensuring the root anon_vma gets freed last.
+ */
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
anon_vma_unlink(avc);
list_del(&avc->same_vma);
@@ -302,7 +326,7 @@ struct anon_vma *page_lock_anon_vma(struct page *page)
goto out;
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
return anon_vma;
out:
rcu_read_unlock();
@@ -311,7 +335,7 @@ out:
void page_unlock_anon_vma(struct anon_vma *anon_vma)
{
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
rcu_read_unlock();
}
@@ -340,9 +364,10 @@ vma_address(struct page *page, struct vm_area_struct *vma)
*/
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
{
- if (PageAnon(page))
- ;
- else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
+ if (PageAnon(page)) {
+ if (vma->anon_vma->root != page_anon_vma(page)->root)
+ return -EFAULT;
+ } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
if (!vma->vm_file ||
vma->vm_file->f_mapping != page->mapping)
return -EFAULT;
@@ -743,14 +768,20 @@ static void __page_set_anon_rmap(struct page *page,
* If the page isn't exclusively mapped into this vma,
* we must use the _oldest_ possible anon_vma for the
* page mapping!
- *
- * So take the last AVC chain entry in the vma, which is
- * the deepest ancestor, and use the anon_vma from that.
*/
if (!exclusive) {
- struct anon_vma_chain *avc;
- avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
- anon_vma = avc->anon_vma;
+ if (PageAnon(page))
+ return;
+ anon_vma = anon_vma->root;
+ } else {
+ /*
+ * In this case, swapped-out-but-not-discarded swap-cache
+ * is remapped. So, no need to update page->mapping here.
+ * We convice anon_vma poitned by page->mapping is not obsolete
+ * because vma->anon_vma is necessary to be a family of it.
+ */
+ if (PageAnon(page))
+ return;
}
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
@@ -780,6 +811,7 @@ static void __page_check_anon_rmap(struct page *page,
* are initially only visible via the pagetables, and the pte is locked
* over the call to page_add_new_anon_rmap.
*/
+ BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
BUG_ON(page->index != linear_page_index(vma, address));
#endif
}
@@ -798,6 +830,17 @@ static void __page_check_anon_rmap(struct page *page,
void page_add_anon_rmap(struct page *page,
struct vm_area_struct *vma, unsigned long address)
{
+ do_page_add_anon_rmap(page, vma, address, 0);
+}
+
+/*
+ * Special version of the above for do_swap_page, which often runs
+ * into pages that are exclusively owned by the current process.
+ * Everybody else should continue to use page_add_anon_rmap above.
+ */
+void do_page_add_anon_rmap(struct page *page,
+ struct vm_area_struct *vma, unsigned long address, int exclusive)
+{
int first = atomic_inc_and_test(&page->_mapcount);
if (first)
__inc_zone_page_state(page, NR_ANON_PAGES);
@@ -807,7 +850,7 @@ void page_add_anon_rmap(struct page *page,
VM_BUG_ON(!PageLocked(page));
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
if (first)
- __page_set_anon_rmap(page, vma, address, 0);
+ __page_set_anon_rmap(page, vma, address, exclusive);
else
__page_check_anon_rmap(page, vma, address);
}
@@ -1368,6 +1411,42 @@ int try_to_munlock(struct page *page)
return try_to_unmap_file(page, TTU_MUNLOCK);
}
+#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
+/*
+ * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
+ * if necessary. Be careful to do all the tests under the lock. Once
+ * we know we are the last user, nobody else can get a reference and we
+ * can do the freeing without the lock.
+ */
+void drop_anon_vma(struct anon_vma *anon_vma)
+{
+ BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
+ if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
+ struct anon_vma *root = anon_vma->root;
+ int empty = list_empty(&anon_vma->head);
+ int last_root_user = 0;
+ int root_empty = 0;
+
+ /*
+ * The refcount on a non-root anon_vma got dropped. Drop
+ * the refcount on the root and check if we need to free it.
+ */
+ if (empty && anon_vma != root) {
+ BUG_ON(atomic_read(&root->external_refcount) <= 0);
+ last_root_user = atomic_dec_and_test(&root->external_refcount);
+ root_empty = list_empty(&root->head);
+ }
+ anon_vma_unlock(anon_vma);
+
+ if (empty) {
+ anon_vma_free(anon_vma);
+ if (root_empty && last_root_user)
+ anon_vma_free(root);
+ }
+ }
+}
+#endif
+
#ifdef CONFIG_MIGRATION
/*
* rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
@@ -1389,7 +1468,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
anon_vma = page_anon_vma(page);
if (!anon_vma)
return ret;
- spin_lock(&anon_vma->lock);
+ anon_vma_lock(anon_vma);
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long address = vma_address(page, vma);
@@ -1399,7 +1478,7 @@ static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
if (ret != SWAP_AGAIN)
break;
}
- spin_unlock(&anon_vma->lock);
+ anon_vma_unlock(anon_vma);
return ret;
}
diff --git a/mm/shmem.c b/mm/shmem.c
index f65f84062db5..dfaa0f4e9789 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -28,6 +28,7 @@
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/module.h>
+#include <linux/percpu_counter.h>
#include <linux/swap.h>
static struct vfsmount *shm_mnt;
@@ -233,10 +234,10 @@ static void shmem_free_blocks(struct inode *inode, long pages)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
if (sbinfo->max_blocks) {
- spin_lock(&sbinfo->stat_lock);
- sbinfo->free_blocks += pages;
+ percpu_counter_add(&sbinfo->used_blocks, -pages);
+ spin_lock(&inode->i_lock);
inode->i_blocks -= pages*BLOCKS_PER_PAGE;
- spin_unlock(&sbinfo->stat_lock);
+ spin_unlock(&inode->i_lock);
}
}
@@ -416,19 +417,17 @@ static swp_entry_t *shmem_swp_alloc(struct shmem_inode_info *info, unsigned long
if (sgp == SGP_READ)
return shmem_swp_map(ZERO_PAGE(0));
/*
- * Test free_blocks against 1 not 0, since we have 1 data
+ * Test used_blocks against 1 less max_blocks, since we have 1 data
* page (and perhaps indirect index pages) yet to allocate:
* a waste to allocate index if we cannot allocate data.
*/
if (sbinfo->max_blocks) {
- spin_lock(&sbinfo->stat_lock);
- if (sbinfo->free_blocks <= 1) {
- spin_unlock(&sbinfo->stat_lock);
+ if (percpu_counter_compare(&sbinfo->used_blocks, (sbinfo->max_blocks - 1)) > 0)
return ERR_PTR(-ENOSPC);
- }
- sbinfo->free_blocks--;
+ percpu_counter_inc(&sbinfo->used_blocks);
+ spin_lock(&inode->i_lock);
inode->i_blocks += BLOCKS_PER_PAGE;
- spin_unlock(&sbinfo->stat_lock);
+ spin_unlock(&inode->i_lock);
}
spin_unlock(&info->lock);
@@ -767,6 +766,10 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
loff_t newsize = attr->ia_size;
int error;
+ error = inode_change_ok(inode, attr);
+ if (error)
+ return error;
+
if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)
&& newsize != inode->i_size) {
struct page *page = NULL;
@@ -801,25 +804,22 @@ static int shmem_notify_change(struct dentry *dentry, struct iattr *attr)
}
}
- error = simple_setsize(inode, newsize);
+ /* XXX(truncate): truncate_setsize should be called last */
+ truncate_setsize(inode, newsize);
if (page)
page_cache_release(page);
- if (error)
- return error;
shmem_truncate_range(inode, newsize, (loff_t)-1);
}
- error = inode_change_ok(inode, attr);
- if (!error)
- generic_setattr(inode, attr);
+ setattr_copy(inode, attr);
#ifdef CONFIG_TMPFS_POSIX_ACL
- if (!error && (attr->ia_valid & ATTR_MODE))
+ if (attr->ia_valid & ATTR_MODE)
error = generic_acl_chmod(inode);
#endif
return error;
}
-static void shmem_delete_inode(struct inode *inode)
+static void shmem_evict_inode(struct inode *inode)
{
struct shmem_inode_info *info = SHMEM_I(inode);
@@ -836,7 +836,7 @@ static void shmem_delete_inode(struct inode *inode)
}
BUG_ON(inode->i_blocks);
shmem_free_inode(inode->i_sb);
- clear_inode(inode);
+ end_writeback(inode);
}
static inline int shmem_find_swp(swp_entry_t entry, swp_entry_t *dir, swp_entry_t *edir)
@@ -933,7 +933,7 @@ found:
/*
* Move _head_ to start search for next from here.
