summaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
Diffstat (limited to 'include')
-rw-r--r--include/linux/cgroup.h272
-rw-r--r--include/linux/cgroup_subsys.h11
2 files changed, 176 insertions, 107 deletions
diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index bddebc5cf8e7..8a111dd42d7a 100644
--- a/include/linux/cgroup.h
+++ b/include/linux/cgroup.h
@@ -21,6 +21,7 @@
#include <linux/percpu-refcount.h>
#include <linux/seq_file.h>
#include <linux/kernfs.h>
+#include <linux/wait.h>
#ifdef CONFIG_CGROUPS
@@ -47,21 +48,45 @@ enum cgroup_subsys_id {
};
#undef SUBSYS
-/* Per-subsystem/per-cgroup state maintained by the system. */
+/*
+ * Per-subsystem/per-cgroup state maintained by the system. This is the
+ * fundamental structural building block that controllers deal with.
+ *
+ * Fields marked with "PI:" are public and immutable and may be accessed
+ * directly without synchronization.
+ */
struct cgroup_subsys_state {
- /* the cgroup that this css is attached to */
+ /* PI: the cgroup that this css is attached to */
struct cgroup *cgroup;
- /* the cgroup subsystem that this css is attached to */
+ /* PI: the cgroup subsystem that this css is attached to */
struct cgroup_subsys *ss;
/* reference count - access via css_[try]get() and css_put() */
struct percpu_ref refcnt;
- /* the parent css */
+ /* PI: the parent css */
struct cgroup_subsys_state *parent;
- unsigned long flags;
+ /* siblings list anchored at the parent's ->children */
+ struct list_head sibling;
+ struct list_head children;
+
+ /*
+ * PI: Subsys-unique ID. 0 is unused and root is always 1. The
+ * matching css can be looked up using css_from_id().
+ */
+ int id;
+
+ unsigned int flags;
+
+ /*
+ * Monotonically increasing unique serial number which defines a
+ * uniform order among all csses. It's guaranteed that all
+ * ->children lists are in the ascending order of ->serial_nr and
+ * used to allow interrupting and resuming iterations.
+ */
+ u64 serial_nr;
/* percpu_ref killing and RCU release */
struct rcu_head rcu_head;
@@ -70,8 +95,9 @@ struct cgroup_subsys_state {
/* bits in struct cgroup_subsys_state flags field */
enum {
- CSS_ROOT = (1 << 0), /* this CSS is the root of the subsystem */
+ CSS_NO_REF = (1 << 0), /* no reference counting for this css */
CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */
+ CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */
};
/**
@@ -82,8 +108,7 @@ enum {
*/
static inline void css_get(struct cgroup_subsys_state *css)
{
- /* We don't need to reference count the root state */
- if (!(css->flags & CSS_ROOT))
+ if (!(css->flags & CSS_NO_REF))
percpu_ref_get(&css->refcnt);
}
@@ -91,35 +116,51 @@ static inline void css_get(struct cgroup_subsys_state *css)
* css_tryget - try to obtain a reference on the specified css
* @css: target css
*
- * Obtain a reference on @css if it's alive. The caller naturally needs to
- * ensure that @css is accessible but doesn't have to be holding a
+ * Obtain a reference on @css unless it already has reached zero and is
+ * being released. This function doesn't care whether @css is on or
+ * offline. The caller naturally needs to ensure that @css is accessible
+ * but doesn't have to be holding a reference on it - IOW, RCU protected
+ * access is good enough for this function. Returns %true if a reference
+ * count was successfully obtained; %false otherwise.
+ */
+static inline bool css_tryget(struct cgroup_subsys_state *css)
+{
+ if (!(css->flags & CSS_NO_REF))
+ return percpu_ref_tryget(&css->refcnt);
+ return true;
+}
+
+/**
+ * css_tryget_online - try to obtain a reference on the specified css if online
+ * @css: target css
+ *
+ * Obtain a reference on @css if it's online. The caller naturally needs
+ * to ensure that @css is accessible but doesn't have to be holding a
* reference on it - IOW, RCU protected access is good enough for this
* function. Returns %true if a reference count was successfully obtained;
* %false otherwise.
*/
-static inline bool css_tryget(struct cgroup_subsys_state *css)
+static inline bool css_tryget_online(struct cgroup_subsys_state *css)
{
- if (css->flags & CSS_ROOT)
- return true;
- return percpu_ref_tryget_live(&css->refcnt);
+ if (!(css->flags & CSS_NO_REF))
+ return percpu_ref_tryget_live(&css->refcnt);
+ return true;
}
/**
* css_put - put a css reference
* @css: target css
*
- * Put a reference obtained via css_get() and css_tryget().
