summaryrefslogtreecommitdiff
path: root/drivers/mtd
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/Kconfig69
-rw-r--r--drivers/mtd/Makefile6
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0001.c10
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0002.c455
-rw-r--r--drivers/mtd/chips/cfi_cmdset_0020.c8
-rw-r--r--drivers/mtd/chips/cfi_util.c2
-rw-r--r--drivers/mtd/chips/gen_probe.c2
-rw-r--r--drivers/mtd/devices/Kconfig20
-rw-r--r--drivers/mtd/devices/Makefile1
-rw-r--r--drivers/mtd/devices/m25p80.c347
-rw-r--r--drivers/mtd/devices/mchp23k256.c20
-rw-r--r--drivers/mtd/devices/phram.c2
-rw-r--r--drivers/mtd/devices/pmc551.c9
-rw-r--r--drivers/mtd/devices/spear_smi.c42
-rw-r--r--drivers/mtd/devices/st_spi_fsm.c1
-rw-r--r--drivers/mtd/hyperbus/Kconfig25
-rw-r--r--drivers/mtd/hyperbus/Makefile4
-rw-r--r--drivers/mtd/hyperbus/hbmc-am654.c147
-rw-r--r--drivers/mtd/hyperbus/hyperbus-core.c153
-rw-r--r--drivers/mtd/maps/Kconfig11
-rw-r--r--drivers/mtd/maps/Makefile1
-rw-r--r--drivers/mtd/maps/l440gx.c2
-rw-r--r--drivers/mtd/maps/physmap-core.c5
-rw-r--r--drivers/mtd/maps/physmap-ixp4xx.c132
-rw-r--r--drivers/mtd/maps/physmap-ixp4xx.h17
-rw-r--r--drivers/mtd/maps/pismo.c3
-rw-r--r--drivers/mtd/maps/pxa2xx-flash.c3
-rw-r--r--drivers/mtd/maps/sa1100-flash.c1
-rw-r--r--drivers/mtd/mtdchar.c10
-rw-r--r--drivers/mtd/mtdconcat.c37
-rw-r--r--drivers/mtd/mtdcore.c77
-rw-r--r--drivers/mtd/mtdcore.h1
-rw-r--r--drivers/mtd/mtdsuper.c174
-rw-r--r--drivers/mtd/mtdswap.c8
-rw-r--r--drivers/mtd/nand/onenand/onenand_base.c9
-rw-r--r--drivers/mtd/nand/raw/Kconfig21
-rw-r--r--drivers/mtd/nand/raw/Makefile3
-rw-r--r--drivers/mtd/nand/raw/au1550nd.c5
-rw-r--r--drivers/mtd/nand/raw/brcmnand/brcmnand.c289
-rw-r--r--drivers/mtd/nand/raw/cadence-nand-controller.c3030
-rw-r--r--drivers/mtd/nand/raw/denali_dt.c59
-rw-r--r--drivers/mtd/nand/raw/fsmc_nand.c19
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/Makefile1
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c934
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c1709
-rw-r--r--drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h64
-rw-r--r--drivers/mtd/nand/raw/hisi504_nand.c4
-rw-r--r--drivers/mtd/nand/raw/ingenic/Kconfig7
-rw-r--r--drivers/mtd/nand/raw/ingenic/Makefile1
-rw-r--r--drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c5
-rw-r--r--drivers/mtd/nand/raw/ingenic/jz4740_nand.c536
-rw-r--r--drivers/mtd/nand/raw/lpc32xx_mlc.c1
-rw-r--r--drivers/mtd/nand/raw/marvell_nand.c4
-rw-r--r--drivers/mtd/nand/raw/meson_nand.c5
-rw-r--r--drivers/mtd/nand/raw/mtk_ecc.c8
-rw-r--r--drivers/mtd/nand/raw/mtk_ecc.h2
-rw-r--r--drivers/mtd/nand/raw/mtk_nand.c89
-rw-r--r--drivers/mtd/nand/raw/mxic_nand.c580
-rw-r--r--drivers/mtd/nand/raw/nand_base.c90
-rw-r--r--drivers/mtd/nand/raw/nand_bbt.c10
-rw-r--r--drivers/mtd/nand/raw/nand_bch.c3
-rw-r--r--drivers/mtd/nand/raw/nand_ecc.c2
-rw-r--r--drivers/mtd/nand/raw/nand_macronix.c45
-rw-r--r--drivers/mtd/nand/raw/nand_micron.c18
-rw-r--r--drivers/mtd/nand/raw/nuc900_nand.c304
-rw-r--r--drivers/mtd/nand/raw/omap2.c10
-rw-r--r--drivers/mtd/nand/raw/oxnas_nand.c8
-rw-r--r--drivers/mtd/nand/raw/r852.c4
-rw-r--r--drivers/mtd/nand/raw/sh_flctl.c4
-rw-r--r--drivers/mtd/nand/raw/stm32_fmc2_nand.c108
-rw-r--r--drivers/mtd/nand/raw/sunxi_nand.c4
-rw-r--r--drivers/mtd/nand/raw/tango_nand.c1
-rw-r--r--drivers/mtd/nand/raw/vf610_nfc.c1
-rw-r--r--drivers/mtd/nand/spi/Makefile2
-rw-r--r--drivers/mtd/nand/spi/core.c5
-rw-r--r--drivers/mtd/nand/spi/gigadevice.c79
-rw-r--r--drivers/mtd/nand/spi/paragon.c147
-rw-r--r--drivers/mtd/parsers/Kconfig68
-rw-r--r--drivers/mtd/parsers/Makefile5
-rw-r--r--drivers/mtd/parsers/afs.c3
-rw-r--r--drivers/mtd/parsers/ar7part.c (renamed from drivers/mtd/ar7part.c)0
-rw-r--r--drivers/mtd/parsers/bcm47xxpart.c (renamed from drivers/mtd/bcm47xxpart.c)0
-rw-r--r--drivers/mtd/parsers/bcm63xxpart.c (renamed from drivers/mtd/bcm63xxpart.c)0
-rw-r--r--drivers/mtd/parsers/cmdlinepart.c (renamed from drivers/mtd/cmdlinepart.c)0
-rw-r--r--drivers/mtd/parsers/ofpart.c (renamed from drivers/mtd/ofpart.c)0
-rw-r--r--drivers/mtd/sm_ftl.c5
-rw-r--r--drivers/mtd/spi-nor/Kconfig9
-rw-r--r--drivers/mtd/spi-nor/Makefile1
-rw-r--r--drivers/mtd/spi-nor/aspeed-smc.c27
-rw-r--r--drivers/mtd/spi-nor/cadence-quadspi.c98
-rw-r--r--drivers/mtd/spi-nor/hisi-sfc.c24
-rw-r--r--drivers/mtd/spi-nor/intel-spi-pci.c8
-rw-r--r--drivers/mtd/spi-nor/intel-spi.c60
-rw-r--r--drivers/mtd/spi-nor/mtk-quadspi.c25
-rw-r--r--drivers/mtd/spi-nor/nxp-spifi.c23
-rw-r--r--drivers/mtd/spi-nor/spi-nor.c2923
-rw-r--r--drivers/mtd/spi-nor/stm32-quadspi.c707
-rw-r--r--drivers/mtd/ubi/block.c43
-rw-r--r--drivers/mtd/ubi/debug.c131
-rw-r--r--drivers/mtd/ubi/fastmap-wl.c6
-rw-r--r--drivers/mtd/ubi/wl.c6
101 files changed, 8938 insertions, 5269 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig
index fb31a7f649a3..42d401ea60ee 100644
--- a/drivers/mtd/Kconfig
+++ b/drivers/mtd/Kconfig
@@ -23,73 +23,6 @@ config MTD_TESTS
WARNING: some of the tests will ERASE entire MTD device which they
test. Do not use these tests unless you really know what you do.
-config MTD_CMDLINE_PARTS
- tristate "Command line partition table parsing"
- depends on MTD
- help
- Allow generic configuration of the MTD partition tables via the kernel
- command line. Multiple flash resources are supported for hardware where
- different kinds of flash memory are available.
-
- You will still need the parsing functions to be called by the driver
- for your particular device. It won't happen automatically. The
- SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
- example.
-
- The format for the command line is as follows:
-
- mtdparts=<mtddef>[;<mtddef]
- <mtddef> := <mtd-id>:<partdef>[,<partdef>]
- <partdef> := <size>[@offset][<name>][ro]
- <mtd-id> := unique id used in mapping driver/device
- <size> := standard linux memsize OR "-" to denote all
- remaining space
- <name> := (NAME)
-
- Due to the way Linux handles the command line, no spaces are
- allowed in the partition definition, including mtd id's and partition
- names.
-
- Examples:
-
- 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
- mtdparts=sa1100:-
-
- Same flash, but 2 named partitions, the first one being read-only:
- mtdparts=sa1100:256k(ARMboot)ro,-(root)
-
- If unsure, say 'N'.
-
-config MTD_OF_PARTS
- tristate "OpenFirmware partitioning information support"
- default y
- depends on OF
- help
- This provides a partition parsing function which derives
- the partition map from the children of the flash node,
- as described in Documentation/devicetree/bindings/mtd/partition.txt.
-
-config MTD_AR7_PARTS
- tristate "TI AR7 partitioning support"
- help
- TI AR7 partitioning support
-
-config MTD_BCM63XX_PARTS
- tristate "BCM63XX CFE partitioning support"
- depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST
- select CRC32
- select MTD_PARSER_IMAGETAG
- help
- This provides partition parsing for BCM63xx devices with CFE
- bootloaders.
-
-config MTD_BCM47XX_PARTS
- tristate "BCM47XX partitioning support"
- depends on BCM47XX || ARCH_BCM_5301X
- help
- This provides partitions parser for devices based on BCM47xx
- boards.
-
menu "Partition parsers"
source "drivers/mtd/parsers/Kconfig"
endmenu
@@ -274,4 +207,6 @@ source "drivers/mtd/spi-nor/Kconfig"
source "drivers/mtd/ubi/Kconfig"
+source "drivers/mtd/hyperbus/Kconfig"
+
endif # MTD
diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile
index 806287e80e84..56cc60ccc477 100644
--- a/drivers/mtd/Makefile
+++ b/drivers/mtd/Makefile
@@ -7,11 +7,6 @@
obj-$(CONFIG_MTD) += mtd.o
mtd-y := mtdcore.o mtdsuper.o mtdconcat.o mtdpart.o mtdchar.o
-obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o
-obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o
-obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o
-obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o
-obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o
obj-y += parsers/
# 'Users' - code which presents functionality to userspace.
@@ -34,3 +29,4 @@ obj-y += chips/ lpddr/ maps/ devices/ nand/ tests/
obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
obj-$(CONFIG_MTD_UBI) += ubi/
+obj-$(CONFIG_MTD_HYPERBUS) += hyperbus/
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c
index 79a53cb8507b..00a79489067c 100644
--- a/drivers/mtd/chips/cfi_cmdset_0001.c
+++ b/drivers/mtd/chips/cfi_cmdset_0001.c
@@ -1353,7 +1353,7 @@ static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t a
{
unsigned long cmd_addr;
struct cfi_private *cfi = map->fldrv_priv;
- int ret = 0;
+ int ret;
adr += chip->start;
@@ -1383,7 +1383,7 @@ static int cfi_intelext_point(struct mtd_info *mtd, loff_t from, size_t len,
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs, last_end = 0;
int chipnum;
- int ret = 0;
+ int ret;
if (!map->virt)
return -EINVAL;
@@ -1550,7 +1550,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
{
struct cfi_private *cfi = map->fldrv_priv;
map_word status, write_cmd;
- int ret=0;
+ int ret;
adr += chip->start;
@@ -1624,7 +1624,7 @@ static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t le
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
- int ret = 0;
+ int ret;
int chipnum;
unsigned long ofs;
@@ -1871,7 +1871,7 @@ static int cfi_intelext_writev (struct mtd_info *mtd, const struct kvec *vecs,
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
- int ret = 0;
+ int ret;
int chipnum;
unsigned long ofs, vec_seek, i;
size_t len = 0;
diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c
index c8fa5906bdf9..04b383bc3947 100644
--- a/drivers/mtd/chips/cfi_cmdset_0002.c
+++ b/drivers/mtd/chips/cfi_cmdset_0002.c
@@ -49,9 +49,21 @@
#define SST49LF008A 0x005a
#define AT49BV6416 0x00d6
+/*
+ * Status Register bit description. Used by flash devices that don't
+ * support DQ polling (e.g. HyperFlash)
+ */
+#define CFI_SR_DRB BIT(7)
+#define CFI_SR_ESB BIT(5)
+#define CFI_SR_PSB BIT(4)
+#define CFI_SR_WBASB BIT(3)
+#define CFI_SR_SLSB BIT(1)
+
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+#if !FORCE_WORD_WRITE
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
+#endif
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
static void cfi_amdstd_sync (struct mtd_info *);
@@ -97,6 +109,59 @@ static struct mtd_chip_driver cfi_amdstd_chipdrv = {
.module = THIS_MODULE
};
+/*
+ * Use status register to poll for Erase/write completion when DQ is not
+ * supported. This is indicated by Bit[1:0] of SoftwareFeatures field in
+ * CFI Primary Vendor-Specific Extended Query table 1.5
+ */
+static int cfi_use_status_reg(struct cfi_private *cfi)
+{
+ struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
+ u8 poll_mask = CFI_POLL_STATUS_REG | CFI_POLL_DQ;
+
+ return extp->MinorVersion >= '5' &&
+ (extp->SoftwareFeatures & poll_mask) == CFI_POLL_STATUS_REG;
+}
+
+static int cfi_check_err_status(struct map_info *map, struct flchip *chip,
+ unsigned long adr)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ map_word status;
+
+ if (!cfi_use_status_reg(cfi))
+ return 0;
+
+ cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
+ cfi->device_type, NULL);
+ status = map_read(map, adr);
+
+ /* The error bits are invalid while the chip's busy */
+ if (!map_word_bitsset(map, status, CMD(CFI_SR_DRB)))
+ return 0;
+
+ if (map_word_bitsset(map, status, CMD(0x3a))) {
+ unsigned long chipstatus = MERGESTATUS(status);
+
+ if (chipstatus & CFI_SR_ESB)
+ pr_err("%s erase operation failed, status %lx\n",
+ map->name, chipstatus);
+ if (chipstatus & CFI_SR_PSB)
+ pr_err("%s program operation failed, status %lx\n",
+ map->name, chipstatus);
+ if (chipstatus & CFI_SR_WBASB)
+ pr_err("%s buffer program command aborted, status %lx\n",
+ map->name, chipstatus);
+ if (chipstatus & CFI_SR_SLSB)
+ pr_err("%s sector write protected, status %lx\n",
+ map->name, chipstatus);
+
+ /* Erase/Program status bits are set on the operation failure */
+ if (chipstatus & (CFI_SR_ESB | CFI_SR_PSB))
+ return 1;
+ }
+ return 0;
+}
/* #define DEBUG_CFI_FEATURES */
@@ -202,6 +267,7 @@ static void fixup_amd_bootblock(struct mtd_info *mtd)
}
#endif
+#if !FORCE_WORD_WRITE
static void fixup_use_write_buffers(struct mtd_info *mtd)
{
struct map_info *map = mtd->priv;
@@ -211,6 +277,7 @@ static void fixup_use_write_buffers(struct mtd_info *mtd)
mtd->_write = cfi_amdstd_write_buffers;
}
}
+#endif /* !FORCE_WORD_WRITE */
/* Atmel chips don't use the same PRI format as AMD chips */
static void fixup_convert_atmel_pri(struct mtd_info *mtd)
@@ -727,7 +794,6 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
kfree(mtd->eraseregions);
kfree(mtd);
kfree(cfi->cmdset_priv);
- kfree(cfi->cfiq);
return NULL;
}
@@ -742,10 +808,25 @@ static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
* correctly and is therefore not done (particularly with interleaved chips
* as each chip must be checked independently of the others).
*/
-static int __xipram chip_ready(struct map_info *map, unsigned long addr)
+static int __xipram chip_ready(struct map_info *map, struct flchip *chip,
+ unsigned long addr)
{
+ struct cfi_private *cfi = map->fldrv_priv;
map_word d, t;
+ if (cfi_use_status_reg(cfi)) {
+ map_word ready = CMD(CFI_SR_DRB);
+ /*
+ * For chips that support status register, check device
+ * ready bit
+ */
+ cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
+ cfi->device_type, NULL);
+ d = map_read(map, addr);
+
+ return map_word_andequal(map, d, ready, ready);
+ }
+
d = map_read(map, addr);
t = map_read(map, addr);
@@ -767,10 +848,26 @@ static int __xipram chip_ready(struct map_info *map, unsigned long addr)
* as each chip must be checked independently of the others).
*
*/
-static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
+static int __xipram chip_good(struct map_info *map, struct flchip *chip,
+ unsigned long addr, map_word expected)
{
+ struct cfi_private *cfi = map->fldrv_priv;
map_word oldd, curd;
+ if (cfi_use_status_reg(cfi)) {
+ map_word ready = CMD(CFI_SR_DRB);
+
+ /*
+ * For chips that support status register, check device
+ * ready bit
+ */
+ cfi_send_gen_cmd(0x70, cfi->addr_unlock1, chip->start, map, cfi,
+ cfi->device_type, NULL);
+ curd = map_read(map, addr);
+
+ return map_word_andequal(map, curd, ready, ready);
+ }
+
oldd = map_read(map, addr);
curd = map_read(map, addr);
@@ -792,7 +889,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
case FL_STATUS:
for (;;) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
break;
if (time_after(jiffies, timeo)) {
@@ -830,7 +927,7 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
chip->state = FL_ERASE_SUSPENDING;
chip->erase_suspended = 1;
for (;;) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
break;
if (time_after(jiffies, timeo)) {
@@ -1362,7 +1459,7 @@ static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
/* wait for chip to become ready */
timeo = jiffies + msecs_to_jiffies(2);
for (;;) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
break;
if (time_after(jiffies, timeo)) {
@@ -1548,11 +1645,11 @@ static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
do_otp_lock, 1);
}
-static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
- unsigned long adr, map_word datum,
- int mode)
+static int __xipram do_write_oneword_once(struct map_info *map,
+ struct flchip *chip,
+ unsigned long adr, map_word datum,
+ int mode, struct cfi_private *cfi)
{
- struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
/*
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
@@ -1565,42 +1662,7 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
*/
unsigned long uWriteTimeout = (HZ / 1000) + 1;
int ret = 0;
- map_word oldd;
- int retry_cnt = 0;
-
- adr += chip->start;
-
- mutex_lock(&chip->mutex);
- ret = get_chip(map, chip, adr, mode);
- if (ret) {
- mutex_unlock(&chip->mutex);
- return ret;
- }
- pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
- __func__, adr, datum.x[0]);
-
- if (mode == FL_OTP_WRITE)
- otp_enter(map, chip, adr, map_bankwidth(map));
-
- /*
- * Check for a NOP for the case when the datum to write is already
- * present - it saves time and works around buggy chips that corrupt
- * data at other locations when 0xff is written to a location that
- * already contains 0xff.
