summaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/hwmon/abituguru.c584
1 files changed, 360 insertions, 224 deletions
diff --git a/drivers/hwmon/abituguru.c b/drivers/hwmon/abituguru.c
index 3b728e8f169b..a72bf25601a4 100644
--- a/drivers/hwmon/abituguru.c
+++ b/drivers/hwmon/abituguru.c
@@ -1,25 +1,25 @@
/*
- abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
-*/
+ * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
/*
- This driver supports the sensor part of the first and second revision of
- the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
- of lack of specs the CPU/RAM voltage & frequency control is not supported!
-*/
+ * This driver supports the sensor part of the first and second revision of
+ * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
+ * of lack of specs the CPU/RAM voltage & frequency control is not supported!
+ */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
@@ -44,8 +44,10 @@
#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS 16
-/* Warning if you increase one of the 2 MAX defines below to 10 or higher you
- should adjust the belonging _NAMES_LENGTH macro for the 2 digit number! */
+/*
+ * Warning if you increase one of the 2 MAX defines below to 10 or higher you
+ * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
+ */
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS 6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
@@ -70,16 +72,22 @@
#define ABIT_UGURU_IN_SENSOR 0
#define ABIT_UGURU_TEMP_SENSOR 1
#define ABIT_UGURU_NC 2
-/* In many cases we need to wait for the uGuru to reach a certain status, most
- of the time it will reach this status within 30 - 90 ISA reads, and thus we
- can best busy wait. This define gives the total amount of reads to try. */
+/*
+ * In many cases we need to wait for the uGuru to reach a certain status, most
+ * of the time it will reach this status within 30 - 90 ISA reads, and thus we
+ * can best busy wait. This define gives the total amount of reads to try.
+ */
#define ABIT_UGURU_WAIT_TIMEOUT 125
-/* However sometimes older versions of the uGuru seem to be distracted and they
- do not respond for a long time. To handle this we sleep before each of the
- last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries. */
+/*
+ * However sometimes older versions of the uGuru seem to be distracted and they
+ * do not respond for a long time. To handle this we sleep before each of the
+ * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
+ */
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
-/* Normally all expected status in abituguru_ready, are reported after the
- first read, but sometimes not and we need to poll. */
+/*
+ * Normally all expected status in abituguru_ready, are reported after the
+ * first read, but sometimes not and we need to poll.
+ */
#define ABIT_UGURU_READY_TIMEOUT 5
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES 3
@@ -92,17 +100,25 @@
if (level <= verbose) \
printk(KERN_DEBUG ABIT_UGURU_NAME ": " format , ## arg)
/* Macros to help calculate the sysfs_names array length */
-/* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
- in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0 */
+/*
+ * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
+ * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
+ */
#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
-/* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
- temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0 */
+/*
+ * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
+ * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
+ */
#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
-/* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
- fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0 */
+/*
+ * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
+ * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
+ */
#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
-/* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
- pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0 */
+/*
+ * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
+ * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
+ */
#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
@@ -110,10 +126,12 @@
ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
-/* All the macros below are named identical to the oguru and oguru2 programs
- reverse engineered by Olle Sandberg, hence the names might not be 100%
- logical. I could come up with better names, but I prefer keeping the names
- identical so that this driver can be compared with his work more easily. */
+/*
+ * All the macros below are named identical to the oguru and oguru2 programs
+ * reverse engineered by Olle Sandberg, hence the names might not be 100%
+ * logical. I could come up with better names, but I prefer keeping the names
+ * identical so that this driver can be compared with his work more easily.
+ */
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE 0x00E0
/* Used to tell uGuru what to read and to read the actual data */
@@ -130,16 +148,22 @@
/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
-/* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
- correspond to 300-3000 RPM */
+/*
+ * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
+ * correspond to 300-3000 RPM
+ */
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
-/* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
- are temperature trip points. */
+/*
+ * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
+ * are temperature trip points.
+ */
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
-/* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
- special case the minium allowed pwm% setting for this is 30% (77) on
- some MB's this special case is handled in the code! */
+/*
+ * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
+ * special case the minium allowed pwm% setting for this is 30% (77) on
+ * some MB's this special case is handled in the code!