- * But be careful: shmem_delete_inode checks list_empty without taking
+ * But be careful: shmem_evict_inode checks list_empty without taking
* mutex, and there's an instant in list_move_tail when info->swaplist
* would appear empty, if it were the only one on shmem_swaplist. We
* could avoid doing it if inode NULL; or use this minor optimization.
@@ -1223,6 +1223,7 @@ static int shmem_getpage(struct inode *inode, unsigned long idx,
struct shmem_sb_info *sbinfo;
struct page *filepage = *pagep;
struct page *swappage;
+ struct page *prealloc_page = NULL;
swp_entry_t *entry;
swp_entry_t swap;
gfp_t gfp;
@@ -1247,7 +1248,6 @@ repeat:
filepage = find_lock_page(mapping, idx);
if (filepage && PageUptodate(filepage))
goto done;
- error = 0;
gfp = mapping_gfp_mask(mapping);
if (!filepage) {
/*
@@ -1258,7 +1258,19 @@ repeat:
if (error)
goto failed;
radix_tree_preload_end();
+ if (sgp != SGP_READ && !prealloc_page) {
+ /* We don't care if this fails */
+ prealloc_page = shmem_alloc_page(gfp, info, idx);
+ if (prealloc_page) {
+ if (mem_cgroup_cache_charge(prealloc_page,
+ current->mm, GFP_KERNEL)) {
+ page_cache_release(prealloc_page);
+ prealloc_page = NULL;
+ }
+ }
+ }
}
+ error = 0;
spin_lock(&info->lock);
shmem_recalc_inode(inode);
@@ -1387,17 +1399,16 @@ repeat:
shmem_swp_unmap(entry);
sbinfo = SHMEM_SB(inode->i_sb);
if (sbinfo->max_blocks) {
- spin_lock(&sbinfo->stat_lock);
- if (sbinfo->free_blocks == 0 ||
+ if ((percpu_counter_compare(&sbinfo->used_blocks, sbinfo->max_blocks) > 0) ||
shmem_acct_block(info->flags)) {
- spin_unlock(&sbinfo->stat_lock);
spin_unlock(&info->lock);
error = -ENOSPC;
goto failed;
}
- sbinfo->free_blocks--;
+ percpu_counter_inc(&sbinfo->used_blocks);
+ spin_lock(&inode->i_lock);
inode->i_blocks += BLOCKS_PER_PAGE;
- spin_unlock(&sbinfo->stat_lock);
+ spin_unlock(&inode->i_lock);
} else if (shmem_acct_block(info->flags)) {
spin_unlock(&info->lock);
error = -ENOSPC;
@@ -1407,28 +1418,38 @@ repeat:
if (!filepage) {
int ret;
- spin_unlock(&info->lock);
- filepage = shmem_alloc_page(gfp, info, idx);
- if (!filepage) {
- shmem_unacct_blocks(info->flags, 1);
- shmem_free_blocks(inode, 1);
- error = -ENOMEM;
- goto failed;
- }
- SetPageSwapBacked(filepage);
+ if (!prealloc_page) {
+ spin_unlock(&info->lock);
+ filepage = shmem_alloc_page(gfp, info, idx);
+ if (!filepage) {
+ shmem_unacct_blocks(info->flags, 1);
+ shmem_free_blocks(inode, 1);
+ error = -ENOMEM;
+ goto failed;
+ }
+ SetPageSwapBacked(filepage);
- /* Precharge page while we can wait, compensate after */
- error = mem_cgroup_cache_charge(filepage, current->mm,
- GFP_KERNEL);
- if (error) {
- page_cache_release(filepage);
- shmem_unacct_blocks(info->flags, 1);
- shmem_free_blocks(inode, 1);
- filepage = NULL;
- goto failed;
+ /*
+ * Precharge page while we can wait, compensate
+ * after
+ */
+ error = mem_cgroup_cache_charge(filepage,
+ current->mm, GFP_KERNEL);
+ if (error) {
+ page_cache_release(filepage);
+ shmem_unacct_blocks(info->flags, 1);
+ shmem_free_blocks(inode, 1);
+ filepage = NULL;
+ goto failed;
+ }
+
+ spin_lock(&info->lock);
+ } else {
+ filepage = prealloc_page;
+ prealloc_page = NULL;
+ SetPageSwapBacked(filepage);
}
- spin_lock(&info->lock);
entry = shmem_swp_alloc(info, idx, sgp);
if (IS_ERR(entry))
error = PTR_ERR(entry);
@@ -1469,13 +1490,19 @@ repeat:
}
done:
*pagep = filepage;
- return 0;
+ error = 0;
+ goto out;
failed:
if (*pagep != filepage) {
unlock_page(filepage);
page_cache_release(filepage);
}
+out:
+ if (prealloc_page) {
+ mem_cgroup_uncharge_cache_page(prealloc_page);
+ page_cache_release(prealloc_page);
+ }
return error;
}
@@ -1791,17 +1818,16 @@ static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
buf->f_type = TMPFS_MAGIC;
buf->f_bsize = PAGE_CACHE_SIZE;
buf->f_namelen = NAME_MAX;
- spin_lock(&sbinfo->stat_lock);
if (sbinfo->max_blocks) {
buf->f_blocks = sbinfo->max_blocks;
- buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
+ buf->f_bavail = buf->f_bfree =
+ sbinfo->max_blocks - percpu_counter_sum(&sbinfo->used_blocks);
}
if (sbinfo->max_inodes) {
buf->f_files = sbinfo->max_inodes;
buf->f_ffree = sbinfo->free_inodes;
}
/* else leave those fields 0 like simple_statfs */
- spin_unlock(&sbinfo->stat_lock);
return 0;
}
@@ -2242,7 +2268,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
{
struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
struct shmem_sb_info config = *sbinfo;
- unsigned long blocks;
unsigned long inodes;
int error = -EINVAL;
@@ -2250,9 +2275,8 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
return error;
spin_lock(&sbinfo->stat_lock);
- blocks = sbinfo->max_blocks - sbinfo->free_blocks;
inodes = sbinfo->max_inodes - sbinfo->free_inodes;
- if (config.max_blocks < blocks)
+ if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
goto out;
if (config.max_inodes < inodes)
goto out;
@@ -2269,7 +2293,6 @@ static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
error = 0;
sbinfo->max_blocks = config.max_blocks;
- sbinfo->free_blocks = config.max_blocks - blocks;
sbinfo->max_inodes = config.max_inodes;
sbinfo->free_inodes = config.max_inodes - inodes;
@@ -2344,7 +2367,7 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent)
#endif
spin_lock_init(&sbinfo->stat_lock);
- sbinfo->free_blocks = sbinfo->max_blocks;
+ percpu_counter_init(&sbinfo->used_blocks, 0);
sbinfo->free_inodes = sbinfo->max_inodes;
sb->s_maxbytes = SHMEM_MAX_BYTES;
@@ -2496,7 +2519,7 @@ static const struct super_operations shmem_ops = {
.remount_fs = shmem_remount_fs,
.show_options = shmem_show_options,
#endif
- .delete_inode = shmem_delete_inode,
+ .evict_inode = shmem_evict_inode,
.drop_inode = generic_delete_inode,
.put_super = shmem_put_super,
};
diff --git a/mm/slab.c b/mm/slab.c
index e49f8f46f46d..88435fcc8387 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -102,7 +102,6 @@
#include <linux/cpu.h>
#include <linux/sysctl.h>
#include <linux/module.h>
-#include <linux/kmemtrace.h>
#include <linux/rcupdate.h>
#include <linux/string.h>
#include <linux/uaccess.h>
@@ -395,7 +394,7 @@ static void kmem_list3_init(struct kmem_list3 *parent)
#define STATS_DEC_ACTIVE(x) do { } while (0)
#define STATS_INC_ALLOCED(x) do { } while (0)
#define STATS_INC_GROWN(x) do { } while (0)
-#define STATS_ADD_REAPED(x,y) do { } while (0)
+#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
#define STATS_SET_HIGH(x) do { } while (0)
#define STATS_INC_ERR(x) do { } while (0)
#define STATS_INC_NODEALLOCS(x) do { } while (0)
@@ -861,7 +860,7 @@ static void __cpuinit start_cpu_timer(int cpu)
*/
if (keventd_up() && reap_work->work.func == NULL) {
init_reap_node(cpu);
- INIT_DELAYED_WORK(reap_work, cache_reap);
+ INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
schedule_delayed_work_on(cpu, reap_work,
__round_jiffies_relative(HZ, cpu));
}
diff --git a/mm/slob.c b/mm/slob.c
index 23631e2bb57a..d582171c8101 100644
--- a/mm/slob.c
+++ b/mm/slob.c
@@ -66,8 +66,10 @@
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
-#include <linux/kmemtrace.h>
#include <linux/kmemleak.h>
+
+#include <trace/events/kmem.h>
+
#include <asm/atomic.h>
/*
@@ -394,6 +396,7 @@ static void slob_free(void *block, int size)
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
+ struct list_head *slob_list;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
@@ -422,7 +425,13 @@ static void slob_free(void *block, int size)