- */
- oldd = map_read(map, adr);
- if (map_word_equal(map, oldd, datum)) {
- pr_debug("MTD %s(): NOP\n",
- __func__);
- goto op_done;
- }
-
- XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
- ENABLE_VPP(map);
- xip_disable(map, chip, adr);
-
- retry:
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
@@ -1628,38 +1690,127 @@ static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
continue;
}
- if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
+ /*
+ * We check "time_after" and "!chip_good" before checking
+ * "chip_good" to avoid the failure due to scheduling.
+ */
+ if (time_after(jiffies, timeo) &&
+ !chip_good(map, chip, adr, datum)) {
xip_enable(map, chip, adr);
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
xip_disable(map, chip, adr);
+ ret = -EIO;
break;
}
- if (chip_ready(map, adr))
+ if (chip_good(map, chip, adr, datum)) {
+ if (cfi_check_err_status(map, chip, adr))
+ ret = -EIO;
break;
+ }
/* Latency issues. Drop the lock, wait a while and retry */
UDELAY(map, chip, adr, 1);
}
- /* Did we succeed? */
- if (!chip_good(map, adr, datum)) {
- /* reset on all failures. */
- map_write(map, CMD(0xF0), chip->start);
- /* FIXME - should have reset delay before continuing */
- if (++retry_cnt <= MAX_RETRIES)
- goto retry;
+ return ret;
+}
- ret = -EIO;
+static int __xipram do_write_oneword_start(struct map_info *map,
+ struct flchip *chip,
+ unsigned long adr, int mode)
+{
+ int ret;
+
+ mutex_lock(&chip->mutex);
+
+ ret = get_chip(map, chip, adr, mode);
+ if (ret) {
+ mutex_unlock(&chip->mutex);
+ return ret;
}
- xip_enable(map, chip, adr);
- op_done:
+
+ if (mode == FL_OTP_WRITE)
+ otp_enter(map, chip, adr, map_bankwidth(map));
+
+ return ret;
+}
+
+static void __xipram do_write_oneword_done(struct map_info *map,
+ struct flchip *chip,
+ unsigned long adr, int mode)
+{
if (mode == FL_OTP_WRITE)
otp_exit(map, chip, adr, map_bankwidth(map));
+
chip->state = FL_READY;
DISABLE_VPP(map);
put_chip(map, chip, adr);
+
mutex_unlock(&chip->mutex);
+}
+
+static int __xipram do_write_oneword_retry(struct map_info *map,
+ struct flchip *chip,
+ unsigned long adr, map_word datum,
+ int mode)
+{
+ struct cfi_private *cfi = map->fldrv_priv;
+ int ret = 0;
+ map_word oldd;
+ int retry_cnt = 0;
+
+ /*
+ * Check for a NOP for the case when the datum to write is already
+ * present - it saves time and works around buggy chips that corrupt
+ * data at other locations when 0xff is written to a location that
+ * already contains 0xff.
+ */
+ oldd = map_read(map, adr);
+ if (map_word_equal(map, oldd, datum)) {
+ pr_debug("MTD %s(): NOP\n", __func__);
+ return ret;
+ }
+
+ XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
+ ENABLE_VPP(map);
+ xip_disable(map, chip, adr);
+
+ retry:
+ ret = do_write_oneword_once(map, chip, adr, datum, mode, cfi);
+ if (ret) {
+ /* reset on all failures. */
+ map_write(map, CMD(0xF0), chip->start);
+ /* FIXME - should have reset delay before continuing */
+
+ if (++retry_cnt <= MAX_RETRIES) {
+ ret = 0;
+ goto retry;
+ }
+ }
+ xip_enable(map, chip, adr);
+
+ return ret;
+}
+
+static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
+ unsigned long adr, map_word datum,
+ int mode)
+{
+ int ret;
+
+ adr += chip->start;
+
+ pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", __func__, adr,
+ datum.x[0]);
+
+ ret = do_write_oneword_start(map, chip, adr, mode);
+ if (ret)
+ return ret;
+
+ ret = do_write_oneword_retry(map, chip, adr, datum, mode);
+
+ do_write_oneword_done(map, chip, adr, mode);
return ret;
}
@@ -1670,7 +1821,7 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
{
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
- int ret = 0;
+ int ret;
int chipnum;
unsigned long ofs, chipstart;
DECLARE_WAITQUEUE(wait, current);
@@ -1788,6 +1939,83 @@ static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
return 0;
}
+#if !FORCE_WORD_WRITE
+static int __xipram do_write_buffer_wait(struct map_info *map,
+ struct flchip *chip, unsigned long adr,
+ map_word datum)
+{
+ unsigned long timeo;
+ unsigned long u_write_timeout;
+ int ret = 0;
+
+ /*
+ * Timeout is calculated according to CFI data, if available.
+ * See more comments in cfi_cmdset_0002().
+ */
+ u_write_timeout = usecs_to_jiffies(chip->buffer_write_time_max);
+ timeo = jiffies + u_write_timeout;
+
+ for (;;) {
+ if (chip->state != FL_WRITING) {
+ /* Someone's suspended the write. Sleep */
+ DECLARE_WAITQUEUE(wait, current);
+
+ set_current_state(TASK_UNINTERRUPTIBLE);
+ add_wait_queue(&chip->wq, &wait);
+ mutex_unlock(&chip->mutex);
+ schedule();
+ remove_wait_queue(&chip->wq, &wait);
+ timeo = jiffies + (HZ / 2); /* FIXME */
+ mutex_lock(&chip->mutex);
+ continue;
+ }
+
+ /*
+ * We check "time_after" and "!chip_good" before checking
+ * "chip_good" to avoid the failure due to scheduling.
+ */
+ if (time_after(jiffies, timeo) &&
+ !chip_good(map, chip, adr, datum)) {
+ pr_err("MTD %s(): software timeout, address:0x%.8lx.\n",
+ __func__, adr);
+ ret = -EIO;
+ break;
+ }
+
+ if (chip_good(map, chip, adr, datum)) {
+ if (cfi_check_err_status(map, chip, adr))
+ ret = -EIO;
+ break;
+ }
+
+ /* Latency issues. Drop the lock, wait a while and retry */
+ UDELAY(map, chip, adr, 1);
+ }
+
+ return ret;
+}
+
+static void __xipram do_write_buffer_reset(struct map_info *map,
+ struct flchip *chip,
+ struct cfi_private *cfi)
+{
+ /*
+ * Recovery from write-buffer programming failures requires
+ * the write-to-buffer-reset sequence. Since the last part
+ * of the sequence also works as a normal reset, we can run
+ * the same commands regardless of why we are here.
+ * See e.g.
+ * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
+ */
+ cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
+ cfi->device_type, NULL);
+ cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
+ cfi->device_type, NULL);
+ cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
+ cfi->device_type, NULL);
+
+ /* FIXME - should have reset delay before continuing */
+}
/*
* FIXME: interleaved mode not tested, and probably not supported!
@@ -1797,14 +2025,7 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
int len)
{
struct cfi_private *cfi = map->fldrv_priv;
- unsigned long timeo = jiffies + HZ;
- /*
- * Timeout is calculated according to CFI data, if available.
- * See more comments in cfi_cmdset_0002().
- */
- unsigned long uWriteTimeout =
- usecs_to_jiffies(chip->buffer_write_time_max);
- int ret = -EIO;
+ int ret;
unsigned long cmd_adr;
int z, words;
map_word datum;
@@ -1860,61 +2081,12 @@ static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
adr, map_bankwidth(map),
chip->word_write_time);
- timeo = jiffies + uWriteTimeout;
-
- for (;;) {
- if (chip->state != FL_WRITING) {
- /* Someone's suspended the write. Sleep */
- DECLARE_WAITQUEUE(wait, current);
-
- set_current_state(TASK_UNINTERRUPTIBLE);
- add_wait_queue(&chip->wq, &wait);
- mutex_unlock(&chip->mutex);
- schedule();
- remove_wait_queue(&chip->wq, &wait);
- timeo = jiffies + (HZ / 2); /* FIXME */
- mutex_lock(&chip->mutex);
- continue;
- }
-
- /*
- * We check "time_after" and "!chip_good" before checking "chip_good" to avoid
- * the failure due to scheduling.
- */
- if (time_after(jiffies, timeo) && !chip_good(map, adr, datum))
- break;
-
- if (chip_good(map, adr, datum)) {
- xip_enable(map, chip, adr);
- goto op_done;
- }
-
- /* Latency issues. Drop the lock, wait a while and retry */
- UDELAY(map, chip, adr, 1);
- }
+ ret = do_write_buffer_wait(map, chip, adr, datum);
+ if (ret)
+ do_write_buffer_reset(map, chip, cfi);
- /*
- * Recovery from write-buffer programming failures requires
- * the write-to-buffer-reset sequence. Since the last part
- * of the sequence also works as a normal reset, we can run
- * the same commands regardless of why we are here.
- * See e.g.
- * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
- */
- cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
- cfi->device_type, NULL);
- cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
- cfi->device_type, NULL);
- cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
- cfi->device_type, NULL);
xip_enable(map, chip, adr);
- /* FIXME - should have reset delay before continuing */
-
- printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
- __func__, adr);
- ret = -EIO;
- op_done:
chip->state = FL_READY;
DISABLE_VPP(map);
put_chip(map, chip, adr);
@@ -1930,7 +2102,7 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
- int ret = 0;
+ int ret;
int chipnum;
unsigned long ofs;
@@ -1998,6 +2170,7 @@ static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
return 0;
}
+#endif /* !FORCE_WORD_WRITE */
/*
* Wait for the flash chip to become ready to write data
@@ -2018,7 +2191,7 @@ static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
* If the driver thinks the chip is idle, and no toggle bits
* are changing, then the chip is actually idle for sure.
*/
- if (chip->state == FL_READY && chip_ready(map, adr))
+ if (chip->state == FL_READY && chip_ready(map, chip, adr))
return 0;
/*
@@ -2035,7 +2208,7 @@ static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
/* wait for the chip to become ready */
for (i = 0; i < jiffies_to_usecs(timeo); i++) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
return 0;
udelay(1);
@@ -2066,7 +2239,7 @@ static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
struct cfi_private *cfi = map->fldrv_priv;
int retry_cnt = 0;
map_word oldd;
- int ret = 0;
+ int ret;
int i;
adr += chip->start;
@@ -2099,13 +2272,14 @@ retry:
map_write(map, datum, adr);
for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
break;
udelay(1);
}
- if (!chip_good(map, adr, datum)) {
+ if (!chip_good(map, chip, adr, datum) ||
+ cfi_check_err_status(map, chip, adr)) {
/* reset on all failures. */
map_write(map, CMD(0xF0), chip->start);
/* FIXME - should have reset delay before continuing */
@@ -2140,7 +2314,7 @@ static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long ofs, chipstart;
- int ret = 0;
+ int ret;
int chipnum;
chipnum = to >> cfi->chipshift;
@@ -2244,13 +2418,13 @@ static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
unsigned long timeo = jiffies + HZ;
unsigned long int adr;
DECLARE_WAITQUEUE(wait, current);
- int ret = 0;
+ int ret;
int retry_cnt = 0;
adr = cfi->addr_unlock1;
mutex_lock(&chip->mutex);
- ret = get_chip(map, chip, adr, FL_WRITING);
+ ret = get_chip(map, chip, adr, FL_ERASING);
if (ret) {
mutex_unlock(&chip->mutex);
return ret;
@@ -2300,8 +2474,11 @@ static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
chip->erase_suspended = 0;
}
- if (chip_good(map, adr, map_word_ff(map)))
+ if (chip_good(map, chip, adr, map_word_ff(map))) {
+ if (cfi_check_err_status(map, chip, adr))
+ ret = -EIO;
break;
+ }
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
@@ -2340,7 +2517,7 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
struct cfi_private *cfi = map->fldrv_priv;
unsigned long timeo = jiffies + HZ;
DECLARE_WAITQUEUE(wait, current);
- int ret = 0;
+ int ret;
int retry_cnt = 0;
adr += chip->start;
@@ -2396,8 +2573,11 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip,
chip->erase_suspended = 0;
}
- if (chip_good(map, adr, map_word_ff(map)))
+ if (chip_good(map, chip, adr, map_word_ff(map))) {
+ if (cfi_check_err_status(map, chip, adr))
+ ret = -EIO;
break;
+ }
if (time_after(jiffies, timeo)) {
printk(KERN_WARNING "MTD %s(): software timeout\n",
@@ -2533,8 +2713,6 @@ struct ppb_lock {
int locked;
};
-#define MAX_SECTORS 512
-
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
@@ -2589,7 +2767,7 @@ static int __maybe_unused do_ppb_xxlock(struct map_info *map,
*/
timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
for (;;) {
- if (chip_ready(map, adr))
+ if (chip_ready(map, chip, adr))
break;
if (time_after(jiffies, timeo)) {
@@ -2633,6 +2811,7 @@ static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
int i;
int sectors;
int ret;
+ int max_sectors;
/*
* PPB unlocking always unlocks all sectors of the flash chip.
@@ -2640,7 +2819,11 @@ static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
* first check the locking status of all sectors and save
* it for future use.
*/
- sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
+ max_sectors = 0;
+ for (i = 0; i < mtd->numeraseregions; i++)
+ max_sectors += regions[i].numblocks;
+
+ sect = kcalloc(max_sectors, sizeof(struct ppb_lock), GFP_KERNEL);
if (!sect)
return -ENOMEM;
@@ -2689,9 +2872,9 @@ static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
}
sectors++;
- if (sectors >= MAX_SECTORS) {
+ if (sectors >= max_sectors) {
printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
- MAX_SECTORS);
+ max_sectors);
kfree(sect);
return -EINVAL;
}
diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c
index e752067526a5..54edae63b92d 100644
--- a/drivers/mtd/chips/cfi_cmdset_0020.c
+++ b/drivers/mtd/chips/cfi_cmdset_0020.c
@@ -611,7 +611,7 @@ static int cfi_staa_write_buffers (struct mtd_info *mtd, loff_t to,
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
- int ret = 0;
+ int ret;
int chipnum;
unsigned long ofs;
@@ -895,7 +895,7 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd,
{ struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long adr, len;
- int chipnum, ret = 0;
+ int chipnum, ret;
int i, first;
struct mtd_erase_region_info *regions = mtd->eraseregions;
@@ -1132,7 +1132,7 @@ static int cfi_staa_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long adr;
- int chipnum, ret = 0;
+ int chipnum, ret;
#ifdef DEBUG_LOCK_BITS
int ofs_factor = cfi->interleave * cfi->device_type;
#endif
@@ -1279,7 +1279,7 @@ static int cfi_staa_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
struct map_info *map = mtd->priv;
struct cfi_private *cfi = map->fldrv_priv;
unsigned long adr;
- int chipnum, ret = 0;
+ int chipnum, ret;
#ifdef DEBUG_LOCK_BITS
int ofs_factor = cfi->interleave * cfi->device_type;
#endif
diff --git a/drivers/mtd/chips/cfi_util.c b/drivers/mtd/chips/cfi_util.c
index e3b266ee06af..e2d4db05aeb3 100644
--- a/drivers/mtd/chips/cfi_util.c
+++ b/drivers/mtd/chips/cfi_util.c
@@ -26,7 +26,7 @@
void cfi_udelay(int us)
{
if (us >= 1000) {
- msleep((us+999)/1000);
+ msleep(DIV_ROUND_UP(us, 1000));
} else {
udelay(us);
cond_resched();
diff --git a/drivers/mtd/chips/gen_probe.c b/drivers/mtd/chips/gen_probe.c
index 839ed40625d6..e5bd3c2bc3b2 100644
--- a/drivers/mtd/chips/gen_probe.c
+++ b/drivers/mtd/chips/gen_probe.c
@@ -20,7 +20,7 @@ static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp)
{
- struct mtd_info *mtd = NULL;
+ struct mtd_info *mtd;
struct cfi_private *cfi;
/* First probe the map to see if we have CFI stuff there. */
diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig
index ef0e476b2525..f96287c4b789 100644
--- a/drivers/mtd/devices/Kconfig
+++ b/drivers/mtd/devices/Kconfig
@@ -48,7 +48,7 @@ config MTD_MS02NV
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
- say M here and read <file:Documentation/kbuild/modules.txt>.
+ say M here and read <file:Documentation/kbuild/modules.rst>.
The module will be called ms02-nv.
config MTD_DATAFLASH
@@ -79,24 +79,6 @@ config MTD_DATAFLASH_OTP
other key product data. The second half is programmed with a
unique-to-each-chip bit pattern at the factory.
-config MTD_M25P80
- tristate "Support most SPI Flash chips (AT26DF, M25P, W25X, ...)"
