diff options
Diffstat (limited to 'mm/memory.c')
-rw-r--r-- | mm/memory.c | 743 |
1 files changed, 55 insertions, 688 deletions
diff --git a/mm/memory.c b/mm/memory.c index e302ae1dcce0..d67fd9fcf1f2 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -698,11 +698,6 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } -static inline bool is_cow_mapping(vm_flags_t flags) -{ - return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; -} - /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * @@ -756,7 +751,7 @@ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn = pte_pfn(pte); if (HAVE_PTE_SPECIAL) { - if (likely(!pte_special(pte))) + if (likely(!pte_special(pte) || pte_numa(pte))) goto check_pfn; if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) return NULL; @@ -782,14 +777,15 @@ struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, } } - if (is_zero_pfn(pfn)) - return NULL; check_pfn: if (unlikely(pfn > highest_memmap_pfn)) { print_bad_pte(vma, addr, pte, NULL); return NULL; } + if (is_zero_pfn(pfn)) + return NULL; + /* * NOTE! We still have PageReserved() pages in the page tables. * eg. VDSO mappings can cause them to exist. @@ -1457,646 +1453,6 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, } EXPORT_SYMBOL_GPL(zap_vma_ptes); -/** - * follow_page_mask - look up a page descriptor from a user-virtual address - * @vma: vm_area_struct mapping @address - * @address: virtual address to look up - * @flags: flags modifying lookup behaviour - * @page_mask: on output, *page_mask is set according to the size of the page - * - * @flags can have FOLL_ flags set, defined in <linux/mm.h> - * - * Returns the mapped (struct page *), %NULL if no mapping exists, or - * an error pointer if there is a mapping to something not represented - * by a page descriptor (see also vm_normal_page()). - */ -struct page *follow_page_mask(struct vm_area_struct *vma, - unsigned long address, unsigned int flags, - unsigned int *page_mask) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *ptep, pte; - spinlock_t *ptl; - struct page *page; - struct mm_struct *mm = vma->vm_mm; - - *page_mask = 0; - - page = follow_huge_addr(mm, address, flags & FOLL_WRITE); - if (!IS_ERR(page)) { - BUG_ON(flags & FOLL_GET); - goto out; - } - - page = NULL; - pgd = pgd_offset(mm, address); - if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) - goto no_page_table; - - pud = pud_offset(pgd, address); - if (pud_none(*pud)) - goto no_page_table; - if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { - if (flags & FOLL_GET) - goto out; - page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); - goto out; - } - if (unlikely(pud_bad(*pud))) - goto no_page_table; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd)) - goto no_page_table; - if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { - page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); - if (flags & FOLL_GET) { - /* - * Refcount on tail pages are not well-defined and - * shouldn't be taken. The caller should handle a NULL - * return when trying to follow tail pages. - */ - if (PageHead(page)) - get_page(page); - else { - page = NULL; - goto out; - } - } - goto out; - } - if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) - goto no_page_table; - if (pmd_trans_huge(*pmd)) { - if (flags & FOLL_SPLIT) { - split_huge_page_pmd(vma, address, pmd); - goto split_fallthrough; - } - ptl = pmd_lock(mm, pmd); - if (likely(pmd_trans_huge(*pmd))) { - if (unlikely(pmd_trans_splitting(*pmd))) { - spin_unlock(ptl); - wait_split_huge_page(vma->anon_vma, pmd); - } else { - page = follow_trans_huge_pmd(vma, address, - pmd, flags); - spin_unlock(ptl); - *page_mask = HPAGE_PMD_NR - 1; - goto out; - } - } else - spin_unlock(ptl); - /* fall through */ - } -split_fallthrough: - if (unlikely(pmd_bad(*pmd))) - goto no_page_table; - - ptep = pte_offset_map_lock(mm, pmd, address, &ptl); - - pte = *ptep; - if (!pte_present(pte)) { - swp_entry_t entry; - /* - * KSM's break_ksm() relies upon recognizing a ksm page - * even while it is being migrated, so for that case we - * need migration_entry_wait(). - */ - if (likely(!