diff options
Diffstat (limited to 'kernel/sched')
-rw-r--r-- | kernel/sched/Makefile | 1 | ||||
-rw-r--r-- | kernel/sched/completion.c | 299 | ||||
-rw-r--r-- | kernel/sched/core.c | 677 | ||||
-rw-r--r-- | kernel/sched/debug.c | 68 | ||||
-rw-r--r-- | kernel/sched/fair.c | 1359 | ||||
-rw-r--r-- | kernel/sched/features.h | 19 | ||||
-rw-r--r-- | kernel/sched/idle_task.c | 2 | ||||
-rw-r--r-- | kernel/sched/rt.c | 22 | ||||
-rw-r--r-- | kernel/sched/sched.h | 52 | ||||
-rw-r--r-- | kernel/sched/stats.h | 46 | ||||
-rw-r--r-- | kernel/sched/stop_task.c | 2 | ||||
-rw-r--r-- | kernel/sched/wait.c | 504 |
12 files changed, 2376 insertions, 675 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 54adcf35f495..7b621409cf15 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -12,6 +12,7 @@ CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o +obj-y += wait.o completion.o obj-$(CONFIG_SMP) += cpupri.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o obj-$(CONFIG_SCHEDSTATS) += stats.o diff --git a/kernel/sched/completion.c b/kernel/sched/completion.c new file mode 100644 index 000000000000..a63f4dc27909 --- /dev/null +++ b/kernel/sched/completion.c @@ -0,0 +1,299 @@ +/* + * Generic wait-for-completion handler; + * + * It differs from semaphores in that their default case is the opposite, + * wait_for_completion default blocks whereas semaphore default non-block. The + * interface also makes it easy to 'complete' multiple waiting threads, + * something which isn't entirely natural for semaphores. + * + * But more importantly, the primitive documents the usage. Semaphores would + * typically be used for exclusion which gives rise to priority inversion. + * Waiting for completion is a typically sync point, but not an exclusion point. + */ + +#include <linux/sched.h> +#include <linux/completion.h> + +/** + * complete: - signals a single thread waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up a single thread waiting on this completion. Threads will be + * awakened in the same order in which they were queued. + * + * See also complete_all(), wait_for_completion() and related routines. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void complete(struct completion *x) +{ + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done++; + __wake_up_locked(&x->wait, TASK_NORMAL, 1); + spin_unlock_irqrestore(&x->wait.lock, flags); +} +EXPORT_SYMBOL(complete); + +/** + * complete_all: - signals all threads waiting on this completion + * @x: holds the state of this particular completion + * + * This will wake up all threads waiting on this particular completion event. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void complete_all(struct completion *x) +{ + unsigned long flags; + + spin_lock_irqsave(&x->wait.lock, flags); + x->done += UINT_MAX/2; + __wake_up_locked(&x->wait, TASK_NORMAL, 0); + spin_unlock_irqrestore(&x->wait.lock, flags); +} +EXPORT_SYMBOL(complete_all); + +static inline long __sched +do_wait_for_common(struct completion *x, + long (*action)(long), long timeout, int state) +{ + if (!x->done) { + DECLARE_WAITQUEUE(wait, current); + + __add_wait_queue_tail_exclusive(&x->wait, &wait); + do { + if (signal_pending_state(state, current)) { + timeout = -ERESTARTSYS; + break; + } + __set_current_state(state); + spin_unlock_irq(&x->wait.lock); + timeout = action(timeout); + spin_lock_irq(&x->wait.lock); + } while (!x->done && timeout); + __remove_wait_queue(&x->wait, &wait); + if (!x->done) + return timeout; + } + x->done--; + return timeout ?: 1; +} + +static inline long __sched +__wait_for_common(struct completion *x, + long (*action)(long), long timeout, int state) +{ + might_sleep(); + + spin_lock_irq(&x->wait.lock); + timeout = do_wait_for_common(x, action, timeout, state); + spin_unlock_irq(&x->wait.lock); + return timeout; +} + +static long __sched +wait_for_common(struct completion *x, long timeout, int state) +{ + return __wait_for_common(x, schedule_timeout, timeout, state); +} + +static long __sched +wait_for_common_io(struct completion *x, long timeout, int state) +{ + return __wait_for_common(x, io_schedule_timeout, timeout, state); +} + +/** + * wait_for_completion: - waits for completion of a task + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It is NOT + * interruptible and there is no timeout. + * + * See also similar routines (i.e. wait_for_completion_timeout()) with timeout + * and interrupt capability. Also see complete(). + */ +void __sched wait_for_completion(struct completion *x) +{ + wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion); + +/** + * wait_for_completion_timeout: - waits for completion of a task (w/timeout) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. The timeout is in jiffies. It is not + * interruptible. + * + * Return: 0 if timed out, and positive (at least 1, or number of jiffies left + * till timeout) if completed. + */ +unsigned long __sched +wait_for_completion_timeout(struct completion *x, unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_timeout); + +/** + * wait_for_completion_io: - waits for completion of a task + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It is NOT + * interruptible and there is no timeout. The caller is accounted as waiting + * for IO. + */ +void __sched wait_for_completion_io(struct completion *x) +{ + wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_io); + +/** + * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. The timeout is in jiffies. It is not + * interruptible. The caller is accounted as waiting for IO. + * + * Return: 0 if timed out, and positive (at least 1, or number of jiffies left + * till timeout) if completed. + */ +unsigned long __sched +wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) +{ + return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_io_timeout); + +/** + * wait_for_completion_interruptible: - waits for completion of a task (w/intr) + * @x: holds the state of this particular completion + * + * This waits for completion of a specific task to be signaled. It is + * interruptible. + * + * Return: -ERESTARTSYS if interrupted, 0 if completed. + */ +int __sched wait_for_completion_interruptible(struct completion *x) +{ + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); + if (t == -ERESTARTSYS) + return t; + return 0; +} +EXPORT_SYMBOL(wait_for_completion_interruptible); + +/** + * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be signaled or for a + * specified timeout to expire. It is interruptible. The timeout is in jiffies. + * + * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, + * or number of jiffies left till timeout) if completed. + */ +long __sched +wait_for_completion_interruptible_timeout(struct completion *x, + unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); +} +EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); + +/** + * wait_for_completion_killable: - waits for completion of a task (killable) + * @x: holds the state of this particular completion + * + * This waits to be signaled for completion of a specific task. It can be + * interrupted by a kill signal. + * + * Return: -ERESTARTSYS if interrupted, 0 if completed. + */ +int __sched wait_for_completion_killable(struct completion *x) +{ + long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); + if (t == -ERESTARTSYS) + return t; + return 0; +} +EXPORT_SYMBOL(wait_for_completion_killable); + +/** + * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) + * @x: holds the state of this particular completion + * @timeout: timeout value in jiffies + * + * This waits for either a completion of a specific task to be + * signaled or for a specified timeout to expire. It can be + * interrupted by a kill signal. The timeout is in jiffies. + * + * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, + * or number of jiffies left till timeout) if completed. + */ +long __sched +wait_for_completion_killable_timeout(struct completion *x, + unsigned long timeout) +{ + return wait_for_common(x, timeout, TASK_KILLABLE); +} +EXPORT_SYMBOL(wait_for_completion_killable_timeout); + +/** + * try_wait_for_completion - try to decrement a completion without blocking + * @x: completion structure + * + * Return: 0 if a decrement cannot be done without blocking + * 1 if a decrement succeeded. + * + * If a completion is being used as a counting completion, + * attempt to decrement the counter without blocking. This + * enables us to avoid waiting if the resource the completion + * is protecting is not available. + */ +bool try_wait_for_completion(struct completion *x) +{ + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + else + x->done--; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; +} +EXPORT_SYMBOL(try_wait_for_completion); + +/** + * completion_done - Test to see if a completion has any waiters + * @x: completion structure + * + * Return: 0 if there are waiters (wait_for_completion() in progress) + * 1 if there are no waiters. + * + */ +bool completion_done(struct completion *x) +{ + unsigned long flags; + int ret = 1; + + spin_lock_irqsave(&x->wait.lock, flags); + if (!x->done) + ret = 0; + spin_unlock_irqrestore(&x->wait.lock, flags); + return ret; +} +EXPORT_SYMBOL(completion_done); diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 5ac63c9a995a..aa066f306be2 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -513,12 +513,11 @@ static inline void init_hrtick(void) * might also involve a cross-CPU call to trigger the scheduler on * the target CPU. */ -#ifdef CONFIG_SMP void resched_task(struct task_struct *p) { int cpu; - assert_raw_spin_locked(&task_rq(p)->lock); + lockdep_assert_held(&task_rq(p)->lock); if (test_tsk_need_resched(p)) return; @@ -526,8 +525,10 @@ void resched_task(struct task_struct *p) set_tsk_need_resched(p); cpu = task_cpu(p); - if (cpu == smp_processor_id()) + if (cpu == smp_processor_id()) { + set_preempt_need_resched(); return; + } /* NEED_RESCHED must be visible before we test polling */ smp_mb(); @@ -546,6 +547,7 @@ void resched_cpu(int cpu) raw_spin_unlock_irqrestore(&rq->lock, flags); } +#ifdef CONFIG_SMP #ifdef CONFIG_NO_HZ_COMMON /* * In the semi idle case, use the nearest busy cpu for migrating timers @@ -693,12 +695,6 @@ void sched_avg_update(struct rq *rq) } } -#else /* !CONFIG_SMP */ -void resched_task(struct task_struct *p) -{ - assert_raw_spin_locked(&task_rq(p)->lock); - set_tsk_need_resched(p); -} #endif /* CONFIG_SMP */ #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ @@ -767,14 +763,14 @@ static void set_load_weight(struct task_struct *p) static void enqueue_task(struct rq *rq, struct task_struct *p, int flags) { update_rq_clock(rq); - sched_info_queued(p); + sched_info_queued(rq, p); p->sched_class->enqueue_task(rq, p, flags); } static void dequeue_task(struct rq *rq, struct task_struct *p, int flags) { update_rq_clock(rq); - sched_info_dequeued(p); + sched_info_dequeued(rq, p); p->sched_class->dequeue_task(rq, p, flags); } @@ -987,7 +983,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) * ttwu() will sort out the placement. */ WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING && - !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)); + !(task_preempt_count(p) & PREEMPT_ACTIVE)); #ifdef CONFIG_LOCKDEP /* @@ -1017,6 +1013,107 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu) __set_task_cpu(p, new_cpu); } +static void __migrate_swap_task(struct task_struct *p, int cpu) +{ + if (p->on_rq) { + struct rq *src_rq, *dst_rq; + + src_rq = task_rq(p); + dst_rq = cpu_rq(cpu); + + deactivate_task(src_rq, p, 0); + set_task_cpu(p, cpu); + activate_task(dst_rq, p, 0); + check_preempt_curr(dst_rq, p, 0); + } else { + /* + * Task isn't running anymore; make it appear like we migrated + * it before it went to sleep. This means on wakeup we make the + * previous cpu our targer instead of where it really is. + */ + p->wake_cpu = cpu; + } +} + +struct migration_swap_arg { + struct task_struct *src_task, *dst_task; + int src_cpu, dst_cpu; +}; + +static int migrate_swap_stop(void *data) +{ + struct migration_swap_arg *arg = data; + struct rq *src_rq, *dst_rq; + int ret = -EAGAIN; + + src_rq = cpu_rq(arg->src_cpu); + dst_rq = cpu_rq(arg->dst_cpu); + + double_raw_lock(&arg->src_task->pi_lock, + &arg->dst_task->pi_lock); + double_rq_lock(src_rq, dst_rq); + if (task_cpu(arg->dst_task) != arg->dst_cpu) + goto unlock; + + if (task_cpu(arg->src_task) != arg->src_cpu) + goto unlock; + + if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task))) + goto unlock; + + if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task))) + goto unlock; + + __migrate_swap_task(arg->src_task, arg->dst_cpu); + __migrate_swap_task(arg->dst_task, arg->src_cpu); + + ret = 0; + +unlock: + double_rq_unlock(src_rq, dst_rq); + raw_spin_unlock(&arg->dst_task->pi_lock); + raw_spin_unlock(&arg->src_task->pi_lock); + + return ret; +} + +/* + * Cross migrate two tasks + */ +int migrate_swap(struct task_struct *cur, struct task_struct *p) +{ + struct migration_swap_arg arg; + int ret = -EINVAL; + + arg = (struct migration_swap_arg){ + .src_task = cur, + .src_cpu = task_cpu(cur), + .dst_task = p, + .dst_cpu = task_cpu(p), + }; + + if (arg.src_cpu == arg.dst_cpu) + goto out; + + /* + * These three tests are all lockless; this is OK since all of them + * will be re-checked with proper locks held further down the line. + */ + if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) + goto out; + + if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task))) + goto out; + + if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task))) + goto out; + + ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); + +out: + return ret; +} + struct migration_arg { struct task_struct *task; int dest_cpu; @@ -1236,9 +1333,9 @@ out: * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable. */ static inline -int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags) +int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags) { - int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags); + cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags); /* * In order not to call set_task_cpu() on a blocking task we need @@ -1330,12 +1427,13 @@ ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) if (rq->idle_stamp) { u64 delta = rq_clock(rq) - rq->idle_stamp; - u64 max = 2*sysctl_sched_migration_cost; + u64 max = 2*rq->max_idle_balance_cost; - if (delta > max) + update_avg(&rq->avg_idle, delta); + + if (rq->avg_idle > max) rq->avg_idle = max; - else - update_avg(&rq->avg_idle, delta); + rq->idle_stamp = 0; } #endif @@ -1396,6 +1494,14 @@ static void sched_ttwu_pending(void) void scheduler_ipi(void) { + /* + * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting + * TIF_NEED_RESCHED remotely (for the first time) will also send + * this IPI. + */ + if (tif_need_resched()) + set_preempt_need_resched(); + if (llist_empty(&this_rq()->wake_list) && !tick_nohz_full_cpu(smp_processor_id()) && !got_nohz_idle_kick()) @@ -1513,7 +1619,7 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) if (p->sched_class->task_waking) p->sched_class->task_waking(p); - cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags); + cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); if (task_cpu(p) != cpu) { wake_flags |= WF_MIGRATED; set_task_cpu(p, cpu); @@ -1595,7 +1701,7 @@ int wake_up_state(struct task_struct *p, unsigned int state) * * __sched_fork() is basic setup used by init_idle() too: */ -static void __sched_fork(struct task_struct *p) +static void __sched_fork(unsigned long clone_flags, struct task_struct *p) { p->on_rq = 0; @@ -1619,16 +1725,24 @@ static void __sched_fork(struct task_struct *p) #ifdef CONFIG_NUMA_BALANCING if (p->mm && atomic_read(&p->mm->mm_users) == 1) { - p->mm->numa_next_scan = jiffies; - p->mm->numa_next_reset = jiffies; + p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); p->mm->numa_scan_seq = 0; } + if (clone_flags & CLONE_VM) + p->numa_preferred_nid = current->numa_preferred_nid; + else + p->numa_preferred_nid = -1; + p->node_stamp = 0ULL; p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0; - p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0; p->numa_scan_period = sysctl_numa_balancing_scan_delay; p->numa_work.next = &p->numa_work; + p->numa_faults = NULL; + p->numa_faults_buffer = NULL; + + INIT_LIST_HEAD(&p->numa_entry); + p->numa_group = NULL; #endif /* CONFIG_NUMA_BALANCING */ } @@ -1654,12 +1768,12 @@ void set_numabalancing_state(bool enabled) /* * fork()/clone()-time setup: */ -void sched_fork(struct task_struct *p) +void sched_fork(unsigned long clone_flags, struct task_struct *p) { unsigned long flags; int cpu = get_cpu(); - __sched_fork(p); + __sched_fork(clone_flags, p); /* * We mark the process as running here. This guarantees that * nobody will actually run it, and a signal or other external @@ -1717,10 +1831,7 @@ void sched_fork(struct task_struct *p) #if defined(CONFIG_SMP) p->on_cpu = 0; #endif -#ifdef CONFIG_PREEMPT_COUNT - /* Want to start with kernel preemption disabled. */ - task_thread_info(p)->preempt_count = 1; -#endif + init_task_preempt_count(p); #ifdef CONFIG_SMP plist_node_init(&p->pushable_tasks, MAX_PRIO); #endif @@ -1747,7 +1858,7 @@ void wake_up_new_task(struct task_struct *p) * - cpus_allowed can change in the fork path * - any previously selected cpu might disappear through hotplug */ - set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0)); + set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0)); #endif /* Initialize new task's runnable average */ @@ -1838,7 +1949,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next) { trace_sched_switch(prev, next); - sched_info_switch(prev, next); + sched_info_switch(rq, prev, next); perf_event_task_sched_out(prev, next); fire_sched_out_preempt_notifiers(prev, next); prepare_lock_switch(rq, next); @@ -1890,6 +2001,8 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) if (mm) mmdrop(mm); if (unlikely(prev_state == TASK_DEAD)) { + task_numa_free(prev); + /* * Remove function-return probe instances associated with this * task and put them back on the free list. @@ -2073,7 +2186,7 @@ void sched_exec(void) int dest_cpu; raw_spin_lock_irqsave(&p->pi_lock, flags); - dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0); + dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0); if (dest_cpu == smp_processor_id()) goto unlock; @@ -2215,7 +2328,7 @@ notrace unsigned long get_parent_ip(unsigned long addr) #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ defined(CONFIG_PREEMPT_TRACER)) -void __kprobes add_preempt_count(int val) +void __kprobes preempt_count_add(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* @@ -2224,7 +2337,7 @@ void __kprobes add_preempt_count(int val) if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) return; #endif - preempt_count() += val; + __preempt_count_add(val); #ifdef CONFIG_DEBUG_PREEMPT /* * Spinlock count overflowing soon? @@ -2235,9 +2348,9 @@ void __kprobes add_preempt_count(int val) if (preempt_count() == val) trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); } -EXPORT_SYMBOL(add_preempt_count); +EXPORT_SYMBOL(preempt_count_add); -void __kprobes sub_preempt_count(int val) +void __kprobes preempt_count_sub(int val) { #ifdef CONFIG_DEBUG_PREEMPT /* @@ -2255,9 +2368,9 @@ void __kprobes sub_preempt_count(int val) if (preempt_count() == val) trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); - preempt_count() -= val; + __preempt_count_sub(val); } -EXPORT_SYMBOL(sub_preempt_count); +EXPORT_SYMBOL(preempt_count_sub); #endif @@ -2430,6 +2543,7 @@ need_resched: put_prev_task(rq, prev); next = pick_next_task(rq); clear_tsk_need_resched(prev); + clear_preempt_need_resched(); rq->skip_clock_update = 0; if (likely(prev != next)) { @@ -2520,9 +2634,9 @@ asmlinkage void __sched notrace preempt_schedule(void) return; do { - add_preempt_count_notrace(PREEMPT_ACTIVE); + __preempt_count_add(PREEMPT_ACTIVE); __schedule(); - sub_preempt_count_notrace(PREEMPT_ACTIVE); + __preempt_count_sub(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity @@ -2541,20 +2655,19 @@ EXPORT_SYMBOL(preempt_schedule); */ asmlinkage void __sched preempt_schedule_irq(void) { - struct thread_info *ti = current_thread_info(); enum ctx_state prev_state; /* Catch callers which need to be fixed */ - BUG_ON(ti->preempt_count || !irqs_disabled()); + BUG_ON(preempt_count() || !irqs_disabled()); prev_state = exception_enter(); do { - add_preempt_count(PREEMPT_ACTIVE); + __preempt_count_add(PREEMPT_ACTIVE); local_irq_enable(); __schedule(); local_irq_disable(); - sub_preempt_count(PREEMPT_ACTIVE); + __preempt_count_sub(PREEMPT_ACTIVE); /* * Check again in case we missed a preemption opportunity @@ -2575,393 +2688,6 @@ int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags, } EXPORT_SYMBOL(default_wake_function); -/* - * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just - * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve - * number) then we wake all the non-exclusive tasks and one exclusive task. - * - * There are circumstances in which we can try to wake a task which has already - * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns - * zero in this (rare) case, and we handle it by continuing to scan the queue. - */ -static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, int wake_flags, void *key) -{ - wait_queue_t *curr, *next; - - list_for_each_entry_safe(curr, next, &q->task_list, task_list) { - unsigned flags = curr->flags; - - if (curr->func(curr, mode, wake_flags, key) && - (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) - break; - } -} - -/** - * __wake_up - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: is directly passed to the wakeup function - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, void *key) -{ - unsigned long flags; - - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, 0, key); - spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL(__wake_up); - -/* - * Same as __wake_up but called with the spinlock in wait_queue_head_t held. - */ -void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) -{ - __wake_up_common(q, mode, nr, 0, NULL); -} -EXPORT_SYMBOL_GPL(__wake_up_locked); - -void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) -{ - __wake_up_common(q, mode, 1, 0, key); -} -EXPORT_SYMBOL_GPL(__wake_up_locked_key); - -/** - * __wake_up_sync_key - wake up threads blocked on a waitqueue. - * @q: the waitqueue - * @mode: which threads - * @nr_exclusive: how many wake-one or wake-many threads to wake up - * @key: opaque value to be passed to wakeup targets - * - * The sync wakeup differs that the waker knows that it will schedule - * away soon, so while the target thread will be woken up, it will not - * be migrated to another CPU - ie. the two threads are 'synchronized' - * with each other. This can prevent needless bouncing between CPUs. - * - * On UP it can prevent extra preemption. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, - int nr_exclusive, void *key) -{ - unsigned long flags; - int wake_flags = WF_SYNC; - - if (unlikely(!q)) - return; - - if (unlikely(nr_exclusive != 1)) - wake_flags = 0; - - spin_lock_irqsave(&q->lock, flags); - __wake_up_common(q, mode, nr_exclusive, wake_flags, key); - spin_unlock_irqrestore(&q->lock, flags); -} -EXPORT_SYMBOL_GPL(__wake_up_sync_key); - -/* - * __wake_up_sync - see __wake_up_sync_key() - */ -void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) -{ - __wake_up_sync_key(q, mode, nr_exclusive, NULL); -} -EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ - -/** - * complete: - signals a single thread waiting on this completion - * @x: holds the state of this particular completion - * - * This will wake up a single thread waiting on this completion. Threads will be - * awakened in the same order in which they were queued. - * - * See also complete_all(), wait_for_completion() and related routines. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete(struct completion *x) -{ - unsigned long flags; - - spin_lock_irqsave(&x->wait.lock, flags); - x->done++; - __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); - spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete); - -/** - * complete_all: - signals all threads waiting on this completion - * @x: holds the state of this particular completion - * - * This will wake up all threads waiting on this particular completion event. - * - * It may be assumed that this function implies a write memory barrier before - * changing the task state if and only if any tasks are woken up. - */ -void complete_all(struct completion *x) -{ - unsigned long flags; - - spin_lock_irqsave(&x->wait.lock, flags); - x->done += UINT_MAX/2; - __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); - spin_unlock_irqrestore(&x->wait.lock, flags); -} -EXPORT_SYMBOL(complete_all); - -static inline long __sched -do_wait_for_common(struct completion *x, - long (*action)(long), long timeout, int state) -{ - if (!x->done) { - DECLARE_WAITQUEUE(wait, current); - - __add_wait_queue_tail_exclusive(&x->wait, &wait); - do { - if (signal_pending_state(state, current)) { - timeout = -ERESTARTSYS; - break; - } - __set_current_state(state); - spin_unlock_irq(&x->wait.lock); - timeout = action(timeout); - spin_lock_irq(&x->wait.lock); - } while (!x->done && timeout); - __remove_wait_queue(&x->wait, &wait); - if (!x->done) - return timeout; - } - x->done--; - return timeout ?: 1; -} - -static inline long __sched -__wait_for_common(struct completion *x, - long (*action)(long), long timeout, int state) -{ - might_sleep(); - - spin_lock_irq(&x->wait.lock); - timeout = do_wait_for_common(x, action, timeout, state); - spin_unlock_irq(&x->wait.lock); - return timeout; -} - -static long __sched -wait_for_common(struct completion *x, long timeout, int state) -{ - return __wait_for_common(x, schedule_timeout, timeout, state); -} - -static long __sched -wait_for_common_io(struct completion *x, long timeout, int state) -{ - return __wait_for_common(x, io_schedule_timeout, timeout, state); -} - -/** - * wait_for_completion: - waits for completion of a task - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It is NOT - * interruptible and there is no timeout. - * - * See also similar routines (i.e. wait_for_completion_timeout()) with timeout - * and interrupt capability. Also see complete(). - */ -void __sched wait_for_completion(struct completion *x) -{ - wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion); - -/** - * wait_for_completion_timeout: - waits for completion of a task (w/timeout) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. The timeout is in jiffies. It is not - * interruptible. - * - * Return: 0 if timed out, and positive (at least 1, or number of jiffies left - * till timeout) if completed. - */ -unsigned long __sched -wait_for_completion_timeout(struct completion *x, unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_timeout); - -/** - * wait_for_completion_io: - waits for completion of a task - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It is NOT - * interruptible and there is no timeout. The caller is accounted as waiting - * for IO. - */ -void __sched wait_for_completion_io(struct completion *x) -{ - wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_io); - -/** - * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. The timeout is in jiffies. It is not - * interruptible. The caller is accounted as waiting for IO. - * - * Return: 0 if timed out, and positive (at least 1, or number of jiffies left - * till timeout) if completed. - */ -unsigned long __sched -wait_for_completion_io_timeout(struct completion *x, unsigned long timeout) -{ - return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_io_timeout); - -/** - * wait_for_completion_interruptible: - waits for completion of a task (w/intr) - * @x: holds the state of this particular completion - * - * This waits for completion of a specific task to be signaled. It is - * interruptible. - * - * Return: -ERESTARTSYS if interrupted, 0 if completed. - */ -int __sched wait_for_completion_interruptible(struct completion *x) -{ - long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); - if (t == -ERESTARTSYS) - return t; - return 0; -} -EXPORT_SYMBOL(wait_for_completion_interruptible); - -/** - * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be signaled or for a - * specified timeout to expire. It is interruptible. The timeout is in jiffies. - * - * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, - * or number of jiffies left till timeout) if completed. - */ -long __sched -wait_for_completion_interruptible_timeout(struct completion *x, - unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); -} -EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); - -/** - * wait_for_completion_killable: - waits for completion of a task (killable) - * @x: holds the state of this particular completion - * - * This waits to be signaled for completion of a specific task. It can be - * interrupted by a kill signal. - * - * Return: -ERESTARTSYS if interrupted, 0 if completed. - */ -int __sched wait_for_completion_killable(struct completion *x) -{ - long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); - if (t == -ERESTARTSYS) - return t; - return 0; -} -EXPORT_SYMBOL(wait_for_completion_killable); - -/** - * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable)) - * @x: holds the state of this particular completion - * @timeout: timeout value in jiffies - * - * This waits for either a completion of a specific task to be - * signaled or for a specified timeout to expire. It can be - * interrupted by a kill signal. The timeout is in jiffies. - * - * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1, - * or number of jiffies left till timeout) if completed. - */ -long __sched -wait_for_completion_killable_timeout(struct completion *x, - unsigned long timeout) -{ - return