+ */
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
@@ -175,23 +199,29 @@ MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
" 3 + retryable error reporting");
-/* For the Abit uGuru, we need to keep some data in memory.
- The structure is dynamically allocated, at the same time when a new
- abituguru device is allocated. */
+/*
+ * For the Abit uGuru, we need to keep some data in memory.
+ * The structure is dynamically allocated, at the same time when a new
+ * abituguru device is allocated.
+ */
struct abituguru_data {
struct device *hwmon_dev; /* hwmon registered device */
struct mutex update_lock; /* protect access to data and uGuru */
unsigned long last_updated; /* In jiffies */
unsigned short addr; /* uguru base address */
char uguru_ready; /* is the uguru in ready state? */
- unsigned char update_timeouts; /* number of update timeouts since last
- successful update */
-
- /* The sysfs attr and their names are generated automatically, for bank1
- we cannot use a predefined array because we don't know beforehand
- of a sensor is a volt or a temp sensor, for bank2 and the pwms its
- easier todo things the same way. For in sensors we have 9 (temp 7)
- sysfs entries per sensor, for bank2 and pwms 6. */
+ unsigned char update_timeouts; /*
+ * number of update timeouts since last
+ * successful update
+ */
+
+ /*
+ * The sysfs attr and their names are generated automatically, for bank1
+ * we cannot use a predefined array because we don't know beforehand
+ * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
+ * easier todo things the same way. For in sensors we have 9 (temp 7)
+ * sysfs entries per sensor, for bank2 and pwms 6.
+ */
struct sensor_device_attribute_2 sysfs_attr[
ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
@@ -203,11 +233,15 @@ struct abituguru_data {
u8 bank1_sensors[2];
u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
- /* This array holds 3 entries per sensor for the bank 1 sensor settings
- (flags, min, max for voltage / flags, warn, shutdown for temp). */
+ /*
+ * This array holds 3 entries per sensor for the bank 1 sensor settings
+ * (flags, min, max for voltage / flags, warn, shutdown for temp).
+ */
u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
- /* Maximum value for each sensor used for scaling in mV/millidegrees
- Celsius. */
+ /*
+ * Maximum value for each sensor used for scaling in mV/millidegrees
+ * Celsius.
+ */
int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
@@ -236,8 +270,10 @@ static int abituguru_wait(struct abituguru_data *data, u8 state)
timeout--;
if (timeout == 0)
return -EBUSY;
- /* sleep a bit before our last few tries, see the comment on
- this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined. */
+ /*
+ * sleep a bit before our last few tries, see the comment on
+ * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
+ */
if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
msleep(0);
}
@@ -273,8 +309,10 @@ static int abituguru_ready(struct abituguru_data *data)
msleep(0);
}
- /* After this the ABIT_UGURU_DATA port should contain
- ABIT_UGURU_STATUS_INPUT */
+ /*
+ * After this the ABIT_UGURU_DATA port should contain
+ * ABIT_UGURU_STATUS_INPUT
+ */
timeout = ABIT_UGURU_READY_TIMEOUT;
while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
timeout--;
@@ -290,27 +328,35 @@ static int abituguru_ready(struct abituguru_data *data)
return 0;
}
-/* Send the bank and then sensor address to the uGuru for the next read/write
- cycle. This function gets called as the first part of a read/write by
- abituguru_read and abituguru_write. This function should never be
- called by any other function. */
+/*
+ * Send the bank and then sensor address to the uGuru for the next read/write
+ * cycle. This function gets called as the first part of a read/write by
+ * abituguru_read and abituguru_write. This function should never be
+ * called by any other function.
+ */
static int abituguru_send_address(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, int retries)
{
- /* assume the caller does error handling itself if it has not requested
- any retries, and thus be quiet. */
+ /*
+ * assume the caller does error handling itself if it has not requested
+ * any retries, and thus be quiet.
+ */
int report_errors = retries;
for (;;) {
- /* Make sure the uguru is ready and then send the bank address,
- after this the uguru is no longer "ready". */
+ /*
+ * Make sure the uguru is ready and then send the bank address,
+ * after this the uguru is no longer "ready".