(flags & FOLL_MIGRATION))) - goto no_page; - if (pte_none(pte) || pte_file(pte)) - goto no_page; - entry = pte_to_swp_entry(pte); - if (!is_migration_entry(entry)) - goto no_page; - pte_unmap_unlock(ptep, ptl); - migration_entry_wait(mm, pmd, address); - goto split_fallthrough; - } - if ((flags & FOLL_NUMA) && pte_numa(pte)) - goto no_page; - if ((flags & FOLL_WRITE) && !pte_write(pte)) - goto unlock; - - page = vm_normal_page(vma, address, pte); - if (unlikely(!page)) { - if ((flags & FOLL_DUMP) || - !is_zero_pfn(pte_pfn(pte))) - goto bad_page; - page = pte_page(pte); - } - - if (flags & FOLL_GET) - get_page_foll(page); - if (flags & FOLL_TOUCH) { - if ((flags & FOLL_WRITE) && - !pte_dirty(pte) && !PageDirty(page)) - set_page_dirty(page); - /* - * pte_mkyoung() would be more correct here, but atomic care - * is needed to avoid losing the dirty bit: it is easier to use - * mark_page_accessed(). - */ - mark_page_accessed(page); - } - if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { - /* - * The preliminary mapping check is mainly to avoid the - * pointless overhead of lock_page on the ZERO_PAGE - * which might bounce very badly if there is contention. - * - * If the page is already locked, we don't need to - * handle it now - vmscan will handle it later if and - * when it attempts to reclaim the page. - */ - if (page->mapping && trylock_page(page)) { - lru_add_drain(); /* push cached pages to LRU */ - /* - * Because we lock page here, and migration is - * blocked by the pte's page reference, and we - * know the page is still mapped, we don't even - * need to check for file-cache page truncation. - */ - mlock_vma_page(page); - unlock_page(page); - } - } -unlock: - pte_unmap_unlock(ptep, ptl); -out: - return page; - -bad_page: - pte_unmap_unlock(ptep, ptl); - return ERR_PTR(-EFAULT); - -no_page: - pte_unmap_unlock(ptep, ptl); - if (!pte_none(pte)) - return page; - -no_page_table: - /* - * When core dumping an enormous anonymous area that nobody - * has touched so far, we don't want to allocate unnecessary pages or - * page tables. Return error instead of NULL to skip handle_mm_fault, - * then get_dump_page() will return NULL to leave a hole in the dump. - * But we can only make this optimization where a hole would surely - * be zero-filled if handle_mm_fault() actually did handle it. - */ - if ((flags & FOLL_DUMP) && - (!vma->vm_ops || !vma->vm_ops->fault)) - return ERR_PTR(-EFAULT); - return page; -} - -static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) -{ - return stack_guard_page_start(vma, addr) || - stack_guard_page_end(vma, addr+PAGE_SIZE); -} - -/** - * __get_user_pages() - pin user pages in memory - * @tsk: task_struct of target task - * @mm: mm_struct of target mm - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @gup_flags: flags modifying pin behaviour - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. Or NULL, if caller - * only intends to ensure the pages are faulted in. - * @vmas: array of pointers to vmas corresponding to each page. - * Or NULL if the caller does not require them. - * @nonblocking: whether waiting for disk IO or mmap_sem contention - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. Each page returned must be released - * with a put_page() call when it is finished with. vmas will only - * remain valid while mmap_sem is held. - * - * Must be called with mmap_sem held for read or write. - * - * __get_user_pages walks a process's page tables and takes a reference to - * each struct page that each user address corresponds to at a given - * instant. That is, it takes the page that would be accessed if a user - * thread accesses the given user virtual address at that instant. - * - * This does not guarantee that the page exists in the user mappings when - * __get_user_pages returns, and there may even be a completely different - * page there in some cases (eg. if mmapped pagecache has been invalidated - * and subsequently re faulted). However it does guarantee that the page - * won't be freed completely. And mostly callers simply care that the page - * contains data that was valid *at some point in time*. Typically, an IO - * or similar operation cannot guarantee anything stronger anyway because - * locks can't be held over the syscall boundary. - * - * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If - * the page is written to, set_page_dirty (or set_page_dirty_lock, as - * appropriate) must be called after the page is finished with, and - * before put_page is called. - * - * If @nonblocking != NULL, __get_user_pages will not wait for disk IO - * or mmap_sem contention, and if waiting is needed to pin all pages, - * *@nonblocking will be set to 0. - * - * In most cases, get_user_pages or get_user_pages_fast should be used - * instead of __get_user_pages. __get_user_pages should be used only if - * you need some special @gup_flags. - */ -long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, unsigned long nr_pages, - unsigned int gup_flags, struct page **pages, - struct vm_area_struct **vmas, int *nonblocking) -{ - long i; - unsigned long vm_flags; - unsigned int page_mask; - - if (!nr_pages) - return 0; - - VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); - - /* - * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault - * would be called on PROT_NONE ranges. We must never invoke - * handle_mm_fault on PROT_NONE ranges or the NUMA hinting - * page faults would unprotect the PROT_NONE ranges if - * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd - * bitflag. So to avoid that, don't set FOLL_NUMA if - * FOLL_FORCE is set. - */ - if (!(gup_flags & FOLL_FORCE)) - gup_flags |= FOLL_NUMA; - - i = 0; - - do { - struct vm_area_struct *vma; - - vma = find_extend_vma(mm, start); - if (!vma && in_gate_area(mm, start)) { - unsigned long pg = start & PAGE_MASK; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - /* user gate pages are read-only */ - if (gup_flags & FOLL_WRITE) - goto efault; - if (pg > TASK_SIZE) - pgd = pgd_offset_k(pg); - else - pgd = pgd_offset_gate(mm, pg); - BUG_ON(pgd_none(*pgd)); - pud = pud_offset(pgd, pg); - BUG_ON(pud_none(*pud)); - pmd = pmd_offset(pud, pg); - if (pmd_none(*pmd)) - goto efault; - VM_BUG_ON(pmd_trans_huge(*pmd)); - pte = pte_offset_map(pmd, pg); - if (pte_none(*pte)) { - pte_unmap(pte); - goto efault; - } - vma = get_gate_vma(mm); - if (pages) { - struct page *page; - - page = vm_normal_page(vma, start, *pte); - if (!page) { - if (!(gup_flags & FOLL_DUMP) && - is_zero_pfn(pte_pfn(*pte))) - page = pte_page(*pte); - else { - pte_unmap(pte); - goto efault; - } - } - pages[i] = page; - get_page(page); - } - pte_unmap(pte); - page_mask = 0; - goto next_page; - } - - if (!vma) - goto efault; - vm_flags = vma->vm_flags; - if (vm_flags & (VM_IO | VM_PFNMAP)) - goto efault; - - if (gup_flags & FOLL_WRITE) { - if (!(vm_flags & VM_WRITE)) { - if (!(gup_flags & FOLL_FORCE)) - goto efault; - /* - * We used to let the write,force case do COW - * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so - * ptrace could set a breakpoint in a read-only - * mapping of an executable, without corrupting - * the file (yet only when that file had been - * opened for writing!). Anon pages in shared - * mappings are surprising: now just reject it. - */ - if (!is_cow_mapping(vm_flags)) { - WARN_ON_ONCE(vm_flags & VM_MAYWRITE); - goto efault; - } - } - } else { - if (!(vm_flags & VM_READ)) { - if (!(gup_flags & FOLL_FORCE)) - goto efault; - /* - * Is there actually any vma we can reach here - * which does not have VM_MAYREAD set? - */ - if (!(vm_flags & VM_MAYREAD)) - goto efault; - } - } - - if (is_vm_hugetlb_page(vma)) { - i = follow_hugetlb_page(mm, vma, pages, vmas, - &start, &nr_pages, i, gup_flags); - continue; - } - - do { - struct page *page; - unsigned int foll_flags = gup_flags; - unsigned int page_increm; - - /* - * If we have a pending SIGKILL, don't keep faulting - * pages and potentially allocating memory. - */ - if (unlikely(fatal_signal_pending(current))) - return i ? i : -ERESTARTSYS; - - cond_resched(); - while (!