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
- set_slob_page_free(sp, &free_slob_small);
+ if (size < SLOB_BREAK1)
+ slob_list = &free_slob_small;
+ else if (size < SLOB_BREAK2)
+ slob_list = &free_slob_medium;
+ else
+ slob_list = &free_slob_large;
+ set_slob_page_free(sp, slob_list);
goto out;
}
@@ -639,7 +648,6 @@ void kmem_cache_free(struct kmem_cache *c, void *b)
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
- INIT_RCU_HEAD(&slob_rcu->head);
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
diff --git a/mm/slub.c b/mm/slub.c
index 578f68f3c51f..13fffe1f0f3d 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -17,7 +17,6 @@
#include <linux/slab.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
-#include <linux/kmemtrace.h>
#include <linux/kmemcheck.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
@@ -107,11 +106,17 @@
* the fast path and disables lockless freelists.
*/
+#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
+ SLAB_TRACE | SLAB_DEBUG_FREE)
+
+static inline int kmem_cache_debug(struct kmem_cache *s)
+{
#ifdef CONFIG_SLUB_DEBUG
-#define SLABDEBUG 1
+ return unlikely(s->flags & SLAB_DEBUG_FLAGS);
#else
-#define SLABDEBUG 0
+ return 0;
#endif
+}
/*
* Issues still to be resolved:
@@ -162,8 +167,8 @@
#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
/* Internal SLUB flags */
-#define __OBJECT_POISON 0x80000000 /* Poison object */
-#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
+#define __OBJECT_POISON 0x80000000UL /* Poison object */
+#define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
static int kmem_size = sizeof(struct kmem_cache);
@@ -1073,7 +1078,7 @@ static inline struct page *alloc_slab_page(gfp_t flags, int node,
flags |= __GFP_NOTRACK;
- if (node == -1)
+ if (node == NUMA_NO_NODE)
return alloc_pages(flags, order);
else
return alloc_pages_exact_node(node, flags, order);
@@ -1157,9 +1162,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
inc_slabs_node(s, page_to_nid(page), page->objects);
page->slab = s;
page->flags |= 1 << PG_slab;
- if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
- SLAB_STORE_USER | SLAB_TRACE))
- __SetPageSlubDebug(page);
start = page_address(page);
@@ -1186,14 +1188,13 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
int order = compound_order(page);
int pages = 1 << order;
- if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
+ if (kmem_cache_debug(s)) {
void *p;
slab_pad_check(s, page);
for_each_object(p, s, page_address(page),
page->objects)
check_object(s, page, p, 0);
- __ClearPageSlubDebug(page);
}
kmemcheck_free_shadow(page, compound_order(page));
@@ -1387,10 +1388,10 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
{
struct page *page;
- int searchnode = (node == -1) ? numa_node_id() : node;
+ int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
page = get_partial_node(get_node(s, searchnode));
- if (page || (flags & __GFP_THISNODE))
+ if (page || node != -1)
return page;
return get_any_partial(s, flags);
@@ -1415,8 +1416,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
stat(s, DEACTIVATE_FULL);
- if (SLABDEBUG && PageSlubDebug(page) &&
- (s->flags & SLAB_STORE_USER))
+ if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
add_full(n, page);
}
slab_unlock(page);
@@ -1515,7 +1515,7 @@ static void flush_all(struct kmem_cache *s)
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
- if (node != -1 && c->node != node)
+ if (node != NUMA_NO_NODE && c->node != node)
return 0;
#endif
return 1;
@@ -1624,7 +1624,7 @@ load_freelist:
object = c->page->freelist;
if (unlikely(!object))
goto another_slab;
- if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
+ if (kmem_cache_debug(s))
goto debug;
c->freelist = get_freepointer(s, object);
@@ -1727,7 +1727,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
- void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
+ void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
@@ -1738,7 +1738,7 @@ EXPORT_SYMBOL(kmem_cache_alloc);
#ifdef CONFIG_TRACING
void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
{
- return slab_alloc(s, gfpflags, -1, _RET_IP_);
+ return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif
@@ -1783,7 +1783,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
stat(s, FREE_SLOWPATH);
slab_lock(page);
- if (unlikely(SLABDEBUG && PageSlubDebug(page)))
+ if (kmem_cache_debug(s))
goto debug;
checks_ok:
@@ -2490,7 +2490,6 @@ void kmem_cache_destroy(struct kmem_cache *s)
s->refcount--;
if (!s->refcount) {
list_del(&s->list);
- up_write(&slub_lock);
if (kmem_cache_close(s)) {
printk(KERN_ERR "SLUB %s: %s called for cache that "
"still has objects.\n", s->name, __func__);
@@ -2499,8 +2498,8 @@ void kmem_cache_destroy(struct kmem_cache *s)
if (s->flags & SLAB_DESTROY_BY_RCU)
rcu_barrier();
sysfs_slab_remove(s);
- } else
- up_write(&slub_lock);
+ }
+ up_write(&slub_lock);
}
EXPORT_SYMBOL(kmem_cache_destroy);
@@ -2728,7 +2727,7 @@ void *__kmalloc(size_t size, gfp_t flags)
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, flags, -1, _RET_IP_);
+ ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
@@ -3118,9 +3117,12 @@ void __init kmem_cache_init(void)
slab_state = UP;
/* Provide the correct kmalloc names now that the caches are up */
- for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
- kmalloc_caches[i]. name =
- kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
+ for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
+ char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
+
+ BUG_ON(!s);
+ kmalloc_caches[i].name = s;
+ }
#ifdef CONFIG_SMP
register_cpu_notifier(&slab_notifier);
@@ -3223,14 +3225,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
*/
s->objsize = max(s->objsize, (int)size);
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
- up_write(&slub_lock);
if (sysfs_slab_alias(s, name)) {
- down_write(&slub_lock);
s->refcount--;
- up_write(&slub_lock);
goto err;
}
+ up_write(&slub_lock);
return s;
}
@@ -3239,14 +3239,12 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
if (kmem_cache_open(s, GFP_KERNEL, name,
size, align, flags, ctor)) {
list_add(&s->list, &slab_caches);
- up_write(&slub_lock);
if (sysfs_slab_add(s)) {
- down_write(&slub_lock);
list_del(&s->list);
- up_write(&slub_lock);
kfree(s);
goto err;
}
+ up_write(&slub_lock);
return s;
}
kfree(s);
@@ -3312,7 +3310,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
if (unlikely(ZERO_OR_NULL_PTR(s)))
return s;
- ret = slab_alloc(s, gfpflags, -1, caller);
+ ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
/* Honor the call site pointer we recieved. */
trace_kmalloc(caller, ret, size, s->size, gfpflags);
@@ -3395,16 +3393,6 @@ static void validate_slab_slab(struct kmem_cache *s, struct page *page,
} else
printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
s->name, page);
-
- if (s->flags & DEBUG_DEFAULT_FLAGS) {
- if (!PageSlubDebug(page))
- printk(KERN_ERR "SLUB %s: SlubDebug not set "
- "on slab 0x%p\n", s->name, page);
- } else {
- if (PageSlubDebug(page))
- printk(KERN_ERR "SLUB %s: SlubDebug set on "
- "slab 0x%p\n", s->name, page);
- }
}
static int validate_slab_node(struct kmem_cache *s,
@@ -4504,6 +4492,13 @@ static int sysfs_slab_add(struct kmem_cache *s)
static void sysfs_slab_remove(struct kmem_cache *s)
{
+ if (slab_state < SYSFS)
+ /*
+ * Sysfs has not been setup yet so no need to remove the
+ * cache from sysfs.