+ * Put a reference obtained via css_get() and css_tryget_online().
*/
static inline void css_put(struct cgroup_subsys_state *css)
{
- if (!(css->flags & CSS_ROOT))
+ if (!(css->flags & CSS_NO_REF))
percpu_ref_put(&css->refcnt);
}
/* bits in struct cgroup flags field */
enum {
- /* Control Group is dead */
- CGRP_DEAD,
/*
* Control Group has previously had a child cgroup or a task,
* but no longer (only if CGRP_NOTIFY_ON_RELEASE is set)
@@ -133,48 +174,37 @@ enum {
* specified at mount time and thus is implemented here.
*/
CGRP_CPUSET_CLONE_CHILDREN,
- /* see the comment above CGRP_ROOT_SANE_BEHAVIOR for details */
- CGRP_SANE_BEHAVIOR,
};
struct cgroup {
+ /* self css with NULL ->ss, points back to this cgroup */
+ struct cgroup_subsys_state self;
+
unsigned long flags; /* "unsigned long" so bitops work */
/*
* idr allocated in-hierarchy ID.
*
- * The ID of the root cgroup is always 0, and a new cgroup
- * will be assigned with a smallest available ID.
+ * ID 0 is not used, the ID of the root cgroup is always 1, and a
+ * new cgroup will be assigned with a smallest available ID.
*
* Allocating/Removing ID must be protected by cgroup_mutex.
*/
int id;
- /* the number of attached css's */
- int nr_css;
-
- atomic_t refcnt;
-
/*
- * We link our 'sibling' struct into our parent's 'children'.
- * Our children link their 'sibling' into our 'children'.
+ * If this cgroup contains any tasks, it contributes one to
+ * populated_cnt. All children with non-zero popuplated_cnt of
+ * their own contribute one. The count is zero iff there's no task
+ * in this cgroup or its subtree.
*/
- struct list_head sibling; /* my parent's children */
- struct list_head children; /* my children */
+ int populated_cnt;
- struct cgroup *parent; /* my parent */
struct kernfs_node *kn; /* cgroup kernfs entry */
+ struct kernfs_node *populated_kn; /* kn for "cgroup.subtree_populated" */
- /*
- * Monotonically increasing unique serial number which defines a
- * uniform order among all cgroups. It's guaranteed that all
- * ->children lists are in the ascending order of ->serial_nr.
- * It's used to allow interrupting and resuming iterations.
- */
- u64 serial_nr;
-
- /* The bitmask of subsystems attached to this cgroup */
- unsigned long subsys_mask;
+ /* the bitmask of subsystems enabled on the child cgroups */
+ unsigned int child_subsys_mask;
/* Private pointers for each registered subsystem */
struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
@@ -188,6 +218,15 @@ struct cgroup {
struct list_head cset_links;
/*
+ * On the default hierarchy, a css_set for a cgroup with some
+ * susbsys disabled will point to css's which are associated with
+ * the closest ancestor which has the subsys enabled. The
+ * following lists all css_sets which point to this cgroup's css
+ * for the given subsystem.
+ */
+ struct list_head e_csets[CGROUP_SUBSYS_COUNT];
+
+ /*
* Linked list running through all cgroups that can
* potentially be reaped by the release agent. Protected by
* release_list_lock
@@ -201,12 +240,8 @@ struct cgroup {
struct list_head pidlists;
struct mutex pidlist_mutex;
- /* dummy css with NULL ->ss, points back to this cgroup */
- struct cgroup_subsys_state dummy_css;
-
- /* For css percpu_ref killing and RCU-protected deletion */
- struct rcu_head rcu_head;
- struct work_struct destroy_work;
+ /* used to wait for offlining of csses */
+ wait_queue_head_t offline_waitq;
};
#define MAX_CGROUP_ROOT_NAMELEN 64
@@ -250,6 +285,12 @@ enum {
*
* - "cgroup.clone_children" is removed.
*
+ * - "cgroup.subtree_populated" is available. Its value is 0 if
+ * the cgroup and its descendants contain no task; otherwise, 1.
+ * The file also generates kernfs notification which can be
+ * monitored through poll and [di]notify when the value of the
+ * file changes.
+ *
* - If mount is requested with sane_behavior but without any
* subsystem, the default unified hierarchy is mounted.
*
@@ -264,6 +305,8 @@ enum {
* the flag is not created.
*
* - blkcg: blk-throttle becomes properly hierarchical.
+ *
+ * - debug: disallowed on the default hierarchy.