- depends on SPI_MASTER && MTD_SPI_NOR
- select SPI_MEM
- help
- This enables access to most modern SPI flash chips, used for
- program and data storage. Series supported include Atmel AT26DF,
- Spansion S25SL, SST 25VF, ST M25P, and Winbond W25X. Other chips
- are supported as well. See the driver source for the current list,
- or to add other chips.
-
- Note that the original DataFlash chips (AT45 series, not AT26DF),
- need an entirely different driver.
-
- Set up your spi devices with the right board-specific platform data,
- if you want to specify device partitioning or to use a device which
- doesn't support the JEDEC ID instruction.
-
config MTD_MCHP23K256
tristate "Microchip 23K256 SRAM"
depends on SPI_MASTER
diff --git a/drivers/mtd/devices/Makefile b/drivers/mtd/devices/Makefile
index 94895eab3066..991c8d12c016 100644
--- a/drivers/mtd/devices/Makefile
+++ b/drivers/mtd/devices/Makefile
@@ -12,7 +12,6 @@ obj-$(CONFIG_MTD_MTDRAM) += mtdram.o
obj-$(CONFIG_MTD_LART) += lart.o
obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o
-obj-$(CONFIG_MTD_M25P80) += m25p80.o
obj-$(CONFIG_MTD_MCHP23K256) += mchp23k256.o
obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o
obj-$(CONFIG_MTD_SST25L) += sst25l.o
diff --git a/drivers/mtd/devices/m25p80.c b/drivers/mtd/devices/m25p80.c
deleted file mode 100644
index c50888670250..000000000000
--- a/drivers/mtd/devices/m25p80.c
+++ /dev/null
@@ -1,347 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
- *
- * Author: Mike Lavender, mike@steroidmicros.com
- *
- * Copyright (c) 2005, Intec Automation Inc.
- *
- * Some parts are based on lart.c by Abraham Van Der Merwe
- *
- * Cleaned up and generalized based on mtd_dataflash.c
- */
-
-#include <linux/err.h>
-#include <linux/errno.h>
-#include <linux/module.h>
-#include <linux/device.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/spi/spi.h>
-#include <linux/spi/spi-mem.h>
-#include <linux/spi/flash.h>
-#include <linux/mtd/spi-nor.h>
-
-struct m25p {
- struct spi_mem *spimem;
- struct spi_nor spi_nor;
-};
-
-static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len)
-{
- struct m25p *flash = nor->priv;
- struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(code, 1),
- SPI_MEM_OP_NO_ADDR,
- SPI_MEM_OP_NO_DUMMY,
- SPI_MEM_OP_DATA_IN(len, NULL, 1));
- void *scratchbuf;
- int ret;
-
- scratchbuf = kmalloc(len, GFP_KERNEL);
- if (!scratchbuf)
- return -ENOMEM;
-
- op.data.buf.in = scratchbuf;
- ret = spi_mem_exec_op(flash->spimem, &op);
- if (ret < 0)
- dev_err(&flash->spimem->spi->dev, "error %d reading %x\n", ret,
- code);
- else
- memcpy(val, scratchbuf, len);
-
- kfree(scratchbuf);
-
- return ret;
-}
-
-static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
-{
- struct m25p *flash = nor->priv;
- struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(opcode, 1),
- SPI_MEM_OP_NO_ADDR,
- SPI_MEM_OP_NO_DUMMY,
- SPI_MEM_OP_DATA_OUT(len, NULL, 1));
- void *scratchbuf;
- int ret;
-
- scratchbuf = kmemdup(buf, len, GFP_KERNEL);
- if (!scratchbuf)
- return -ENOMEM;
-
- op.data.buf.out = scratchbuf;
- ret = spi_mem_exec_op(flash->spimem, &op);
- kfree(scratchbuf);
-
- return ret;
-}
-
-static ssize_t m25p80_write(struct spi_nor *nor, loff_t to, size_t len,
- const u_char *buf)
-{
- struct m25p *flash = nor->priv;
- struct spi_mem_op op =
- SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
- SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
- SPI_MEM_OP_NO_DUMMY,
- SPI_MEM_OP_DATA_OUT(len, buf, 1));
- int ret;
-
- /* get transfer protocols. */
- op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
- op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
- op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
-
- if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
- op.addr.nbytes = 0;
-
- ret = spi_mem_adjust_op_size(flash->spimem, &op);
- if (ret)
- return ret;
- op.data.nbytes = len < op.data.nbytes ? len : op.data.nbytes;
-
- ret = spi_mem_exec_op(flash->spimem, &op);
- if (ret)
- return ret;
-
- return op.data.nbytes;
-}
-
-/*
- * Read an address range from the nor chip. The address range
- * may be any size provided it is within the physical boundaries.
- */
-static ssize_t m25p80_read(struct spi_nor *nor, loff_t from, size_t len,
- u_char *buf)
-{
- struct m25p *flash = nor->priv;
- struct spi_mem_op op =
- SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
- SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
- SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
- SPI_MEM_OP_DATA_IN(len, buf, 1));
- size_t remaining = len;
- int ret;
-
- /* get transfer protocols. */
- op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
- op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
- op.dummy.buswidth = op.addr.buswidth;
- op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
-
- /* convert the dummy cycles to the number of bytes */
- op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
-
- while (remaining) {
- op.data.nbytes = remaining < UINT_MAX ? remaining : UINT_MAX;
- ret = spi_mem_adjust_op_size(flash->spimem, &op);
- if (ret)
- return ret;
-
- ret = spi_mem_exec_op(flash->spimem, &op);
- if (ret)
- return ret;
-
- op.addr.val += op.data.nbytes;
- remaining -= op.data.nbytes;
- op.data.buf.in += op.data.nbytes;
- }
-
- return len;
-}
-
-/*
- * board specific setup should have ensured the SPI clock used here
- * matches what the READ command supports, at least until this driver
- * understands FAST_READ (for clocks over 25 MHz).
- */
-static int m25p_probe(struct spi_mem *spimem)
-{
- struct spi_device *spi = spimem->spi;
- struct flash_platform_data *data;
- struct m25p *flash;
- struct spi_nor *nor;
- struct spi_nor_hwcaps hwcaps = {
- .mask = SNOR_HWCAPS_READ |
- SNOR_HWCAPS_READ_FAST |
- SNOR_HWCAPS_PP,
- };
- char *flash_name;
- int ret;
-
- data = dev_get_platdata(&spimem->spi->dev);
-
- flash = devm_kzalloc(&spimem->spi->dev, sizeof(*flash), GFP_KERNEL);
- if (!flash)
- return -ENOMEM;
-
- nor = &flash->spi_nor;
-
- /* install the hooks */
- nor->read = m25p80_read;
- nor->write = m25p80_write;
- nor->write_reg = m25p80_write_reg;
- nor->read_reg = m25p80_read_reg;
-
- nor->dev = &spimem->spi->dev;
- spi_nor_set_flash_node(nor, spi->dev.of_node);
- nor->priv = flash;
-
- spi_mem_set_drvdata(spimem, flash);
- flash->spimem = spimem;
-
- if (spi->mode & SPI_RX_OCTAL) {
- hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
-
- if (spi->mode & SPI_TX_OCTAL)
- hwcaps.mask |= (SNOR_HWCAPS_READ_1_8_8 |
- SNOR_HWCAPS_PP_1_1_8 |
- SNOR_HWCAPS_PP_1_8_8);
- } else if (spi->mode & SPI_RX_QUAD) {
- hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
-
- if (spi->mode & SPI_TX_QUAD)
- hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 |
- SNOR_HWCAPS_PP_1_1_4 |
- SNOR_HWCAPS_PP_1_4_4);
- } else if (spi->mode & SPI_RX_DUAL) {
- hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
-
- if (spi->mode & SPI_TX_DUAL)
- hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2;
- }
-
- if (data && data->name)
- nor->mtd.name = data->name;
-
- if (!nor->mtd.name)
- nor->mtd.name = spi_mem_get_name(spimem);
-
- /* For some (historical?) reason many platforms provide two different
- * names in flash_platform_data: "name" and "type". Quite often name is
- * set to "m25p80" and then "type" provides a real chip name.
- * If that's the case, respect "type" and ignore a "name".
- */
- if (data && data->type)
- flash_name = data->type;
- else if (!strcmp(spi->modalias, "spi-nor"))
- flash_name = NULL; /* auto-detect */
- else
- flash_name = spi->modalias;
-
- ret = spi_nor_scan(nor, flash_name, &hwcaps);
- if (ret)
- return ret;
-
- return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
- data ? data->nr_parts : 0);
-}
-
-
-static int m25p_remove(struct spi_mem *spimem)
-{
- struct m25p *flash = spi_mem_get_drvdata(spimem);
-
- spi_nor_restore(&flash->spi_nor);
-
- /* Clean up MTD stuff. */
- return mtd_device_unregister(&flash->spi_nor.mtd);
-}
-
-static void m25p_shutdown(struct spi_mem *spimem)
-{
- struct m25p *flash = spi_mem_get_drvdata(spimem);
-
- spi_nor_restore(&flash->spi_nor);
-}
-/*
- * Do NOT add to this array without reading the following:
- *
- * Historically, many flash devices are bound to this driver by their name. But
- * since most of these flash are compatible to some extent, and their
- * differences can often be differentiated by the JEDEC read-ID command, we
- * encourage new users to add support to the spi-nor library, and simply bind
- * against a generic string here (e.g., "jedec,spi-nor").
- *
- * Many flash names are kept here in this list (as well as in spi-nor.c) to
- * keep them available as module aliases for existing platforms.
- */
-static const struct spi_device_id m25p_ids[] = {
- /*
- * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
- * hack around the fact that the SPI core does not provide uevent
- * matching for .of_match_table
- */
- {"spi-nor"},
-
- /*
- * Entries not used in DTs that should be safe to drop after replacing
- * them with "spi-nor" in platform data.
- */
- {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
-
- /*
- * Entries that were used in DTs without "jedec,spi-nor" fallback and
- * should be kept for backward compatibility.
- */
- {"at25df321a"}, {"at25df641"}, {"at26df081a"},
- {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
- {"mx25l25635e"},{"mx66l51235l"},
- {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
- {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
- {"s25fl064k"},
- {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
- {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
- {"m25p64"}, {"m25p128"},
- {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
- {"w25q80bl"}, {"w25q128"}, {"w25q256"},
-
- /* Flashes that can't be detected using JEDEC */
- {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
- {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
- {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
-
- /* Everspin MRAMs (non-JEDEC) */
- { "mr25h128" }, /* 128 Kib, 40 MHz */
- { "mr25h256" }, /* 256 Kib, 40 MHz */
- { "mr25h10" }, /* 1 Mib, 40 MHz */
- { "mr25h40" }, /* 4 Mib, 40 MHz */
-
- { },
-};
-MODULE_DEVICE_TABLE(spi, m25p_ids);
-
-static const struct of_device_id m25p_of_table[] = {
- /*
- * Generic compatibility for SPI NOR that can be identified by the
- * JEDEC READ ID opcode (0x9F). Use this, if possible.
- */
- { .compatible = "jedec,spi-nor" },
- {}
-};
-MODULE_DEVICE_TABLE(of, m25p_of_table);
-
-static struct spi_mem_driver m25p80_driver = {
- .spidrv = {
- .driver = {
- .name = "m25p80",
- .of_match_table = m25p_of_table,
- },
- .id_table = m25p_ids,
- },
- .probe = m25p_probe,
- .remove = m25p_remove,
- .shutdown = m25p_shutdown,
-
- /* REVISIT: many of these chips have deep power-down modes, which
- * should clearly be entered on suspend() to minimize power use.
- * And also when they're otherwise idle...
- */
-};
-
-module_spi_mem_driver(m25p80_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Mike Lavender");
-MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
diff --git a/drivers/mtd/devices/mchp23k256.c b/drivers/mtd/devices/mchp23k256.c
index b20d02b4f830..77c872fd3d83 100644
--- a/drivers/mtd/devices/mchp23k256.c
+++ b/drivers/mtd/devices/mchp23k256.c
@@ -64,15 +64,17 @@ static int mchp23k256_write(struct mtd_info *mtd, loff_t to, size_t len,
struct spi_transfer transfer[2] = {};
struct spi_message message;
unsigned char command[MAX_CMD_SIZE];
- int ret;
+ int ret, cmd_len;
spi_message_init(&message);
+ cmd_len = mchp23k256_cmdsz(flash);
+
command[0] = MCHP23K256_CMD_WRITE;
mchp23k256_addr2cmd(flash, to, command);
transfer[0].tx_buf = command;
- transfer[0].len = mchp23k256_cmdsz(flash);
+ transfer[0].len = cmd_len;
spi_message_add_tail(&transfer[0], &message);
transfer[1].tx_buf = buf;
@@ -88,8 +90,8 @@ static int mchp23k256_write(struct mtd_info *mtd, loff_t to, size_t len,
if (ret)
return ret;
- if (retlen && message.actual_length > sizeof(command))
- *retlen += message.actual_length - sizeof(command);
+ if (retlen && message.actual_length > cmd_len)
+ *retlen += message.actual_length - cmd_len;
return 0;
}
@@ -101,16 +103,18 @@ static int mchp23k256_read(struct mtd_info *mtd, loff_t from, size_t len,
struct spi_transfer transfer[2] = {};
struct spi_message message;
unsigned char command[MAX_CMD_SIZE];
- int ret;
+ int ret, cmd_len;
spi_message_init(&message);
+ cmd_len = mchp23k256_cmdsz(flash);
+
memset(&transfer, 0, sizeof(transfer));
command[0] = MCHP23K256_CMD_READ;
mchp23k256_addr2cmd(flash, from, command);
transfer[0].tx_buf = command;
- transfer[0].len = mchp23k256_cmdsz(flash);
+ transfer[0].len = cmd_len;
spi_message_add_tail(&transfer[0], &message);
transfer[1].rx_buf = buf;
@@ -126,8 +130,8 @@ static int mchp23k256_read(struct mtd_info *mtd, loff_t from, size_t len,
if (ret)
return ret;
- if (retlen && message.actual_length > sizeof(command))
- *retlen += message.actual_length - sizeof(command);
+ if (retlen && message.actual_length > cmd_len)
+ *retlen += message.actual_length - cmd_len;
return 0;
}
diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c
index c467286ca007..931e5c2481b5 100644
--- a/drivers/mtd/devices/phram.c
+++ b/drivers/mtd/devices/phram.c
@@ -294,7 +294,7 @@ static int phram_param_call(const char *val, const struct kernel_param *kp)
#endif
}
-module_param_call(phram, phram_param_call, NULL, NULL, 000);
+module_param_call(phram, phram_param_call, NULL, NULL, 0200);
MODULE_PARM_DESC(phram, "Memory region to map. \"phram=<name>,<start>,<length>\"");
diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c
index 3b89ab24688b..6597fc2aad34 100644
--- a/drivers/mtd/devices/pmc551.c
+++ b/drivers/mtd/devices/pmc551.c
@@ -135,7 +135,7 @@ static int pmc551_point(struct mtd_info *mtd, loff_t from, size_t len,
static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct mypriv *priv = mtd->priv;
- u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 soff_hi; /* start address offset hi */
u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
unsigned long end;
u_char *ptr;
@@ -150,7 +150,6 @@ static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr)
eoff_hi = end & ~(priv->asize - 1);
soff_hi = instr->addr & ~(priv->asize - 1);
eoff_lo = end & (priv->asize - 1);
- soff_lo = instr->addr & (priv->asize - 1);
pmc551_point(mtd, instr->addr, instr->len, &retlen,
(void **)&ptr, NULL);
@@ -225,7 +224,7 @@ static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf)
{
struct mypriv *priv = mtd->priv;
- u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 soff_hi; /* start address offset hi */
u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
unsigned long end;
u_char *ptr;
@@ -239,7 +238,6 @@ static int pmc551_read(struct mtd_info *mtd, loff_t from, size_t len,
end = from + len - 1;
soff_hi = from & ~(priv->asize - 1);
eoff_hi = end & ~(priv->asize - 1);
- soff_lo = from & (priv->asize - 1);
eoff_lo = end & (priv->asize - 1);
pmc551_point(mtd, from, len, retlen, (void **)&ptr, NULL);
@@ -282,7 +280,7 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf)
{
struct mypriv *priv = mtd->priv;
- u32 soff_hi, soff_lo; /* start address offset hi/lo */
+ u32 soff_hi; /* start address offset hi */
u32 eoff_hi, eoff_lo; /* end address offset hi/lo */
unsigned long end;
u_char *ptr;
@@ -296,7 +294,6 @@ static int pmc551_write(struct mtd_info *mtd, loff_t to, size_t len,
end = to + len - 1;
soff_hi = to & ~(priv->asize - 1);
eoff_hi = end & ~(priv->asize - 1);
- soff_lo = to & (priv->asize - 1);
eoff_lo = end & (priv->asize - 1);
pmc551_point(mtd, to, len, retlen, (void **)&ptr, NULL);
diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c
index 986f81d2f93e..79dcca16481d 100644
--- a/drivers/mtd/devices/spear_smi.c
+++ b/drivers/mtd/devices/spear_smi.c
@@ -592,6 +592,26 @@ static int spear_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
return 0;
}
+/*
+ * The purpose of this function is to ensure a memcpy_toio() with byte writes
+ * only. Its structure is inspired from the ARM implementation of _memcpy_toio()
+ * which also does single byte writes but cannot be used here as this is just an
+ * implementation detail and not part of the API. Not mentioning the comment
+ * stating that _memcpy_toio() should be optimized.
+ */
+static void spear_smi_memcpy_toio_b(volatile void __iomem *dest,
+ const void *src, size_t len)
+{
+ const unsigned char *from = src;
+
+ while (len) {
+ len--;
+ writeb(*from, dest);
+ from++;
+ dest++;
+ }
+}
+
static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank,
void __iomem *dest, const void *src, size_t len)
{
@@ -614,7 +634,23 @@ static inline int spear_smi_cpy_toio(struct spear_smi *dev, u32 bank,
ctrlreg1 = readl(dev->io_base + SMI_CR1);
writel((ctrlreg1 | WB_MODE) & ~SW_MODE, dev->io_base + SMI_CR1);
- memcpy_toio(dest, src, len);
+ /*
+ * In Write Burst mode (WB_MODE), the specs states that writes must be:
+ * - incremental
+ * - of the same size
+ * The ARM implementation of memcpy_toio() will optimize the number of
+ * I/O by using as much 4-byte writes as possible, surrounded by
+ * 2-byte/1-byte access if:
+ * - the destination is not 4-byte aligned
+ * - the length is not a multiple of 4-byte.