+ */
+ return;
+
kobject_uevent(&s->kobj, KOBJ_REMOVE);
kobject_del(&s->kobj);
kobject_put(&s->kobj);
@@ -4549,8 +4544,11 @@ static int __init slab_sysfs_init(void)
struct kmem_cache *s;
int err;
+ down_write(&slub_lock);
+
slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
if (!slab_kset) {
+ up_write(&slub_lock);
printk(KERN_ERR "Cannot register slab subsystem.\n");
return -ENOSYS;
}
@@ -4575,6 +4573,7 @@ static int __init slab_sysfs_init(void)
kfree(al);
}
+ up_write(&slub_lock);
resiliency_test();
return 0;
}
diff --git a/mm/swapfile.c b/mm/swapfile.c
index 03aa2d55f1a2..1f3f9c59a73a 100644
--- a/mm/swapfile.c
+++ b/mm/swapfile.c
@@ -47,6 +47,8 @@ long nr_swap_pages;
long total_swap_pages;
static int least_priority;
+static bool swap_for_hibernation;
+
static const char Bad_file[] = "Bad swap file entry ";
static const char Unused_file[] = "Unused swap file entry ";
static const char Bad_offset[] = "Bad swap offset entry ";
@@ -318,8 +320,10 @@ checks:
if (offset > si->highest_bit)
scan_base = offset = si->lowest_bit;
- /* reuse swap entry of cache-only swap if not busy. */
- if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
+ /* reuse swap entry of cache-only swap if not hibernation. */
+ if (vm_swap_full()
+ && usage == SWAP_HAS_CACHE
+ && si->swap_map[offset] == SWAP_HAS_CACHE) {
int swap_was_freed;
spin_unlock(&swap_lock);
swap_was_freed = __try_to_reclaim_swap(si, offset);
@@ -449,6 +453,8 @@ swp_entry_t get_swap_page(void)
spin_lock(&swap_lock);
if (nr_swap_pages <= 0)
goto noswap;
+ if (swap_for_hibernation)
+ goto noswap;
nr_swap_pages--;
for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
@@ -481,28 +487,6 @@ noswap:
return (swp_entry_t) {0};
}
-/* The only caller of this function is now susupend routine */
-swp_entry_t get_swap_page_of_type(int type)
-{
- struct swap_info_struct *si;
- pgoff_t offset;
-
- spin_lock(&swap_lock);
- si = swap_info[type];
- if (si && (si->flags & SWP_WRITEOK)) {
- nr_swap_pages--;
- /* This is called for allocating swap entry, not cache */
- offset = scan_swap_map(si, 1);
- if (offset) {
- spin_unlock(&swap_lock);
- return swp_entry(type, offset);
- }
- nr_swap_pages++;
- }
- spin_unlock(&swap_lock);
- return (swp_entry_t) {0};
-}
-
static struct swap_info_struct *swap_info_get(swp_entry_t entry)
{
struct swap_info_struct *p;
@@ -762,6 +746,74 @@ int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
#endif
#ifdef CONFIG_HIBERNATION
+
+static pgoff_t hibernation_offset[MAX_SWAPFILES];
+/*
+ * Once hibernation starts to use swap, we freeze swap_map[]. Otherwise,
+ * saved swap_map[] image to the disk will be an incomplete because it's
+ * changing without synchronization with hibernation snap shot.
+ * At resume, we just make swap_for_hibernation=false. We can forget
+ * used maps easily.
+ */
+void hibernation_freeze_swap(void)
+{
+ int i;
+
+ spin_lock(&swap_lock);
+
+ printk(KERN_INFO "PM: Freeze Swap\n");
+ swap_for_hibernation = true;
+ for (i = 0; i < MAX_SWAPFILES; i++)
+ hibernation_offset[i] = 1;
+ spin_unlock(&swap_lock);
+}
+
+void hibernation_thaw_swap(void)
+{
+ spin_lock(&swap_lock);
+ if (swap_for_hibernation) {
+ printk(KERN_INFO "PM: Thaw Swap\n");
+ swap_for_hibernation = false;
+ }
+ spin_unlock(&swap_lock);
+}
+
+/*
+ * Because updateing swap_map[] can make not-saved-status-change,
+ * we use our own easy allocator.
+ * Please see kernel/power/swap.c, Used swaps are recorded into
+ * RB-tree.
+ */
+swp_entry_t get_swap_for_hibernation(int type)
+{
+ pgoff_t off;
+ swp_entry_t val = {0};
+ struct swap_info_struct *si;
+
+ spin_lock(&swap_lock);
+
+ si = swap_info[type];
+ if (!si || !(si->flags & SWP_WRITEOK))
+ goto done;
+
+ for (off = hibernation_offset[type]; off < si->max; ++off) {
+ if (!si->swap_map[off])
+ break;
+ }
+ if (off < si->max) {
+ val = swp_entry(type, off);
+ hibernation_offset[type] = off + 1;
+ }
+done:
+ spin_unlock(&swap_lock);
+ return val;
+}
+
+void swap_free_for_hibernation(swp_entry_t ent)
+{
+ /* Nothing to do */
+}
+
/*
* Find the swap type that corresponds to given device (if any).
*
diff --git a/mm/truncate.c b/mm/truncate.c
index 937571b8b233..ba887bff48c5 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -541,28 +541,48 @@ void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
EXPORT_SYMBOL(truncate_pagecache);
/**
+ * truncate_setsize - update inode and pagecache for a new file size
+ * @inode: inode
+ * @newsize: new file size
+ *
+ * truncate_setsize updastes i_size update and performs pagecache
+ * truncation (if necessary) for a file size updates. It will be
+ * typically be called from the filesystem's setattr function when
+ * ATTR_SIZE is passed in.
+ *
+ * Must be called with inode_mutex held and after all filesystem
+ * specific block truncation has been performed.