*/
CGRP_ROOT_SANE_BEHAVIOR = (1 << 0),
@@ -282,6 +325,9 @@ enum {
struct cgroup_root {
struct kernfs_root *kf_root;
+ /* The bitmask of subsystems attached to this hierarchy */
+ unsigned int subsys_mask;
+
/* Unique id for this hierarchy. */
int hierarchy_id;
@@ -295,7 +341,7 @@ struct cgroup_root {
struct list_head root_list;
/* Hierarchy-specific flags */
- unsigned long flags;
+ unsigned int flags;
/* IDs for cgroups in this hierarchy */
struct idr cgroup_idr;
@@ -342,6 +388,9 @@ struct css_set {
*/
struct list_head cgrp_links;
+ /* the default cgroup associated with this css_set */
+ struct cgroup *dfl_cgrp;
+
/*
* Set of subsystem states, one for each subsystem. This array is
* immutable after creation apart from the init_css_set during
@@ -366,6 +415,15 @@ struct css_set {
struct cgroup *mg_src_cgrp;
struct css_set *mg_dst_cset;
+ /*
+ * On the default hierarhcy, ->subsys[ssid] may point to a css
+ * attached to an ancestor instead of the cgroup this css_set is
+ * associated with. The following node is anchored at
+ * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
+ * iterate through all css's attached to a given cgroup.
+ */
+ struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
+
/* For RCU-protected deletion */
struct rcu_head rcu_head;
};
@@ -405,8 +463,7 @@ struct cftype {
/*
* The maximum length of string, excluding trailing nul, that can
- * be passed to write_string. If < PAGE_SIZE-1, PAGE_SIZE-1 is
- * assumed.
+ * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
*/
size_t max_write_len;
@@ -453,19 +510,13 @@ struct cftype {
s64 val);
/*
- * write_string() is passed a nul-terminated kernelspace
- * buffer of maximum length determined by max_write_len.
- * Returns 0 or -ve error code.
- */
- int (*write_string)(struct cgroup_subsys_state *css, struct cftype *cft,
- char *buffer);
- /*
- * trigger() callback can be used to get some kick from the
- * userspace, when the actual string written is not important
- * at all. The private field can be used to determine the
- * kick type for multiplexing.
+ * write() is the generic write callback which maps directly to
+ * kernfs write operation and overrides all other operations.
+ * Maximum write size is determined by ->max_write_len. Use
+ * of_css/cft() to access the associated css and cft.
*/
- int (*trigger)(struct cgroup_subsys_state *css, unsigned int event);
+ ssize_t (*write)(struct kernfs_open_file *of,
+ char *buf, size_t nbytes, loff_t off);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
struct lock_class_key lockdep_key;
@@ -504,14 +555,24 @@ static inline ino_t cgroup_ino(struct cgroup *cgrp)
return 0;
}
-static inline struct cftype *seq_cft(struct seq_file *seq)
+/* cft/css accessors for cftype->write() operation */
+static inline struct cftype *of_cft(struct kernfs_open_file *of)
{
- struct kernfs_open_file *of = seq->private;
-
return of->kn->priv;
}
-struct cgroup_subsys_state *seq_css(struct seq_file *seq);
+struct cgroup_subsys_state *of_css(struct kernfs_open_file *of);
+
+/* cft/css accessors for cftype->seq_*() operations */
+static inline struct cftype *seq_cft(struct seq_file *seq)
+{
+ return of_cft(seq->private);
+}
+
+static inline struct cgroup_subsys_state *seq_css(struct seq_file *seq)
+{
+ return of_css(seq->private);
+}
/*
* Name / path handling functions. All are thin wrappers around the kernfs
@@ -612,6 +673,9 @@ struct cgroup_subsys {
/* link to parent, protected by cgroup_lock() */
struct cgroup_root *root;
+ /* idr for css->id */
+ struct idr css_idr;
+
/*
* List of cftypes. Each entry is the first entry of an array
* terminated by zero length name.
@@ -627,19 +691,6 @@ struct cgroup_subsys {
#undef SUBSYS
/**
- * css_parent - find the parent css
- * @css: the target cgroup_subsys_state
- *
- * Return the parent css of @css. This function is guaranteed to return
- * non-NULL parent as long as @css isn't the root.
- */
-static inline
-struct cgroup_subsys_state *css_parent(struct cgroup_subsys_state *css)
-{
- return css->parent;
-}
-
-/**
* task_css_set_check - obtain a task's css_set with extra access conditions
* @task: the task to obtain css_set for
* @__c: extra condition expression to be passed to rcu_dereference_check()
@@ -731,14 +782,14 @@ struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss);
* @pos: the css * to use as the loop cursor
* @parent: css whose children to walk
*
- * Walk @parent's children. Must be called under rcu_read_lock(). A child
- * css which hasn't finished ->css_online() or already has finished
- * ->css_offline() may show up during traversal and it's each subsystem's
- * responsibility to verify that each @pos is alive.