+ */
if (abituguru_ready(data) != 0)
return -EIO;
outb(bank_addr, data->addr + ABIT_UGURU_DATA);
data->uguru_ready = 0;
- /* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
- and send the sensor addr */
+ /*
+ * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
+ * and send the sensor addr
+ */
if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
if (retries) {
ABIT_UGURU_DEBUG(3, "timeout exceeded "
@@ -332,8 +378,10 @@ static int abituguru_send_address(struct abituguru_data *data,
}
}
-/* Read count bytes from sensor sensor_addr in bank bank_addr and store the
- result in buf, retry the send address part of the read retries times. */
+/*
+ * Read count bytes from sensor sensor_addr in bank bank_addr and store the
+ * result in buf, retry the send address part of the read retries times.
+ */
static int abituguru_read(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
@@ -362,13 +410,17 @@ static int abituguru_read(struct abituguru_data *data,
return i;
}
-/* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
- address part of the write is always retried ABIT_UGURU_MAX_RETRIES times. */
+/*
+ * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
+ * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
+ */
static int abituguru_write(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
- /* We use the ready timeout as we have to wait for 0xAC just like the
- ready function */
+ /*
+ * We use the ready timeout as we have to wait for 0xAC just like the
+ * ready function
+ */
int i, timeout = ABIT_UGURU_READY_TIMEOUT;
/* Send the address */
@@ -388,9 +440,11 @@ static int abituguru_write(struct abituguru_data *data,
outb(buf[i], data->addr + ABIT_UGURU_CMD);
}
- /* Now we need to wait till the chip is ready to be read again,
- so that we can read 0xAC as confirmation that our write has
- succeeded. */
+ /*
+ * Now we need to wait till the chip is ready to be read again,
+ * so that we can read 0xAC as confirmation that our write has
+ * succeeded.
+ */
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
@@ -416,12 +470,14 @@ static int abituguru_write(struct abituguru_data *data,
return i;
}
-/* Detect sensor type. Temp and Volt sensors are enabled with
- different masks and will ignore enable masks not meant for them.
- This enables us to test what kind of sensor we're dealing with.
- By setting the alarm thresholds so that we will always get an
- alarm for sensor type X and then enabling the sensor as sensor type
- X, if we then get an alarm it is a sensor of type X. */
+/*
+ * Detect sensor type. Temp and Volt sensors are enabled with
+ * different masks and will ignore enable masks not meant for them.
+ * This enables us to test what kind of sensor we're dealing with.
+ * By setting the alarm thresholds so that we will always get an
+ * alarm for sensor type X and then enabling the sensor as sensor type
+ * X, if we then get an alarm it is a sensor of type X.
+ */
static int __devinit
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
u8 sensor_addr)
@@ -448,16 +504,20 @@ abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
"unable to determine sensor type, skipping sensor\n",
(int)sensor_addr, (int)val);
- /* assume no sensor is there for sensors for which we can't
- determine the sensor type because their reading is too close
- to their limits, this usually means no sensor is there. */
+ /*
+ * assume no sensor is there for sensors for which we can't
+ * determine the sensor type because their reading is too close
+ * to their limits, this usually means no sensor is there.
+ */
return ABIT_UGURU_NC;
}
ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
- /* Volt sensor test, enable volt low alarm, set min value ridicously
- high, or vica versa if the reading is very high. If its a volt
- sensor this should always give us an alarm. */
+ /*
+ * Volt sensor test, enable volt low alarm, set min value ridicously
+ * high, or vica versa if the reading is very high. If its a volt
+ * sensor this should always give us an alarm.
+ */
if (val <= 240u) {
buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
buf[1] = 245;
@@ -473,8 +533,10 @@ abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
- /* Now we need 20 ms to give the uguru time to read the sensors
- and raise a voltage alarm */
+ /*
+ * Now we need 20 ms to give the uguru time to read the sensors
+ * and raise a voltage alarm
+ */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/50);
/* Check for alarm and check the alarm is a volt low alarm. */
@@ -497,17 +559,21 @@ abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
"test\n");
- /* Temp sensor test, enable sensor as a temp sensor, set beep value
- ridicously low (but not too low, otherwise uguru ignores it).
- If its a temp sensor this should always give us an alarm. */
+ /*
+ * Temp sensor test, enable sensor as a temp sensor, set beep value
+ * ridicously low (but not too low, otherwise uguru ignores it).