(page = follow_page_mask(vma, start, - foll_flags, &page_mask))) { - int ret; - unsigned int fault_flags = 0; - - /* For mlock, just skip the stack guard page. */ - if (foll_flags & FOLL_MLOCK) { - if (stack_guard_page(vma, start)) - goto next_page; - } - if (foll_flags & FOLL_WRITE) - fault_flags |= FAULT_FLAG_WRITE; - if (nonblocking) - fault_flags |= FAULT_FLAG_ALLOW_RETRY; - if (foll_flags & FOLL_NOWAIT) - fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); - - ret = handle_mm_fault(mm, vma, start, - fault_flags); - - if (ret & VM_FAULT_ERROR) { - if (ret & VM_FAULT_OOM) - return i ? i : -ENOMEM; - if (ret & (VM_FAULT_HWPOISON | - VM_FAULT_HWPOISON_LARGE)) { - if (i) - return i; - else if (gup_flags & FOLL_HWPOISON) - return -EHWPOISON; - else - return -EFAULT; - } - if (ret & VM_FAULT_SIGBUS) - goto efault; - BUG(); - } - - if (tsk) { - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; - } - - if (ret & VM_FAULT_RETRY) { - if (nonblocking) - *nonblocking = 0; - return i; - } - - /* - * The VM_FAULT_WRITE bit tells us that - * do_wp_page has broken COW when necessary, - * even if maybe_mkwrite decided not to set - * pte_write. We can thus safely do subsequent - * page lookups as if they were reads. But only - * do so when looping for pte_write is futile: - * in some cases userspace may also be wanting - * to write to the gotten user page, which a - * read fault here might prevent (a readonly - * page might get reCOWed by userspace write). - */ - if ((ret & VM_FAULT_WRITE) && - !(vma->vm_flags & VM_WRITE)) - foll_flags &= ~FOLL_WRITE; - - cond_resched(); - } - if (IS_ERR(page)) - return i ? i : PTR_ERR(page); - if (pages) { - pages[i] = page; - - flush_anon_page(vma, page, start); - flush_dcache_page(page); - page_mask = 0; - } -next_page: - if (vmas) { - vmas[i] = vma; - page_mask = 0; - } - page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); - if (page_increm > nr_pages) - page_increm = nr_pages; - i += page_increm; - start += page_increm * PAGE_SIZE; - nr_pages -= page_increm; - } while (nr_pages && start < vma->vm_end); - } while (nr_pages); - return i; -efault: - return i ? : -EFAULT; -} -EXPORT_SYMBOL(__get_user_pages); - -/* - * fixup_user_fault() - manually resolve a user page fault - * @tsk: the task_struct to use for page fault accounting, or - * NULL if faults are not to be recorded. - * @mm: mm_struct of target mm - * @address: user address - * @fault_flags:flags to pass down to handle_mm_fault() - * - * This is meant to be called in the specific scenario where for locking reasons - * we try to access user memory in atomic context (within a pagefault_disable() - * section), this returns -EFAULT, and we want to resolve the user fault before - * trying again. - * - * Typically this is meant to be used by the futex code. - * - * The main difference with get_user_pages() is that this function will - * unconditionally call handle_mm_fault() which will in turn perform all the - * necessary SW fixup of the dirty and young bits in the PTE, while - * handle_mm_fault() only guarantees to update these in the struct page. - * - * This is important for some architectures where those bits also gate the - * access permission to the page because they are maintained in software. On - * such architectures, gup() will not be enough to make a subsequent access - * succeed. - * - * This should be called with the mm_sem held for read. - */ -int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, - unsigned long address, unsigned int fault_flags) -{ - struct vm_area_struct *vma; - vm_flags_t vm_flags; - int ret; - - vma = find_extend_vma(mm, address); - if (!vma || address < vma->vm_start) - return -EFAULT; - - vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; - if (!