+ * Avoid this alternance of write access size by using our own 'byte
+ * access' helper if at least one of the two conditions above is true.
+ */
+ if (IS_ALIGNED(len, sizeof(u32)) &&
+ IS_ALIGNED((uintptr_t)dest, sizeof(u32)))
+ memcpy_toio(dest, src, len);
+ else
+ spear_smi_memcpy_toio_b(dest, src, len);
writel(ctrlreg1, dev->io_base + SMI_CR1);
@@ -777,9 +813,6 @@ static int spear_smi_probe_config_dt(struct platform_device *pdev,
/* Fill structs for each subnode (flash device) */
while ((pp = of_get_next_child(np, pp))) {
- struct spear_smi_flash_info *flash_info;
-
- flash_info = &pdata->board_flash_info[i];
pdata->np[i] = pp;
/* Read base-addr and size from DT */
@@ -933,7 +966,6 @@ static int spear_smi_probe(struct platform_device *pdev)
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENODEV;
- dev_err(&pdev->dev, "invalid smi irq\n");
goto err;
}
diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c
index f4d1667daaf9..1888523d9745 100644
--- a/drivers/mtd/devices/st_spi_fsm.c
+++ b/drivers/mtd/devices/st_spi_fsm.c
@@ -255,7 +255,6 @@ struct stfsm_seq {
struct stfsm {
struct device *dev;
void __iomem *base;
- struct resource *region;
struct mtd_info mtd;
struct mutex lock;
struct flash_info *info;
diff --git a/drivers/mtd/hyperbus/Kconfig b/drivers/mtd/hyperbus/Kconfig
new file mode 100644
index 000000000000..a4d8968d133d
--- /dev/null
+++ b/drivers/mtd/hyperbus/Kconfig
@@ -0,0 +1,25 @@
+menuconfig MTD_HYPERBUS
+ tristate "HyperBus support"
+ depends on HAS_IOMEM
+ select MTD_CFI
+ select MTD_MAP_BANK_WIDTH_2
+ select MTD_CFI_AMDSTD
+ select MTD_COMPLEX_MAPPINGS
+ help
+ This is the framework for the HyperBus which can be used by
+ the HyperBus Controller driver to communicate with
+ HyperFlash. See Cypress HyperBus specification for more
+ details
+
+if MTD_HYPERBUS
+
+config HBMC_AM654
+ tristate "HyperBus controller driver for AM65x SoC"
+ depends on ARM64 || COMPILE_TEST
+ select MULTIPLEXER
+ imply MUX_MMIO
+ help
+ This is the driver for HyperBus controller on TI's AM65x and
+ other SoCs
+
+endif # MTD_HYPERBUS
diff --git a/drivers/mtd/hyperbus/Makefile b/drivers/mtd/hyperbus/Makefile
new file mode 100644
index 000000000000..8a936e066f48
--- /dev/null
+++ b/drivers/mtd/hyperbus/Makefile
@@ -0,0 +1,4 @@
+# SPDX-License-Identifier: GPL-2.0
+
+obj-$(CONFIG_MTD_HYPERBUS) += hyperbus-core.o
+obj-$(CONFIG_HBMC_AM654) += hbmc-am654.o
diff --git a/drivers/mtd/hyperbus/hbmc-am654.c b/drivers/mtd/hyperbus/hbmc-am654.c
new file mode 100644
index 000000000000..08d543b124cd
--- /dev/null
+++ b/drivers/mtd/hyperbus/hbmc-am654.c
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0
+//
+// Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
+// Author: Vignesh Raghavendra <vigneshr@ti.com>
+
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/cfi.h>
+#include <linux/mtd/hyperbus.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mux/consumer.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/types.h>
+
+#define AM654_HBMC_CALIB_COUNT 25
+
+struct am654_hbmc_priv {
+ struct hyperbus_ctlr ctlr;
+ struct hyperbus_device hbdev;
+ struct mux_control *mux_ctrl;
+};
+
+static int am654_hbmc_calibrate(struct hyperbus_device *hbdev)
+{
+ struct map_info *map = &hbdev->map;
+ struct cfi_private cfi;
+ int count = AM654_HBMC_CALIB_COUNT;
+ int pass_count = 0;
+ int ret;
+
+ cfi.interleave = 1;
+ cfi.device_type = CFI_DEVICETYPE_X16;
+ cfi_send_gen_cmd(0xF0, 0, 0, map, &cfi, cfi.device_type, NULL);
+ cfi_send_gen_cmd(0x98, 0x55, 0, map, &cfi, cfi.device_type, NULL);
+
+ while (count--) {
+ ret = cfi_qry_present(map, 0, &cfi);
+ if (ret)
+ pass_count++;
+ else
+ pass_count = 0;
+ if (pass_count == 5)
+ break;
+ }
+
+ cfi_qry_mode_off(0, map, &cfi);
+
+ return ret;
+}
+
+static const struct hyperbus_ops am654_hbmc_ops = {
+ .calibrate = am654_hbmc_calibrate,
+};
+
+static int am654_hbmc_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct am654_hbmc_priv *priv;
+ int ret;
+
+ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, priv);
+
+ if (of_property_read_bool(dev->of_node, "mux-controls")) {
+ struct mux_control *control = devm_mux_control_get(dev, NULL);
+
+ if (IS_ERR(control))
+ return PTR_ERR(control);
+
+ ret = mux_control_select(control, 1);
+ if (ret) {
+ dev_err(dev, "Failed to select HBMC mux\n");
+ return ret;
+ }
+ priv->mux_ctrl = control;
+ }
+
+ pm_runtime_enable(dev);
+ ret = pm_runtime_get_sync(dev);
+ if (ret < 0) {
+ pm_runtime_put_noidle(dev);
+ goto disable_pm;
+ }
+
+ priv->ctlr.dev = dev;
+ priv->ctlr.ops = &am654_hbmc_ops;
+ priv->hbdev.ctlr = &priv->ctlr;
+ priv->hbdev.np = of_get_next_child(dev->of_node, NULL);
+ ret = hyperbus_register_device(&priv->hbdev);
+ if (ret) {
+ dev_err(dev, "failed to register controller\n");
+ pm_runtime_put_sync(&pdev->dev);
+ goto disable_pm;
+ }
+
+ return 0;
+disable_pm:
+ pm_runtime_disable(dev);
+ if (priv->mux_ctrl)
+ mux_control_deselect(priv->mux_ctrl);
+ return ret;
+}
+
+static int am654_hbmc_remove(struct platform_device *pdev)
+{
+ struct am654_hbmc_priv *priv = platform_get_drvdata(pdev);
+ int ret;
+
+ ret = hyperbus_unregister_device(&priv->hbdev);
+ if (priv->mux_ctrl)
+ mux_control_deselect(priv->mux_ctrl);
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
+ return ret;
+}
+
+static const struct of_device_id am654_hbmc_dt_ids[] = {
+ {
+ .compatible = "ti,am654-hbmc",
+ },
+ { /* end of table */ }
+};
+
+MODULE_DEVICE_TABLE(of, am654_hbmc_dt_ids);
+
+static struct platform_driver am654_hbmc_platform_driver = {
+ .probe = am654_hbmc_probe,
+ .remove = am654_hbmc_remove,
+ .driver = {
+ .name = "hbmc-am654",
+ .of_match_table = am654_hbmc_dt_ids,
+ },
+};
+
+module_platform_driver(am654_hbmc_platform_driver);
+
+MODULE_DESCRIPTION("HBMC driver for AM654 SoC");
+MODULE_LICENSE("GPL v2");
+MODULE_ALIAS("platform:hbmc-am654");
+MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
diff --git a/drivers/mtd/hyperbus/hyperbus-core.c b/drivers/mtd/hyperbus/hyperbus-core.c
new file mode 100644
index 000000000000..6af9ea34117d
--- /dev/null
+++ b/drivers/mtd/hyperbus/hyperbus-core.c
@@ -0,0 +1,153 @@
+// SPDX-License-Identifier: GPL-2.0
+//
+// Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
+// Author: Vignesh Raghavendra <vigneshr@ti.com>
+
+#include <linux/err.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/hyperbus.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/mtd.h>
+#include <linux/of.h>
+#include <linux/of_address.h>
+#include <linux/types.h>
+
+static struct hyperbus_device *map_to_hbdev(struct map_info *map)
+{
+ return container_of(map, struct hyperbus_device, map);
+}
+
+static map_word hyperbus_read16(struct map_info *map, unsigned long addr)
+{
+ struct hyperbus_device *hbdev = map_to_hbdev(map);
+ struct hyperbus_ctlr *ctlr = hbdev->ctlr;
+ map_word read_data;
+
+ read_data.x[0] = ctlr->ops->read16(hbdev, addr);
+
+ return read_data;
+}
+
+static void hyperbus_write16(struct map_info *map, map_word d,
+ unsigned long addr)
+{
+ struct hyperbus_device *hbdev = map_to_hbdev(map);
+ struct hyperbus_ctlr *ctlr = hbdev->ctlr;
+
+ ctlr->ops->write16(hbdev, addr, d.x[0]);
+}
+
+static void hyperbus_copy_from(struct map_info *map, void *to,
+ unsigned long from, ssize_t len)
+{
+ struct hyperbus_device *hbdev = map_to_hbdev(map);
+ struct hyperbus_ctlr *ctlr = hbdev->ctlr;
+
+ ctlr->ops->copy_from(hbdev, to, from, len);
+}
+
+static void hyperbus_copy_to(struct map_info *map, unsigned long to,
+ const void *from, ssize_t len)
+{
+ struct hyperbus_device *hbdev = map_to_hbdev(map);
+ struct hyperbus_ctlr *ctlr = hbdev->ctlr;
+
+ ctlr->ops->copy_to(hbdev, to, from, len);
+}
+
+int hyperbus_register_device(struct hyperbus_device *hbdev)
+{
+ const struct hyperbus_ops *ops;
+ struct hyperbus_ctlr *ctlr;
+ struct device_node *np;
+ struct map_info *map;
+ struct resource res;
+ struct device *dev;
+ int ret;
+
+ if (!hbdev || !hbdev->np || !hbdev->ctlr || !hbdev->ctlr->dev) {
+ pr_err("hyperbus: please fill all the necessary fields!\n");
+ return -EINVAL;
+ }
+
+ np = hbdev->np;
+ ctlr = hbdev->ctlr;
+ if (!of_device_is_compatible(np, "cypress,hyperflash"))
+ return -ENODEV;
+
+ hbdev->memtype = HYPERFLASH;
+
+ ret = of_address_to_resource(np, 0, &res);
+ if (ret)
+ return ret;
+
+ dev = ctlr->dev;
+ map = &hbdev->map;
+ map->size = resource_size(&res);
+ map->virt = devm_ioremap_resource(dev, &res);
+ if (IS_ERR(map->virt))
+ return PTR_ERR(map->virt);
+
+ map->name = dev_name(dev);
+ map->bankwidth = 2;
+ map->device_node = np;
+
+ simple_map_init(map);
+ ops = ctlr->ops;
+ if (ops) {
+ if (ops->read16)
+ map->read = hyperbus_read16;
+ if (ops->write16)
+ map->write = hyperbus_write16;
+ if (ops->copy_to)
+ map->copy_to = hyperbus_copy_to;
+ if (ops->copy_from)
+ map->copy_from = hyperbus_copy_from;
+
+ if (ops->calibrate && !ctlr->calibrated) {
+ ret = ops->calibrate(hbdev);
+ if (!ret) {
+ dev_err(dev, "Calibration failed\n");
+ return -ENODEV;
+ }
+ ctlr->calibrated = true;
+ }
+ }
+
+ hbdev->mtd = do_map_probe("cfi_probe", map);
+ if (!hbdev->mtd) {
+ dev_err(dev, "probing of hyperbus device failed\n");
+ return -ENODEV;
+ }
+
+ hbdev->mtd->dev.parent = dev;
+ mtd_set_of_node(hbdev->mtd, np);
+
+ ret = mtd_device_register(hbdev->mtd, NULL, 0);
+ if (ret) {
+ dev_err(dev, "failed to register mtd device\n");
+ map_destroy(hbdev->mtd);
+ return ret;
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(hyperbus_register_device);
+
+int hyperbus_unregister_device(struct hyperbus_device *hbdev)
+{
+ int ret = 0;
+
+ if (hbdev && hbdev->mtd) {
+ ret = mtd_device_unregister(hbdev->mtd);
+ map_destroy(hbdev->mtd);
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL_GPL(hyperbus_unregister_device);
+
+MODULE_DESCRIPTION("HyperBus Framework");
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig
index bc82305ebb4c..b28225a7c4f3 100644
--- a/drivers/mtd/maps/Kconfig
+++ b/drivers/mtd/maps/Kconfig
@@ -96,6 +96,17 @@ config MTD_PHYSMAP_GEMINI
platforms, some detection and setting up parallel mode on the
external interface.
+config MTD_PHYSMAP_IXP4XX
+ bool "Intel IXP4xx OF-based physical memory map handling"
+ depends on MTD_PHYSMAP_OF
+ depends on ARM
+ select MTD_COMPLEX_MAPPINGS
+ select MTD_CFI_BE_BYTE_SWAP if CPU_BIG_ENDIAN
+ default ARCH_IXP4XX
+ help
+ This provides some extra DT physmap parsing for the Intel IXP4xx
+ platforms, some elaborate endianness handling in particular.
+
config MTD_PHYSMAP_GPIO_ADDR
bool "GPIO-assisted Flash Chip Support"
depends on MTD_PHYSMAP
diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile
index 1146009f41df..c0da86a5d26f 100644
--- a/drivers/mtd/maps/Makefile
+++ b/drivers/mtd/maps/Makefile
@@ -20,6 +20,7 @@ obj-$(CONFIG_MTD_PXA2XX) += pxa2xx-flash.o
physmap-objs-y += physmap-core.o
physmap-objs-$(CONFIG_MTD_PHYSMAP_VERSATILE) += physmap-versatile.o
physmap-objs-$(CONFIG_MTD_PHYSMAP_GEMINI) += physmap-gemini.o
+physmap-objs-$(CONFIG_MTD_PHYSMAP_IXP4XX) += physmap-ixp4xx.o
physmap-objs := $(physmap-objs-y)
obj-$(CONFIG_MTD_PHYSMAP) += physmap.o
obj-$(CONFIG_MTD_PISMO) += pismo.o
diff --git a/drivers/mtd/maps/l440gx.c b/drivers/mtd/maps/l440gx.c
index 876f12f40018..0eeadfeb620d 100644
--- a/drivers/mtd/maps/l440gx.c
+++ b/drivers/mtd/maps/l440gx.c
@@ -86,7 +86,7 @@ static int __init init_l440gx(void)
return -ENOMEM;
}
simple_map_init(&l440gx_map);
- printk(KERN_NOTICE "window_addr = 0x%08lx\n", (unsigned long)l440gx_map.virt);
+ pr_debug("window_addr = %p\n", l440gx_map.virt);
/* Setup the pm iobase resource
* This code should move into some kind of generic bridge
diff --git a/drivers/mtd/maps/physmap-core.c b/drivers/mtd/maps/physmap-core.c
index 21b556afc305..a9f7964e2edb 100644
--- a/drivers/mtd/maps/physmap-core.c
+++ b/drivers/mtd/maps/physmap-core.c
@@ -41,6 +41,7 @@
#include <linux/gpio/consumer.h>
#include "physmap-gemini.h"
+#include "physmap-ixp4xx.h"
#include "physmap-versatile.h"
struct physmap_flash_info {
@@ -370,6 +371,10 @@ static int physmap_flash_of_init(struct platform_device *dev)
if (err)
return err;
+ err = of_flash_probe_ixp4xx(dev, dp, &info->maps[i]);
+ if (err)
+ return err;
+
err = of_flash_probe_versatile(dev, dp, &info->maps[i]);
if (err)
return err;
diff --git a/drivers/mtd/maps/physmap-ixp4xx.c b/drivers/mtd/maps/physmap-ixp4xx.c
new file mode 100644
index 000000000000..6a054229a8a0
--- /dev/null
+++ b/drivers/mtd/maps/physmap-ixp4xx.c
@@ -0,0 +1,132 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Intel IXP4xx OF physmap add-on
+ * Copyright (C) 2019 Linus Walleij <linus.walleij@linaro.org>
+ *
+ * Based on the ixp4xx.c map driver, originally written by:
+ * Intel Corporation
+ * Deepak Saxena <dsaxena@mvista.com>
+ * Copyright (C) 2002 Intel Corporation
+ * Copyright (C) 2003-2004 MontaVista Software, Inc.
+ */
+#include <linux/export.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/xip.h>
+#include "physmap-ixp4xx.h"
+
+/*
+ * Read/write a 16 bit word from flash address 'addr'.
+ *
+ * When the cpu is in little-endian mode it swizzles the address lines
+ * ('address coherency') so we need to undo the swizzling to ensure commands
+ * and the like end up on the correct flash address.
+ *
+ * To further complicate matters, due to the way the expansion bus controller
+ * handles 32 bit reads, the byte stream ABCD is stored on the flash as:
+ * D15 D0
+ * +---+---+
+ * | A | B | 0
+ * +---+---+
+ * | C | D | 2
+ * +---+---+
+ * This means that on LE systems each 16 bit word must be swapped. Note that
+ * this requires CONFIG_MTD_CFI_BE_BYTE_SWAP to be enabled to 'unswap' the CFI
+ * data and other flash commands which are always in D7-D0.