+ * If its a temp sensor this should always give us an alarm.
+ */
buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
buf[1] = 5;
buf[2] = 10;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
- /* Now we need 50 ms to give the uguru time to read the sensors
- and raise a temp alarm */
+ /*
+ * Now we need 50 ms to give the uguru time to read the sensors
+ * and raise a temp alarm
+ */
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
/* Check for alarm and check the alarm is a temp high alarm. */
@@ -532,9 +598,11 @@ abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
ret = ABIT_UGURU_NC;
abituguru_detect_bank1_sensor_type_exit:
- /* Restore original settings, failing here is really BAD, it has been
- reported that some BIOS-es hang when entering the uGuru menu with
- invalid settings present in the uGuru, so we try this 3 times. */
+ /*
+ * Restore original settings, failing here is really BAD, it has been
+ * reported that some BIOS-es hang when entering the uGuru menu with
+ * invalid settings present in the uGuru, so we try this 3 times.
+ */
for (i = 0; i < 3; i++)
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
sensor_addr, data->bank1_settings[sensor_addr],
@@ -548,23 +616,25 @@ abituguru_detect_bank1_sensor_type_exit:
return ret;
}
-/* These functions try to find out how many sensors there are in bank2 and how
- many pwms there are. The purpose of this is to make sure that we don't give
- the user the possibility to change settings for non-existent sensors / pwm.
- The uGuru will happily read / write whatever memory happens to be after the
- memory storing the PWM settings when reading/writing to a PWM which is not
- there. Notice even if we detect a PWM which doesn't exist we normally won't
- write to it, unless the user tries to change the settings.
-
- Although the uGuru allows reading (settings) from non existing bank2
- sensors, my version of the uGuru does seem to stop writing to them, the
- write function above aborts in this case with:
- "CMD reg does not hold 0xAC after write"
-
- Notice these 2 tests are non destructive iow read-only tests, otherwise
- they would defeat their purpose. Although for the bank2_sensors detection a
- read/write test would be feasible because of the reaction above, I've
- however opted to stay on the safe side. */
+/*
+ * These functions try to find out how many sensors there are in bank2 and how
+ * many pwms there are. The purpose of this is to make sure that we don't give
+ * the user the possibility to change settings for non-existent sensors / pwm.
+ * The uGuru will happily read / write whatever memory happens to be after the
+ * memory storing the PWM settings when reading/writing to a PWM which is not
+ * there. Notice even if we detect a PWM which doesn't exist we normally won't
+ * write to it, unless the user tries to change the settings.
+ *
+ * Although the uGuru allows reading (settings) from non existing bank2
+ * sensors, my version of the uGuru does seem to stop writing to them, the
+ * write function above aborts in this case with:
+ * "CMD reg does not hold 0xAC after write"
+ *
+ * Notice these 2 tests are non destructive iow read-only tests, otherwise
+ * they would defeat their purpose. Although for the bank2_sensors detection a
+ * read/write test would be feasible because of the reaction above, I've
+ * however opted to stay on the safe side.
+ */
static void __devinit
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
@@ -580,12 +650,14 @@ abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
- /* 0x89 are the known used bits:
- -0x80 enable shutdown
- -0x08 enable beep
- -0x01 enable alarm
- All other bits should be 0, but on some motherboards
- 0x40 (bit 6) is also high for some of the fans?? */
+ /*
+ * 0x89 are the known used bits:
+ * -0x80 enable shutdown
+ * -0x08 enable beep
+ * -0x01 enable alarm
+ * All other bits should be 0, but on some motherboards
+ * 0x40 (bit 6) is also high for some of the fans??