(vm_flags & vma->vm_flags)) - return -EFAULT; - - ret = handle_mm_fault(mm, vma, address, fault_flags); - if (ret & VM_FAULT_ERROR) { - if (ret & VM_FAULT_OOM) - return -ENOMEM; - if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) - return -EHWPOISON; - if (ret & VM_FAULT_SIGBUS) - return -EFAULT; - BUG(); - } - if (tsk) { - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; - } - return 0; -} - -/* - * get_user_pages() - pin user pages in memory - * @tsk: the task_struct to use for page fault accounting, or - * NULL if faults are not to be recorded. - * @mm: mm_struct of target mm - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @write: whether pages will be written to by the caller - * @force: whether to force access even when user mapping is currently - * protected (but never forces write access to shared mapping). - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. Or NULL, if caller - * only intends to ensure the pages are faulted in. - * @vmas: array of pointers to vmas corresponding to each page. - * Or NULL if the caller does not require them. - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. Each page returned must be released - * with a put_page() call when it is finished with. vmas will only - * remain valid while mmap_sem is held. - * - * Must be called with mmap_sem held for read or write. - * - * get_user_pages walks a process's page tables and takes a reference to - * each struct page that each user address corresponds to at a given - * instant. That is, it takes the page that would be accessed if a user - * thread accesses the given user virtual address at that instant. - * - * This does not guarantee that the page exists in the user mappings when - * get_user_pages returns, and there may even be a completely different - * page there in some cases (eg. if mmapped pagecache has been invalidated - * and subsequently re faulted). However it does guarantee that the page - * won't be freed completely. And mostly callers simply care that the page - * contains data that was valid *at some point in time*. Typically, an IO - * or similar operation cannot guarantee anything stronger anyway because - * locks can't be held over the syscall boundary. - * - * If write=0, the page must not be written to. If the page is written to, - * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called - * after the page is finished with, and before put_page is called. - * - * get_user_pages is typically used for fewer-copy IO operations, to get a - * handle on the memory by some means other than accesses via the user virtual - * addresses. The pages may be submitted for DMA to devices or accessed via - * their kernel linear mapping (via the kmap APIs). Care should be taken to - * use the correct cache flushing APIs. - * - * See also get_user_pages_fast, for performance critical applications. - */ -long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, unsigned long nr_pages, int write, - int force, struct page **pages, struct vm_area_struct **vmas) -{ - int flags = FOLL_TOUCH; - - if (pages) - flags |= FOLL_GET; - if (write) - flags |= FOLL_WRITE; - if (force) - flags |= FOLL_FORCE; - - return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, - NULL); -} -EXPORT_SYMBOL(get_user_pages); - -/** - * get_dump_page() - pin user page in memory while writing it to core dump - * @addr: user address - * - * Returns struct page pointer of user page pinned for dump, - * to be freed afterwards by page_cache_release() or put_page(). - * - * Returns NULL on any kind of failure - a hole must then be inserted into - * the corefile, to preserve alignment with its headers; and also returns - * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - - * allowing a hole to be left in the corefile to save diskspace. - * - * Called without mmap_sem, but after all other threads have been killed. - */ -#ifdef CONFIG_ELF_CORE -struct page *get_dump_page(unsigned long addr) -{ - struct vm_area_struct *vma; - struct page *page; - - if (__get_user_pages(current, current->mm, addr, 1, - FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, - NULL) < 1) - return NULL; - flush_cache_page(vma, addr, page_to_pfn(page)); - return page; -} -#endif /* CONFIG_ELF_CORE */ - pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { @@ -3402,65 +2758,76 @@ void do_set_pte(struct vm_area_struct *vma, unsigned long address, update_mmu_cache(vma, address, pte); } -#define FAULT_AROUND_ORDER 4 +static unsigned long fault_around_bytes = 65536; + +/* + * fault_around_pages() and fault_around_mask() round