+ */
+#ifndef CONFIG_CPU_BIG_ENDIAN
+
+static inline u16 flash_read16(void __iomem *addr)
+{
+ return be16_to_cpu(__raw_readw((void __iomem *)((unsigned long)addr ^ 0x2)));
+}
+
+static inline void flash_write16(u16 d, void __iomem *addr)
+{
+ __raw_writew(cpu_to_be16(d), (void __iomem *)((unsigned long)addr ^ 0x2));
+}
+
+#define BYTE0(h) ((h) & 0xFF)
+#define BYTE1(h) (((h) >> 8) & 0xFF)
+
+#else
+
+static inline u16 flash_read16(const void __iomem *addr)
+{
+ return __raw_readw(addr);
+}
+
+static inline void flash_write16(u16 d, void __iomem *addr)
+{
+ __raw_writew(d, addr);
+}
+
+#define BYTE0(h) (((h) >> 8) & 0xFF)
+#define BYTE1(h) ((h) & 0xFF)
+#endif
+
+static map_word ixp4xx_read16(struct map_info *map, unsigned long ofs)
+{
+ map_word val;
+
+ val.x[0] = flash_read16(map->virt + ofs);
+ return val;
+}
+
+/*
+ * The IXP4xx expansion bus only allows 16-bit wide acceses
+ * when attached to a 16-bit wide device (such as the 28F128J3A),
+ * so we can't just memcpy_fromio().
+ */
+static void ixp4xx_copy_from(struct map_info *map, void *to,
+ unsigned long from, ssize_t len)
+{
+ u8 *dest = (u8 *) to;
+ void __iomem *src = map->virt + from;
+
+ if (len <= 0)
+ return;
+
+ if (from & 1) {
+ *dest++ = BYTE1(flash_read16(src-1));
+ src++;
+ --len;
+ }
+
+ while (len >= 2) {
+ u16 data = flash_read16(src);
+ *dest++ = BYTE0(data);
+ *dest++ = BYTE1(data);
+ src += 2;
+ len -= 2;
+ }
+
+ if (len > 0)
+ *dest++ = BYTE0(flash_read16(src));
+}
+
+static void ixp4xx_write16(struct map_info *map, map_word d, unsigned long adr)
+{
+ flash_write16(d.x[0], map->virt + adr);
+}
+
+int of_flash_probe_ixp4xx(struct platform_device *pdev,
+ struct device_node *np,
+ struct map_info *map)
+{
+ struct device *dev = &pdev->dev;
+
+ /* Multiplatform guard */
+ if (!of_device_is_compatible(np, "intel,ixp4xx-flash"))
+ return 0;
+
+ map->read = ixp4xx_read16;
+ map->write = ixp4xx_write16;
+ map->copy_from = ixp4xx_copy_from;
+ map->copy_to = NULL;
+
+ dev_info(dev, "initialized Intel IXP4xx-specific physmap control\n");
+
+ return 0;
+}
diff --git a/drivers/mtd/maps/physmap-ixp4xx.h b/drivers/mtd/maps/physmap-ixp4xx.h
new file mode 100644
index 000000000000..b0fc49b7f3ed
--- /dev/null
+++ b/drivers/mtd/maps/physmap-ixp4xx.h
@@ -0,0 +1,17 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/of.h>
+#include <linux/mtd/map.h>
+
+#ifdef CONFIG_MTD_PHYSMAP_IXP4XX
+int of_flash_probe_ixp4xx(struct platform_device *pdev,
+ struct device_node *np,
+ struct map_info *map);
+#else
+static inline
+int of_flash_probe_ixp4xx(struct platform_device *pdev,
+ struct device_node *np,
+ struct map_info *map)
+{
+ return 0;
+}
+#endif
diff --git a/drivers/mtd/maps/pismo.c b/drivers/mtd/maps/pismo.c
index 788d4996e2c1..946ba80f9758 100644
--- a/drivers/mtd/maps/pismo.c
+++ b/drivers/mtd/maps/pismo.c
@@ -211,13 +211,12 @@ static int pismo_remove(struct i2c_client *client)
static int pismo_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
- struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct pismo_pdata *pdata = client->dev.platform_data;
struct pismo_eeprom eeprom;
struct pismo_data *pismo;
int ret, i;
- if (!i2c_check_functionality(adapter, I2C_FUNC_I2C)) {
+ if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(&client->dev, "functionality mismatch\n");
return -EIO;
}
diff --git a/drivers/mtd/maps/pxa2xx-flash.c b/drivers/mtd/maps/pxa2xx-flash.c
index cebb346877a9..7d96758a8f04 100644
--- a/drivers/mtd/maps/pxa2xx-flash.c
+++ b/drivers/mtd/maps/pxa2xx-flash.c
@@ -68,8 +68,7 @@ static int pxa2xx_flash_probe(struct platform_device *pdev)
info->map.name);
return -ENOMEM;
}
- info->map.cached =
- ioremap_cached(info->map.phys, info->map.size);
+ info->map.cached = ioremap_cache(info->map.phys, info->map.size);
if (!info->map.cached)
printk(KERN_WARNING "Failed to ioremap cached %s\n",
info->map.name);
diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c
index 895510d40ce4..47602af4ee34 100644
--- a/drivers/mtd/maps/sa1100-flash.c
+++ b/drivers/mtd/maps/sa1100-flash.c
@@ -81,6 +81,7 @@ static int sa1100_probe_subdev(struct sa_subdev_info *subdev, struct resource *r
default:
printk(KERN_WARNING "SA1100 flash: unknown base address "
"0x%08lx, assuming CS0\n", phys);
+ /* Fall through */
case SA1100_CS0_PHYS:
subdev->map.bankwidth = (MSC0 & MSC_RBW) ? 2 : 4;
diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c
index 975aed94f06c..b841008a9eb7 100644
--- a/drivers/mtd/mtdchar.c
+++ b/drivers/mtd/mtdchar.c
@@ -174,7 +174,7 @@ static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
break;
case MTD_FILE_MODE_RAW:
{
- struct mtd_oob_ops ops;
+ struct mtd_oob_ops ops = {};
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
@@ -268,7 +268,7 @@ static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t c
case MTD_FILE_MODE_RAW:
{
- struct mtd_oob_ops ops;
+ struct mtd_oob_ops ops = {};
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
@@ -350,7 +350,7 @@ static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
- struct mtd_oob_ops ops;
+ struct mtd_oob_ops ops = {};
uint32_t retlen;
int ret = 0;
@@ -394,7 +394,7 @@ static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
- struct mtd_oob_ops ops;
+ struct mtd_oob_ops ops = {};
int ret = 0;
if (length > 4096)
@@ -587,7 +587,7 @@ static int mtdchar_write_ioctl(struct mtd_info *mtd,
struct mtd_write_req __user *argp)
{
struct mtd_write_req req;
- struct mtd_oob_ops ops;
+ struct mtd_oob_ops ops = {};
const void __user *usr_data, *usr_oob;
int ret;
diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c
index 7324ff832b41..170a7221b35f 100644
--- a/drivers/mtd/mtdconcat.c
+++ b/drivers/mtd/mtdconcat.c
@@ -437,7 +437,8 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
return err;
}
-static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+static int concat_xxlock(struct mtd_info *mtd, loff_t ofs, uint64_t len,
+ bool is_lock)
{
struct mtd_concat *concat = CONCAT(mtd);
int i, err = -EINVAL;
@@ -456,7 +457,10 @@ static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
else
size = len;
- err = mtd_lock(subdev, ofs, size);
+ if (is_lock)
+ err = mtd_lock(subdev, ofs, size);
+ else
+ err = mtd_unlock(subdev, ofs, size);
if (err)
break;
@@ -471,35 +475,33 @@ static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
return err;
}
+static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
+ return concat_xxlock(mtd, ofs, len, true);
+}
+
static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
+ return concat_xxlock(mtd, ofs, len, false);
+}
+
+static int concat_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
+{
struct mtd_concat *concat = CONCAT(mtd);
- int i, err = 0;
+ int i, err = -EINVAL;
for (i = 0; i < concat->num_subdev; i++) {
struct mtd_info *subdev = concat->subdev[i];
- uint64_t size;
if (ofs >= subdev->size) {
- size = 0;
ofs -= subdev->size;
continue;
}
- if (ofs + len > subdev->size)
- size = subdev->size - ofs;
- else
- size = len;
-
- err = mtd_unlock(subdev, ofs, size);
- if (err)
- break;
- len -= size;
- if (len == 0)
+ if (ofs + len > subdev->size)
break;
- err = -EINVAL;
- ofs = 0;
+ return mtd_is_locked(subdev, ofs, len);
}
return err;
@@ -704,6 +706,7 @@ struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to c
concat->mtd._sync = concat_sync;
concat->mtd._lock = concat_lock;
concat->mtd._unlock = concat_unlock;
+ concat->mtd._is_locked = concat_is_locked;
concat->mtd._suspend = concat_suspend;
concat->mtd._resume = concat_resume;
diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c
index 453242d6cf56..5fac4355b9c2 100644
--- a/drivers/mtd/mtdcore.c
+++ b/drivers/mtd/mtdcore.c
@@ -335,6 +335,70 @@ static const struct device_type mtd_devtype = {
.release = mtd_release,
};
+static int mtd_partid_show(struct seq_file *s, void *p)
+{
+ struct mtd_info *mtd = s->private;
+
+ seq_printf(s, "%s\n", mtd->dbg.partid);
+
+ return 0;
+}
+
+static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, mtd_partid_show, inode->i_private);
+}
+
+static const struct file_operations mtd_partid_debug_fops = {
+ .open = mtd_partid_debugfs_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static int mtd_partname_show(struct seq_file *s, void *p)
+{
+ struct mtd_info *mtd = s->private;
+
+ seq_printf(s, "%s\n", mtd->dbg.partname);
+
+ return 0;
+}
+
+static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
+{
+ return single_open(file, mtd_partname_show, inode->i_private);
+}
+
+static const struct file_operations mtd_partname_debug_fops = {
+ .open = mtd_partname_debugfs_open,
+ .read = seq_read,
+ .llseek = seq_lseek,
+ .release = single_release,
+};
+
+static struct dentry *dfs_dir_mtd;
+
+static void mtd_debugfs_populate(struct mtd_info *mtd)
+{
+ struct device *dev = &mtd->dev;
+ struct dentry *root;
+
+ if (IS_ERR_OR_NULL(dfs_dir_mtd))
+ return;
+
+ root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
+ mtd->dbg.dfs_dir = root;
+
+ if (mtd->dbg.partid)
+ debugfs_create_file("partid", 0400, root, mtd,
+ &mtd_partid_debug_fops);
+
+ if (mtd->dbg.partname)
+ debugfs_create_file("partname", 0400, root, mtd,
+ &mtd_partname_debug_fops);
+}
+
#ifndef CONFIG_MMU
unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
{
@@ -512,8 +576,6 @@ static int mtd_nvmem_add(struct mtd_info *mtd)
return 0;
}
-static struct dentry *dfs_dir_mtd;
-
/**
* add_mtd_device - register an MTD device
* @mtd: pointer to new MTD device info structure
@@ -607,13 +669,7 @@ int add_mtd_device(struct mtd_info *mtd)
if (error)
goto fail_nvmem_add;
- if (!IS_ERR_OR_NULL(dfs_dir_mtd)) {
- mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(&mtd->dev), dfs_dir_mtd);
- if (IS_ERR_OR_NULL(mtd->dbg.dfs_dir)) {
- pr_debug("mtd device %s won't show data in debugfs\n",
- dev_name(&mtd->dev));
- }
- }
+ mtd_debugfs_populate(mtd);
device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
"mtd%dro", i);
@@ -1124,6 +1180,9 @@ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
return -EROFS;
if (!len)
return 0;
+ if (!mtd->oops_panic_write)
+ mtd->oops_panic_write = true;
+
return mtd->_panic_write(mtd, to, len, retlen, buf);
}
EXPORT_SYMBOL_GPL(mtd_panic_write);
diff --git a/drivers/mtd/mtdcore.h b/drivers/mtd/mtdcore.h
index b31c868019ad..b5eefeabf310 100644
--- a/drivers/mtd/mtdcore.h
+++ b/drivers/mtd/mtdcore.h
@@ -5,6 +5,7 @@
*/
extern struct mutex mtd_table_mutex;
+extern struct backing_dev_info *mtd_bdi;
struct mtd_info *__mtd_next_device(int i);
int __must_check add_mtd_device(struct mtd_info *mtd);
diff --git a/drivers/mtd/mtdsuper.c b/drivers/mtd/mtdsuper.c
index 4f042a3653ce..c3e2098372f2 100644
--- a/drivers/mtd/mtdsuper.c
+++ b/drivers/mtd/mtdsuper.c
@@ -15,112 +15,109 @@
#include <linux/slab.h>
#include <linux/major.h>
#include <linux/backing-dev.h>
+#include <linux/fs_context.h>
+#include "mtdcore.h"
/*
* compare superblocks to see if they're equivalent
* - they are if the underlying MTD device is the same
*/
-static int get_sb_mtd_compare(struct super_block *sb, void *_mtd)
+static int mtd_test_super(struct super_block *sb, struct fs_context *fc)
{
- struct mtd_info *mtd = _mtd;
+ struct mtd_info *mtd = fc->sget_key;
- if (sb->s_mtd == mtd) {
+ if (sb->s_mtd == fc->sget_key) {
pr_debug("MTDSB: Match on device %d (\"%s\")\n",
- mtd->index, mtd->name);
+ mtd->index, mtd->name);
return 1;
}
pr_debug("MTDSB: No match, device %d (\"%s\"), device %d (\"%s\")\n",
- sb->s_mtd->index, sb->s_mtd->name, mtd->index, mtd->name);
+ sb->s_mtd->index, sb->s_mtd->name, mtd->index, mtd->name);
return 0;
}
-extern struct backing_dev_info *mtd_bdi;
-
/*
* mark the superblock by the MTD device it is using
* - set the device number to be the correct MTD block device for pesuperstence
* of NFS exports
*/
-static int get_sb_mtd_set(struct super_block *sb, void *_mtd)
+static int mtd_set_super(struct super_block *sb, struct fs_context *fc)
{
- struct mtd_info *mtd = _mtd;
-
- sb->s_mtd = mtd;
- sb->s_dev = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
+ sb->s_mtd = fc->sget_key;
+ sb->s_dev = MKDEV(MTD_BLOCK_MAJOR, sb->s_mtd->index);
sb->s_bdi = bdi_get(mtd_bdi);
-
return 0;
}
/*
* get a superblock on an MTD-backed filesystem
*/
-static struct dentry *mount_mtd_aux(struct file_system_type *fs_type, int flags,
- const char *dev_name, void *data,
- struct mtd_info *mtd,
- int (*fill_super)(struct super_block *, void *, int))
+static int mtd_get_sb(struct fs_context *fc,
+ struct mtd_info *mtd,
+ int (*fill_super)(struct super_block *,
+ struct fs_context *))
{
struct super_block *sb;
int ret;
- sb = sget(fs_type, get_sb_mtd_compare, get_sb_mtd_set, flags, mtd);
+ fc->sget_key = mtd;
+ sb = sget_fc(fc, mtd_test_super, mtd_set_super);
if (IS_ERR(sb))
- goto out_error;
-
- if (sb->s_root)
- goto already_mounted;
-
- /* fresh new superblock */
- pr_debug("MTDSB: New superblock for device %d (\"%s\")\n",
- mtd->index, mtd->name);
-
- ret = fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
- if (ret < 0) {
- deactivate_locked_super(sb);
- return ERR_PTR(ret);
+ return PTR_ERR(sb);
+
+ if (sb->s_root) {
+ /* new mountpoint for an already mounted superblock */
+ pr_debug("MTDSB: Device %d (\"%s\") is already mounted\n",
+ mtd->index, mtd->name);
+ put_mtd_device(mtd);
+ } else {
+ /* fresh new superblock */
+ pr_debug("MTDSB: New superblock for device %d (\"%s\")\n",
+ mtd->index, mtd->name);
+
+ ret = fill_super(sb, fc);
+ if (ret < 0)
+ goto error_sb;
+
+ sb->s_flags |= SB_ACTIVE;
}
- /* go */
- sb->s_flags |= SB_ACTIVE;
- return dget(sb->s_root);
-
- /* new mountpoint for an already mounted superblock */
-already_mounted:
- pr_debug("MTDSB: Device %d (\"%s\") is already mounted\n",
- mtd->index, mtd->name);
- put_mtd_device(mtd);
- return dget(sb->s_root);
+ BUG_ON(fc->root);
+ fc->root = dget(sb->s_root);
+ return 0;
-out_error:
- put_mtd_device(mtd);
- return ERR_CAST(sb);
+error_sb:
+ deactivate_locked_super(sb);
+ return ret;
}
/*
* get a superblock on an MTD-backed filesystem by MTD device number
*/
-static struct dentry *mount_mtd_nr(struct file_system_type *fs_type, int flags,
- const char *dev_name, void *data, int mtdnr,
- int (*fill_super)(struct super_block *, void *, int))
+static int mtd_get_sb_by_nr(struct fs_context *fc, int mtdnr,
+ int (*fill_super)(struct super_block *,
+ struct fs_context *))
{
struct mtd_info *mtd;
mtd = get_mtd_device(NULL, mtdnr);
if (IS_ERR(mtd)) {
- pr_debug("MTDSB: Device #%u doesn't appear to exist\n", mtdnr);
- return ERR_CAST(mtd);
+ errorf(fc, "MTDSB: Device #%u doesn't appear to exist\n", mtdnr);
+ return PTR_ERR(mtd);
}
- return mount_mtd_aux(fs_type, flags, dev_name, data, mtd, fill_super);
+ return mtd_get_sb(fc, mtd, fill_super);
}
-/*
- * set up an MTD-based superblock
+/**
+ * get_tree_mtd - Get a superblock based on a single MTD device
+ * @fc: The filesystem context holding the parameters
+ * @fill_super: Helper to initialise a new superblock
*/
-struct dentry *mount_mtd(struct file_system_type *fs_type, int flags,
- const char *dev_name, void *data,
- int (*fill_super)(struct super_block *, void *, int))
+int get_tree_mtd(struct fs_context *fc,
+ int (*fill_super)(struct super_block *sb,
+ struct fs_context *fc))
{
#ifdef CONFIG_BLOCK
struct block_device *bdev;
@@ -128,46 +125,42 @@ struct dentry *mount_mtd(struct file_system_type *fs_type, int flags,
#endif
int mtdnr;
- if (!dev_name)
- return ERR_PTR(-EINVAL);
+ if (!fc->source)
+ return invalf(fc, "No source specified");
- pr_debug("MTDSB: dev_name \"%s\"\n", dev_name);
+ pr_debug("MTDSB: dev_name \"%s\"\n", fc->source);
/* the preferred way of mounting in future; especially when
* CONFIG_BLOCK=n - we specify the underlying MTD device by number or
* by name, so that we don't require block device support to be present
- * in the kernel. */
- if (dev_name[0] == 'm' && dev_name[1] == 't' && dev_name[2] == 'd') {
- if (dev_name[3] == ':') {
+ * in the kernel.