+ */
if (data->bank2_settings[i][0] & ~0xC9) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: settings[0] = %02X\n",
@@ -633,9 +705,11 @@ abituguru_detect_no_pwms(struct abituguru_data *data)
ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
- /* 0x80 is the enable bit and the low
- nibble is which temp sensor to use,
- the other bits should be 0 */
+ /*
+ * 0x80 is the enable bit and the low
+ * nibble is which temp sensor to use,
+ * the other bits should be 0
+ */
if (data->pwm_settings[i][0] & ~0x8F) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: settings[0] = %02X\n",
@@ -643,8 +717,10 @@ abituguru_detect_no_pwms(struct abituguru_data *data)
break;
}
- /* the low nibble must correspond to one of the temp sensors
- we've found */
+ /*
+ * the low nibble must correspond to one of the temp sensors
+ * we've found
+ */
for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
j++) {
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
@@ -711,9 +787,11 @@ abituguru_detect_no_pwms_exit:
ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}
-/* Following are the sysfs callback functions. These functions expect:
- sensor_device_attribute_2->index: sensor address/offset in the bank
- sensor_device_attribute_2->nr: register offset, bitmask or NA. */
+/*
+ * Following are the sysfs callback functions. These functions expect:
+ * sensor_device_attribute_2->index: sensor address/offset in the bank
+ * sensor_device_attribute_2->nr: register offset, bitmask or NA.
+ */
static struct abituguru_data *abituguru_update_device(struct device *dev);
static ssize_t show_bank1_value(struct device *dev,
@@ -763,10 +841,18 @@ static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- u8 val = (simple_strtoul(buf, NULL, 10) * 255 +
- data->bank1_max_value[attr->index]/2) /
+ unsigned long val;
+ ssize_t ret;
+
+ ret = kstrtoul(buf, 10, &val);
+ if (ret)
+ return ret;
+
+ ret = count;
+ val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
data->bank1_max_value[attr->index];
- ssize_t ret = count;
+ if (val > 255)
+ return -EINVAL;
mutex_lock(&data->update_lock);
if (data->bank1_settings[attr->index][attr->nr] != val) {
@@ -788,13 +874,19 @@ static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- u8 val = (simple_strtoul(buf, NULL, 10)*255 + ABIT_UGURU_FAN_MAX/2) /
- ABIT_UGURU_FAN_MAX;
- ssize_t ret = count;
+ unsigned long val;
+ ssize_t ret;
+
+ ret = kstrtoul(buf, 10, &val);
+ if (ret)
+ return ret;
+
+ ret = count;
+ val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
/* this check can be done before taking the lock */
- if ((val < abituguru_bank2_min_threshold) ||
- (val > abituguru_bank2_max_threshold))
+ if (val < abituguru_bank2_min_threshold ||
+ val > abituguru_bank2_max_threshold)
return -EINVAL;
mutex_lock(&data->update_lock);
@@ -819,11 +911,13 @@ static ssize_t show_bank1_alarm(struct device *dev,
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
- /* See if the alarm bit for this sensor is set, and if the
- alarm matches the type of alarm we're looking for (for volt
- it can be either low or high). The type is stored in a few
- readonly bits in the settings part of the relevant sensor.
- The bitmask of the type is passed to us in attr->nr. */
+ /*
+ * See if the alarm bit for this sensor is set, and if the
+ * alarm matches the type of alarm we're looking for (for volt
+ * it can be either low or high). The type is stored in a few
+ * readonly bits in the settings part of the relevant sensor.
+ * The bitmask of the type is passed to us in attr->nr.