wait_for_common(x, timeout, TASK_KILLABLE); -} -EXPORT_SYMBOL(wait_for_completion_killable_timeout); - -/** - * try_wait_for_completion - try to decrement a completion without blocking - * @x: completion structure - * - * Return: 0 if a decrement cannot be done without blocking - * 1 if a decrement succeeded. - * - * If a completion is being used as a counting completion, - * attempt to decrement the counter without blocking. This - * enables us to avoid waiting if the resource the completion - * is protecting is not available. - */ -bool try_wait_for_completion(struct completion *x) -{ - unsigned long flags; - int ret = 1; - - spin_lock_irqsave(&x->wait.lock, flags); - if (!x->done) - ret = 0; - else - x->done--; - spin_unlock_irqrestore(&x->wait.lock, flags); - return ret; -} -EXPORT_SYMBOL(try_wait_for_completion); - -/** - * completion_done - Test to see if a completion has any waiters - * @x: completion structure - * - * Return: 0 if there are waiters (wait_for_completion() in progress) - * 1 if there are no waiters. - * - */ -bool completion_done(struct completion *x) -{ - unsigned long flags; - int ret = 1; - - spin_lock_irqsave(&x->wait.lock, flags); - if (!x->done) - ret = 0; - spin_unlock_irqrestore(&x->wait.lock, flags); - return ret; -} -EXPORT_SYMBOL(completion_done); - static long __sched sleep_on_common(wait_queue_head_t *q, int state, long timeout) { @@ -3598,13 +3324,11 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) struct task_struct *p; int retval; - get_online_cpus(); rcu_read_lock(); p = find_process_by_pid(pid); if (!p) { rcu_read_unlock(); - put_online_cpus(); return -ESRCH; } @@ -3661,7 +3385,6 @@ out_free_cpus_allowed: free_cpumask_var(cpus_allowed); out_put_task: put_task_struct(p); - put_online_cpus(); return retval; } @@ -3706,7 +3429,6 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) unsigned long flags; int retval; - get_online_cpus(); rcu_read_lock(); retval = -ESRCH; @@ -3719,12 +3441,11 @@ long sched_getaffinity(pid_t pid, struct cpumask *mask) goto out_unlock; raw_spin_lock_irqsave(&p->pi_lock, flags); - cpumask_and(mask, &p->cpus_allowed, cpu_online_mask); + cpumask_and(mask, &p->cpus_allowed, cpu_active_mask); raw_spin_unlock_irqrestore(&p->pi_lock, flags); out_unlock: rcu_read_unlock(); - put_online_cpus(); return retval; } @@ -3794,16 +3515,11 @@ SYSCALL_DEFINE0(sched_yield) return 0; } -static inline int should_resched(void) -{ - return need_resched() && !(preempt_count() & PREEMPT_ACTIVE); -} - static void __cond_resched(void) { - add_preempt_count(PREEMPT_ACTIVE); + __preempt_count_add(PREEMPT_ACTIVE); __schedule(); - sub_preempt_count(PREEMPT_ACTIVE); + __preempt_count_sub(PREEMPT_ACTIVE); } int __sched _cond_resched(void) @@ -4186,7 +3902,7 @@ void init_idle(struct task_struct *idle, int cpu) raw_spin_lock_irqsave(&rq->lock, flags); - __sched_fork(idle); + __sched_fork(0, idle); idle->state = TASK_RUNNING; idle->se.exec_start = sched_clock(); @@ -4212,7 +3928,7 @@ void init_idle(struct task_struct *idle, int cpu) raw_spin_unlock_irqrestore(&rq->lock, flags); /* Set the preempt count _outside_ the spinlocks! */ - task_thread_info(idle)->preempt_count = 0; + init_idle_preempt_count(idle, cpu); /* * The idle tasks have their own, simple scheduling class: @@ -4346,6 +4062,53 @@ fail: return ret; } +#ifdef CONFIG_NUMA_BALANCING +/* Migrate current task p to target_cpu */ +int migrate_task_to(struct task_struct *p, int target_cpu) +{ + struct migration_arg arg = { p, target_cpu }; + int curr_cpu = task_cpu(p); + + if (curr_cpu == target_cpu) + return 0; + + if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p))) + return -EINVAL; + + /* TODO: This is not properly updating schedstats */ + + return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); +} + +/* + * Requeue a task on a given node and accurately track the number of NUMA + * tasks on the runqueues + */ +void sched_setnuma(struct task_struct *p, int nid) +{ + struct rq *rq; + unsigned long flags; + bool on_rq, running; + + rq = task_rq_lock(p, &flags); + on_rq = p->on_rq; + running = task_current(rq, p); + + if (on_rq) + dequeue_task(rq, p, 0); + if (running) + p->sched_class->put_prev_task(rq, p); + + p->numa_preferred_nid = nid; + + if (running) + p->sched_class->set_curr_task(rq); + if (on_rq) + enqueue_task(rq, p, 0); + task_rq_unlock(rq, p, &flags); +} +#endif + /* * migration_cpu_stop - this will be executed by a highprio stopper thread * and performs thread migration by bumping thread off CPU then @@ -5119,6 +4882,7 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu) DEFINE_PER_CPU(struct sched_domain *, sd_llc); DEFINE_PER_CPU(int, sd_llc_size); DEFINE_PER_CPU(int, sd_llc_id); +DEFINE_PER_CPU(struct sched_domain *, sd_numa); static void update_top_cache_domain(int cpu) { @@ -5135,6 +4899,9 @@ static void update_top_cache_domain(int cpu) rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); per_cpu(sd_llc_size, cpu) = size; per_cpu(sd_llc_id, cpu) = id; + + sd = lowest_flag_domain(cpu, SD_NUMA); + rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); } /* @@ -5654,6 +5421,7 @@ sd_numa_init(struct sched_domain_topology_level *tl, int cpu) | 0*SD_SHARE_PKG_RESOURCES | 1*SD_SERIALIZE | 0*SD_PREFER_SIBLING + | 1*SD_NUMA | sd_local_flags(level) , .last_balance = jiffies, @@ -6335,14 +6103,17 @@ void __init sched_init_smp(void) sched_init_numa(); - get_online_cpus(); + /* + * There's no userspace yet to cause hotplug operations; hence all the + * cpu masks are stable and all blatant races in the below code cannot + * happen. + */ mutex_lock(&sched_domains_mutex); init_sched_domains(cpu_active_mask); cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); if (cpumask_empty(non_isolated_cpus)) cpumask_set_cpu(smp_processor_id(), non_isolated_cpus); mutex_unlock(&sched_domains_mutex); - put_online_cpus(); hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE); hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE); @@ -6505,6 +6276,7 @@ void __init sched_init(void) rq->online = 0; rq->idle_stamp = 0; rq->avg_idle = 2*sysctl_sched_migration_cost; + rq->max_idle_balance_cost = sysctl_sched_migration_cost; INIT_LIST_HEAD(&rq->cfs_tasks); @@ -7277,7 +7049,12 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) runtime_enabled = quota != RUNTIME_INF; runtime_was_enabled = cfs_b->quota != RUNTIME_INF; - account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled); + /* + * If we need to toggle cfs_bandwidth_used, off->on must occur + * before making related changes, and on->off must occur afterwards + */ + if (runtime_enabled && !runtime_was_enabled) + cfs_bandwidth_usage_inc(); raw_spin_lock_irq(&cfs_b->lock); cfs_b->period = ns_to_ktime(period); cfs_b->quota = quota; @@ -7303,6 +7080,8 @@ static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota) unthrottle_cfs_rq(cfs_rq); raw_spin_unlock_irq(&rq->lock); } + if (runtime_was_enabled && !runtime_enabled) + cfs_bandwidth_usage_dec(); out_unlock: mutex_unlock(&cfs_constraints_mutex); diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 196559994f7c..5c34d1817e8f 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -15,6 +15,7 @@ #include <linux/seq_file.h> #include <linux/kallsyms.h> #include <linux/utsname.h> +#include <linux/mempolicy.h> #include "sched.h" @@ -137,6 +138,9 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld", 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); #endif +#ifdef CONFIG_NUMA_BALANCING + SEQ_printf(m, " %d", cpu_to_node(task_cpu(p))); +#endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %s", task_group_path(task_group(p))); #endif @@ -159,7 +163,7 @@ static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) read_lock_irqsave(&tasklist_lock, flags); do_each_thread(g, p) { - if (!p->on_rq || task_cpu(p) != rq_cpu) + if (task_cpu(p) != rq_cpu) continue; print_task(m, rq, p); @@ -225,6 +229,14 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) atomic_read(&cfs_rq->tg->runnable_avg)); #endif #endif +#ifdef CONFIG_CFS_BANDWIDTH + SEQ_printf(m, " .%-30s: %d\n", "tg->cfs_bandwidth.timer_active", + cfs_rq->tg->cfs_bandwidth.timer_active); + SEQ_printf(m, " .%-30s: %d\n", "throttled", + cfs_rq->throttled); + SEQ_printf(m, " .%-30s: %d\n", "throttle_count", + cfs_rq->throttle_count); +#endif #ifdef CONFIG_FAIR_GROUP_SCHED print_cfs_group_stats(m, cpu, cfs_rq->tg); @@ -345,7 +357,7 @@ static void sched_debug_header(struct seq_file *m) cpu_clk = local_clock(); local_irq_restore(flags); - SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n", + SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); @@ -488,6 +500,56 @@ static int __init init_sched_debug_procfs(void) __initcall(init_sched_debug_procfs); +#define __P(F) \ + SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F) +#define P(F) \ + SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F) +#define __PN(F) \ + SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F)) +#define PN(F) \ + SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F)) + + +static void sched_show_numa(struct task_struct *p, struct seq_file *m) +{ +#ifdef CONFIG_NUMA_BALANCING + struct mempolicy *pol; + int node, i; + + if (p->mm) + P(mm->numa_scan_seq); + + task_lock(p); + pol = p->mempolicy; + if (pol && !(pol->flags & MPOL_F_MORON)) + pol = NULL; + mpol_get(pol); + task_unlock(p); + + SEQ_printf(m, "numa_migrations, %ld\n", xchg(&p->numa_pages_migrated, 0)); + + for_each_online_node(node) { + for (i = 0; i < 2; i++) { + unsigned long nr_faults = -1; + int cpu_current, home_node; + + if (p->numa_faults) + nr_faults = p->numa_faults[2*node + i]; + + cpu_current = !i ? (task_node(p) == node) : + (pol && node_isset(node, pol->v.nodes)); + + home_node = (p->numa_preferred_nid == node); + + SEQ_printf(m, "numa_faults, %d, %d, %d, %d, %ld\n", + i, node, cpu_current, home_node, nr_faults); + } + } + + mpol_put(pol); +#endif +} + void proc_sched_show_task(struct task_struct *p, struct seq_file *m) { unsigned long nr_switches; @@ -591,6 +653,8 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) SEQ_printf(m, "%-45s:%21Ld\n", "clock-delta", (long long)(t1-t0)); } + + sched_show_numa(p, m); } void proc_sched_set_task(struct task_struct *p) diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 7c70201fbc61..41c02b6b090e 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -681,6 +681,8 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) } #ifdef CONFIG_SMP +static unsigned long task_h_load(struct task_struct *p); + static inline void __update_task_entity_contrib(struct sched_entity *se); /* Give new task start runnable values to heavy its load in infant time */ @@ -818,11 +820,12 @@ update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) #ifdef CONFIG_NUMA_BALANCING /* - * numa task sample period in ms + * Approximate time to scan a full NUMA task in ms. The task scan period is + * calculated based on the tasks virtual memory size and + * numa_balancing_scan_size. */ -unsigned int sysctl_numa_balancing_scan_period_min = 100; -unsigned int sysctl_numa_balancing_scan_period_max = 100*50; -unsigned int sysctl_numa_balancing_scan_period_reset = 100*600; +unsigned int sysctl_numa_balancing_scan_period_min = 1000; +unsigned int sysctl_numa_balancing_scan_period_max = 60000; /* Portion of address space to scan in MB */ unsigned int sysctl_numa_balancing_scan_size = 256; @@ -830,41 +833,810 @@ unsigned int sysctl_numa_balancing_scan_size = 256; /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ unsigned int sysctl_numa_balancing_scan_delay = 1000; -static void task_numa_placement(struct task_struct *p) +/* + * After skipping a page migration on a shared page, skip N more numa page + * migrations unconditionally. This reduces the number of NUMA migrations + * in shared memory workloads, and has the effect of pulling tasks towards + * where their memory lives, over pulling the memory towards the task. + */ +unsigned int sysctl_numa_balancing_migrate_deferred = 16; + +static unsigned int task_nr_scan_windows(struct task_struct *p) +{ + unsigned long rss = 0; + unsigned long nr_scan_pages; + + /* + * Calculations based on RSS as non-present and empty pages are skipped + * by the PTE scanner and NUMA hinting faults should be trapped based + * on resident pages + */ + nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); + rss = get_mm_rss(p->mm); + if (!rss) + rss = nr_scan_pages; + + rss = round_up(rss, nr_scan_pages); + return rss / nr_scan_pages; +} + +/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ +#define MAX_SCAN_WINDOW 2560 + +static unsigned int task_scan_min(struct task_struct *p) +{ + unsigned int scan, floor; + unsigned int windows = 1; + + if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW) + windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size; + floor = 1000 / windows; + + scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); + return max_t(unsigned int, floor, scan); +} + +static unsigned int task_scan_max(struct task_struct *p) +{ + unsigned int smin = task_scan_min(p); + unsigned int smax; + + /* Watch for min being lower than max due to floor calculations */ + smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); + return max(smin, smax); +} + +/* + * Once a preferred node is selected the scheduler balancer will prefer moving + * a task to that node for sysctl_numa_balancing_settle_count number of PTE + * scans. This will give the process the chance to accumulate more faults on + * the preferred node but still allow the scheduler to move the task again if + * the nodes CPUs are overloaded. + */ +unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4; + +static void account_numa_enqueue(struct rq *rq, struct task_struct *p) +{ + rq->nr_numa_running += (p->numa_preferred_nid != -1); + rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); +} + +static void account_numa_dequeue(struct rq *rq, struct task_struct *p) +{ + rq->nr_numa_running -= (p->numa_preferred_nid != -1); + rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); +} + +struct numa_group { + atomic_t refcount; + + spinlock_t lock; /* nr_tasks, tasks */ + int nr_tasks; + pid_t gid; + struct list_head task_list; + + struct rcu_head rcu; + unsigned long total_faults; + unsigned long faults[0]; +}; + +pid_t task_numa_group_id(struct task_struct *p) +{ + return p->numa_group ? p->numa_group->gid : 0; +} + +static inline int task_faults_idx(int nid, int priv) +{ + return 2 * nid + priv; +} + +static inline unsigned long task_faults(struct task_struct *p, int nid) +{ + if (!p->numa_faults) + return 0; + + return p->numa_faults[task_faults_idx(nid, 0)] + + p->numa_faults[task_faults_idx(nid, 1)]; +} + +static inline unsigned long group_faults(struct task_struct *p, int nid) +{ + if (!p->numa_group) + return 0; + + return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1]; +} + +/* + * These return the fraction of accesses done by a particular task, or + * task group, on a particular numa node. The group weight is given a + * larger multiplier, in order to group tasks