+ */
+void truncate_setsize(struct inode *inode, loff_t newsize)
+{
+ loff_t oldsize;
+
+ oldsize = inode->i_size;
+ i_size_write(inode, newsize);
+
+ truncate_pagecache(inode, oldsize, newsize);
+}
+EXPORT_SYMBOL(truncate_setsize);
+
+/**
* vmtruncate - unmap mappings "freed" by truncate() syscall
* @inode: inode of the file used
* @offset: file offset to start truncating
*
- * NOTE! We have to be ready to update the memory sharing
- * between the file and the memory map for a potential last
- * incomplete page. Ugly, but necessary.
- *
- * This function is deprecated and simple_setsize or truncate_pagecache
- * should be used instead.
+ * This function is deprecated and truncate_setsize or truncate_pagecache
+ * should be used instead, together with filesystem specific block truncation.
*/
int vmtruncate(struct inode *inode, loff_t offset)
{
int error;
- error = simple_setsize(inode, offset);
+ error = inode_newsize_ok(inode, offset);
if (error)
return error;
+ truncate_setsize(inode, offset);
if (inode->i_op->truncate)
inode->i_op->truncate(inode);
-
- return error;
+ return 0;
}
EXPORT_SYMBOL(vmtruncate);
diff --git a/mm/util.c b/mm/util.c
index f5712e8964be..4735ea481816 100644
--- a/mm/util.c
+++ b/mm/util.c
@@ -225,15 +225,10 @@ char *strndup_user(const char __user *s, long n)
if (length > n)
return ERR_PTR(-EINVAL);
- p = kmalloc(length, GFP_KERNEL);
+ p = memdup_user(s, length);
- if (!p)
- return ERR_PTR(-ENOMEM);
-
- if (copy_from_user(p, s, length)) {
- kfree(p);
- return ERR_PTR(-EFAULT);
- }
+ if (IS_ERR(p))
+ return p;
p[length - 1] = '\0';
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index ae007462b7f6..918c51335d64 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -732,7 +732,7 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
node, gfp_mask);
if (unlikely(IS_ERR(va))) {
kfree(vb);
- return ERR_PTR(PTR_ERR(va));
+ return ERR_CAST(va);
}
err = radix_tree_preload(gfp_mask);
@@ -2403,7 +2403,7 @@ static int s_show(struct seq_file *m, void *p)
seq_printf(m, " pages=%d", v->nr_pages);
if (v->phys_addr)
- seq_printf(m, " phys=%lx", v->phys_addr);
+ seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
if (v->flags & VM_IOREMAP)
seq_printf(m, " ioremap");
@@ -2437,8 +2437,11 @@ static int vmalloc_open(struct inode *inode, struct file *file)
unsigned int *ptr = NULL;
int ret;
- if (NUMA_BUILD)
+ if (NUMA_BUILD) {
ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
+ if (ptr == NULL)
+ return -ENOMEM;
+ }
ret = seq_open(file, &vmalloc_op);
if (!ret) {
struct seq_file *m = file->private_data;
diff --git a/mm/vmscan.c b/mm/vmscan.c
index 9c7e57cc63a3..ec5ddccbf82e 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -48,6 +48,9 @@
#include "internal.h"
+#define CREATE_TRACE_POINTS
+#include <trace/events/vmscan.h>
+
struct scan_control {
/* Incremented by the number of inactive pages that were scanned */
unsigned long nr_scanned;
@@ -213,8 +216,9 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
list_for_each_entry(shrinker, &shrinker_list, list) {
unsigned long long delta;
unsigned long total_scan;
- unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
+ unsigned long max_pass;
+ max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
delta = (4 * scanned) / shrinker->seeks;
delta *= max_pass;
do_div(delta, lru_pages + 1);
@@ -242,8 +246,9 @@ unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
int shrink_ret;
int nr_before;
- nr_before = (*shrinker->shrink)(0, gfp_mask);
- shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
+ nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
+ shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
+ gfp_mask);
if (shrink_ret == -1)
break;
if (shrink_ret < nr_before)
@@ -296,7 +301,7 @@ static int may_write_to_queue(struct backing_dev_info *bdi)
static void handle_write_error(struct address_space *mapping,
struct page *page, int error)
{
- lock_page(page);
+ lock_page_nosync(page);
if (page_mapping(page) == mapping)
mapping_set_error(mapping, error);
unlock_page(page);
@@ -396,6 +401,8 @@ static pageout_t pageout(struct page *page, struct address_space *mapping,
/* synchronous write or broken a_ops? */
ClearPageReclaim(page);
}
+ trace_mm_vmscan_writepage(page,
+ trace_reclaim_flags(page, sync_writeback));
inc_zone_page_state(page, NR_VMSCAN_WRITE);
return PAGE_SUCCESS;
}
@@ -615,6 +622,24 @@ static enum page_references page_check_references(struct page *page,
return PAGEREF_RECLAIM;
}
+static noinline_for_stack void free_page_list(struct list_head *free_pages)
+{
+ struct pagevec freed_pvec;
+ struct page *page, *tmp;
+
+ pagevec_init(&freed_pvec, 1);
+
+ list_for_each_entry_safe(page, tmp, free_pages, lru) {
+ list_del(&page->lru);
+ if (!pagevec_add(&freed_pvec, page)) {
+ __pagevec_free(&freed_pvec);
+ pagevec_reinit(&freed_pvec);
+ }
+ }
+
+ pagevec_free(&freed_pvec);
+}
+
/*
* shrink_page_list() returns the number of reclaimed pages
*/
@@ -623,13 +648,12 @@ static unsigned long shrink_page_list(struct list_head *page_list,
enum pageout_io sync_writeback)
{
LIST_HEAD(ret_pages);
- struct pagevec freed_pvec;
+ LIST_HEAD(free_pages);
int pgactivate = 0;
unsigned long nr_reclaimed = 0;
cond_resched();
- pagevec_init(&freed_pvec, 1);
while (!list_empty(page_list)) {
enum page_references references;
struct address_space *mapping;
@@ -804,10 +828,12 @@ static unsigned long shrink_page_list(struct list_head *page_list,
__clear_page_locked(page);
free_it:
nr_reclaimed++;
- if (!pagevec_add(&freed_pvec, page)) {
- __pagevec_free(&freed_pvec);
- pagevec_reinit(&freed_pvec);
- }
+
+ /*
+ * Is there need to periodically free_page_list? It would
+ * appear not as the counts should be low
+ */
+ list_add(&page->lru, &free_pages);
continue;
cull_mlocked:
@@ -830,9 +856,10 @@ keep:
list_add(&page->lru, &ret_pages);
VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
}
+
+ free_page_list(&free_pages);
+
list_splice(&ret_pages, page_list);
- if (pagevec_count(&freed_pvec))
- __pagevec_free(&freed_pvec);
count_vm_events(PGACTIVATE, pgactivate);
return nr_reclaimed;
}
@@ -914,6 +941,9 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
unsigned long *scanned, int order, int mode, int file)
{
unsigned long nr_taken = 0;
+ unsigned long nr_lumpy_taken = 0;
+ unsigned long nr_lumpy_dirty = 0;
+ unsigned long nr_lumpy_failed = 0;
unsigned long scan;
for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
@@ -991,12 +1021,25 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
list_move(&cursor_page->lru, dst);
mem_cgroup_del_lru(cursor_page);
nr_taken++;
+ nr_lumpy_taken++;
+ if (PageDirty(cursor_page))
+ nr_lumpy_dirty++;
scan++;
+ } else {
+ if (mode == ISOLATE_BOTH &&
+ page_count(cursor_page))
+ nr_lumpy_failed++;
}
}
}
*scanned = scan;
+
+ trace_mm_vmscan_lru_isolate(order,
+ nr_to_scan, scan,
+ nr_taken,
+ nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
+ mode);
return nr_taken;
}
@@ -1033,7 +1076,8 @@ static unsigned long clear_active_flags(struct list_head *page_list,
ClearPageActive(page);
nr_active++;
}
- count[lru]++;
+ if (count)
+ count[lru]++;
}
return nr_active;
@@ -1110,174 +1154,212 @@ static int too_many_isolated(struct zone *zone, int file,
}
/*
- * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
- * of reclaimed pages
+ * TODO: Try merging with migrations version of putback_lru_pages
*/
-static unsigned long shrink_inactive_list(unsigned long max_scan,
- struct zone *zone, struct scan_control *sc,
- int priority, int file)
+static noinline_for_stack void
+putback_lru_pages(struct zone *zone, struct scan_control *sc,
+ unsigned long nr_anon, unsigned long nr_file,
+ struct list_head *page_list)
{
- LIST_HEAD(page_list);
+ struct page *page;
struct pagevec pvec;
- unsigned long nr_scanned = 0;
- unsigned long nr_reclaimed = 0;
struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- while (unlikely(too_many_isolated(zone, file, sc))) {
- congestion_wait(BLK_RW_ASYNC, HZ/10);
+ pagevec_init(&pvec, 1);
- /* We are about to die and free our memory. Return now. */
- if (fatal_signal_pending(current))
- return SWAP_CLUSTER_MAX;
+ /*
+ * Put back any unfreeable pages.