+ */
+ if (fc->source[0] == 'm' &&
+ fc->source[1] == 't' &&
+ fc->source[2] == 'd') {
+ if (fc->source[3] == ':') {
struct mtd_info *mtd;
/* mount by MTD device name */
pr_debug("MTDSB: mtd:%%s, name \"%s\"\n",
- dev_name + 4);
+ fc->source + 4);
- mtd = get_mtd_device_nm(dev_name + 4);
+ mtd = get_mtd_device_nm(fc->source + 4);
if (!IS_ERR(mtd))
- return mount_mtd_aux(
- fs_type, flags,
- dev_name, data, mtd,
- fill_super);
+ return mtd_get_sb(fc, mtd, fill_super);
- printk(KERN_NOTICE "MTD:"
- " MTD device with name \"%s\" not found.\n",
- dev_name + 4);
+ errorf(fc, "MTD: MTD device with name \"%s\" not found",
+ fc->source + 4);
- } else if (isdigit(dev_name[3])) {
+ } else if (isdigit(fc->source[3])) {
/* mount by MTD device number name */
char *endptr;
- mtdnr = simple_strtoul(dev_name + 3, &endptr, 0);
+ mtdnr = simple_strtoul(fc->source + 3, &endptr, 0);
if (!*endptr) {
/* It was a valid number */
- pr_debug("MTDSB: mtd%%d, mtdnr %d\n",
- mtdnr);
- return mount_mtd_nr(fs_type, flags,
- dev_name, data,
- mtdnr, fill_super);
+ pr_debug("MTDSB: mtd%%d, mtdnr %d\n", mtdnr);
+ return mtd_get_sb_by_nr(fc, mtdnr, fill_super);
}
}
}
@@ -176,36 +169,29 @@ struct dentry *mount_mtd(struct file_system_type *fs_type, int flags,
/* try the old way - the hack where we allowed users to mount
* /dev/mtdblock$(n) but didn't actually _use_ the blockdev
*/
- bdev = lookup_bdev(dev_name);
+ bdev = lookup_bdev(fc->source);
if (IS_ERR(bdev)) {
ret = PTR_ERR(bdev);
- pr_debug("MTDSB: lookup_bdev() returned %d\n", ret);
- return ERR_PTR(ret);
+ errorf(fc, "MTD: Couldn't look up '%s': %d", fc->source, ret);
+ return ret;
}
pr_debug("MTDSB: lookup_bdev() returned 0\n");
- ret = -EINVAL;
-
major = MAJOR(bdev->bd_dev);
mtdnr = MINOR(bdev->bd_dev);
bdput(bdev);
- if (major != MTD_BLOCK_MAJOR)
- goto not_an_MTD_device;
-
- return mount_mtd_nr(fs_type, flags, dev_name, data, mtdnr, fill_super);
+ if (major == MTD_BLOCK_MAJOR)
+ return mtd_get_sb_by_nr(fc, mtdnr, fill_super);
-not_an_MTD_device:
#endif /* CONFIG_BLOCK */
- if (!(flags & SB_SILENT))
- printk(KERN_NOTICE
- "MTD: Attempt to mount non-MTD device \"%s\"\n",
- dev_name);
- return ERR_PTR(-EINVAL);
+ if (!(fc->sb_flags & SB_SILENT))
+ errorf(fc, "MTD: Attempt to mount non-MTD device \"%s\"",
+ fc->source);
+ return -EINVAL;
}
-
-EXPORT_SYMBOL_GPL(mount_mtd);
+EXPORT_SYMBOL_GPL(get_tree_mtd);
/*
* destroy an MTD-based superblock
diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c
index f92414eb4c86..58eefa43af14 100644
--- a/drivers/mtd/mtdswap.c
+++ b/drivers/mtd/mtdswap.c
@@ -1257,7 +1257,6 @@ DEFINE_SHOW_ATTRIBUTE(mtdswap);
static int mtdswap_add_debugfs(struct mtdswap_dev *d)
{
struct dentry *root = d->mtd->dbg.dfs_dir;
- struct dentry *dent;
if (!IS_ENABLED(CONFIG_DEBUG_FS))
return 0;
@@ -1265,12 +1264,7 @@ static int mtdswap_add_debugfs(struct mtdswap_dev *d)
if (IS_ERR_OR_NULL(root))
return -1;
- dent = debugfs_create_file("mtdswap_stats", S_IRUSR, root, d,
- &mtdswap_fops);
- if (!dent) {
- dev_err(d->dev, "debugfs_create_file failed\n");
- return -1;
- }
+ debugfs_create_file("mtdswap_stats", S_IRUSR, root, d, &mtdswap_fops);
return 0;
}
diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c
index d759c02d9cb2..77bd32a683e1 100644
--- a/drivers/mtd/nand/onenand/onenand_base.c
+++ b/drivers/mtd/nand/onenand/onenand_base.c
@@ -3257,6 +3257,9 @@ static void onenand_check_features(struct mtd_info *mtd)
/* Lock scheme */
switch (density) {
+ case ONENAND_DEVICE_DENSITY_8Gb:
+ this->options |= ONENAND_HAS_NOP_1;
+ /* fall through */
case ONENAND_DEVICE_DENSITY_4Gb:
if (ONENAND_IS_DDP(this))
this->options |= ONENAND_HAS_2PLANE;
@@ -3277,12 +3280,15 @@ static void onenand_check_features(struct mtd_info *mtd)
if ((this->version_id & 0xf) == 0xe)
this->options |= ONENAND_HAS_NOP_1;
}
+ this->options |= ONENAND_HAS_UNLOCK_ALL;
+ break;
case ONENAND_DEVICE_DENSITY_2Gb:
/* 2Gb DDP does not have 2 plane */
if (!ONENAND_IS_DDP(this))
this->options |= ONENAND_HAS_2PLANE;
this->options |= ONENAND_HAS_UNLOCK_ALL;
+ break;
case ONENAND_DEVICE_DENSITY_1Gb:
/* A-Die has all block unlock */
@@ -3874,6 +3880,9 @@ int onenand_scan(struct mtd_info *mtd, int maxchips)
if (!this->oob_buf) {
if (this->options & ONENAND_PAGEBUF_ALLOC) {
this->options &= ~ONENAND_PAGEBUF_ALLOC;
+#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
+ kfree(this->verify_buf);
+#endif
kfree(this->page_buf);
}
return -ENOMEM;
diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 5a711d8beaca..74fb91adeb46 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -351,14 +351,6 @@ config MTD_NAND_SOCRATES
help
Enables support for NAND Flash chips wired onto Socrates board.
-config MTD_NAND_NUC900
- tristate "Nuvoton NUC9xx/w90p910 NAND controller"
- depends on ARCH_W90X900 || COMPILE_TEST
- depends on HAS_IOMEM
- help
- This enables the driver for the NAND Flash on evaluation board based
- on w90p910 / NUC9xx.
-
source "drivers/mtd/nand/raw/ingenic/Kconfig"
config MTD_NAND_FSMC
@@ -407,6 +399,12 @@ config MTD_NAND_MTK
Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs.
+config MTD_NAND_MXIC
+ tristate "Macronix raw NAND controller"
+ depends on HAS_IOMEM || COMPILE_TEST
+ help
+ This selects the Macronix raw NAND controller driver.
+
config MTD_NAND_TEGRA
tristate "NVIDIA Tegra NAND controller"
depends on ARCH_TEGRA || COMPILE_TEST
@@ -452,6 +450,13 @@ config MTD_NAND_PLATFORM
devices. You will need to provide platform-specific functions
via platform_data.
+config MTD_NAND_CADENCE
+ tristate "Support Cadence NAND (HPNFC) controller"
+ depends on OF || COMPILE_TEST
+ help
+ Enable the driver for NAND flash on platforms using a Cadence NAND
+ controller.
+
comment "Misc"
config MTD_SM_COMMON
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index efaf5cd25edc..2d136b158fb7 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -41,7 +41,6 @@ obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
-obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
@@ -54,9 +53,11 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o
+obj-$(CONFIG_MTD_NAND_CADENCE) += cadence-nand-controller.o
nand-objs := nand_base.o nand_legacy.o nand_bbt.o nand_timings.o nand_ids.o
nand-objs += nand_onfi.o
diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c
index 97a97a9ccc36..e10b76089048 100644
--- a/drivers/mtd/nand/raw/au1550nd.c
+++ b/drivers/mtd/nand/raw/au1550nd.c
@@ -134,16 +134,15 @@ static void au_write_buf16(struct nand_chip *this, const u_char *buf, int len)
/**
* au_read_buf16 - read chip data into buffer
- * @mtd: MTD device structure
+ * @this: NAND chip object
* @buf: buffer to store date
* @len: number of bytes to read
*
* read function for 16bit buswidth
*/
-static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+static void au_read_buf16(struct nand_chip *this, u_char *buf, int len)
{
int i;
- struct nand_chip *this = mtd_to_nand(mtd);
u16 *p = (u16 *) buf;
len >>= 1;
diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
index 873527753f52..1a66b1cd51c0 100644
--- a/drivers/mtd/nand/raw/brcmnand/brcmnand.c
+++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c
@@ -84,6 +84,12 @@ struct brcm_nand_dma_desc {
#define FLASH_DMA_ECC_ERROR (1 << 8)
#define FLASH_DMA_CORR_ERROR (1 << 9)
+/* Bitfields for DMA_MODE */
+#define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
+#define FLASH_DMA_MODE_MODE BIT(0) /* link list */
+#define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
+ FLASH_DMA_MODE_MODE)
+
/* 512B flash cache in the NAND controller HW */
#define FC_SHIFT 9U
#define FC_BYTES 512U
@@ -96,6 +102,63 @@ struct brcm_nand_dma_desc {
#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
#define NAND_POLL_STATUS_TIMEOUT_MS 100
+/* flash_dma registers */
+enum flash_dma_reg {
+ FLASH_DMA_REVISION = 0,
+ FLASH_DMA_FIRST_DESC,
+ FLASH_DMA_FIRST_DESC_EXT,
+ FLASH_DMA_CTRL,
+ FLASH_DMA_MODE,
+ FLASH_DMA_STATUS,
+ FLASH_DMA_INTERRUPT_DESC,
+ FLASH_DMA_INTERRUPT_DESC_EXT,
+ FLASH_DMA_ERROR_STATUS,
+ FLASH_DMA_CURRENT_DESC,
+ FLASH_DMA_CURRENT_DESC_EXT,
+};
+
+/* flash_dma registers v0*/
+static const u16 flash_dma_regs_v0[] = {
+ [FLASH_DMA_REVISION] = 0x00,
+ [FLASH_DMA_FIRST_DESC] = 0x04,
+ [FLASH_DMA_CTRL] = 0x08,
+ [FLASH_DMA_MODE] = 0x0c,
+ [FLASH_DMA_STATUS] = 0x10,
+ [FLASH_DMA_INTERRUPT_DESC] = 0x14,
+ [FLASH_DMA_ERROR_STATUS] = 0x18,
+ [FLASH_DMA_CURRENT_DESC] = 0x1c,
+};
+
+/* flash_dma registers v1*/
+static const u16 flash_dma_regs_v1[] = {
+ [FLASH_DMA_REVISION] = 0x00,
+ [FLASH_DMA_FIRST_DESC] = 0x04,
+ [FLASH_DMA_FIRST_DESC_EXT] = 0x08,
+ [FLASH_DMA_CTRL] = 0x0c,
+ [FLASH_DMA_MODE] = 0x10,
+ [FLASH_DMA_STATUS] = 0x14,
+ [FLASH_DMA_INTERRUPT_DESC] = 0x18,
+ [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
+ [FLASH_DMA_ERROR_STATUS] = 0x20,
+ [FLASH_DMA_CURRENT_DESC] = 0x24,
+ [FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
+};
+
+/* flash_dma registers v4 */
+static const u16 flash_dma_regs_v4[] = {
+ [FLASH_DMA_REVISION] = 0x00,
+ [FLASH_DMA_FIRST_DESC] = 0x08,
+ [FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
+ [FLASH_DMA_CTRL] = 0x10,
+ [FLASH_DMA_MODE] = 0x14,
+ [FLASH_DMA_STATUS] = 0x18,
+ [FLASH_DMA_INTERRUPT_DESC] = 0x20,
+ [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
+ [FLASH_DMA_ERROR_STATUS] = 0x28,
+ [FLASH_DMA_CURRENT_DESC] = 0x30,
+ [FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
+};
+
/* Controller feature flags */
enum {
BRCMNAND_HAS_1K_SECTORS = BIT(0),
@@ -128,6 +191,8 @@ struct brcmnand_controller {
/* List of NAND hosts (one for each chip-select) */
struct list_head host_list;
+ /* flash_dma reg */
+ const u16 *flash_dma_offsets;
struct brcm_nand_dma_desc *dma_desc;
dma_addr_t dma_pa;
@@ -151,6 +216,7 @@ struct brcmnand_controller {
u32 nand_cs_nand_xor;
u32 corr_stat_threshold;
u32 flash_dma_mode;
+ bool pio_poll_mode;
};
struct brcmnand_cfg {
@@ -462,7 +528,7 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
/* Register offsets */
if (ctrl->nand_version >= 0x0702)
ctrl->reg_offsets = brcmnand_regs_v72;
- else if (ctrl->nand_version >= 0x0701)
+ else if (ctrl->nand_version == 0x0701)
ctrl->reg_offsets = brcmnand_regs_v71;
else if (ctrl->nand_version >= 0x0600)
ctrl->reg_offsets = brcmnand_regs_v60;
@@ -507,7 +573,7 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
}
/* Maximum spare area sector size (per 512B) */
- if (ctrl->nand_version >= 0x0702)
+ if (ctrl->nand_version == 0x0702)
ctrl->max_oob = 128;
else if (ctrl->nand_version >= 0x0600)
ctrl->max_oob = 64;
@@ -538,6 +604,17 @@ static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
return 0;
}
+static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
+{
+ /* flash_dma register offsets */
+ if (ctrl->nand_version >= 0x0703)
+ ctrl->flash_dma_offsets = flash_dma_regs_v4;
+ else if (ctrl->nand_version == 0x0602)
+ ctrl->flash_dma_offsets = flash_dma_regs_v0;
+ else
+ ctrl->flash_dma_offsets = flash_dma_regs_v1;
+}
+
static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
enum brcmnand_reg reg)
{
@@ -580,6 +657,54 @@ static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
__raw_writel(val, ctrl->nand_fc + word * 4);
}
+static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
+{
+
+ /* Clear error addresses */
+ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
+ brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
+ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
+ brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
+}
+
+static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
+{
+ u64 err_addr;
+
+ err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
+ err_addr |= ((u64)(brcmnand_read_reg(ctrl,
+ BRCMNAND_UNCORR_EXT_ADDR)
+ & 0xffff) << 32);
+
+ return err_addr;
+}
+
+static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
+{
+ u64 err_addr;
+
+ err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
+ err_addr |= ((u64)(brcmnand_read_reg(ctrl,
+ BRCMNAND_CORR_EXT_ADDR)
+ & 0xffff) << 32);
+
+ return err_addr;
+}
+
+static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct brcmnand_host *host = nand_get_controller_data(chip);
+ struct brcmnand_controller *ctrl = host->ctrl;
+
+ brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
+ (host->cs << 16) | ((addr >> 32) & 0xffff));
+ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+ brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
+ lower_32_bits(addr));
+ (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+}
+
static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
enum brcmnand_cs_reg reg)
{
@@ -612,7 +737,7 @@ static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
int cs = host->cs;
- if (ctrl->nand_version >= 0x0702)
+ if (ctrl->nand_version == 0x0702)
bits = 7;
else if (ctrl->nand_version >= 0x0600)
bits = 6;
@@ -666,7 +791,7 @@ enum {
static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
{
- if (ctrl->nand_version >= 0x0702)
+ if (ctrl->nand_version == 0x0702)
return GENMASK(7, 0);
else if (ctrl->nand_version >= 0x0600)
return GENMASK(6, 0);
@@ -796,39 +921,44 @@ static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
* Flash DMA
***********************************************************************/
-enum flash_dma_reg {
- FLASH_DMA_REVISION = 0x00,
- FLASH_DMA_FIRST_DESC = 0x04,
- FLASH_DMA_FIRST_DESC_EXT = 0x08,
- FLASH_DMA_CTRL = 0x0c,
- FLASH_DMA_MODE = 0x10,
- FLASH_DMA_STATUS = 0x14,
- FLASH_DMA_INTERRUPT_DESC = 0x18,
- FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c,
- FLASH_DMA_ERROR_STATUS = 0x20,
- FLASH_DMA_CURRENT_DESC = 0x24,
- FLASH_DMA_CURRENT_DESC_EXT = 0x28,
-};
-
static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
{
return ctrl->flash_dma_base;
}
+static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
+{
+ if (ctrl->pio_poll_mode)
+ return;
+
+ if (has_flash_dma(ctrl)) {
+ ctrl->flash_dma_base = NULL;
+ disable_irq(ctrl->dma_irq);
+ }
+
+ disable_irq(ctrl->irq);
+ ctrl->pio_poll_mode = true;
+}
+
static inline bool flash_dma_buf_ok(const void *buf)
{
return buf && !is_vmalloc_addr(buf) &&
likely(IS_ALIGNED((uintptr_t)buf, 4));
}
-static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs,
- u32 val)
+static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
+ enum flash_dma_reg dma_reg, u32 val)
{
+ u16 offs = ctrl->flash_dma_offsets[dma_reg];
+
brcmnand_writel(val, ctrl->flash_dma_base + offs);
}
-static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs)
+static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
+ enum flash_dma_reg dma_reg)
{
+ u16 offs = ctrl->flash_dma_offsets[dma_reg];
+
return brcmnand_readl(ctrl->flash_dma_base + offs);
}
@@ -931,7 +1061,7 @@ static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
if (section >= sectors)
return -ERANGE;
- oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes;
+ oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
oobregion->length = chip->ecc.bytes;
return 0;
@@ -1205,9 +1335,12 @@ static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
int ret;
+ u64 cmd_addr;
+
+ cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+
+ dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
- dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd,
- brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS));
BUG_ON(ctrl->cmd_pending != 0);
ctrl->cmd_pending = cmd;
@@ -1229,15 +1362,42 @@ static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
/* intentionally left blank */
}
+static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
+{
+ struct brcmnand_host *host = nand_get_controller_data(chip);
+ struct brcmnand_controller *ctrl = host->ctrl;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ bool err = false;
+ int sts;
+
+ if (mtd->oops_panic_write) {
+ /* switch to interrupt polling and PIO mode */
+ disable_ctrl_irqs(ctrl);
+ sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
+ NAND_CTRL_RDY, 0);
+ err = (sts < 0) ? true : false;
+ } else {
+ unsigned long timeo = msecs_to_jiffies(
+ NAND_POLL_STATUS_TIMEOUT_MS);
+ /* wait for completion interrupt */
+ sts = wait_for_completion_timeout(&ctrl->done, timeo);
+ err = (sts <= 0) ? true : false;
+ }
+
+ return err;
+}
+
static int brcmnand_waitfunc(struct nand_chip *chip)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
- unsigned long timeo = msecs_to_jiffies(100);
+ bool err = false;
dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
- if (ctrl->cmd_pending &&
- wait_for_completion_timeout(&ctrl->done, timeo) <= 0) {
+ if (ctrl->cmd_pending)
+ err = brcmstb_nand_wait_for_completion(chip);
+
+ if (err) {
u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