+ */
if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
(data->bank1_settings[attr->index][0] & attr->nr))
return sprintf(buf, "1\n");
@@ -871,10 +965,15 @@ static ssize_t store_bank1_mask(struct device *dev,
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- int mask = simple_strtoul(buf, NULL, 10);
- ssize_t ret = count;
+ ssize_t ret;
u8 orig_val;
+ unsigned long mask;
+
+ ret = kstrtoul(buf, 10, &mask);
+ if (ret)
+ return ret;
+ ret = count;
mutex_lock(&data->update_lock);
orig_val = data->bank1_settings[attr->index][0];
@@ -899,10 +998,15 @@ static ssize_t store_bank2_mask(struct device *dev,
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- int mask = simple_strtoul(buf, NULL, 10);
- ssize_t ret = count;
+ ssize_t ret;
u8 orig_val;
+ unsigned long mask;
+ ret = kstrtoul(buf, 10, &mask);
+ if (ret)
+ return ret;
+
+ ret = count;
mutex_lock(&data->update_lock);
orig_val = data->bank2_settings[attr->index][0];
@@ -937,10 +1041,17 @@ static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- u8 min, val = (simple_strtoul(buf, NULL, 10) +
- abituguru_pwm_settings_multiplier[attr->nr]/2) /
- abituguru_pwm_settings_multiplier[attr->nr];
- ssize_t ret = count;
+ u8 min;
+ unsigned long val;
+ ssize_t ret;
+
+ ret = kstrtoul(buf, 10, &val);
+ if (ret)
+ return ret;
+
+ ret = count;
+ val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
+ abituguru_pwm_settings_multiplier[attr->nr];
/* special case pwm1 min pwm% */
if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
@@ -949,7 +1060,7 @@ static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
min = abituguru_pwm_min[attr->nr];
/* this check can be done before taking the lock */
- if ((val < min) || (val > abituguru_pwm_max[attr->nr]))
+ if (val < min || val > abituguru_pwm_max[attr->nr])
return -EINVAL;
mutex_lock(&data->update_lock);
@@ -981,8 +1092,10 @@ static ssize_t show_pwm_sensor(struct device *dev,
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
int i;
- /* We need to walk to the temp sensor addresses to find what
- the userspace id of the configured temp sensor is. */
+ /*
+ * We need to walk to the temp sensor addresses to find what
+ * the userspace id of the configured temp sensor is.
+ */
for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
(data->pwm_settings[attr->index][0] & 0x0F))
@@ -996,27 +1109,32 @@ static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- unsigned long val = simple_strtoul(buf, NULL, 10) - 1;
- ssize_t ret = count;
+ ssize_t ret;
+ unsigned long val;
+ u8 orig_val;
+ u8 address;
+
+ ret = kstrtoul(buf, 10, &val);
+ if (ret)
+ return ret;
+ if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
+ return -EINVAL;
+
+ val -= 1;
+ ret = count;
mutex_lock(&data->update_lock);
- if (val < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
- u8 orig_val = data->pwm_settings[attr->index][0];
- u8 address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
- data->pwm_settings[attr->index][0] &= 0xF0;
- data->pwm_settings[attr->index][0] |= address;
- if (data->pwm_settings[attr->index][0] != orig_val) {
- if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
- attr->index,
- data->pwm_settings[attr->index],
- 5) < 1) {
- data->pwm_settings[attr->index][0] = orig_val;
- ret = -EIO;
- }
+ orig_val = data->pwm_settings[attr->index][0];
+ address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
+ data->pwm_settings[attr->index][0] &= 0xF0;
+ data->pwm_settings[attr->index][0] |= address;
+ if (data->pwm_settings[attr->index][0] != orig_val) {
+ if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
+ data->pwm_settings[attr->index], 5) < 1) {
+ data->pwm_settings[attr->index][0] = orig_val;
+ ret = -EIO;
}
}
- else
- ret = -EINVAL;
mutex_unlock(&data->update_lock);
return ret;
}
@@ -1037,22 +1155,27 @@ static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
- u8 orig_val, user_val = simple_strtoul(buf, NULL, 10);
- ssize_t ret = count;
+ u8 orig_val;
+ ssize_t ret;
+ unsigned long user_val;
+
+ ret = kstrtoul(buf, 10, &user_val);
+ if (ret)
+ return ret;
+ ret = count;
mutex_lock(&data->update_lock);
orig_val = data->pwm_settings[attr->index][0];
switch (user_val) {
- case 0:
- data->pwm_settings[attr->index][0] &=
- ~ABIT_UGURU_FAN_PWM_ENABLE;
- break;
- case 2:
- data->pwm_settings[attr->index][0] |=
- ABIT_UGURU_FAN_PWM_ENABLE;
- break;
- default:
- ret = -EINVAL;
+ case 0:
+ data->pwm_settings[attr->index][0] &=
+ ~ABIT_UGURU_FAN_PWM_ENABLE;
+ break;
+ case 2:
+ data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
+ break;
+ default:
+ ret = -EINVAL;
}
if ((data->pwm_settings[attr->index][0] != orig_val) &&
(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
@@ -1147,13 +1270,16 @@ static int __devinit abituguru_probe(struct platform_device *pdev)
int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
char *sysfs_filename;
- /* El weirdo probe order, to keep the sysfs order identical to the
- BIOS and window-appliction listing order. */
+ /*
+ * El weirdo probe order, to keep the sysfs order identical to the
+ * BIOS and window-appliction listing order.