+ */
+ spin_lock(&zone->lru_lock);
+ while (!list_empty(page_list)) {
+ int lru;
+ page = lru_to_page(page_list);
+ VM_BUG_ON(PageLRU(page));
+ list_del(&page->lru);
+ if (unlikely(!page_evictable(page, NULL))) {
+ spin_unlock_irq(&zone->lru_lock);
+ putback_lru_page(page);
+ spin_lock_irq(&zone->lru_lock);
+ continue;
+ }
+ SetPageLRU(page);
+ lru = page_lru(page);
+ add_page_to_lru_list(zone, page, lru);
+ if (is_active_lru(lru)) {
+ int file = is_file_lru(lru);
+ reclaim_stat->recent_rotated[file]++;
+ }
+ if (!pagevec_add(&pvec, page)) {
+ spin_unlock_irq(&zone->lru_lock);
+ __pagevec_release(&pvec);
+ spin_lock_irq(&zone->lru_lock);
+ }
}
+ __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
+ __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
+ spin_unlock_irq(&zone->lru_lock);
+ pagevec_release(&pvec);
+}
- pagevec_init(&pvec, 1);
+static noinline_for_stack void update_isolated_counts(struct zone *zone,
+ struct scan_control *sc,
+ unsigned long *nr_anon,
+ unsigned long *nr_file,
+ struct list_head *isolated_list)
+{
+ unsigned long nr_active;
+ unsigned int count[NR_LRU_LISTS] = { 0, };
+ struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
- lru_add_drain();
- spin_lock_irq(&zone->lru_lock);
- do {
- struct page *page;
- unsigned long nr_taken;
- unsigned long nr_scan;
- unsigned long nr_freed;
- unsigned long nr_active;
- unsigned int count[NR_LRU_LISTS] = { 0, };
- int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
- unsigned long nr_anon;
- unsigned long nr_file;
+ nr_active = clear_active_flags(isolated_list, count);
+ __count_vm_events(PGDEACTIVATE, nr_active);
- if (scanning_global_lru(sc)) {
- nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
- &page_list, &nr_scan,
- sc->order, mode,
- zone, 0, file);
- zone->pages_scanned += nr_scan;
- if (current_is_kswapd())
- __count_zone_vm_events(PGSCAN_KSWAPD, zone,
- nr_scan);
- else
- __count_zone_vm_events(PGSCAN_DIRECT, zone,
- nr_scan);
- } else {
- nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
- &page_list, &nr_scan,
- sc->order, mode,
- zone, sc->mem_cgroup,
- 0, file);
- /*
- * mem_cgroup_isolate_pages() keeps track of
- * scanned pages on its own.
- */
- }
+ __mod_zone_page_state(zone, NR_ACTIVE_FILE,
+ -count[LRU_ACTIVE_FILE]);
+ __mod_zone_page_state(zone, NR_INACTIVE_FILE,
+ -count[LRU_INACTIVE_FILE]);
+ __mod_zone_page_state(zone, NR_ACTIVE_ANON,
+ -count[LRU_ACTIVE_ANON]);
+ __mod_zone_page_state(zone, NR_INACTIVE_ANON,
+ -count[LRU_INACTIVE_ANON]);
- if (nr_taken == 0)
- goto done;
+ *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
+ *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
+ __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
+ __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
+
+ reclaim_stat->recent_scanned[0] += *nr_anon;
+ reclaim_stat->recent_scanned[1] += *nr_file;
+}
- nr_active = clear_active_flags(&page_list, count);
- __count_vm_events(PGDEACTIVATE, nr_active);
+/*
+ * Returns true if the caller should wait to clean dirty/writeback pages.
+ *
+ * If we are direct reclaiming for contiguous pages and we do not reclaim
+ * everything in the list, try again and wait for writeback IO to complete.
+ * This will stall high-order allocations noticeably. Only do that when really
+ * need to free the pages under high memory pressure.
+ */
+static inline bool should_reclaim_stall(unsigned long nr_taken,
+ unsigned long nr_freed,
+ int priority,
+ struct scan_control *sc)
+{
+ int lumpy_stall_priority;
- __mod_zone_page_state(zone, NR_ACTIVE_FILE,
- -count[LRU_ACTIVE_FILE]);
- __mod_zone_page_state(zone, NR_INACTIVE_FILE,
- -count[LRU_INACTIVE_FILE]);
- __mod_zone_page_state(zone, NR_ACTIVE_ANON,
- -count[LRU_ACTIVE_ANON]);
- __mod_zone_page_state(zone, NR_INACTIVE_ANON,
- -count[LRU_INACTIVE_ANON]);
+ /* kswapd should not stall on sync IO */
+ if (current_is_kswapd())
+ return false;
- nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
- nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
- __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
- __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
+ /* Only stall on lumpy reclaim */
+ if (!sc->lumpy_reclaim_mode)
+ return false;
- reclaim_stat->recent_scanned[0] += nr_anon;
- reclaim_stat->recent_scanned[1] += nr_file;
+ /* If we have relaimed everything on the isolated list, no stall */
+ if (nr_freed == nr_taken)
+ return false;
- spin_unlock_irq(&zone->lru_lock);
+ /*
+ * For high-order allocations, there are two stall thresholds.
+ * High-cost allocations stall immediately where as lower
+ * order allocations such as stacks require the scanning
+ * priority to be much higher before stalling.
+ */
+ if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+ lumpy_stall_priority = DEF_PRIORITY;
+ else
+ lumpy_stall_priority = DEF_PRIORITY / 3;
+
+ return priority <= lumpy_stall_priority;
+}
+
+/*
+ * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
+ * of reclaimed pages
+ */
+static noinline_for_stack unsigned long
+shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
+ struct scan_control *sc, int priority, int file)
+{
+ LIST_HEAD(page_list);
+ unsigned long nr_scanned;
+ unsigned long nr_reclaimed = 0;
+ unsigned long nr_taken;
+ unsigned long nr_active;
+ unsigned long nr_anon;
+ unsigned long nr_file;
- nr_scanned += nr_scan;
- nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
+ while (unlikely(too_many_isolated(zone, file, sc))) {
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
+
+ /* We are about to die and free our memory. Return now. */
+ if (fatal_signal_pending(current))
+ return SWAP_CLUSTER_MAX;
+ }
+
+ lru_add_drain();
+ spin_lock_irq(&zone->lru_lock);
+
+ if (scanning_global_lru(sc)) {
+ nr_taken = isolate_pages_global(nr_to_scan,
+ &page_list, &nr_scanned, sc->order,
+ sc->lumpy_reclaim_mode ?