>> brcmnand_cmd_shift(ctrl);
@@ -1366,12 +1526,7 @@ static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
if (!native_cmd)
return;
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
- (host->cs << 16) | ((addr >> 32) & 0xffff));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
-
+ brcmnand_set_cmd_addr(mtd, addr);
brcmnand_send_cmd(host, native_cmd);
brcmnand_waitfunc(chip);
@@ -1532,8 +1687,11 @@ static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
- flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc));
- (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
+ if (ctrl->nand_version > 0x0602) {
+ flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
+ upper_32_bits(desc));
+ (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
+ }
/* Start FLASH_DMA engine */
ctrl->dma_pending = true;
@@ -1589,20 +1747,10 @@ static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
struct brcmnand_controller *ctrl = host->ctrl;
int i, j, ret = 0;
- /* Clear error addresses */
- brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
- brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
- brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
- brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
-
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
- (host->cs << 16) | ((addr >> 32) & 0xffff));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
+ brcmnand_clear_ecc_addr(ctrl);
for (i = 0; i < trans; i++, addr += FC_BYTES) {
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
- lower_32_bits(addr));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+ brcmnand_set_cmd_addr(mtd, addr);
/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
brcmnand_send_cmd(host, CMD_PAGE_READ);
brcmnand_waitfunc(chip);
@@ -1622,21 +1770,15 @@ static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
host->hwcfg.sector_size_1k);
if (!ret) {
- *err_addr = brcmnand_read_reg(ctrl,
- BRCMNAND_UNCORR_ADDR) |
- ((u64)(brcmnand_read_reg(ctrl,
- BRCMNAND_UNCORR_EXT_ADDR)
- & 0xffff) << 32);
+ *err_addr = brcmnand_get_uncorrecc_addr(ctrl);
+
if (*err_addr)
ret = -EBADMSG;
}
if (!ret) {
- *err_addr = brcmnand_read_reg(ctrl,
- BRCMNAND_CORR_ADDR) |
- ((u64)(brcmnand_read_reg(ctrl,
- BRCMNAND_CORR_EXT_ADDR)
- & 0xffff) << 32);
+ *err_addr = brcmnand_get_correcc_addr(ctrl);
+
if (*err_addr)
ret = -EUCLEAN;
}
@@ -1667,6 +1809,7 @@ static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
int bitflips = 0;
int page = addr >> chip->page_shift;
int ret;
+ void *ecc_chunk;
if (!buf)
buf = nand_get_data_buf(chip);
@@ -1679,7 +1822,9 @@ static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
return ret;
for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
- ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
+ ecc_chunk = buf + chip->ecc.size * i;
+ ret = nand_check_erased_ecc_chunk(ecc_chunk,
+ chip->ecc.size,
oob, sas, NULL, 0,
chip->ecc.strength);
if (ret < 0)
@@ -1703,7 +1848,7 @@ static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
try_dmaread:
- brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0);
+ brcmnand_clear_ecc_addr(ctrl);
if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) {
err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES,
@@ -1850,15 +1995,9 @@ static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
goto out;
}
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
- (host->cs << 16) | ((addr >> 32) & 0xffff));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
-
for (i = 0; i < trans; i++, addr += FC_BYTES) {
/* full address MUST be set before populating FC */
- brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
- lower_32_bits(addr));
- (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
+ brcmnand_set_cmd_addr(mtd, addr);
if (buf) {
brcmnand_soc_data_bus_prepare(ctrl->soc, false);
@@ -2136,6 +2275,17 @@ static int brcmnand_setup_dev(struct brcmnand_host *host)
return -EINVAL;
}
+ if (chip->ecc.mode != NAND_ECC_NONE &&
+ (!chip->ecc.size || !chip->ecc.strength)) {
+ if (chip->base.eccreq.step_size && chip->base.eccreq.strength) {
+ /* use detected ECC parameters */
+ chip->ecc.size = chip->base.eccreq.step_size;
+ chip->ecc.strength = chip->base.eccreq.strength;
+ dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
+ chip->ecc.size, chip->ecc.strength);
+ }
+ }
+
switch (chip->ecc.size) {
case 512:
if (chip->ecc.algo == NAND_ECC_HAMMING)
@@ -2395,6 +2545,7 @@ static const struct of_device_id brcmnand_of_match[] = {
{ .compatible = "brcm,brcmnand-v7.0" },
{ .compatible = "brcm,brcmnand-v7.1" },
{ .compatible = "brcm,brcmnand-v7.2" },
+ { .compatible = "brcm,brcmnand-v7.3" },
{},
};
MODULE_DEVICE_TABLE(of, brcmnand_of_match);
@@ -2481,7 +2632,11 @@ int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
goto err;
}
- flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */
+ /* initialize the dma version */
+ brcmnand_flash_dma_revision_init(ctrl);
+
+ /* linked-list and stop on error */
+ flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
/* Allocate descriptor(s) */
diff --git a/drivers/mtd/nand/raw/cadence-nand-controller.c b/drivers/mtd/nand/raw/cadence-nand-controller.c
new file mode 100644
index 000000000000..3a36285a8d8a
--- /dev/null
+++ b/drivers/mtd/nand/raw/cadence-nand-controller.c
@@ -0,0 +1,3030 @@
+// SPDX-License-Identifier: GPL-2.0+
+/*
+ * Cadence NAND flash controller driver
+ *
+ * Copyright (C) 2019 Cadence
+ *
+ * Author: Piotr Sroka <piotrs@cadence.com>
+ */
+
+#include <linux/bitfield.h>
+#include <linux/clk.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of_device.h>
+#include <linux/iopoll.h>
+
+/*
+ * HPNFC can work in 3 modes:
+ * - PIO - can work in master or slave DMA
+ * - CDMA - needs Master DMA for accessing command descriptors.
+ * - Generic mode - can use only slave DMA.
+ * CDMA and PIO modes can be used to execute only base commands.
+ * Generic mode can be used to execute any command
+ * on NAND flash memory. Driver uses CDMA mode for
+ * block erasing, page reading, page programing.
+ * Generic mode is used for executing rest of commands.
+ */
+
+#define MAX_OOB_SIZE_PER_SECTOR 32
+#define MAX_ADDRESS_CYC 6
+#define MAX_ERASE_ADDRESS_CYC 3
+#define MAX_DATA_SIZE 0xFFFC
+#define DMA_DATA_SIZE_ALIGN 8
+
+/* Register definition. */
+/*
+ * Command register 0.
+ * Writing data to this register will initiate a new transaction
+ * of the NF controller.
+ */
+#define CMD_REG0 0x0000
+/* Command type field mask. */
+#define CMD_REG0_CT GENMASK(31, 30)
+/* Command type CDMA. */
+#define CMD_REG0_CT_CDMA 0uL
+/* Command type generic. */
+#define CMD_REG0_CT_GEN 3uL
+/* Command thread number field mask. */
+#define CMD_REG0_TN GENMASK(27, 24)
+
+/* Command register 2. */
+#define CMD_REG2 0x0008
+/* Command register 3. */
+#define CMD_REG3 0x000C
+/* Pointer register to select which thread status will be selected. */
+#define CMD_STATUS_PTR 0x0010
+/* Command status register for selected thread. */
+#define CMD_STATUS 0x0014
+
+/* Interrupt status register. */
+#define INTR_STATUS 0x0110
+#define INTR_STATUS_SDMA_ERR BIT(22)
+#define INTR_STATUS_SDMA_TRIGG BIT(21)
+#define INTR_STATUS_UNSUPP_CMD BIT(19)
+#define INTR_STATUS_DDMA_TERR BIT(18)
+#define INTR_STATUS_CDMA_TERR BIT(17)
+#define INTR_STATUS_CDMA_IDL BIT(16)
+
+/* Interrupt enable register. */
+#define INTR_ENABLE 0x0114
+#define INTR_ENABLE_INTR_EN BIT(31)
+#define INTR_ENABLE_SDMA_ERR_EN BIT(22)
+#define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
+#define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
+#define INTR_ENABLE_DDMA_TERR_EN BIT(18)
+#define INTR_ENABLE_CDMA_TERR_EN BIT(17)
+#define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
+
+/* Controller internal state. */
+#define CTRL_STATUS 0x0118
+#define CTRL_STATUS_INIT_COMP BIT(9)
+#define CTRL_STATUS_CTRL_BUSY BIT(8)
+
+/* Command Engine threads state. */
+#define TRD_STATUS 0x0120
+
+/* Command Engine interrupt thread error status. */
+#define TRD_ERR_INT_STATUS 0x0128
+/* Command Engine interrupt thread error enable. */
+#define TRD_ERR_INT_STATUS_EN 0x0130
+/* Command Engine interrupt thread complete status. */
+#define TRD_COMP_INT_STATUS 0x0138
+
+/*
+ * Transfer config 0 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_0 0x0400
+/* Offset value from the beginning of the page. */
+#define TRAN_CFG_0_OFFSET GENMASK(31, 16)
+/* Numbers of sectors to transfer within singlNF device's page. */
+#define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
+
+/*
+ * Transfer config 1 register.
+ * Configures data transfer parameters.
+ */
+#define TRAN_CFG_1 0x0404
+/* Size of last data sector. */
+#define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
+/* Size of not-last data sector. */
+#define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
+
+/* ECC engine configuration register 0. */
+#define ECC_CONFIG_0 0x0428
+/* Correction strength. */
+#define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
+/* Enable erased pages detection mechanism. */
+#define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
+/* Enable controller ECC check bits generation and correction. */
+#define ECC_CONFIG_0_ECC_EN BIT(0)
+
+/* ECC engine configuration register 1. */
+#define ECC_CONFIG_1 0x042C
+
+/* Multiplane settings register. */
+#define MULTIPLANE_CFG 0x0434
+/* Cache operation settings. */
+#define CACHE_CFG 0x0438
+
+/* DMA settings register. */
+#define DMA_SETINGS 0x043C
+/* Enable SDMA error report on access unprepared slave DMA interface. */
+#define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
+
+/* Transferred data block size for the slave DMA module. */
+#define SDMA_SIZE 0x0440
+
+/* Thread number associated with transferred data block
+ * for the slave DMA module.
+ */
+#define SDMA_TRD_NUM 0x0444
+/* Thread number mask. */
+#define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
+
+#define CONTROL_DATA_CTRL 0x0494
+/* Thread number mask. */
+#define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
+
+#define CTRL_VERSION 0x800
+#define CTRL_VERSION_REV GENMASK(7, 0)
+
+/* Available hardware features of the controller. */
+#define CTRL_FEATURES 0x804
+/* Support for NV-DDR2/3 work mode. */
+#define CTRL_FEATURES_NVDDR_2_3 BIT(28)
+/* Support for NV-DDR work mode. */
+#define CTRL_FEATURES_NVDDR BIT(27)
+/* Support for asynchronous work mode. */
+#define CTRL_FEATURES_ASYNC BIT(26)
+/* Support for asynchronous work mode. */
+#define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
+/* Slave and Master DMA data width. */
+#define CTRL_FEATURES_DMA_DWITH64 BIT(21)
+/* Availability of Control Data feature.*/
+#define CTRL_FEATURES_CONTROL_DATA BIT(10)
+
+/* BCH Engine identification register 0 - correction strengths. */
+#define BCH_CFG_0 0x838
+#define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
+#define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
+#define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
+#define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
+
+/* BCH Engine identification register 1 - correction strengths. */
+#define BCH_CFG_1 0x83C
+#define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
+#define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
+#define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
+#define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
+
+/* BCH Engine identification register 2 - sector sizes. */
+#define BCH_CFG_2 0x840
+#define BCH_CFG_2_SECT_0 GENMASK(15, 0)
+#define BCH_CFG_2_SECT_1 GENMASK(31, 16)
+
+/* BCH Engine identification register 3. */
+#define BCH_CFG_3 0x844
+
+/* Ready/Busy# line status. */
+#define RBN_SETINGS 0x1004
+
+/* Common settings. */
+#define COMMON_SET 0x1008
+/* 16 bit device connected to the NAND Flash interface. */
+#define COMMON_SET_DEVICE_16BIT BIT(8)
+
+/* Skip_bytes registers. */
+#define SKIP_BYTES_CONF 0x100C
+#define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
+#define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
+
+#define SKIP_BYTES_OFFSET 0x1010
+#define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
+
+/* Timings configuration. */
+#define ASYNC_TOGGLE_TIMINGS 0x101c
+#define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
+#define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
+#define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
+#define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
+
+#define TIMINGS0 0x1024
+#define TIMINGS0_TADL GENMASK(31, 24)
+#define TIMINGS0_TCCS GENMASK(23, 16)
+#define TIMINGS0_TWHR GENMASK(15, 8)
+#define TIMINGS0_TRHW GENMASK(7, 0)
+
+#define TIMINGS1 0x1028
+#define TIMINGS1_TRHZ GENMASK(31, 24)
+#define TIMINGS1_TWB GENMASK(23, 16)
+#define TIMINGS1_TVDLY GENMASK(7, 0)
+
+#define TIMINGS2 0x102c
+#define TIMINGS2_TFEAT GENMASK(25, 16)
+#define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
+#define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
+
+/* Configuration of the resynchronization of slave DLL of PHY. */
+#define DLL_PHY_CTRL 0x1034
+#define DLL_PHY_CTRL_DLL_RST_N BIT(24)
+#define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
+#define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
+#define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
+#define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
+
+/* Register controlling DQ related timing. */
+#define PHY_DQ_TIMING 0x2000
+/* Register controlling DSQ related timing. */
+#define PHY_DQS_TIMING 0x2004
+#define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
+#define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
+#define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
+
+/* Register controlling the gate and loopback control related timing. */
+#define PHY_GATE_LPBK_CTRL 0x2008
+#define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
+
+/* Register holds the control for the master DLL logic. */
+#define PHY_DLL_MASTER_CTRL 0x200C
+#define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
+
+/* Register holds the control for the slave DLL logic. */
+#define PHY_DLL_SLAVE_CTRL 0x2010
+
+/* This register handles the global control settings for the PHY. */
+#define PHY_CTRL 0x2080
+#define PHY_CTRL_SDR_DQS BIT(14)
+#define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
+
+/*
+ * This register handles the global control settings
+ * for the termination selects for reads.
+ */
+#define PHY_TSEL 0x2084
+
+/* Generic command layout. */
+#define GCMD_LAY_CS GENMASK_ULL(11, 8)
+/*
+ * This bit informs the minicotroller if it has to wait for tWB
+ * after sending the last CMD/ADDR/DATA in the sequence.
+ */
+#define GCMD_LAY_TWB BIT_ULL(6)
+/* Type of generic instruction. */
+#define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
+
+/* Generic CMD sequence type. */
+#define GCMD_LAY_INSTR_CMD 0
+/* Generic ADDR sequence type. */
+#define GCMD_LAY_INSTR_ADDR 1
+/* Generic data transfer sequence type. */
+#define GCMD_LAY_INSTR_DATA 2
+
+/* Input part of generic command type of input is command. */
+#define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
+
+/* Generic command address sequence - address fields. */
+#define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
+/* Generic command address sequence - address size. */
+#define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
+
+/* Transfer direction field of generic command data sequence. */
+#define GCMD_DIR BIT_ULL(11)
+/* Read transfer direction of generic command data sequence. */
+#define GCMD_DIR_READ 0
+/* Write transfer direction of generic command data sequence. */
+#define GCMD_DIR_WRITE 1
+
+/* ECC enabled flag of generic command data sequence - ECC enabled. */
+#define GCMD_ECC_EN BIT_ULL(12)
+/* Generic command data sequence - sector size. */
+#define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
+/* Generic command data sequence - sector count. */
+#define GCMD_SECT_CNT GENMASK_ULL(39, 32)
+/* Generic command data sequence - last sector size. */
+#define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
+
+/* CDMA descriptor fields. */
+/* Erase command type of CDMA descriptor. */
+#define CDMA_CT_ERASE 0x1000
+/* Program page command type of CDMA descriptor. */
+#define CDMA_CT_WR 0x2100
+/* Read page command type of CDMA descriptor. */
+#define CDMA_CT_RD 0x2200
+
+/* Flash pointer memory shift. */
+#define CDMA_CFPTR_MEM_SHIFT 24
+/* Flash pointer memory mask. */
+#define CDMA_CFPTR_MEM GENMASK(26, 24)
+
+/*
+ * Command DMA descriptor flags. If set causes issue interrupt after
+ * the completion of descriptor processing.
