diff options
Diffstat (limited to 'fs/xfs/xfs_file.c')
-rw-r--r-- | fs/xfs/xfs_file.c | 83 |
1 files changed, 14 insertions, 69 deletions
diff --git a/fs/xfs/xfs_file.c b/fs/xfs/xfs_file.c index 7e5bc872f2b4..78d8b0299592 100644 --- a/fs/xfs/xfs_file.c +++ b/fs/xfs/xfs_file.c @@ -163,7 +163,6 @@ xfs_file_fsync( struct inode *inode = file->f_mapping->host; struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; - struct xfs_trans *tp; int error = 0; int log_flushed = 0; xfs_lsn_t lsn = 0; @@ -194,75 +193,15 @@ xfs_file_fsync( } /* - * We always need to make sure that the required inode state is safe on - * disk. The inode might be clean but we still might need to force the - * log because of committed transactions that haven't hit the disk yet. - * Likewise, there could be unflushed non-transactional changes to the - * inode core that have to go to disk and this requires us to issue - * a synchronous transaction to capture these changes correctly. - * - * This code relies on the assumption that if the i_update_core field - * of the inode is clear and the inode is unpinned then it is clean - * and no action is required. + * All metadata updates are logged, which means that we just have + * to flush the log up to the latest LSN that touched the inode. */ xfs_ilock(ip, XFS_ILOCK_SHARED); - - /* - * First check if the VFS inode is marked dirty. All the dirtying - * of non-transactional updates do not go through mark_inode_dirty*, - * which allows us to distinguish between pure timestamp updates - * and i_size updates which need to be caught for fdatasync. - * After that also check for the dirty state in the XFS inode, which - * might gets cleared when the inode gets written out via the AIL - * or xfs_iflush_cluster. - */ - if (((inode->i_state & I_DIRTY_DATASYNC) || - ((inode->i_state & I_DIRTY_SYNC) && !datasync)) && - ip->i_update_core) { - /* - * Kick off a transaction to log the inode core to get the - * updates. The sync transaction will also force the log. - */ - xfs_iunlock(ip, XFS_ILOCK_SHARED); - tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); - error = xfs_trans_reserve(tp, 0, - XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); - if (error) { - xfs_trans_cancel(tp, 0); - return -error; - } - xfs_ilock(ip, XFS_ILOCK_EXCL); - - /* - * Note - it's possible that we might have pushed ourselves out - * of the way during trans_reserve which would flush the inode. - * But there's no guarantee that the inode buffer has actually - * gone out yet (it's delwri). Plus the buffer could be pinned - * anyway if it's part of an inode in another recent - * transaction. So we play it safe and fire off the - * transaction anyway. - */ - xfs_trans_ijoin(tp, ip, 0); - xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); - error = xfs_trans_commit(tp, 0); - + if (xfs_ipincount(ip)) lsn = ip->i_itemp->ili_last_lsn; - xfs_iunlock(ip, XFS_ILOCK_EXCL); - } else { - /* - * Timestamps/size haven't changed since last inode flush or - * inode transaction commit. That means either nothing got - * written or a transaction committed which caught the updates. - * If the latter happened and the transaction hasn't hit the - * disk yet, the inode will be still be pinned. If it is, - * force the log. - */ - if (xfs_ipincount(ip)) - lsn = ip->i_itemp->ili_last_lsn; - xfs_iunlock(ip, XFS_ILOCK_SHARED); - } + xfs_iunlock(ip, XFS_ILOCK_SHARED); - if (!error && lsn) + if (lsn) error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed); /* @@ -659,9 +598,6 @@ restart: return error; } - if (likely(!(file->f_mode & FMODE_NOCMTIME))) - file_update_time(file); - /* * If the offset is beyond the size of the file, we need to zero any * blocks that fall between the existing EOF and the start of this @@ -685,6 +621,15 @@ restart: return error; /* + * Updating the timestamps will grab the ilock again from + * xfs_fs_dirty_inode, so we have to call it after dropping the + * lock above. Eventually we should look into a way to avoid + * the pointless lock roundtrip. + */ + if (likely(!(file->f_mode & FMODE_NOCMTIME))) + file_update_time(file); + + /* * If we're writing the file then make sure to clear the setuid and * setgid bits if the process is not being run by root. This keeps * people from modifying setuid and setgid binaries. |