+ */
const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
- if (!(data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL)))
+ data = kzalloc(sizeof(struct abituguru_data), GFP_KERNEL);
+ if (!data)
return -ENOMEM;
data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
@@ -1164,9 +1290,11 @@ static int __devinit abituguru_probe(struct platform_device *pdev)
if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
data->uguru_ready = 1;
- /* Completely read the uGuru this has 2 purposes:
- - testread / see if one really is there.
- - make an in memory copy of all the uguru settings for future use. */
+ /*
+ * Completely read the uGuru this has 2 purposes:
+ * - testread / see if one really is there.
+ * - make an in memory copy of all the uguru settings for future use.
+ */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_probe_error;
@@ -1181,11 +1309,13 @@ static int __devinit abituguru_probe(struct platform_device *pdev)
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_probe_error;
}
- /* Note: We don't know how many bank2 sensors / pwms there really are,
- but in order to "detect" this we need to read the maximum amount
- anyways. If we read sensors/pwms not there we'll just read crap
- this can't hurt. We need the detection because we don't want
- unwanted writes, which will hurt! */
+ /*
+ * Note: We don't know how many bank2 sensors / pwms there really are,
+ * but in order to "detect" this we need to read the maximum amount
+ * anyways. If we read sensors/pwms not there we'll just read crap
+ * this can't hurt. We need the detection because we don't want
+ * unwanted writes, which will hurt!
+ */
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
&data->bank2_value[i], 1,
@@ -1332,24 +1462,26 @@ static struct abituguru_data *abituguru_update_device(struct device *dev)
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ)) {
success = 0;
- if ((err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
- data->alarms, 3, 0)) != 3)
+ err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
+ data->alarms, 3, 0);
+ if (err != 3)
goto LEAVE_UPDATE;
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
- if ((err = abituguru_read(data,
- ABIT_UGURU_SENSOR_BANK1, i,
- &data->bank1_value[i], 1, 0)) != 1)
+ err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
+ i, &data->bank1_value[i], 1, 0);
+ if (err != 1)
goto LEAVE_UPDATE;
- if ((err = abituguru_read(data,
- ABIT_UGURU_SENSOR_BANK1 + 1, i,
- data->bank1_settings[i], 3, 0)) != 3)
+ err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
+ i, data->bank1_settings[i], 3, 0);
+ if (err != 3)
goto LEAVE_UPDATE;
}
- for (i = 0; i < data->bank2_sensors; i++)
- if ((err = abituguru_read(data,
- ABIT_UGURU_SENSOR_BANK2, i,
- &data->bank2_value[i], 1, 0)) != 1)
+ for (i = 0; i < data->bank2_sensors; i++) {
+ err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
+ &data->bank2_value[i], 1, 0);
+ if (err != 1)
goto LEAVE_UPDATE;
+ }
/* success! */
success = 1;
data->update_timeouts = 0;
@@ -1385,8 +1517,10 @@ LEAVE_UPDATE:
static int abituguru_suspend(struct platform_device *pdev, pm_message_t state)
{
struct abituguru_data *data = platform_get_drvdata(pdev);
- /* make sure all communications with the uguru are done and no new
- ones are started */
+ /*
+ * make sure all communications with the uguru are done and no new
+ * ones are started
+ */
mutex_lock(&data->update_lock);
return 0;
}
@@ -1418,12 +1552,14 @@ static struct platform_driver abituguru_driver = {
static int __init abituguru_detect(void)
{
- /* See if there is an uguru there. After a reboot uGuru will hold 0x00
- at DATA and 0xAC, when this driver has already been loaded once
- DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
- scenario but some will hold 0x00.
- Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
- after reading CMD first, so CMD must be read first! */
+ /*
+ * See if there is an uguru there. After a reboot uGuru will hold 0x00
+ * at DATA and 0xAC, when this driver has already been loaded once
+ * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
+ * scenario but some will hold 0x00.
+ * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
+ * after reading CMD first, so CMD must be read first!
+ */
u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
if (((data_val == 0x00) || (data_val == 0x08)) &&