+ ISOLATE_BOTH : ISOLATE_INACTIVE,
+ zone, 0, file);
+ zone->pages_scanned += nr_scanned;
+ if (current_is_kswapd())
+ __count_zone_vm_events(PGSCAN_KSWAPD, zone,
+ nr_scanned);
+ else
+ __count_zone_vm_events(PGSCAN_DIRECT, zone,
+ nr_scanned);
+ } else {
+ nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
+ &page_list, &nr_scanned, sc->order,
+ sc->lumpy_reclaim_mode ?
+ ISOLATE_BOTH : ISOLATE_INACTIVE,
+ zone, sc->mem_cgroup,
+ 0, file);
/*
- * If we are direct reclaiming for contiguous pages and we do
- * not reclaim everything in the list, try again and wait
- * for IO to complete. This will stall high-order allocations
- * but that should be acceptable to the caller
+ * mem_cgroup_isolate_pages() keeps track of
+ * scanned pages on its own.
*/
- if (nr_freed < nr_taken && !current_is_kswapd() &&
- sc->lumpy_reclaim_mode) {
- congestion_wait(BLK_RW_ASYNC, HZ/10);
+ }
- /*
- * The attempt at page out may have made some
- * of the pages active, mark them inactive again.
- */
- nr_active = clear_active_flags(&page_list, count);
- count_vm_events(PGDEACTIVATE, nr_active);
+ if (nr_taken == 0) {
+ spin_unlock_irq(&zone->lru_lock);
+ return 0;
+ }
- nr_freed += shrink_page_list(&page_list, sc,
- PAGEOUT_IO_SYNC);
- }
+ update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
- nr_reclaimed += nr_freed;
+ spin_unlock_irq(&zone->lru_lock);
- local_irq_disable();
- if (current_is_kswapd())
- __count_vm_events(KSWAPD_STEAL, nr_freed);
- __count_zone_vm_events(PGSTEAL, zone, nr_freed);
+ nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
+
+ /* Check if we should syncronously wait for writeback */
+ if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
+ congestion_wait(BLK_RW_ASYNC, HZ/10);
- spin_lock(&zone->lru_lock);
/*
- * Put back any unfreeable pages.
+ * The attempt at page out may have made some
+ * of the pages active, mark them inactive again.
*/
- while (!list_empty(&page_list)) {
- int lru;
- page = lru_to_page(&page_list);
- VM_BUG_ON(PageLRU(page));
- list_del(&page->lru);
- if (unlikely(!page_evictable(page, NULL))) {
- spin_unlock_irq(&zone->lru_lock);
- putback_lru_page(page);
- spin_lock_irq(&zone->lru_lock);
- continue;
- }
- SetPageLRU(page);
- lru = page_lru(page);
- add_page_to_lru_list(zone, page, lru);
- if (is_active_lru(lru)) {
- int file = is_file_lru(lru);
- reclaim_stat->recent_rotated[file]++;
- }
- if (!pagevec_add(&pvec, page)) {
- spin_unlock_irq(&zone->lru_lock);
- __pagevec_release(&pvec);
- spin_lock_irq(&zone->lru_lock);
- }
- }
- __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
- __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
+ nr_active = clear_active_flags(&page_list, NULL);
+ count_vm_events(PGDEACTIVATE, nr_active);
- } while (nr_scanned < max_scan);
+ nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
+ }
-done:
- spin_unlock_irq(&zone->lru_lock);
- pagevec_release(&pvec);
- return nr_reclaimed;
-}
+ local_irq_disable();
+ if (current_is_kswapd())
+ __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
+ __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
-/*
- * We are about to scan this zone at a certain priority level. If that priority
- * level is smaller (ie: more urgent) than the previous priority, then note
- * that priority level within the zone. This is done so that when the next
- * process comes in to scan this zone, it will immediately start out at this
- * priority level rather than having to build up its own scanning priority.
- * Here, this priority affects only the reclaim-mapped threshold.
- */
-static inline void note_zone_scanning_priority(struct zone *zone, int priority)
-{
- if (priority < zone->prev_priority)
- zone->prev_priority = priority;
+ putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
+ return nr_reclaimed;
}
/*
@@ -1581,6 +1663,13 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc,
}
/*
+ * With swappiness at 100, anonymous and file have the same priority.
+ * This scanning priority is essentially the inverse of IO cost.
+ */
+ anon_prio = sc->swappiness;
+ file_prio = 200 - sc->swappiness;
+
+ /*
* OK, so we have swap space and a fair amount of page cache
* pages. We use the recently rotated / recently scanned
* ratios to determine how valuable each cache is.
@@ -1591,28 +1680,18 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc,
*
* anon in [0], file in [1]
*/
+ spin_lock_irq(&zone->lru_lock);
if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
- spin_lock_irq(&zone->lru_lock);
reclaim_stat->recent_scanned[0] /= 2;
reclaim_stat->recent_rotated[0] /= 2;
- spin_unlock_irq(&zone->lru_lock);
}
if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
- spin_lock_irq(&zone->lru_lock);
reclaim_stat->recent_scanned[1] /= 2;
reclaim_stat->recent_rotated[1] /= 2;
- spin_unlock_irq(&zone->lru_lock);
}
/*
- * With swappiness at 100, anonymous and file have the same priority.
- * This scanning priority is essentially the inverse of IO cost.
- */
- anon_prio = sc->swappiness;
- file_prio = 200 - sc->swappiness;
-
- /*
* The amount of pressure on anon vs file pages is inversely
* proportional to the fraction of recently scanned pages on
* each list that were recently referenced and in active use.
@@ -1622,6 +1701,7 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc,
fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
fp /= reclaim_stat->recent_rotated[1] + 1;
+ spin_unlock_irq(&zone->lru_lock);
fraction[0] = ap;
fraction[1] = fp;
@@ -1727,13 +1807,12 @@ static void shrink_zone(int priority, struct zone *zone,
static bool shrink_zones(int priority, struct zonelist *zonelist,
struct scan_control *sc)
{
- enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
struct zoneref *z;
struct zone *zone;
bool all_unreclaimable = true;
- for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
- sc->nodemask) {
+ for_each_zone_zonelist_nodemask(zone, z, zonelist,
+ gfp_zone(sc->gfp_mask), sc->nodemask) {
if (!populated_zone(zone))
continue;
/*
@@ -1743,17 +1822,8 @@ static bool shrink_zones(int priority, struct zonelist *zonelist,
if (scanning_global_lru(sc)) {
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
continue;
- note_zone_scanning_priority(zone, priority);
-
if (zone->all_unreclaimable && priority != DEF_PRIORITY)
continue; /* Let kswapd poll it */
- } else {
- /*
- * Ignore cpuset limitation here. We just want to reduce
- * # of used pages by us regardless of memory shortage.
- */
- mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
- priority);
}
shrink_zone(priority, zone, sc);
@@ -1785,10 +1855,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
bool all_unreclaimable;
unsigned long total_scanned = 0;
struct reclaim_state *reclaim_state = current->reclaim_state;
- unsigned long lru_pages = 0;
struct zoneref *z;
struct zone *zone;
- enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
unsigned long writeback_threshold;
get_mems_allowed();
@@ -1796,18 +1864,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
if (scanning_global_lru(sc))
count_vm_event(ALLOCSTALL);
- /*
- * mem_cgroup will not do shrink_slab.