together that are almost + * evenly spread out between numa nodes. + */ +static inline unsigned long task_weight(struct task_struct *p, int nid) +{ + unsigned long total_faults; + + if (!p->numa_faults) + return 0; + + total_faults = p->total_numa_faults; + + if (!total_faults) + return 0; + + return 1000 * task_faults(p, nid) / total_faults; +} + +static inline unsigned long group_weight(struct task_struct *p, int nid) { - int seq; + if (!p->numa_group || !p->numa_group->total_faults) + return 0; + + return 1000 * group_faults(p, nid) / p->numa_group->total_faults; +} + +static unsigned long weighted_cpuload(const int cpu); +static unsigned long source_load(int cpu, int type); +static unsigned long target_load(int cpu, int type); +static unsigned long power_of(int cpu); +static long effective_load(struct task_group *tg, int cpu, long wl, long wg); + +/* Cached statistics for all CPUs within a node */ +struct numa_stats { + unsigned long nr_running; + unsigned long load; + + /* Total compute capacity of CPUs on a node */ + unsigned long power; + + /* Approximate capacity in terms of runnable tasks on a node */ + unsigned long capacity; + int has_capacity; +}; + +/* + * XXX borrowed from update_sg_lb_stats + */ +static void update_numa_stats(struct numa_stats *ns, int nid) +{ + int cpu; + + memset(ns, 0, sizeof(*ns)); + for_each_cpu(cpu, cpumask_of_node(nid)) { + struct rq *rq = cpu_rq(cpu); + + ns->nr_running += rq->nr_running; + ns->load += weighted_cpuload(cpu); + ns->power += power_of(cpu); + } + + ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power; + ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE); + ns->has_capacity = (ns->nr_running < ns->capacity); +} + +struct task_numa_env { + struct task_struct *p; + + int src_cpu, src_nid; + int dst_cpu, dst_nid; + + struct numa_stats src_stats, dst_stats; + + int imbalance_pct, idx; + + struct task_struct *best_task; + long best_imp; + int best_cpu; +}; + +static void task_numa_assign(struct task_numa_env *env, + struct task_struct *p, long imp) +{ + if (env->best_task) + put_task_struct(env->best_task); + if (p) + get_task_struct(p); + + env->best_task = p; + env->best_imp = imp; + env->best_cpu = env->dst_cpu; +} + +/* + * This checks if the overall compute and NUMA accesses of the system would + * be improved if the source tasks was migrated to the target dst_cpu taking + * into account that it might be best if task running on the dst_cpu should + * be exchanged with the source task + */ +static void task_numa_compare(struct task_numa_env *env, + long taskimp, long groupimp) +{ + struct rq *src_rq = cpu_rq(env->src_cpu); + struct rq *dst_rq = cpu_rq(env->dst_cpu); + struct task_struct *cur; + long dst_load, src_load; + long load; + long imp = (groupimp > 0) ? groupimp : taskimp; + + rcu_read_lock(); + cur = ACCESS_ONCE(dst_rq->curr); + if (cur->pid == 0) /* idle */ + cur = NULL; + + /* + * "imp" is the fault differential for the source task between the + * source and destination node. Calculate the total differential for + * the source task and potential destination task. The more negative + * the value is, the more rmeote accesses that would be expected to + * be incurred if the tasks were swapped. + */ + if (cur) { + /* Skip this swap candidate if cannot move to the source cpu */ + if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) + goto unlock; + + /* + * If dst and source tasks are in the same NUMA group, or not + * in any group then look only at task weights. + */ + if (cur->numa_group == env->p->numa_group) { + imp = taskimp + task_weight(cur, env->src_nid) - + task_weight(cur, env->dst_nid); + /* + * Add some hysteresis to prevent swapping the + * tasks within a group over tiny differences. + */ + if (cur->numa_group) + imp -= imp/16; + } else { + /* + * Compare the group weights. If a task is all by + * itself (not part of a group), use the task weight + * instead. + */ + if (env->p->numa_group) + imp = groupimp; + else + imp = taskimp; + + if (cur->numa_group) + imp += group_weight(cur, env->src_nid) - + group_weight(cur, env->dst_nid); + else + imp += task_weight(cur, env->src_nid) - + task_weight(cur, env->dst_nid); + } + } + + if (imp < env->best_imp) + goto unlock; + + if (!cur) { + /* Is there capacity at our destination? */ + if (env->src_stats.has_capacity && + !env->dst_stats.has_capacity) + goto unlock; + + goto balance; + } + + /* Balance doesn't matter much if we're running a task per cpu */ + if (src_rq->nr_running == 1 && dst_rq->nr_running == 1) + goto assign; + + /* + * In the overloaded case, try and keep the load balanced. + */ +balance: + dst_load = env->dst_stats.load; + src_load = env->src_stats.load; + + /* XXX missing power terms */ + load = task_h_load(env->p); + dst_load += load; + src_load -= load; + + if (cur) { + load = task_h_load(cur); + dst_load -= load; + src_load += load; + } + + /* make src_load the smaller */ + if (dst_load < src_load) + swap(dst_load, src_load); + + if (src_load * env->imbalance_pct < dst_load * 100) + goto unlock; + +assign: + task_numa_assign(env, cur, imp); +unlock: + rcu_read_unlock(); +} + +static void task_numa_find_cpu(struct task_numa_env *env, + long taskimp, long groupimp) +{ + int cpu; + + for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { + /* Skip this CPU if the source task cannot migrate */ + if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) + continue; + + env->dst_cpu = cpu; + task_numa_compare(env, taskimp, groupimp); + } +} + +static int task_numa_migrate(struct task_struct *p) +{ + struct task_numa_env env = { + .p = p, + + .src_cpu = task_cpu(p), + .src_nid = task_node(p), + + .imbalance_pct = 112, + + .best_task = NULL, + .best_imp = 0, + .best_cpu = -1 + }; + struct sched_domain *sd; + unsigned long taskweight, groupweight; + int nid, ret; + long taskimp, groupimp; + + /* + * Pick the lowest SD_NUMA domain, as that would have the smallest + * imbalance and would be the first to start moving tasks about. + * + * And we want to avoid any moving of tasks about, as that would create + * random movement of tasks -- counter the numa conditions we're trying + * to satisfy here. + */ + rcu_read_lock(); + sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); + env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; + rcu_read_unlock(); + + taskweight = task_weight(p, env.src_nid); + groupweight = group_weight(p, env.src_nid); + update_numa_stats(&env.src_stats, env.src_nid); + env.dst_nid = p->numa_preferred_nid; + taskimp = task_weight(p, env.dst_nid) - taskweight; + groupimp = group_weight(p, env.dst_nid) - groupweight; + update_numa_stats(&env.dst_stats, env.dst_nid); + + /* If the preferred nid has capacity, try to use it. */ + if (env.dst_stats.has_capacity) + task_numa_find_cpu(&env, taskimp, groupimp); + + /* No space available on the preferred nid. Look elsewhere. */ + if (env.best_cpu == -1) { + for_each_online_node(nid) { + if (nid == env.src_nid || nid == p->numa_preferred_nid) + continue; + + /* Only consider nodes where both task and groups benefit */ + taskimp = task_weight(p, nid) - taskweight; + groupimp = group_weight(p, nid) - groupweight; + if (taskimp < 0 && groupimp < 0) + continue; + + env.dst_nid = nid; + update_numa_stats(&env.dst_stats, env.dst_nid); + task_numa_find_cpu(&env, taskimp, groupimp); + } + } + + /* No better CPU than the current one was found. */ + if (env.best_cpu == -1) + return -EAGAIN; + + sched_setnuma(p, env.dst_nid); + + /* + * Reset the scan period if the task is being rescheduled on an + * alternative node to recheck if the tasks is now properly placed. + */ + p->numa_scan_period = task_scan_min(p); + + if (env.best_task == NULL) { + int ret = migrate_task_to(p, env.best_cpu); + return ret; + } + + ret = migrate_swap(p, env.best_task); + put_task_struct(env.best_task); + return ret; +} + +/* Attempt to migrate a task to a CPU on the preferred node. */ +static void numa_migrate_preferred(struct task_struct *p) +{ + /* This task has no NUMA fault statistics yet */ + if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) + return; + + /* Periodically retry migrating the task to the preferred node */ + p->numa_migrate_retry = jiffies + HZ; + + /* Success if task is already running on preferred CPU */ + if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) + return; + + /* Otherwise, try migrate to a CPU on the preferred node */ + task_numa_migrate(p); +} + +/* + * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS + * increments. The more local the fault statistics are, the higher the scan + * period will be for the next scan window. If local/remote ratio is below + * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the + * scan period will decrease + */ +#define NUMA_PERIOD_SLOTS 10 +#define NUMA_PERIOD_THRESHOLD 3 + +/* + * Increase the scan period (slow down scanning) if the majority of + * our memory is already on our local node, or if the majority of + * the page accesses are shared with other processes. + * Otherwise, decrease the scan period. + */ +static void update_task_scan_period(struct task_struct *p, + unsigned long shared, unsigned long private) +{ + unsigned int period_slot; + int ratio; + int diff; + + unsigned long remote = p->numa_faults_locality[0]; + unsigned long local = p->numa_faults_locality[1]; + + /* + * If there were no record hinting faults then either the task is + * completely idle or all activity is areas that are not of interest + * to automatic numa balancing. Scan slower + */ + if (local + shared == 0) { + p->numa_scan_period = min(p->numa_scan_period_max, + p->numa_scan_period << 1); + + p->mm->numa_next_scan = jiffies + + msecs_to_jiffies(p->numa_scan_period); - if (!p->mm) /* for example, ksmd faulting in a user's mm */ return; + } + + /* + * Prepare to scale scan period relative to the current period. + * == NUMA_PERIOD_THRESHOLD scan period stays the same + * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) + * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) + */ + period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); + ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); + if (ratio >= NUMA_PERIOD_THRESHOLD) { + int slot = ratio - NUMA_PERIOD_THRESHOLD; + if (!slot) + slot = 1; + diff = slot * period_slot; + } else { + diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; + + /* + * Scale scan rate increases based on sharing. There is an + * inverse relationship between the degree of sharing and + * the adjustment made to the scanning period. Broadly + * speaking the intent is that there is little point + * scanning faster if shared accesses dominate as it may + * simply bounce migrations uselessly + */ + period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS); + ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); + diff = (diff * ratio) / NUMA_PERIOD_SLOTS; + } + + p->numa_scan_period = clamp(p->numa_scan_period + diff, + task_scan_min(p), task_scan_max(p)); + memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); +} + +static void task_numa_placement(struct task_struct *p) +{ + int seq, nid, max_nid = -1, max_group_nid = -1; + unsigned long max_faults = 0, max_group_faults = 0; + unsigned long fault_types[2] = { 0, 0 }; + spinlock_t *group_lock = NULL; + seq = ACCESS_ONCE(p->mm->numa_scan_seq); if (p->numa_scan_seq == seq) return; p->numa_scan_seq = seq; + p->numa_scan_period_max = task_scan_max(p); + + /* If the task is part of a group prevent parallel updates to group stats */ + if (p->numa_group) { + group_lock = &p->numa_group->lock; + spin_lock(group_lock); + } + + /* Find the node with the highest number of faults */ + for_each_online_node(nid) { + unsigned long faults = 0, group_faults = 0; + int priv, i; + + for (priv = 0; priv < 2; priv++) { + long diff; + + i = task_faults_idx(nid, priv); + diff = -p->numa_faults[i]; + + /* Decay existing window, copy faults since last scan */ + p->numa_faults[i] >>= 1; + p->numa_faults[i] += p->numa_faults_buffer[i]; + fault_types[priv] += p->numa_faults_buffer[i]; + p->numa_faults_buffer[i] = 0; + + faults += p->numa_faults[i]; + diff += p->numa_faults[i]; + p->total_numa_faults += diff; + if (p->numa_group) { + /* safe because we can only change our own group */ + p->numa_group->faults[i] += diff; + p->numa_group->total_faults += diff; + group_faults += p->numa_group->faults[i]; + } + } + + if (faults > max_faults) { + max_faults = faults; + max_nid = nid; + } + + if (group_faults > max_group_faults) { + max_group_faults = group_faults; + max_group_nid = nid; + } + } + + update_task_scan_period(p, fault_types[0], fault_types[1]); + + if (p->numa_group) { + /* + * If the preferred task and group nids are different, + * iterate over the nodes again to find the best place. + */ + if (max_nid != max_group_nid) { + unsigned long weight, max_weight = 0; + + for_each_online_node(nid) { + weight = task_weight(p, nid) + group_weight(p, nid); + if (weight > max_weight) { + max_weight = weight; + max_nid = nid; + } + } + } + + spin_unlock(group_lock); + } - /* FIXME: Scheduling placement policy hints go here */ + /* Preferred node as the node with the most faults */ + if (max_faults && max_nid != p->numa_preferred_nid) { + /* Update the preferred nid and migrate task if possible */ + sched_setnuma(p, max_nid); + numa_migrate_preferred(p); + } +} + +static inline int get_numa_group(struct numa_group *grp) +{ + return atomic_inc_not_zero(&grp->refcount); +} + +static inline void put_numa_group(struct numa_group *grp) +{ + if (atomic_dec_and_test(&grp->refcount)) + kfree_rcu(grp, rcu); +} + +static void task_numa_group(struct task_struct *p, int cpupid, int flags, + int *priv) +{ + struct numa_group *grp, *my_grp; + struct task_struct *tsk; + bool join = false; + int cpu = cpupid_to_cpu(cpupid); + int i; + + if (unlikely(!p->numa_group)) { + unsigned int size = sizeof(struct numa_group) + + 2*nr_node_ids*sizeof(unsigned long); + + grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); + if (!grp) + return; + + atomic_set(&grp->refcount, 1); + spin_lock_init(&grp->lock); + INIT_LIST_HEAD(&grp->task_list); + grp->gid = p->pid; + + for (i = 0; i < 2*nr_node_ids; i++) + grp->faults[i] = p->numa_faults[i]; + + grp->total_faults = p->total_numa_faults; + + list_add(&p->numa_entry, &grp->task_list); + grp->nr_tasks++; + rcu_assign_pointer(p->numa_group, grp); + } + + rcu_read_lock(); + tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); + + if (!cpupid_match_pid(tsk, cpupid)) + goto no_join; + + grp = rcu_dereference(tsk->numa_group); + if (!grp) + goto no_join; + + my_grp = p->numa_group; + if (grp == my_grp) + goto no_join; + + /* + * Only join the other group if its bigger; if we're the bigger group, + * the other task will join us. + */ + if (my_grp->nr_tasks > grp->nr_tasks) + goto no_join; + + /* + * Tie-break on the grp address. + */ + if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) + goto no_join; + + /* Always join threads in the same process. */ + if (tsk->mm == current->mm) + join = true; + + /* Simple filter to avoid false positives due to PID collisions */ + if (flags & TNF_SHARED) + join = true; + + /* Update priv based on whether false sharing was detected */ + *priv = !join; + + if (join && !get_numa_group(grp)) + goto no_join; + + rcu_read_unlock(); + + if (!join) + return; + + double_lock(&my_grp->lock, &grp->lock); + + for (i = 0; i < 2*nr_node_ids; i++) { + my_grp->faults[i] -= p->numa_faults[i]; + grp->faults[i] += p->numa_faults[i]; + } + my_grp->total_faults -= p->total_numa_faults; + grp->total_faults += p->total_numa_faults; + + list_move(&p->numa_entry, &grp->task_list); + my_grp->nr_tasks--; + grp->nr_tasks++; + + spin_unlock(&my_grp->lock); + spin_unlock(&grp->lock); + + rcu_assign_pointer(p->numa_group, grp); + + put_numa_group(my_grp); + return; + +no_join: + rcu_read_unlock(); + return; +} + +void task_numa_free(struct task_struct *p) +{ + struct numa_group *grp = p->numa_group; + int i; + void *numa_faults = p->numa_faults; + + if (grp) { + spin_lock(&grp->lock); + for (i = 0; i < 2*nr_node_ids; i++) + grp->faults[i] -= p->numa_faults[i]; + grp->total_faults -= p->total_numa_faults; + + list_del(&p->numa_entry); + grp->nr_tasks--; + spin_unlock(&grp->lock); + rcu_assign_pointer(p->numa_group, NULL); + put_numa_group(grp); + } + + p->numa_faults = NULL; + p->numa_faults_buffer = NULL; + kfree(numa_faults); } /* * Got a PROT_NONE fault for a page on @node. */ -void task_numa_fault(int node, int pages, bool migrated) +void task_numa_fault(int last_cpupid, int node, int pages, int flags) { struct task_struct *p = current; + bool migrated = flags & TNF_MIGRATED; + int priv; if (!numabalancing_enabled) return; - /* FIXME: Allocate task-specific structure for placement policy here */ + /* for example, ksmd faulting in a user's mm */ + if (!p->mm) + return; + + /* Do not worry about placement if exiting */ + if (p->state == TASK_DEAD) + return; + + /* Allocate buffer to track faults on a per-node basis */ + if (unlikely(!p->numa_faults)) { + int size = sizeof(*p->numa_faults) * 2 * nr_node_ids; + + /* numa_faults and numa_faults_buffer share the allocation */ + p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN); + if (!p->numa_faults) + return; + + BUG_ON(p->numa_faults_buffer); + p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids); + p->total_numa_faults = 0; + memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); + } /* - * If pages are properly placed (did not migrate) then scan slower. - * This is reset periodically in case of phase changes + * First accesses are treated as private, otherwise consider accesses + * to be private if the accessing pid has not changed */ - if (!migrated) - p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max, - p->numa_scan_period + jiffies_to_msecs(10)); + if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { + priv = 1; + } else { + priv = cpupid_match_pid(p, last_cpupid); + if (!priv && !(flags & TNF_NO_GROUP)) + task_numa_group(p, last_cpupid, flags, &priv); + } task_numa_placement(p); + + /* + * Retry task to preferred node migration periodically, in case it + * case it previously failed, or the scheduler moved us. + */ + if (time_after(jiffies, p->numa_migrate_retry)) + numa_migrate_preferred(p); + + if (migrated) + p->numa_pages_migrated += pages; + + p->numa_faults_buffer[task_faults_idx(node, priv)] += pages; + p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages; } static void reset_ptenuma_scan(struct task_struct *p) @@ -884,6 +1656,7 @@ void task_numa_work(struct callback_head *work) struct mm_struct *mm = p->mm; struct vm_area_struct *vma; unsigned long start, end; + unsigned long nr_pte_updates = 0; long pages; WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); @@ -900,35 +1673,9 @@ void task_numa_work(struct callback_head *work) if (p->flags & PF_EXITING) return; - /* - * We do not care about task placement until a task runs on a node - * other than the first one used by the address space. This is - * largely because migrations are driven by what CPU the task - * is running on. If it's never scheduled on another node, it'll - * not migrate so why bother trapping the fault. - */ - if (mm->first_nid == NUMA_PTE_SCAN_INIT) - mm->first_nid = numa_node_id(); - if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) { - /* Are we running on a new node yet? */ - if (numa_node_id() == mm->first_nid && - !sched_feat_numa(NUMA_FORCE)) - return; - - mm->first_nid = NUMA_PTE_SCAN_ACTIVE; - } - - /* - * Reset the scan period if enough time has gone by. Objective is that - * scanning will be reduced if pages are properly placed. As tasks - * can enter different phases this needs to be re-examined. Lacking - * proper tracking of reference behaviour, this blunt hammer is used. - */ - migrate = mm->numa_next_reset; - if (time_after(now, migrate)) { - p->numa_scan_period = sysctl_numa_balancing_scan_period_min; - next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset); - xchg(&mm->numa_next_reset, next_scan); + if (!mm->numa_next_scan) { + mm->numa_next_scan = now + + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); } /* @@ -938,20 +1685,20 @@ void task_numa_work(struct callback_head *work) if (time_before(now, migrate)) return; - if (p->numa_scan_period == 0) - p->numa_scan_period = sysctl_numa_balancing_scan_period_min; + if (p->numa_scan_period == 0) { + p->numa_scan_period_max = task_scan_max(p); + p->numa_scan_period = task_scan_min(p); + } next_scan = now + msecs_to_jiffies(p->numa_scan_period); if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) return; /* - * Do not set pte_numa if the current running node is rate-limited. - * This loses statistics on the fault but if we are unwilling to - * migrate to this node, it is less likely we can do useful work + * Delay this task enough that another task of this mm will likely win + * the next time around. */ - if (migrate_ratelimited(numa_node_id())) - return; + p->node_stamp += 2 * TICK_NSEC; start = mm->numa_scan_offset; pages = sysctl_numa_balancing_scan_size; @@ -967,18 +1714,32 @@ void task_numa_work(struct callback_head *work) vma = mm->mmap; } for (; vma; vma = vma->vm_next) { - if (!vma_migratable(vma)) + if (!vma_migratable(vma) || !vma_policy_mof(p, vma)) continue; - /* Skip small VMAs. They are not likely to be of relevance */ - if (vma->vm_end - vma->vm_start < HPAGE_SIZE) + /* + * Shared library pages mapped by multiple processes are not + * migrated as it is expected they are cache replicated. Avoid + * hinting faults in read-only file-backed mappings or the vdso + * as migrating the pages will be of marginal benefit. + */ + if (!vma->vm_mm || + (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) continue; do { start = max(start, vma->vm_start); end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); end = min(end, vma->vm_end); - pages -= change_prot_numa(vma, start, end); + nr_pte_updates += change_prot_numa(vma, start, end); + + /* + * Scan sysctl_numa_balancing_scan_size but ensure that + * at least one PTE is updated so that unused virtual + * address space is quickly skipped. + */ + if (nr_pte_updates) + pages -= (end - start) >> PAGE_SHIFT; start = end; if (pages <= 0) @@ -988,10 +1749,10 @@ void task_numa_work(struct callback_head *work) out: /* - * It is possible to reach the end of the VMA list but the last few VMAs are - * not guaranteed to the vma_migratable. If they are not, we would find the - * !migratable VMA on the next scan but not reset the scanner to the start - * so check it now. + * It is possible to reach the end of the VMA list but the last few + * VMAs are not guaranteed to the vma_migratable. If they are not, we + * would find the !migratable VMA on the next scan but not reset the + * scanner to the start so check it now. */ if (vma) mm->numa_scan_offset = start; @@ -1025,8 +1786,8 @@ void task_tick_numa(struct rq *rq, struct task_struct *curr) if (now - curr->node_stamp > period) { if (!curr->node_stamp) - curr->numa_scan_period = sysctl_numa_balancing_scan_period_min; - curr->node_stamp = now; + curr->numa_scan_period = task_scan_min(curr); + curr->node_stamp += period; if (!time_before(jiffies, curr->mm->numa_next_scan)) { init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ @@ -1038,6 +1799,14 @@ void task_tick_numa(struct rq *rq, struct task_struct *curr) static void task_tick_numa(struct rq *rq, struct task_struct *curr) { } + +static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) +{ +} + +static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) +{ +} #endif /* CONFIG_NUMA_BALANCING */ static void @@ -1047,8 +1816,12 @@ account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) if (!parent_entity(se)) update_load_add(&rq_of(cfs_rq)->load, se->load.weight); #ifdef CONFIG_SMP - if (entity_is_task(se)) - list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks); + if (entity_is_task(se)) { + struct rq *rq = rq_of(cfs_rq); + + account_numa_enqueue(rq, task_of(se)); + list_add(&se->group_node, &rq->cfs_tasks); + } #endif cfs_rq->nr_running++; } @@ -1059,8 +1832,10 @@ account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) update_load_sub(&cfs_rq->load, se->load.weight); if (!parent_entity(se)) update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); - if (entity_is_task(se)) + if (entity_is_task(se)) { + account_numa_dequeue(rq_of(cfs_rq), task_of(se)); list_del_init(&se->group_node); + } cfs_rq->nr_running--; } @@ -2070,13 +2845,14 @@ static inline bool cfs_bandwidth_used(void) return static_key_false(&__cfs_bandwidth_used); } -void account_cfs_bandwidth_used(int enabled, int was_enabled) +void cfs_bandwidth_usage_inc(void) { - /* only need to count groups transitioning between enabled/!enabled */ - if (enabled && !was_enabled) - static_key_slow_inc(&__cfs_bandwidth_used); - else if (!enabled && was_enabled) - static_key_slow_dec(&__cfs_bandwidth_used); + static_key_slow_inc(&__cfs_bandwidth_used); +} + +void cfs_bandwidth_usage_dec(void) +{ + static_key_slow_dec(&__cfs_bandwidth_used); } #else /* HAVE_JUMP_LABEL */ static bool cfs_bandwidth_used(void) @@ -2084,7 +2860,8 @@ static bool cfs_bandwidth_used(void) return true; } -void account_cfs_bandwidth_used(int enabled, int was_enabled) {} +void cfs_bandwidth_usage_inc(void) {} +void cfs_bandwidth_usage_dec(void) {} #endif /* HAVE_JUMP_LABEL */ /* @@ -2335,6 +3112,8 @@ static void throttle_cfs_rq(struct cfs_rq *cfs_rq) cfs_rq->throttled_clock = rq_clock(rq); raw_spin_lock(&cfs_b->lock); list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); + if (!cfs_b->timer_active) + __start_cfs_bandwidth(cfs_b); raw_spin_unlock(&cfs_b->lock); } @@ -2448,6 +3227,13 @@ static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) if (idle) goto out_unlock; + /* + * if we have relooped after returning idle once, we need to update our + * status as actually running, so that other cpus doing + * __start_cfs_bandwidth will stop trying to cancel us. + */ + cfs_b->timer_active = 1; + __refill_cfs_bandwidth_runtime(cfs_b); if (!throttled) { @@ -2508,7 +3294,13 @@ static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; /* how long we wait to gather additional slack before distributing */ static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; -/* are we near the end of the current quota period? */ +/* + * Are we near the end of the current quota period? + * + * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the + * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of + * migrate_hrtimers, base is never cleared, so we are fine. + */ static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) { struct hrtimer *refresh_timer = &cfs_b->period_timer; @@ -2584,10 +3376,12 @@ static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) u64 expires; /* confirm we're still not at a refresh boundary */ - if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) + raw_spin_lock(&cfs_b->lock); + if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { + raw_spin_unlock(&cfs_b->lock); return; + } - raw_spin_lock(&cfs_b->lock); if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { runtime = cfs_b->runtime; cfs_b->runtime = 0; @@ -2708,11 +3502,11 @@ void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) * (timer_active==0 becomes visible before the hrtimer call-back * terminates). In either case we ensure that it's re-programmed */ - while (unlikely(hrtimer_active(&cfs_b->period_timer))) { + while (unlikely(hrtimer_active(&cfs_b->period_timer)) && + hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { + /* bounce the lock to allow do_sched_cfs_period_timer to run */ raw_spin_unlock(&cfs_b->lock); - /* ensure cfs_b->lock is available while we wait */ - hrtimer_cancel(&cfs_b->period_timer); - + cpu_relax(); raw_spin_lock(&cfs_b->lock); /* if someone else restarted the timer then we're done */ if (cfs_b->timer_active) @@ -3113,7 +3907,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) { struct sched_entity *se = tg->se[cpu]; - if (!tg->parent) /* the trivial, non-cgroup case */ + if (!tg->parent || !wl) /* the trivial, non-cgroup case */ return wl; for_each_sched_entity(se) { @@ -3166,8 +3960,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg) } #else -static inline unsigned long effective_load(struct task_group *tg, int cpu, - unsigned long wl, unsigned long wg) +static long effective_load(struct task_group *tg, int cpu, long wl, long wg) { return wl; } @@ -3420,11 +4213,10 @@ done: * preempt must be disabled. */ static int -select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) +select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) { struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; int cpu = smp_processor_id(); - int prev_cpu = task_cpu(p); int new_cpu = cpu; int want_affine = 0; int sync = wake_flags & WF_SYNC; @@ -3904,9 +4696,12 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preemp static unsigned long __read_mostly max_load_balance_interval = HZ/10; +enum fbq_type { regular, remote, all }; + #define LBF_ALL_PINNED 0x01 #define LBF_NEED_BREAK 0x02 -#define LBF_SOME_PINNED 0x04 +#define LBF_DST_PINNED 0x04 +#define LBF_SOME_PINNED 0x08 struct lb_env { struct sched_domain *sd; @@ -3929,6 +4724,8 @@ struct lb_env { unsigned int loop; unsigned int loop_break; unsigned int loop_max; + + enum fbq_type fbq_type; }; /* @@ -3975,6 +4772,78 @@ task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) return delta < (s64)sysctl_sched_migration_cost; } +#ifdef CONFIG_NUMA_BALANCING +/* Returns true if the destination node has incurred more faults */ +static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) +{ + int src_nid, dst_nid; + + if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || + !(env->sd->flags & SD_NUMA)) { + return false; + } + + src_nid = cpu_to_node(env->src_cpu); + dst_nid = cpu_to_node(env->dst_cpu); + + if (src_nid == dst_nid) + return false; + + /* Always encourage migration to the preferred node. */ + if (dst_nid == p->numa_preferred_nid) + return true; + + /* If both task and group weight improve, this move is a winner. */ + if (task_weight(p, dst_nid) > task_weight(p, src_nid) && + group_weight(p, dst_nid) > group_weight(p, src_nid)) + return true; + + return false; +} + + +static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) +{ + int src_nid, dst_nid; + + if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) + return false; + + if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) + return false; + + src_nid = cpu_to_node(env->src_cpu); + dst_nid = cpu_to_node(env->dst_cpu); + + if (src_nid == dst_nid) + return false; + + /* Migrating away from the preferred node is always bad. */ + if (src_nid == p->numa_preferred_nid) + return true; + + /* If either task or group weight get worse, don't do it. */ + if (task_weight(p, dst_nid) < task_weight(p, src_nid) || + group_weight(p, dst_nid) < group_weight(p, src_nid)) + return true; + + return false; +} + +#else +static inline bool migrate_improves_locality(struct task_struct *p, + struct lb_env *env) +{ + return false; +} + +static inline bool migrate_degrades_locality(struct task_struct *p, + struct lb_env *env) +{ + return false; +} +#endif + /* * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? */ @@ -3997,6 +4866,8 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env) schedstat_inc(p, se.statistics.nr_failed_migrations_affine); + env->flags |= LBF_SOME_PINNED; + /* * Remember if this task can be migrated to any other cpu in * our sched_group. We may want to revisit it if we couldn't @@ -4005,13 +4876,13 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env) * Also avoid computing new_dst_cpu if we have already computed * one in current iteration. */ - if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED)) + if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) return 0; /* Prevent to re-select dst_cpu via env's cpus */ for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { - env->flags |= LBF_SOME_PINNED; + env->flags |= LBF_DST_PINNED; env->new_dst_cpu = cpu; break; } @@ -4030,11 +4901,24 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env) /* * Aggressive migration if: - * 1) task is cache cold, or - * 2) too many balance attempts have failed. + * 1) destination numa is preferred + * 2) task is cache cold, or + * 3) too many balance attempts have failed. */ - tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd); + if (!tsk_cache_hot) + tsk_cache_hot = migrate_degrades_locality(p, env); + + if (migrate_improves_locality(p, env)) { +#ifdef CONFIG_SCHEDSTATS + if (tsk_cache_hot) { + schedstat_inc(env->sd, lb_hot_gained[env->idle]); + schedstat_inc(p, se.statistics.nr_forced_migrations); + } +#endif + return 1; + } + if (!tsk_cache_hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { @@ -4077,8 +4961,6 @@ static int move_one_task(struct lb_env *env) return 0; } -static unsigned long task_h_load(struct task_struct *p); - static const unsigned int sched_nr_migrate_break = 32; /* @@ -4291,6 +5173,10 @@ struct sg_lb_stats { unsigned int group_weight; int group_imb; /* Is there an imbalance in the group ? */ int group_has_capacity; /* Is there extra capacity in the group? */ +#ifdef CONFIG_NUMA_BALANCING + unsigned int nr_numa_running; + unsigned int nr_preferred_running; +#endif }; /* @@ -4330,7 +5216,7 @@ static inline void init_sd_lb_stats(struct sd_lb_stats *sds) /** * get_sd_load_idx - Obtain the load index for a given sched domain. * @sd: The sched_domain whose load_idx is to be obtained. - * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + * @idle: The idle status of the CPU for whose sd load_idx is obtained. * * Return: The load index. */ @@ -4447,7 +5333,7 @@ void update_group_power(struct sched_domain *sd, int cpu) { struct sched_domain *child = sd->child; struct sched_group *group, *sdg = sd->groups; - unsigned long power; + unsigned long power, power_orig; unsigned long interval; interval = msecs_to_jiffies(sd->balance_interval); @@ -4459,7 +5345,7 @@ void update_group_power(struct sched_domain *sd, int cpu) return; } - power = 0; + power_orig = power = 0; if (child->flags & SD_OVERLAP) { /* @@ -4467,8 +5353,12 @@ void update_group_power(struct sched_domain *sd, int cpu) * span the current group. */ - for_each_cpu(cpu, sched_group_cpus(sdg)) - power += power_of(cpu); + for_each_cpu(cpu, sched_group_cpus(sdg)) { + struct sched_group *sg = cpu_rq(cpu)->sd->groups; + + power_orig += sg->sgp->power_orig; + power += sg->sgp->power; + } } else { /* * !SD_OVERLAP domains can assume that child groups @@ -4477,12 +5367,14 @@ void update_group_power(struct sched_domain *sd, int cpu) group = child->groups; do { + power_orig += group->sgp->power_orig; power += group->sgp->power; group = group->next; } while (group != child->groups); } - sdg->sgp->power_orig = sdg->sgp->power = power; + sdg->sgp->power_orig = power_orig; + sdg->sgp->power = power; } /* @@ -4526,13 +5418,12 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group) * cpu 3 and leave one of the cpus in the second group unused. * * The current solution to this issue is detecting the skew in the first group - * by noticing it has a cpu that is overloaded while the remaining cpus are - * idle -- or rather, there's a distinct imbalance in the cpus; see - * sg_imbalanced(). + * by noticing the lower domain failed to reach balance and had difficulty + * moving tasks due to affinity constraints. * * When this is so detected; this group becomes a candidate for busiest; see - * update_sd_pick_busiest(). And calculcate_imbalance() and - * find_busiest_group() avoid some of the usual balance conditional to allow it + * update_sd_pick_busiest(). And calculate_imbalance() and + * find_busiest_group() avoid some of the usual balance conditions to allow it * to create an effective group imbalance. * * This is a somewhat tricky proposition since the next run might not find the @@ -4540,49 +5431,36 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group) * subtle and fragile situation. */ -struct sg_imb_stats { - unsigned long max_nr_running, min_nr_running; - unsigned long max_cpu_load, min_cpu_load; -}; - -static inline void init_sg_imb_stats(struct sg_imb_stats *sgi) +static inline int sg_imbalanced(struct sched_group *group) { - sgi->max_cpu_load = sgi->max_nr_running = 0UL; - sgi->min_cpu_load = sgi->min_nr_running = ~0UL; + return group->sgp->imbalance; } -static inline void -update_sg_imb_stats(struct sg_imb_stats *sgi, - unsigned long load, unsigned long nr_running) +/* + * Compute the group capacity. + * + * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by + * first dividing out the smt factor and computing the actual number of cores + * and limit power unit capacity with that. + */ +static inline int sg_capacity(struct lb_env *env, struct sched_group *group) { - if (load > sgi->max_cpu_load) - sgi->max_cpu_load = load; - if (sgi->min_cpu_load > load) - sgi->min_cpu_load = load; + unsigned int capacity, smt, cpus; + unsigned int power, power_orig; - if (nr_running > sgi->max_nr_running) - sgi->max_nr_running = nr_running; - if (sgi->min_nr_running > nr_running) - sgi->min_nr_running = nr_running; -} + power = group->sgp->power; + power_orig = group->sgp->power_orig; + cpus = group->group_weight; -static inline int -sg_imbalanced(struct sg_lb_stats *sgs, struct sg_imb_stats *sgi) -{ - /* - * Consider the group unbalanced when the imbalance is larger - * than the average weight of a task. - * - * APZ: with cgroup the avg task weight can vary wildly and - * might not be a suitable number - should we keep a - * normalized nr_running number somewhere that negates - * the hierarchy? - */ - if ((sgi->max_cpu_load - sgi->min_cpu_load) >= sgs->load_per_task && - (sgi->max_nr_running - sgi->min_nr_running) > 1) - return 1; + /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */ + smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig); + capacity = cpus / smt; /* cores */ - return 0; + capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE)); + if (!capacity) + capacity = fix_small_capacity(env->sd, group); + + return capacity; } /** @@ -4597,12 +5475,11 @@ static inline void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, int load_idx, int local_group, struct sg_lb_stats *sgs) { - struct sg_imb_stats sgi; unsigned long nr_running; unsigned long load; int i; - init_sg_imb_stats(&sgi); + memset(sgs, 0, sizeof(*sgs)); for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { struct rq *rq = cpu_rq(i); @@ -4610,24 +5487,22 @@ static inline void update_sg_lb_stats(struct lb_env *env, nr_running = rq->nr_running; /* Bias balancing toward cpus of our domain */ - if (local_group) { + if (local_group) load = target_load(i, load_idx); - } else { + else load = source_load(i, load_idx); - update_sg_imb_stats(&sgi, load, nr_running); - } sgs->group_load += load; sgs->sum_nr_running += nr_running; +#ifdef CONFIG_NUMA_BALANCING + sgs->nr_numa_running += rq->nr_numa_running; + sgs->nr_preferred_running += rq->nr_preferred_running; +#endif sgs->sum_weighted_load += weighted_cpuload(i); if (idle_cpu(i)) sgs->idle_cpus++; } - if (local_group && (env->idle != CPU_NEWLY_IDLE || - time_after_eq(jiffies, group->sgp->next_update))) - update_group_power(env->sd, env->dst_cpu); - /* Adjust by relative CPU power of the group */ sgs->group_power = group->sgp->power; sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power; @@ -4635,16 +5510,11 @@ static inline void update_sg_lb_stats(struct lb_env *env, if (sgs->sum_nr_running) sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; - sgs->group_imb = sg_imbalanced(sgs, &sgi); - - sgs->group_capacity = - DIV_ROUND_CLOSEST(sgs->group_power, SCHED_POWER_SCALE); - - if (!sgs->group_capacity) - sgs->group_capacity = fix_small_capacity(env->sd, group); - sgs->group_weight = group->group_weight; + sgs->group_imb = sg_imbalanced(group); + sgs->group_capacity = sg_capacity(env, group); + if (sgs->group_capacity > sgs->sum_nr_running) sgs->group_has_capacity = 1; } @@ -4693,14 +5563,42 @@ static bool update_sd_pick_busiest(struct lb_env *env, return false; } +#ifdef CONFIG_NUMA_BALANCING +static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) +{ + if (sgs->sum_nr_running > sgs->nr_numa_running) + return regular; + if (sgs->sum_nr_running > sgs->nr_preferred_running) + return remote; + return all; +} + +static inline enum fbq_type fbq_classify_rq(struct rq *rq) +{ + if (rq->nr_running > rq->nr_numa_running) + return regular; + if (rq->nr_running > rq->nr_preferred_running) + return remote; + return all; +} +#else +static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) +{ + return all; +} + +static inline enum fbq_type fbq_classify_rq(struct rq *rq) +{ + return regular; +} +#endif /* CONFIG_NUMA_BALANCING */ + /** * update_sd_lb_stats - Update sched_domain's statistics for load balancing. * @env: The load balancing environment. - * @balance: Should we balance. * @sds: variable to hold the statistics for this sched_domain. */ -static inline void update_sd_lb_stats(struct lb_env *env, - struct sd_lb_stats *sds) +static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) { struct sched_domain *child = env->sd->child; struct sched_group *sg = env->sd->groups; @@ -4720,11 +5618,17 @@ static inline void update_sd_lb_stats(struct lb_env *env, if (local_group) { sds->local = sg; sgs = &sds->local_stat; + + if (env->idle != CPU_NEWLY_IDLE || + time_after_eq(jiffies, sg->sgp->next_update)) + update_group_power(env->sd, env->dst_cpu); } - memset(sgs, 0, sizeof(*sgs)); update_sg_lb_stats(env, sg, load_idx, local_group, sgs); + if (local_group) + goto next_group; + /* * In case the child domain prefers tasks go to siblings * first, lower the sg capacity to one so that we'll try @@ -4735,21 +5639,25 @@ static inline void update_sd_lb_stats(struct lb_env *env, * heaviest group when it is already under-utilized (possible * with a large weight task outweighs the tasks on the system). */ - if (prefer_sibling && !local_group && - sds->local && sds->local_stat.group_has_capacity) + if (prefer_sibling && sds->local && + sds->local_stat.group_has_capacity) sgs->group_capacity = min(sgs->group_capacity, 1U); - /* Now, start updating sd_lb_stats */ - sds->total_load += sgs->group_load; - sds->total_pwr += sgs->group_power; - - if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { + if (update_sd_pick_busiest(env, sds, sg, sgs)) { sds->busiest = sg; sds->busiest_stat = *sgs; } +next_group: + /* Now, start updating sd_lb_stats */ + sds->total_load += sgs->group_load; + sds->total_pwr += sgs->group_power; + sg = sg->next; } while (sg != env->sd->groups); + + if (env->sd->flags & SD_NUMA) + env->fbq_type = fbq_classify_group(&sds->busiest_stat); } /** @@ -5053,15 +5961,39 @@ static struct rq *find_busiest_queue(struct lb_env *env, int i; for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { - unsigned long power = power_of(i); - unsigned long capacity = DIV_ROUND_CLOSEST(power, - SCHED_POWER_SCALE); - unsigned long wl; + unsigned long power, capacity, wl; + enum fbq_type rt; + rq = cpu_rq(i); + rt = fbq_classify_rq(rq); + + /* + * We classify groups/runqueues into three groups: + * - regular: there are !numa tasks + * - remote: there are numa tasks that run on the 'wrong' node + * - all: there is no distinction + * + * In order to avoid migrating ideally placed numa tasks, + * ignore those when there's better options. + * + * If we ignore the actual busiest queue to migrate another + * task, the next balance pass can still reduce the busiest + * queue by moving tasks around inside the node. + * + * If we cannot move enough load due to this classification + * the next pass will adjust the group classification and + * allow migration of more tasks. + * + * Both cases only affect the total convergence complexity. + */ + if (rt > env->fbq_type) + continue; + + power = power_of(i); + capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); if (!capacity) capacity = fix_small_capacity(env->sd, group); - rq = cpu_rq(i); wl = weighted_cpuload(i); /* @@ -5164,6 +6096,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, int *continue_balancing) { int ld_moved, cur_ld_moved, active_balance = 0; + struct sched_domain *sd_parent = sd->parent; struct sched_group *group; struct rq *busiest; unsigned long flags; @@ -5177,6 +6110,7 @@ static int load_balance(int this_cpu, struct rq *this_rq, .idle = idle, .loop_break = sched_nr_migrate_break, .cpus = cpus, + .fbq_type = all, }; /* @@ -5268,17 +6202,17 @@ more_balance: * moreover subsequent load balance cycles should correct the * excess load moved. */ - if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { + if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { + + /* Prevent to re-select dst_cpu via env's cpus */ + cpumask_clear_cpu(env.dst_cpu, env.cpus); env.dst_rq = cpu_rq(env.new_dst_cpu); env.dst_cpu = env.new_dst_cpu; - env.flags &= ~LBF_SOME_PINNED; + env.flags &= ~LBF_DST_PINNED; env.loop = 0; env.loop_break = sched_nr_migrate_break; - /* Prevent to re-select dst_cpu via env's cpus */ - cpumask_clear_cpu(env.dst_cpu, env.cpus); - /* * Go back to "more_balance" rather than "redo" since we * need to continue with same src_cpu. @@ -5286,6 +6220,18 @@ more_balance: goto more_balance; } + /* + * We failed to reach balance because of affinity. + */ + if (sd_parent) { + int *group_imbalance = &sd_parent->groups->sgp->imbalance; + + if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) { + *group_imbalance = 1; + } else if (*group_imbalance) + *group_imbalance = 0; + } + /* All tasks on this runqueue were pinned by CPU affinity */ if (unlikely(env.flags & LBF_ALL_PINNED)) { cpumask_clear_cpu(cpu_of(busiest), cpus); @@ -5393,6 +6339,7 @@ void idle_balance(int this_cpu, struct rq *this_rq) struct sched_domain *sd; int pulled_task = 0; unsigned long next_balance = jiffies + HZ; + u64 curr_cost = 0; this_rq->idle_stamp = rq_clock(this_rq); @@ -5409,15 +6356,27 @@ void idle_balance(int this_cpu, struct rq *this_rq) for_each_domain(this_cpu, sd) { unsigned long interval; int continue_balancing = 1; + u64 t0, domain_cost; if (!