down fault_around_bytes + * to nearest page order. It's what do_fault_around() expects to see. + */ +static inline unsigned long fault_around_pages(void) +{ + return rounddown_pow_of_two(fault_around_bytes) / PAGE_SIZE; +} + +static inline unsigned long fault_around_mask(void) +{ + return ~(rounddown_pow_of_two(fault_around_bytes) - 1) & PAGE_MASK; +} -#ifdef CONFIG_DEBUG_FS -static unsigned int fault_around_order = FAULT_AROUND_ORDER; -static int fault_around_order_get(void *data, u64 *val) +#ifdef CONFIG_DEBUG_FS +static int fault_around_bytes_get(void *data, u64 *val) { - *val = fault_around_order; + *val = fault_around_bytes; return 0; } -static int fault_around_order_set(void *data, u64 val) +static int fault_around_bytes_set(void *data, u64 val) { - BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE); - if (1UL << val > PTRS_PER_PTE) + if (val / PAGE_SIZE > PTRS_PER_PTE) return -EINVAL; - fault_around_order = val; + fault_around_bytes = val; return 0; } -DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops, - fault_around_order_get, fault_around_order_set, "%llu\n"); +DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, + fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); static int __init fault_around_debugfs(void) { void *ret; - ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL, - &fault_around_order_fops); + ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, + &fault_around_bytes_fops); if (!ret) - pr_warn("Failed to create fault_around_order in debugfs"); + pr_warn("Failed to create fault_around_bytes in debugfs"); return 0; } late_initcall(fault_around_debugfs); - -static inline unsigned long fault_around_pages(void) -{ - return 1UL << fault_around_order; -} - -static inline unsigned long fault_around_mask(void) -{ - return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1); -} -#else -static inline unsigned long fault_around_pages(void) -{ - unsigned long nr_pages; - - nr_pages = 1UL << FAULT_AROUND_ORDER; - BUILD_BUG_ON(nr_pages > PTRS_PER_PTE); - return nr_pages; -} - -static inline unsigned long fault_around_mask(void) -{ - return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1); -} #endif +/* + * do_fault_around() tries to map few pages around the fault address. The hope + * is that the pages will be needed soon and this will lower the number of + * faults to handle. + * + * It uses vm_ops->map_pages() to map the pages, which skips the page if it's + * not ready to be mapped: not up-to-date, locked, etc. + * + * This function is called with the page table lock taken. In the split ptlock + * case the page table lock only protects only those entries which belong to + * the page table corresponding to the fault address. + * + * This function doesn't cross the VMA boundaries, in order to call map_pages() + * only once. + * + * fault_around_pages() defines how many pages we'll try to map. + * do_fault_around() expects it to return a power of two less than or equal to + * PTRS_PER_PTE. + * + * The virtual address of the area that we map is naturally aligned to the + * fault_around_pages() value (and therefore to page order). This way it's + * easier to guarantee that we don't cross page table boundaries. + */ static void do_fault_around(struct vm_area_struct *vma, unsigned long address, pte_t *pte, pgoff_t pgoff, unsigned int flags) { @@ -3476,7 +2843,7 @@ static void do_fault_around(struct vm_area_struct *vma, unsigned long address, /* * max_pgoff is either end of page table or end of vma - * or fault_around_pages() from pgoff, depending what is neast. + * or fault_around_pages() from pgoff, depending what is nearest. */ max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + PTRS_PER_PTE - 1; @@ -3515,7 +2882,7 @@ static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, * if page by the offset is not ready to be mapped (cold cache or * something). */ - if (vma->vm_ops->map_pages) { + if (vma->vm_ops->map_pages && fault_around_pages() > 1) { pte = pte_offset_map_lock(mm, pmd, address, &ptl); do_fault_around(vma, address, pte, pgoff, flags); if (!pte_same(*pte, orig_pte)) |