- */
- if (scanning_global_lru(sc)) {
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
-
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
-
- lru_pages += zone_reclaimable_pages(zone);
- }
- }
for (priority = DEF_PRIORITY; priority >= 0; priority--) {
sc->nr_scanned = 0;
@@ -1819,6 +1875,15 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
* over limit cgroups
*/
if (scanning_global_lru(sc)) {
+ unsigned long lru_pages = 0;
+ for_each_zone_zonelist(zone, z, zonelist,
+ gfp_zone(sc->gfp_mask)) {
+ if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+ continue;
+
+ lru_pages += zone_reclaimable_pages(zone);
+ }
+
shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
if (reclaim_state) {
sc->nr_reclaimed += reclaim_state->reclaimed_slab;
@@ -1859,17 +1924,6 @@ out:
if (priority < 0)
priority = 0;
- if (scanning_global_lru(sc)) {
- for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
-
- if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
- continue;
-
- zone->prev_priority = priority;
- }
- } else
- mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
-
delayacct_freepages_end();
put_mems_allowed();
@@ -1886,6 +1940,7 @@ out:
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
gfp_t gfp_mask, nodemask_t *nodemask)
{
+ unsigned long nr_reclaimed;
struct scan_control sc = {
.gfp_mask = gfp_mask,
.may_writepage = !laptop_mode,
@@ -1898,7 +1953,15 @@ unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
.nodemask = nodemask,
};
- return do_try_to_free_pages(zonelist, &sc);
+ trace_mm_vmscan_direct_reclaim_begin(order,
+ sc.may_writepage,
+ gfp_mask);
+
+ nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
+
+ trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
+
+ return nr_reclaimed;
}
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
@@ -1923,6 +1986,11 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
sc.nodemask = &nm;
sc.nr_reclaimed = 0;
sc.nr_scanned = 0;
+
+ trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
+ sc.may_writepage,
+ sc.gfp_mask);
+
/*
* NOTE: Although we can get the priority field, using it
* here is not a good idea, since it limits the pages we can scan.
@@ -1931,6 +1999,9 @@ unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
* the priority and make it zero.
*/
shrink_zone(0, zone, &sc);
+
+ trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
+
return sc.nr_reclaimed;
}
@@ -1940,6 +2011,7 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
unsigned int swappiness)
{
struct zonelist *zonelist;
+ unsigned long nr_reclaimed;
struct scan_control sc = {
.may_writepage = !laptop_mode,
.may_unmap = 1,
@@ -1954,7 +2026,16 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
zonelist = NODE_DATA(numa_node_id())->node_zonelists;
- return do_try_to_free_pages(zonelist, &sc);
+
+ trace_mm_vmscan_memcg_reclaim_begin(0,
+ sc.may_writepage,
+ sc.gfp_mask);
+
+ nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
+
+ trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
+
+ return nr_reclaimed;
}
#endif
@@ -2026,22 +2107,12 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
.order = order,
.mem_cgroup = NULL,
};
- /*
- * temp_priority is used to remember the scanning priority at which
- * this zone was successfully refilled to
- * free_pages == high_wmark_pages(zone).
- */
- int temp_priority[MAX_NR_ZONES];
-
loop_again:
total_scanned = 0;
sc.nr_reclaimed = 0;
sc.may_writepage = !laptop_mode;
count_vm_event(PAGEOUTRUN);
- for (i = 0; i < pgdat->nr_zones; i++)
- temp_priority[i] = DEF_PRIORITY;
-
for (priority = DEF_PRIORITY; priority >= 0; priority--) {
int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
unsigned long lru_pages = 0;
@@ -2109,9 +2180,7 @@ loop_again:
if (zone->all_unreclaimable && priority != DEF_PRIORITY)
continue;
- temp_priority[i] = priority;
sc.nr_scanned = 0;
- note_zone_scanning_priority(zone, priority);
nid = pgdat->node_id;
zid = zone_idx(zone);
@@ -2184,16 +2253,6 @@ loop_again:
break;
}
out:
- /*
- * Note within each zone the priority level at which this zone was
- * brought into a happy state. So that the next thread which scans this
- * zone will start out at that priority level.
- */
- for (i = 0; i < pgdat->nr_zones; i++) {
- struct zone *zone = pgdat->node_zones + i;
-
- zone->prev_priority = temp_priority[i];
- }
if (!all_zones_ok) {
cond_resched();
@@ -2297,9 +2356,10 @@ static int kswapd(void *p)
* premature sleep. If not, then go fully
* to sleep until explicitly woken up
*/
- if (!sleeping_prematurely(pgdat, order, remaining))
+ if (!sleeping_prematurely(pgdat, order, remaining)) {
+ trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
schedule();
- else {
+ } else {
if (remaining)
count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
else
@@ -2319,8 +2379,10 @@ static int kswapd(void *p)
* We can speed up thawing tasks if we don't call balance_pgdat
* after returning from the refrigerator
*/
- if (!ret)
+ if (!ret) {
+ trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
balance_pgdat(pgdat, order);
+ }
}
return 0;
}
@@ -2340,6 +2402,7 @@ void wakeup_kswapd(struct zone *zone, int order)
return;
if (pgdat->kswapd_max_order < order)
pgdat->kswapd_max_order = order;
+ trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
return;
if (!waitqueue_active(&pgdat->kswapd_wait))
@@ -2588,9 +2651,8 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
.swappiness = vm_swappiness,
.order = order,
};
- unsigned long slab_reclaimable;
+ unsigned long nr_slab_pages0, nr_slab_pages1;
- disable_swap_token();
cond_resched();
/*
* We need to be able to allocate from the reserves for RECLAIM_SWAP
@@ -2609,14 +2671,13 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
*/
priority = ZONE_RECLAIM_PRIORITY;
do {
- note_zone_scanning_priority(zone, priority);
shrink_zone(priority, zone, &sc);
priority--;
} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
}
- slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
- if (slab_reclaimable > zone->min_slab_pages) {
+ nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+ if (nr_slab_pages0 > zone->min_slab_pages) {
/*
* shrink_slab() does not currently allow us to determine how
* many pages were freed in this zone. So we take the current
@@ -2627,17 +2688,27 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
* Note that shrink_slab will free memory on all zones and may
* take a long time.
*/
- while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
- zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
- slab_reclaimable - nr_pages)
- ;
+ for (;;) {
+ unsigned long lru_pages = zone_reclaimable_pages(zone);
+
+ /* No reclaimable slab or very low memory pressure */
+ if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
+ break;
+
+ /* Freed enough memory */
+ nr_slab_pages1 = zone_page_state(zone,
+ NR_SLAB_RECLAIMABLE);
+ if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
+ break;
+ }
/*
* Update nr_reclaimed by the number of slab pages we
* reclaimed from this zone.
*/
- sc.nr_reclaimed += slab_reclaimable -
- zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+ nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+ if (nr_slab_pages1 < nr_slab_pages0)
+ sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
}
p->reclaim_state = NULL;
diff --git a/mm/vmstat.c b/mm/vmstat.c
index 7759941d4e77..f389168f9a83 100644
--- a/mm/vmstat.c
+++ b/mm/vmstat.c
@@ -22,14 +22,14 @@
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
EXPORT_PER_CPU_SYMBOL(vm_event_states);
-static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
+static void sum_vm_events(unsigned long *ret)
{
int cpu;
int i;
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
- for_each_cpu(cpu, cpumask) {
+ for_each_online_cpu(cpu) {
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
@@ -45,7 +45,7 @@ static void sum_vm_events(unsigned long *ret, const struct cpumask *cpumask)
void all_vm_events(unsigned long *ret)
{
get_online_cpus();
- sum_vm_events(ret, cpu_online_mask);
+ sum_vm_events(ret);
put_online_cpus();
}
EXPORT_SYMBOL_GPL(all_vm_events);
@@ -853,11 +853,9 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
}
seq_printf(m,
"\n all_unreclaimable: %u"
- "\n prev_priority: %i"
"\n start_pfn: %lu"
"\n inactive_ratio: %u",
zone->all_unreclaimable,
- zone->prev_priority,
zone->zone_start_pfn,
zone->inactive_ratio);
seq_putc(m, '\n');