(sd->flags & SD_LOAD_BALANCE)) continue; + if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) + break; + if (sd->flags & SD_BALANCE_NEWIDLE) { + t0 = sched_clock_cpu(this_cpu); + /* If we've pulled tasks over stop searching: */ pulled_task = load_balance(this_cpu, this_rq, sd, CPU_NEWLY_IDLE, &continue_balancing); + + domain_cost = sched_clock_cpu(this_cpu) - t0; + if (domain_cost > sd->max_newidle_lb_cost) + sd->max_newidle_lb_cost = domain_cost; + + curr_cost += domain_cost; } interval = msecs_to_jiffies(sd->balance_interval); @@ -5439,6 +6398,9 @@ void idle_balance(int this_cpu, struct rq *this_rq) */ this_rq->next_balance = next_balance; } + + if (curr_cost > this_rq->max_idle_balance_cost) + this_rq->max_idle_balance_cost = curr_cost; } /* @@ -5662,15 +6624,39 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle) /* Earliest time when we have to do rebalance again */ unsigned long next_balance = jiffies + 60*HZ; int update_next_balance = 0; - int need_serialize; + int need_serialize, need_decay = 0; + u64 max_cost = 0; update_blocked_averages(cpu); rcu_read_lock(); for_each_domain(cpu, sd) { + /* + * Decay the newidle max times here because this is a regular + * visit to all the domains. Decay ~1% per second. + */ + if (time_after(jiffies, sd->next_decay_max_lb_cost)) { + sd->max_newidle_lb_cost = + (sd->max_newidle_lb_cost * 253) / 256; + sd->next_decay_max_lb_cost = jiffies + HZ; + need_decay = 1; + } + max_cost += sd->max_newidle_lb_cost; + if (!(sd->flags & SD_LOAD_BALANCE)) continue; + /* + * Stop the load balance at this level. There is another + * CPU in our sched group which is doing load balancing more + * actively. + */ + if (!continue_balancing) { + if (need_decay) + continue; + break; + } + interval = sd->balance_interval; if (idle != CPU_IDLE) interval *= sd->busy_factor; @@ -5689,7 +6675,7 @@ static void rebalance_domains(int cpu, enum cpu_idle_type idle) if (time_after_eq(jiffies, sd->last_balance + interval)) { if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { /* - * The LBF_SOME_PINNED logic could have changed + * The LBF_DST_PINNED logic could have changed * env->dst_cpu, so we can't know our idle * state even if we migrated tasks. Update it. */ @@ -5704,14 +6690,14 @@ out: next_balance = sd->last_balance + interval; update_next_balance = 1; } - + } + if (need_decay) { /* - * Stop the load balance at this level. There is another - * CPU in our sched group which is doing load balancing more - * actively. + * Ensure the rq-wide value also decays but keep it at a + * reasonable floor to avoid funnies with rq->avg_idle. */ - if (!continue_balancing) - break; + rq->max_idle_balance_cost = + max((u64)sysctl_sched_migration_cost, max_cost); } rcu_read_unlock(); @@ -6214,7 +7200,8 @@ void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, se->cfs_rq = parent->my_q; se->my_q = cfs_rq; - update_load_set(&se->load, 0); + /* guarantee group entities always have weight */ + update_load_set(&se->load, NICE_0_LOAD); se->parent = parent; } diff --git a/kernel/sched/features.h b/kernel/sched/features.h index 99399f8e4799..5716929a2e3a 100644 --- a/kernel/sched/features.h +++ b/kernel/sched/features.h @@ -63,10 +63,23 @@ SCHED_FEAT(LB_MIN, false) /* * Apply the automatic NUMA scheduling policy. Enabled automatically * at runtime if running on a NUMA machine. Can be controlled via - * numa_balancing=. Allow PTE scanning to be forced on UMA machines - * for debugging the core machinery. + * numa_balancing= */ #ifdef CONFIG_NUMA_BALANCING SCHED_FEAT(NUMA, false) -SCHED_FEAT(NUMA_FORCE, false) + +/* + * NUMA_FAVOUR_HIGHER will favor moving tasks towards nodes where a + * higher number of hinting faults are recorded during active load + * balancing. + */ +SCHED_FEAT(NUMA_FAVOUR_HIGHER, true) + +/* + * NUMA_RESIST_LOWER will resist moving tasks towards nodes where a + * lower number of hinting faults have been recorded. As this has + * the potential to prevent a task ever migrating to a new node + * due to CPU overload it is disabled by default. + */ +SCHED_FEAT(NUMA_RESIST_LOWER, false) #endif diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c index d8da01008d39..516c3d9ceea1 100644 --- a/kernel/sched/idle_task.c +++ b/kernel/sched/idle_task.c @@ -9,7 +9,7 @@ #ifdef CONFIG_SMP static int -select_task_rq_idle(struct task_struct *p, int sd_flag, int flags) +select_task_rq_idle(struct task_struct *p, int cpu, int sd_flag, int flags) { return task_cpu(p); /* IDLE tasks as never migrated */ } diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c index 01970c8e64df..7d57275fc396 100644 --- a/kernel/sched/rt.c +++ b/kernel/sched/rt.c @@ -246,8 +246,10 @@ static inline void rt_set_overload(struct rq *rq) * if we should look at the mask. It would be a shame * if we looked at the mask, but the mask was not * updated yet. + * + * Matched by the barrier in pull_rt_task(). */ - wmb(); + smp_wmb(); atomic_inc(&rq->rd->rto_count); } @@ -1169,13 +1171,10 @@ static void yield_task_rt(struct rq *rq) static int find_lowest_rq(struct task_struct *task); static int -select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) +select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) { struct task_struct *curr; struct rq *rq; - int cpu; - - cpu = task_cpu(p); if (p->nr_cpus_allowed == 1) goto out; @@ -1213,8 +1212,7 @@ select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) */ if (curr && unlikely(rt_task(curr)) && (curr->nr_cpus_allowed < 2 || - curr->prio <= p->prio) && - (p->nr_cpus_allowed > 1)) { + curr->prio <= p->prio)) { int target = find_lowest_rq(p); if (target != -1) @@ -1630,6 +1628,12 @@ static int pull_rt_task(struct rq *this_rq) if (likely(!rt_overloaded(this_rq))) return 0; + /* + * Match the barrier from rt_set_overloaded; this guarantees that if we + * see overloaded we must also see the rto_mask bit. + */ + smp_rmb(); + for_each_cpu(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; @@ -1931,8 +1935,8 @@ static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) p->rt.time_slice = sched_rr_timeslice; /* - * Requeue to the end of queue if we (and all of our ancestors) are the - * only element on the queue + * Requeue to the end of queue if we (and all of our ancestors) are not + * the only element on the queue */ for_each_sched_rt_entity(rt_se) { if (rt_se->run_list.prev != rt_se->run_list.next) { diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index b3c5653e1dca..4e650acffed7 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -6,6 +6,7 @@ #include <linux/spinlock.h> #include <linux/stop_machine.h> #include <linux/tick.h> +#include <linux/slab.h> #include "cpupri.h" #include "cpuacct.h" @@ -408,6 +409,10 @@ struct rq { * remote CPUs use both these fields when doing load calculation. */ unsigned int nr_running; +#ifdef CONFIG_NUMA_BALANCING + unsigned int nr_numa_running; + unsigned int nr_preferred_running; +#endif #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; unsigned long last_load_update_tick; @@ -476,6 +481,9 @@ struct rq { u64 age_stamp; u64 idle_stamp; u64 avg_idle; + + /* This is used to determine avg_idle's max value */ + u64 max_idle_balance_cost; #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING @@ -552,6 +560,12 @@ static inline u64 rq_clock_task(struct rq *rq) return rq->clock_task; } +#ifdef CONFIG_NUMA_BALANCING +extern void sched_setnuma(struct task_struct *p, int node); +extern int migrate_task_to(struct task_struct *p, int cpu); +extern int migrate_swap(struct task_struct *, struct task_struct *); +#endif /* CONFIG_NUMA_BALANCING */ + #ifdef CONFIG_SMP #define rcu_dereference_check_sched_domain(p) \ @@ -593,9 +607,22 @@ static inline struct sched_domain *highest_flag_domain(int cpu, int flag) return hsd; } +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ + struct sched_domain *sd; + + for_each_domain(cpu, sd) { + if (sd->flags & flag) + break; + } + + return sd; +} + DECLARE_PER_CPU(struct sched_domain *, sd_llc); DECLARE_PER_CPU(int, sd_llc_size); DECLARE_PER_CPU(int, sd_llc_id); +DECLARE_PER_CPU(struct sched_domain *, sd_numa); struct sched_group_power { atomic_t ref; @@ -605,6 +632,7 @@ struct sched_group_power { */ unsigned int power, power_orig; unsigned long next_update; + int imbalance; /* XXX unrelated to power but shared group state */ /* * Number of busy cpus in this group. */ @@ -719,6 +747,7 @@ static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) */ smp_wmb(); task_thread_info(p)->cpu = cpu; + p->wake_cpu = cpu; #endif } @@ -974,7 +1003,7 @@ struct sched_class { void (*put_prev_task) (struct rq *rq, struct task_struct *p); #ifdef CONFIG_SMP - int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); + int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); void (*migrate_task_rq)(struct task_struct *p, int next_cpu); void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); @@ -1220,6 +1249,24 @@ static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); } +static inline void double_lock(spinlock_t *l1, spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + spin_lock(l1); + spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + +static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + if (l1 > l2) + swap(l1, l2); + + raw_spin_lock(l1); + raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); +} + /* * double_rq_lock - safely lock two runqueues * @@ -1305,7 +1352,8 @@ extern void print_rt_stats(struct seq_file *m, int cpu); extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); -extern void account_cfs_bandwidth_used(int enabled, int was_enabled); +extern void cfs_bandwidth_usage_inc(void); +extern void cfs_bandwidth_usage_dec(void); #ifdef CONFIG_NO_HZ_COMMON enum rq_nohz_flag_bits { diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h index c7edee71bce8..4ab704339656 100644 --- a/kernel/sched/stats.h +++ b/kernel/sched/stats.h @@ -59,9 +59,9 @@ static inline void sched_info_reset_dequeued(struct task_struct *t) * from dequeue_task() to account for possible rq->clock skew across cpus. The * delta taken on each cpu would annul the skew. */ -static inline void sched_info_dequeued(struct task_struct *t) +static inline void sched_info_dequeued(struct rq *rq, struct task_struct *t) { - unsigned long long now = rq_clock(task_rq(t)), delta = 0; + unsigned long long now = rq_clock(rq), delta = 0; if (unlikely(sched_info_on())) if (t->sched_info.last_queued) @@ -69,7 +69,7 @@ static inline void sched_info_dequeued(struct task_struct *t) sched_info_reset_dequeued(t); t->sched_info.run_delay += delta; - rq_sched_info_dequeued(task_rq(t), delta); + rq_sched_info_dequeued(rq, delta); } /* @@ -77,9 +77,9 @@ static inline void sched_info_dequeued(struct task_struct *t) * long it was waiting to run. We also note when it began so that we * can keep stats on how long its timeslice is. */ -static void sched_info_arrive(struct task_struct *t) +static void sched_info_arrive(struct rq *rq, struct task_struct *t) { - unsigned long long now = rq_clock(task_rq(t)), delta = 0; + unsigned long long now = rq_clock(rq), delta = 0; if (t->sched_info.last_queued) delta = now - t->sched_info.last_queued; @@ -88,7 +88,7 @@ static void sched_info_arrive(struct task_struct *t) t->sched_info.last_arrival = now; t->sched_info.pcount++; - rq_sched_info_arrive(task_rq(t), delta); + rq_sched_info_arrive(rq, delta); } /* @@ -96,11 +96,11 @@ static void sched_info_arrive(struct task_struct *t) * the timestamp if it is already not set. It's assumed that * sched_info_dequeued() will clear that stamp when appropriate. */ -static inline void sched_info_queued(struct task_struct *t) +static inline void sched_info_queued(struct rq *rq, struct task_struct *t) { if (unlikely(sched_info_on())) if (!t->sched_info.last_queued) - t->sched_info.last_queued = rq_clock(task_rq(t)); + t->sched_info.last_queued = rq_clock(rq); } /* @@ -111,15 +111,15 @@ static inline void sched_info_queued(struct task_struct *t) * sched_info_queued() to mark that it has now again started waiting on * the runqueue. */ -static inline void sched_info_depart(struct task_struct *t) +static inline void sched_info_depart(struct rq *rq, struct task_struct *t) { - unsigned long long delta = rq_clock(task_rq(t)) - + unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival; - rq_sched_info_depart(task_rq(t), delta); + rq_sched_info_depart(rq, delta); if (t->state == TASK_RUNNING) - sched_info_queued(t); + sched_info_queued(rq, t); } /* @@ -128,32 +128,34 @@ static inline void sched_info_depart(struct task_struct *t) * the idle task.) We are only called when prev != next. */ static inline void -__sched_info_switch(struct task_struct *prev, struct task_struct *next) +__sched_info_switch(struct rq *rq, + struct task_struct *prev, struct task_struct *next) { - struct rq *rq = task_rq(prev); - /* * prev now departs the cpu. It's not interesting to record * stats about how efficient we were at scheduling the idle * process, however. */ if (prev != rq->idle) - sched_info_depart(prev); + sched_info_depart(rq, prev); if (next != rq->idle) - sched_info_arrive(next); + sched_info_arrive(rq, next); } static inline void -sched_info_switch(struct task_struct *prev, struct task_struct *next) +sched_info_switch(struct rq *rq, + struct task_struct *prev, struct task_struct *next) { if (unlikely(sched_info_on())) - __sched_info_switch(prev, next); + __sched_info_switch(rq, prev, next); } #else -#define sched_info_queued(t) do { } while (0) +#define sched_info_queued(rq, t) do { } while (0) #define sched_info_reset_dequeued(t) do { } while (0) -#define sched_info_dequeued(t) do { } while (0) -#define sched_info_switch(t, next) do { } while (0) +#define sched_info_dequeued(rq, t) do { } while (0) +#define sched_info_depart(rq, t) do { } while (0) +#define sched_info_arrive(rq, next) do { } while (0) +#define sched_info_switch(rq, t, next) do { } while (0) #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */ /* diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c index e08fbeeb54b9..47197de8abd9 100644 --- a/kernel/sched/stop_task.c +++ b/kernel/sched/stop_task.c @@ -11,7 +11,7 @@ #ifdef CONFIG_SMP static int -select_task_rq_stop(struct task_struct *p, int sd_flag, int flags) +select_task_rq_stop(struct task_struct *p, int cpu, int sd_flag, int flags) { return task_cpu(p); /* stop tasks as never migrate */ } diff --git a/kernel/sched/wait.c b/kernel/sched/wait.c new file mode 100644 index 000000000000..7d50f794e248 --- /dev/null +++ b/kernel/sched/wait.c @@ -0,0 +1,504 @@ +/* + * Generic waiting primitives. + * + * (C) 2004 Nadia Yvette Chambers, Oracle + */ +#include <linux/init.h> +#include <linux/export.h> +#include <linux/sched.h> +#include <linux/mm.h> +#include <linux/wait.h> +#include <linux/hash.h> + +void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key) +{ + spin_lock_init(&q->lock); + lockdep_set_class_and_name(&q->lock, key, name); + INIT_LIST_HEAD(&q->task_list); +} + +EXPORT_SYMBOL(__init_waitqueue_head); + +void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +{ + unsigned long flags; + + wait->flags &= ~WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&q->lock, flags); + __add_wait_queue(q, wait); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(add_wait_queue); + +void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) +{ + unsigned long flags; + + wait->flags |= WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&q->lock, flags); + __add_wait_queue_tail(q, wait); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(add_wait_queue_exclusive); + +void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) +{ + unsigned long flags; + + spin_lock_irqsave(&q->lock, flags); + __remove_wait_queue(q, wait); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(remove_wait_queue); + + +/* + * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just + * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve + * number) then we wake all the non-exclusive tasks and one exclusive task. + * + * There are circumstances in which we can try to wake a task which has already + * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns + * zero in this (rare) case, and we handle it by continuing to scan the queue. + */ +static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, int wake_flags, void *key) +{ + wait_queue_t *curr, *next; + + list_for_each_entry_safe(curr, next, &q->task_list, task_list) { + unsigned flags = curr->flags; + + if (curr->func(curr, mode, wake_flags, key) && + (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) + break; + } +} + +/** + * __wake_up - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: is directly passed to the wakeup function + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) +{ + unsigned long flags; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, 0, key); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(__wake_up); + +/* + * Same as __wake_up but called with the spinlock in wait_queue_head_t held. + */ +void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr) +{ + __wake_up_common(q, mode, nr, 0, NULL); +} +EXPORT_SYMBOL_GPL(__wake_up_locked); + +void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key) +{ + __wake_up_common(q, mode, 1, 0, key); +} +EXPORT_SYMBOL_GPL(__wake_up_locked_key); + +/** + * __wake_up_sync_key - wake up threads blocked on a waitqueue. + * @q: the waitqueue + * @mode: which threads + * @nr_exclusive: how many wake-one or wake-many threads to wake up + * @key: opaque value to be passed to wakeup targets + * + * The sync wakeup differs that the waker knows that it will schedule + * away soon, so while the target thread will be woken up, it will not + * be migrated to another CPU - ie. the two threads are 'synchronized' + * with each other. This can prevent needless bouncing between CPUs. + * + * On UP it can prevent extra preemption. + * + * It may be assumed that this function implies a write memory barrier before + * changing the task state if and only if any tasks are woken up. + */ +void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode, + int nr_exclusive, void *key) +{ + unsigned long flags; + int wake_flags = 1; /* XXX WF_SYNC */ + + if (unlikely(!q)) + return; + + if (unlikely(nr_exclusive != 1)) + wake_flags = 0; + + spin_lock_irqsave(&q->lock, flags); + __wake_up_common(q, mode, nr_exclusive, wake_flags, key); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL_GPL(__wake_up_sync_key); + +/* + * __wake_up_sync - see __wake_up_sync_key() + */ +void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) +{ + __wake_up_sync_key(q, mode, nr_exclusive, NULL); +} +EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */ + +/* + * Note: we use "set_current_state()" _after_ the wait-queue add, + * because we need a memory barrier there on SMP, so that any + * wake-function that tests for the wait-queue being active + * will be guaranteed to see waitqueue addition _or_ subsequent + * tests in this thread will see the wakeup having taken place. + * + * The spin_unlock() itself is semi-permeable and only protects + * one way (it only protects stuff inside the critical region and + * stops them from bleeding out - it would still allow subsequent + * loads to move into the critical region). + */ +void +prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ + unsigned long flags; + + wait->flags &= ~WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&q->lock, flags); + if (list_empty(&wait->task_list)) + __add_wait_queue(q, wait); + set_current_state(state); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(prepare_to_wait); + +void +prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ + unsigned long flags; + + wait->flags |= WQ_FLAG_EXCLUSIVE; + spin_lock_irqsave(&q->lock, flags); + if (list_empty(&wait->task_list)) + __add_wait_queue_tail(q, wait); + set_current_state(state); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(prepare_to_wait_exclusive); + +long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state) +{ + unsigned long flags; + + if (signal_pending_state(state, current)) + return -ERESTARTSYS; + + wait->private = current; + wait->func = autoremove_wake_function; + + spin_lock_irqsave(&q->lock, flags); + if (list_empty(&wait->task_list)) { + if (wait->flags & WQ_FLAG_EXCLUSIVE) + __add_wait_queue_tail(q, wait); + else + __add_wait_queue(q, wait); + } + set_current_state(state); + spin_unlock_irqrestore(&q->lock, flags); + + return 0; +} +EXPORT_SYMBOL(prepare_to_wait_event); + +/** + * finish_wait - clean up after waiting in a queue + * @q: waitqueue waited on + * @wait: wait descriptor + * + * Sets current thread back to running state and removes + * the wait descriptor from the given waitqueue if still + * queued. + */ +void finish_wait(wait_queue_head_t *q, wait_queue_t *wait) +{ + unsigned long flags; + + __set_current_state(TASK_RUNNING); + /* + * We can check for list emptiness outside the lock + * IFF: + * - we use the "careful" check that verifies both + * the next and prev pointers, so that there cannot + * be any half-pending updates in progress on other + * CPU's that we haven't seen yet (and that might + * still change the stack area. + * and + * - all other users take the lock (ie we can only + * have _one_ other CPU that looks at or modifies + * the list). + */ + if (!list_empty_careful(&wait->task_list)) { + spin_lock_irqsave(&q->lock, flags); + list_del_init(&wait->task_list); + spin_unlock_irqrestore(&q->lock, flags); + } +} +EXPORT_SYMBOL(finish_wait); + +/** + * abort_exclusive_wait - abort exclusive waiting in a queue + * @q: waitqueue waited on + * @wait: wait descriptor + * @mode: runstate of the waiter to be woken + * @key: key to identify a wait bit queue or %NULL + * + * Sets current thread back to running state and removes + * the wait descriptor from the given waitqueue if still + * queued. + * + * Wakes up the next waiter if the caller is concurrently + * woken up through the queue. + * + * This prevents waiter starvation where an exclusive waiter + * aborts and is woken up concurrently and no one wakes up + * the next waiter. + */ +void abort_exclusive_wait(wait_queue_head_t *q, wait_queue_t *wait, + unsigned int mode, void *key) +{ + unsigned long flags; + + __set_current_state(TASK_RUNNING); + spin_lock_irqsave(&q->lock, flags); + if (!list_empty(&wait->task_list)) + list_del_init(&wait->task_list); + else if (waitqueue_active(q)) + __wake_up_locked_key(q, mode, key); + spin_unlock_irqrestore(&q->lock, flags); +} +EXPORT_SYMBOL(abort_exclusive_wait); + +int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) +{ + int ret = default_wake_function(wait, mode, sync, key); + + if (ret) + list_del_init(&wait->task_list); + return ret; +} +EXPORT_SYMBOL(autoremove_wake_function); + +int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) +{ + struct wait_bit_key *key = arg; + struct wait_bit_queue *wait_bit + = container_of(wait, struct wait_bit_queue, wait); + + if (wait_bit->key.flags != key->flags || + wait_bit->key.bit_nr != key->bit_nr || + test_bit(key->bit_nr, key->flags)) + return 0; + else + return autoremove_wake_function(wait, mode, sync, key); +} +EXPORT_SYMBOL(wake_bit_function); + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) + * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are + * permitted return codes. Nonzero return codes halt waiting and return. + */ +int __sched +__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, + int (*action)(void *), unsigned mode) +{ + int ret = 0; + + do { + prepare_to_wait(wq, &q->wait, mode); + if (test_bit(q->key.bit_nr, q->key.flags)) + ret = (*action)(q->key.flags); + } while (test_bit(q->key.bit_nr, q->key.flags) && !ret); + finish_wait(wq, &q->wait); + return ret; +} +EXPORT_SYMBOL(__wait_on_bit); + +int __sched out_of_line_wait_on_bit(void *word, int bit, + int (*action)(void *), unsigned mode) +{ + wait_queue_head_t *wq = bit_waitqueue(word, bit); + DEFINE_WAIT_BIT(wait, word, bit); + + return __wait_on_bit(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit); + +int __sched +__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, + int (*action)(void *), unsigned mode) +{ + do { + int ret; + + prepare_to_wait_exclusive(wq, &q->wait, mode); + if (!test_bit(q->key.bit_nr, q->key.flags)) + continue; + ret = action(q->key.flags); + if (!ret) + continue; + abort_exclusive_wait(wq, &q->wait, mode, &q->key); + return ret; + } while (test_and_set_bit(q->key.bit_nr, q->key.flags)); + finish_wait(wq, &q->wait); + return 0; +} +EXPORT_SYMBOL(__wait_on_bit_lock); + +int __sched out_of_line_wait_on_bit_lock(void *word, int bit, + int (*action)(void *), unsigned mode) +{ + wait_queue_head_t *wq = bit_waitqueue(word, bit); + DEFINE_WAIT_BIT(wait, word, bit); + + return __wait_on_bit_lock(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); + +void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) +{ + struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); + if (waitqueue_active(wq)) + __wake_up(wq, TASK_NORMAL, 1, &key); +} +EXPORT_SYMBOL(__wake_up_bit); + +/** + * wake_up_bit - wake up a waiter on a bit + * @word: the word being waited on, a kernel virtual address + * @bit: the bit of the word being waited on + * + * There is a standard hashed waitqueue table for generic use. This + * is the part of the hashtable's accessor API that wakes up waiters + * on a bit. For instance, if one were to have waiters on a bitflag, + * one would call wake_up_bit() after clearing the bit. + * + * In order for this to function properly, as it uses waitqueue_active() + * internally, some kind of memory barrier must be done prior to calling + * this. Typically, this will be smp_mb__after_clear_bit(), but in some + * cases where bitflags are manipulated non-atomically under a lock, one + * may need to use a less regular barrier, such fs/inode.c's smp_mb(), + * because spin_unlock() does not guarantee a memory barrier. + */ +void wake_up_bit(void *word, int bit) +{ + __wake_up_bit(bit_waitqueue(word, bit), word, bit); +} +EXPORT_SYMBOL(wake_up_bit); + +wait_queue_head_t *bit_waitqueue(void *word, int bit) +{ + const int shift = BITS_PER_LONG == 32 ? 5 : 6; + const struct zone *zone = page_zone(virt_to_page(word)); + unsigned long val = (unsigned long)word << shift | bit; + + return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; +} +EXPORT_SYMBOL(bit_waitqueue); + +/* + * Manipulate the atomic_t address to produce a better bit waitqueue table hash + * index (we're keying off bit -1, but that would produce a horrible hash + * value). + */ +static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p) +{ + if (BITS_PER_LONG == 64) { + unsigned long q = (unsigned long)p; + return bit_waitqueue((void *)(q & ~1), q & 1); + } + return bit_waitqueue(p, 0); +} + +static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync, + void *arg) +{ + struct wait_bit_key *key = arg; + struct wait_bit_queue *wait_bit + = container_of(wait, struct wait_bit_queue, wait); + atomic_t *val = key->flags; + + if (wait_bit->key.flags != key->flags || + wait_bit->key.bit_nr != key->bit_nr || + atomic_read(val) != 0) + return 0; + return autoremove_wake_function(wait, mode, sync, key); +} + +/* + * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting, + * the actions of __wait_on_atomic_t() are permitted return codes. Nonzero + * return codes halt waiting and return. + */ +static __sched +int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q, + int (*action)(atomic_t *), unsigned mode) +{ + atomic_t *val; + int ret = 0; + + do { + prepare_to_wait(wq, &q->wait, mode); + val = q->key.flags; + if (atomic_read(val) == 0) + break; + ret = (*action)(val); + } while (!ret && atomic_read(val) != 0); + finish_wait(wq, &q->wait); + return ret; +} + +#define DEFINE_WAIT_ATOMIC_T(name, p) \ + struct wait_bit_queue name = { \ + .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p), \ + .wait = { \ + .private = current, \ + .func = wake_atomic_t_function, \ + .task_list = \ + LIST_HEAD_INIT((name).wait.task_list), \ + }, \ + } + +__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *), + unsigned mode) +{ + wait_queue_head_t *wq = atomic_t_waitqueue(p); + DEFINE_WAIT_ATOMIC_T(wait, p); + + return __wait_on_atomic_t(wq, &wait, action, mode); +} +EXPORT_SYMBOL(out_of_line_wait_on_atomic_t); + +/** + * wake_up_atomic_t - Wake up a waiter on a atomic_t + * @p: The atomic_t being waited on, a kernel virtual address + * + * Wake up anyone waiting for the atomic_t to go to zero. + * + * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t + * check is done by the waiter's wake function, not the by the waker itself). + */ +void wake_up_atomic_t(atomic_t *p) +{ + __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR); +} +EXPORT_SYMBOL(wake_up_atomic_t); |