+ * Walk @parent's children. Must be called under rcu_read_lock().
*
- * If a subsystem synchronizes against the parent in its ->css_online() and
- * before starting iterating, a css which finished ->css_online() is
- * guaranteed to be visible in the future iterations.
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal. It's each subsystem's
+ * responsibility to synchronize against on/offlining.
*
* It is allowed to temporarily drop RCU read lock during iteration. The
* caller is responsible for ensuring that @pos remains accessible until
@@ -761,17 +812,16 @@ css_rightmost_descendant(struct cgroup_subsys_state *pos);
* @root: css whose descendants to walk
*
* Walk @root's descendants. @root is included in the iteration and the
- * first node to be visited. Must be called under rcu_read_lock(). A
- * descendant css which hasn't finished ->css_online() or already has
- * finished ->css_offline() may show up during traversal and it's each
- * subsystem's responsibility to verify that each @pos is alive.
+ * first node to be visited. Must be called under rcu_read_lock().
*
- * If a subsystem synchronizes against the parent in its ->css_online() and
- * before starting iterating, and synchronizes against @pos on each
- * iteration, any descendant css which finished ->css_online() is
- * guaranteed to be visible in the future iterations.
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal. It's each subsystem's
+ * responsibility to synchronize against on/offlining.
*
- * In other words, the following guarantees that a descendant can't escape
+ * For example, the following guarantees that a descendant can't escape
* state updates of its ancestors.
*
* my_online(@css)
@@ -827,18 +877,34 @@ css_next_descendant_post(struct cgroup_subsys_state *pos,
*
* Similar to css_for_each_descendant_pre() but performs post-order
* traversal instead. @root is included in the iteration and the last
- * node to be visited. Note that the walk visibility guarantee described
- * in pre-order walk doesn't apply the same to post-order walks.
+ * node to be visited.
+ *
+ * If a subsystem synchronizes ->css_online() and the start of iteration, a
+ * css which finished ->css_online() is guaranteed to be visible in the
+ * future iterations and will stay visible until the last reference is put.
+ * A css which hasn't finished ->css_online() or already finished
+ * ->css_offline() may show up during traversal. It's each subsystem's
+ * responsibility to synchronize against on/offlining.
+ *
+ * Note that the walk visibility guarantee example described in pre-order
+ * walk doesn't apply the same to post-order walks.
*/
#define css_for_each_descendant_post(pos, css) \
for ((pos) = css_next_descendant_post(NULL, (css)); (pos); \
(pos) = css_next_descendant_post((pos), (css)))
+bool css_has_online_children(struct cgroup_subsys_state *css);
+
/* A css_task_iter should be treated as an opaque object */
struct css_task_iter {
- struct cgroup_subsys_state *origin_css;
- struct list_head *cset_link;
- struct list_head *task;
+ struct cgroup_subsys *ss;
+
+ struct list_head *cset_pos;
+ struct list_head *cset_head;
+
+ struct list_head *task_pos;
+ struct list_head *tasks_head;
+ struct list_head *mg_tasks_head;
};
void css_task_iter_start(struct cgroup_subsys_state *css,
@@ -849,8 +915,8 @@ void css_task_iter_end(struct css_task_iter *it);
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *);
int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from);
-struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
- struct cgroup_subsys *ss);
+struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
+ struct cgroup_subsys *ss);
#else /* !CONFIG_CGROUPS */
diff --git a/include/linux/cgroup_subsys.h b/include/linux/cgroup_subsys.h
index 768fe44e19f0..98c4f9b12b03 100644
--- a/include/linux/cgroup_subsys.h
+++ b/include/linux/cgroup_subsys.h
@@ -7,10 +7,6 @@
SUBSYS(cpuset)
#endif
-#if IS_ENABLED(CONFIG_CGROUP_DEBUG)
-SUBSYS(debug)
-#endif
-
#if IS_ENABLED(CONFIG_CGROUP_SCHED)
SUBSYS(cpu)
#endif
@@ -50,6 +46,13 @@ SUBSYS(net_prio)
#if IS_ENABLED(CONFIG_CGROUP_HUGETLB)
SUBSYS(hugetlb)
#endif
+
+/*
+ * The following subsystems are not supported on the default hierarchy.
+ */
+#if IS_ENABLED(CONFIG_CGROUP_DEBUG)
+SUBSYS(debug)
+#endif
/*
* DO NOT ADD ANY SUBSYSTEM WITHOUT EXPLICIT ACKS FROM CGROUP MAINTAINERS.
*/