summaryrefslogtreecommitdiff
path: root/lib/crc32.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crc32.c')
-rw-r--r--lib/crc32.c147
1 files changed, 70 insertions, 77 deletions
diff --git a/lib/crc32.c b/lib/crc32.c
index 21a7b2135af6..9af30ff334c5 100644
--- a/lib/crc32.c
+++ b/lib/crc32.c
@@ -50,30 +50,6 @@ MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
MODULE_DESCRIPTION("Various CRC32 calculations");
MODULE_LICENSE("GPL");
-#define GF2_DIM 32
-
-static u32 gf2_matrix_times(u32 *mat, u32 vec)
-{
- u32 sum = 0;
-
- while (vec) {
- if (vec & 1)
- sum ^= *mat;
- vec >>= 1;
- mat++;
- }
-
- return sum;
-}
-
-static void gf2_matrix_square(u32 *square, u32 *mat)
-{
- int i;
-
- for (i = 0; i < GF2_DIM; i++)
- square[i] = gf2_matrix_times(mat, mat[i]);
-}
-
#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
/* implements slicing-by-4 or slicing-by-8 algorithm */
@@ -155,51 +131,6 @@ crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
}
#endif
-/* For conditions of distribution and use, see copyright notice in zlib.h */
-static u32 crc32_generic_combine(u32 crc1, u32 crc2, size_t len2,
- u32 polynomial)
-{
- u32 even[GF2_DIM]; /* Even-power-of-two zeros operator */
- u32 odd[GF2_DIM]; /* Odd-power-of-two zeros operator */
- u32 row;
- int i;
-
- if (len2 <= 0)
- return crc1;
-
- /* Put operator for one zero bit in odd */
- odd[0] = polynomial;
- row = 1;
- for (i = 1; i < GF2_DIM; i++) {
- odd[i] = row;
- row <<= 1;
- }
-
- gf2_matrix_square(even, odd); /* Put operator for two zero bits in even */
- gf2_matrix_square(odd, even); /* Put operator for four zero bits in odd */
-
- /* Apply len2 zeros to crc1 (first square will put the operator for one
- * zero byte, eight zero bits, in even).
- */
- do {
- /* Apply zeros operator for this bit of len2 */
- gf2_matrix_square(even, odd);
- if (len2 & 1)
- crc1 = gf2_matrix_times(even, crc1);
- len2 >>= 1;
- /* If no more bits set, then done */
- if (len2 == 0)
- break;
- /* Another iteration of the loop with odd and even swapped */
- gf2_matrix_square(odd, even);
- if (len2 & 1)
- crc1 = gf2_matrix_times(odd, crc1);
- len2 >>= 1;
- } while (len2 != 0);
-
- crc1 ^= crc2;
- return crc1;
-}
/**
* crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
@@ -271,19 +202,81 @@ u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
(const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
}
#endif
-u32 __pure crc32_le_combine(u32 crc1, u32 crc2, size_t len2)
+EXPORT_SYMBOL(crc32_le);
+EXPORT_SYMBOL(__crc32c_le);
+
+/*
+ * This multiplies the polynomials x and y modulo the given modulus.
+ * This follows the "little-endian" CRC convention that the lsbit
+ * represents the highest power of x, and the msbit represents x^0.
+ */
+static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
{
- return crc32_generic_combine(crc1, crc2, len2, CRCPOLY_LE);
+ u32 product = x & 1 ? y : 0;
+ int i;
+
+ for (i = 0; i < 31; i++) {
+ product = (product >> 1) ^ (product & 1 ? modulus : 0);
+ x >>= 1;
+ product ^= x & 1 ? y : 0;
+ }
+
+ return product;
}
-u32 __pure __crc32c_le_combine(u32 crc1, u32 crc2, size_t len2)
+/**
+ * crc32_generic_shift - Append len 0 bytes to crc, in logarithmic time
+ * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
+ * @len: The number of bytes. @crc is multiplied by x^(8*@len)
+ * @polynomial: The modulus used to reduce the result to 32 bits.
+ *
+ * It's possible to parallelize CRC computations by computing a CRC
+ * over separate ranges of a buffer, then summing them.
+ * This shifts the given CRC by 8*len bits (i.e. produces the same effect
+ * as appending len bytes of zero to the data), in time proportional
+ * to log(len).
+ */
+static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
+ u32 polynomial)
{
- return crc32_generic_combine(crc1, crc2, len2, CRC32C_POLY_LE);
+ u32 power = polynomial; /* CRC of x^32 */
+ int i;
+
+ /* Shift up to 32 bits in the simple linear way */
+ for (i = 0; i < 8 * (int)(len & 3); i++)
+ crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
+
+ len >>= 2;
+ if (!len)
+ return crc;
+
+ for (;;) {
+ /* "power" is x^(2^i), modulo the polynomial */
+ if (len & 1)
+ crc = gf2_multiply(crc, power, polynomial);
+
+ len >>= 1;
+ if (!len)
+ break;
+
+ /* Square power, advancing to x^(2^(i+1)) */
+ power = gf2_multiply(power, power, polynomial);
+ }
+
+ return crc;
}
-EXPORT_SYMBOL(crc32_le);
-EXPORT_SYMBOL(crc32_le_combine);
-EXPORT_SYMBOL(__crc32c_le);
-EXPORT_SYMBOL(__crc32c_le_combine);
+
+u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
+{
+ return crc32_generic_shift(crc, len, CRCPOLY_LE);
+}
+
+u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
+{
+ return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
+}
+EXPORT_SYMBOL(crc32_le_shift);
+EXPORT_SYMBOL(__crc32c_le_shift);
/**
* crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32