+ */
+#define CDMA_CF_INT BIT(8)
+/*
+ * Command DMA descriptor flags - the next descriptor
+ * address field is valid and descriptor processing should continue.
+ */
+#define CDMA_CF_CONT BIT(9)
+/* DMA master flag of command DMA descriptor. */
+#define CDMA_CF_DMA_MASTER BIT(10)
+
+/* Operation complete status of command descriptor. */
+#define CDMA_CS_COMP BIT(15)
+/* Operation complete status of command descriptor. */
+/* Command descriptor status - operation fail. */
+#define CDMA_CS_FAIL BIT(14)
+/* Command descriptor status - page erased. */
+#define CDMA_CS_ERP BIT(11)
+/* Command descriptor status - timeout occurred. */
+#define CDMA_CS_TOUT BIT(10)
+/*
+ * Maximum amount of correction applied to one ECC sector.
+ * It is part of command descriptor status.
+ */
+#define CDMA_CS_MAXERR GENMASK(9, 2)
+/* Command descriptor status - uncorrectable ECC error. */
+#define CDMA_CS_UNCE BIT(1)
+/* Command descriptor status - descriptor error. */
+#define CDMA_CS_ERR BIT(0)
+
+/* Status of operation - OK. */
+#define STAT_OK 0
+/* Status of operation - FAIL. */
+#define STAT_FAIL 2
+/* Status of operation - uncorrectable ECC error. */
+#define STAT_ECC_UNCORR 3
+/* Status of operation - page erased. */
+#define STAT_ERASED 5
+/* Status of operation - correctable ECC error. */
+#define STAT_ECC_CORR 6
+/* Status of operation - unsuspected state. */
+#define STAT_UNKNOWN 7
+/* Status of operation - operation is not completed yet. */
+#define STAT_BUSY 0xFF
+
+#define BCH_MAX_NUM_CORR_CAPS 8
+#define BCH_MAX_NUM_SECTOR_SIZES 2
+
+struct cadence_nand_timings {
+ u32 async_toggle_timings;
+ u32 timings0;
+ u32 timings1;
+ u32 timings2;
+ u32 dll_phy_ctrl;
+ u32 phy_ctrl;
+ u32 phy_dqs_timing;
+ u32 phy_gate_lpbk_ctrl;
+};
+
+/* Command DMA descriptor. */
+struct cadence_nand_cdma_desc {
+ /* Next descriptor address. */
+ u64 next_pointer;
+
+ /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
+ u32 flash_pointer;
+ /*field appears in HPNFC version 13*/
+ u16 bank;
+ u16 rsvd0;
+
+ /* Operation the controller needs to perform. */
+ u16 command_type;
+ u16 rsvd1;
+ /* Flags for operation of this command. */
+ u16 command_flags;
+ u16 rsvd2;
+
+ /* System/host memory address required for data DMA commands. */
+ u64 memory_pointer;
+
+ /* Status of operation. */
+ u32 status;
+ u32 rsvd3;
+
+ /* Address pointer to sync buffer location. */
+ u64 sync_flag_pointer;
+
+ /* Controls the buffer sync mechanism. */
+ u32 sync_arguments;
+ u32 rsvd4;
+
+ /* Control data pointer. */
+ u64 ctrl_data_ptr;
+};
+
+/* Interrupt status. */
+struct cadence_nand_irq_status {
+ /* Thread operation complete status. */
+ u32 trd_status;
+ /* Thread operation error. */
+ u32 trd_error;
+ /* Controller status. */
+ u32 status;
+};
+
+/* Cadence NAND flash controller capabilities get from driver data. */
+struct cadence_nand_dt_devdata {
+ /* Skew value of the output signals of the NAND Flash interface. */
+ u32 if_skew;
+ /* It informs if slave DMA interface is connected to DMA engine. */
+ unsigned int has_dma:1;
+};
+
+/* Cadence NAND flash controller capabilities read from registers. */
+struct cdns_nand_caps {
+ /* Maximum number of banks supported by hardware. */
+ u8 max_banks;
+ /* Slave and Master DMA data width in bytes (4 or 8). */
+ u8 data_dma_width;
+ /* Control Data feature supported. */
+ bool data_control_supp;
+ /* Is PHY type DLL. */
+ bool is_phy_type_dll;
+};
+
+struct cdns_nand_ctrl {
+ struct device *dev;
+ struct nand_controller controller;
+ struct cadence_nand_cdma_desc *cdma_desc;
+ /* IP capability. */
+ const struct cadence_nand_dt_devdata *caps1;
+ struct cdns_nand_caps caps2;
+ u8 ctrl_rev;
+ dma_addr_t dma_cdma_desc;
+ u8 *buf;
+ u32 buf_size;
+ u8 curr_corr_str_idx;
+
+ /* Register interface. */
+ void __iomem *reg;
+
+ struct {
+ void __iomem *virt;
+ dma_addr_t dma;
+ } io;
+
+ int irq;
+ /* Interrupts that have happened. */
+ struct cadence_nand_irq_status irq_status;
+ /* Interrupts we are waiting for. */
+ struct cadence_nand_irq_status irq_mask;
+ struct completion complete;
+ /* Protect irq_mask and irq_status. */
+ spinlock_t irq_lock;
+
+ int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
+ struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
+ struct nand_ecc_caps ecc_caps;
+
+ int curr_trans_type;
+
+ struct dma_chan *dmac;
+
+ u32 nf_clk_rate;
+ /*
+ * Estimated Board delay. The value includes the total
+ * round trip delay for the signals and is used for deciding on values
+ * associated with data read capture.
+ */
+ u32 board_delay;
+
+ struct nand_chip *selected_chip;
+
+ unsigned long assigned_cs;
+ struct list_head chips;
+};
+
+struct cdns_nand_chip {
+ struct cadence_nand_timings timings;
+ struct nand_chip chip;
+ u8 nsels;
+ struct list_head node;
+
+ /*
+ * part of oob area of NAND flash memory page.
+ * This part is available for user to read or write.
+ */
+ u32 avail_oob_size;
+
+ /* Sector size. There are few sectors per mtd->writesize */
+ u32 sector_size;
+ u32 sector_count;
+
+ /* Offset of BBM. */
+ u8 bbm_offs;
+ /* Number of bytes reserved for BBM. */
+ u8 bbm_len;
+ /* ECC strength index. */
+ u8 corr_str_idx;
+
+ u8 cs[];
+};
+
+struct ecc_info {
+ int (*calc_ecc_bytes)(int step_size, int strength);
+ int max_step_size;
+};
+
+static inline struct
+cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
+{
+ return container_of(chip, struct cdns_nand_chip, chip);
+}
+
+static inline struct
+cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
+{
+ return container_of(controller, struct cdns_nand_ctrl, controller);
+}
+
+static bool
+cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
+ u32 buf_len)
+{
+ u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
+
+ return buf && virt_addr_valid(buf) &&
+ likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
+ likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
+}
+
+static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
+ u32 reg_offset, u32 timeout_us,
+ u32 mask, bool is_clear)
+{
+ u32 val;
+ int ret;
+
+ ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
+ val, !(val & mask) == is_clear,
+ 10, timeout_us);
+
+ if (ret < 0) {
+ dev_err(cdns_ctrl->dev,
+ "Timeout while waiting for reg %x with mask %x is clear %d\n",
+ reg_offset, mask, is_clear);
+ }
+
+ return ret;
+}
+
+static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
+ bool enable)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ECC_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ECC_EN;
+
+ writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+
+ return 0;
+}
+
+static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 corr_str_idx)
+{
+ u32 reg;
+
+ if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
+ return;
+
+ reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+ reg &= ~ECC_CONFIG_0_CORR_STR;
+ reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
+ writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+
+ cdns_ctrl->curr_corr_str_idx = corr_str_idx;
+}
+
+static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 strength)
+{
+ int i, corr_str_idx = -1;
+
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cdns_ctrl->ecc_strengths[i] == strength) {
+ corr_str_idx = i;
+ break;
+ }
+ }
+
+ return corr_str_idx;
+}
+
+static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
+ u16 marker_value)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_MARKER_VALUE;
+ reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
+ marker_value);
+
+ writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
+
+ return 0;
+}
+
+static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 num_of_bytes,
+ u32 offset_value,
+ int enable)
+{
+ u32 reg, skip_bytes_offset;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ if (!enable) {
+ num_of_bytes = 0;
+ offset_value = 0;
+ }
+
+ reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
+ reg &= ~SKIP_BYTES_NUM_OF_BYTES;
+ reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
+ num_of_bytes);
+ skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
+ offset_value);
+
+ writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
+ writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
+
+ return 0;
+}
+
+/* Functions enables/disables hardware detection of erased data */
+static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
+ bool enable,
+ u8 bitflips_threshold)
+{
+ u32 reg;
+
+ reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
+
+ if (enable)
+ reg |= ECC_CONFIG_0_ERASE_DET_EN;
+ else
+ reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
+
+ writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
+ writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
+}
+
+static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
+ bool bit_bus16)
+{
+ u32 reg;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
+
+ if (!bit_bus16)
+ reg &= ~COMMON_SET_DEVICE_16BIT;
+ else
+ reg |= COMMON_SET_DEVICE_16BIT;
+ writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
+
+ return 0;
+}
+
+static void
+cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_irq_status *irq_status)
+{
+ writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
+ writel_relaxed(irq_status->trd_status,
+ cdns_ctrl->reg + TRD_COMP_INT_STATUS);
+ writel_relaxed(irq_status->trd_error,
+ cdns_ctrl->reg + TRD_ERR_INT_STATUS);
+}
+
+static void
+cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_irq_status *irq_status)
+{
+ irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
+ irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
+ + TRD_COMP_INT_STATUS);
+ irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
+ + TRD_ERR_INT_STATUS);
+}
+
+static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_irq_status *irq_status)
+{
+ cadence_nand_read_int_status(cdns_ctrl, irq_status);
+
+ return irq_status->status || irq_status->trd_status ||
+ irq_status->trd_error;
+}
+
+static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
+ memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
+ memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
+ spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
+}
+
+/*
+ * This is the interrupt service routine. It handles all interrupts
+ * sent to this device.
+ */
+static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = dev_id;
+ struct cadence_nand_irq_status irq_status;
+ irqreturn_t result = IRQ_NONE;
+
+ spin_lock(&cdns_ctrl->irq_lock);
+
+ if (irq_detected(cdns_ctrl, &irq_status)) {
+ /* Handle interrupt. */
+ /* First acknowledge it. */
+ cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
+ /* Status in the device context for someone to read. */
+ cdns_ctrl->irq_status.status |= irq_status.status;
+ cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
+ cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
+ /* Notify anyone who cares that it happened. */
+ complete(&cdns_ctrl->complete);
+ /* Tell the OS that we've handled this. */
+ result = IRQ_HANDLED;
+ }
+ spin_unlock(&cdns_ctrl->irq_lock);
+
+ return result;
+}
+
+static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_irq_status *irq_mask)
+{
+ writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
+ cdns_ctrl->reg + INTR_ENABLE);
+
+ writel_relaxed(irq_mask->trd_error,
+ cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
+}
+
+static void
+cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_irq_status *irq_mask,
+ struct cadence_nand_irq_status *irq_status)
+{
+ unsigned long timeout = msecs_to_jiffies(10000);
+ unsigned long time_left;
+
+ time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
+ timeout);
+
+ *irq_status = cdns_ctrl->irq_status;
+ if (time_left == 0) {
+ /* Timeout error. */
+ dev_err(cdns_ctrl->dev, "timeout occurred:\n");
+ dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
+ irq_status->status, irq_mask->status);
+ dev_err(cdns_ctrl->dev,
+ "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
+ irq_status->trd_status, irq_mask->trd_status);
+ dev_err(cdns_ctrl->dev,
+ "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
+ irq_status->trd_error, irq_mask->trd_error);
+ }
+}
+
+/* Execute generic command on NAND controller. */
+static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 chip_nr,
+ u64 mini_ctrl_cmd)
+{
+ u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
+ mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
+ mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_reset_irq(cdns_ctrl);
+
+ writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
+ writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
+
+ /* Select generic command. */
+ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
+ /* Thread number. */
+ reg |= FIELD_PREP(CMD_REG0_TN, 0);
+
+ /* Issue command. */
+ writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* Wait for data on slave DMA interface. */
+static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 *out_sdma_trd,
+ u32 *out_sdma_size)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status;
+
+ irq_mask.trd_status = 0;
+ irq_mask.trd_error = 0;
+ irq_mask.status = INTR_STATUS_SDMA_TRIGG
+ | INTR_STATUS_SDMA_ERR
+ | INTR_STATUS_UNSUPP_CMD;
+
+ cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
+ cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
+ if (irq_status.status == 0) {
+ dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
+ return -ETIMEDOUT;
+ }
+
+ if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
+ *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
+ *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
+ *out_sdma_trd =
+ FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
+ } else {
+ dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
+ irq_status.status);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ u32 reg;
+
+ reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
+
+ cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
+
+ if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
+ cdns_ctrl->caps2.data_dma_width = 8;
+ else
+ cdns_ctrl->caps2.data_dma_width = 4;
+
+ if (reg & CTRL_FEATURES_CONTROL_DATA)
+ cdns_ctrl->caps2.data_control_supp = true;
+
+ if (reg & (CTRL_FEATURES_NVDDR_2_3
+ | CTRL_FEATURES_NVDDR))
+ cdns_ctrl->caps2.is_phy_type_dll = true;
+}
+
+/* Prepare CDMA descriptor. */
+static void
+cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
+ char nf_mem, u32 flash_ptr, char *mem_ptr,
+ char *ctrl_data_ptr, u16 ctype)
+{
+ struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
+
+ memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
+
+ /* Set fields for one descriptor. */
+ cdma_desc->flash_pointer = flash_ptr;
+ if (cdns_ctrl->ctrl_rev >= 13)
+ cdma_desc->bank = nf_mem;
+ else
+ cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
+
+ cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
+ cdma_desc->command_flags |= CDMA_CF_INT;
+
+ cdma_desc->memory_pointer = (uintptr_t)mem_ptr;
+ cdma_desc->status = 0;
+ cdma_desc->sync_flag_pointer = 0;
+ cdma_desc->sync_arguments = 0;
+
+ cdma_desc->command_type = ctype;
+ cdma_desc->ctrl_data_ptr = (uintptr_t)ctrl_data_ptr;
+}
+
+static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
+ u32 desc_status)
+{
+ if (desc_status & CDMA_CS_ERP)
+ return STAT_ERASED;
+
+ if (desc_status & CDMA_CS_UNCE)
+ return STAT_ECC_UNCORR;
+
+ if (desc_status & CDMA_CS_ERR) {
+ dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
+ return STAT_FAIL;
+ }
+
+ if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
+ return STAT_ECC_CORR;
+
+ return STAT_FAIL;
+}
+
+static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
+ u8 status = STAT_BUSY;
+
+ if (desc_ptr->status & CDMA_CS_FAIL) {
+ status = cadence_nand_check_desc_error(cdns_ctrl,
+ desc_ptr->status);
+ dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
+ } else if (desc_ptr->status & CDMA_CS_COMP) {
+ /* Descriptor finished with no errors. */
+ if (desc_ptr->command_flags & CDMA_CF_CONT) {
+ dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
+ status = STAT_UNKNOWN;
+ } else {
+ /* Last descriptor. */
+ status = STAT_OK;
+ }
+ }
+
+ return status;
+}
+
+static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 thread)
+{
+ u32 reg;
+ int status;
+
+ /* Wait for thread ready. */
+ status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
+ 1000000,
+ BIT(thread), true);
+ if (status)
+ return status;
+
+ cadence_nand_reset_irq(cdns_ctrl);
+
+ writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
+ cdns_ctrl->reg + CMD_REG2);
+ writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
+
+ /* Select CDMA mode. */
+ reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
+ /* Thread number. */
+ reg |= FIELD_PREP(CMD_REG0_TN, thread);
+ /* Issue command. */
+ writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
+
+ return 0;
+}
+
+/* Send SDMA command and wait for finish. */
+static u32
+cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 thread)
+{
+ struct cadence_nand_irq_status irq_mask, irq_status = {0};
+ int status;
+
+ irq_mask.trd_status = BIT(thread);
+ irq_mask.trd_error = BIT(thread);
+ irq_mask.status = INTR_STATUS_CDMA_TERR;
+
+ cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
+
+ status = cadence_nand_cdma_send(cdns_ctrl, thread);
+ if (status)
+ return status;
+
+ cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
+
+ if (irq_status.status == 0 && irq_status.trd_status == 0 &&
+ irq_status.trd_error == 0) {
+ dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
+ return -ETIMEDOUT;
+ }
+ if (irq_status.status & irq_mask.status) {
+ dev_err(cdns_ctrl->dev, "CDMA command failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * ECC size depends on configured ECC strength and on maximum supported
+ * ECC step size.
+ */
+static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
+{
+ int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
+
+ return ALIGN(nbytes, 2);
+}
+
+#define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
+ static int \
+ cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
+ int strength)\
+ {\
+ return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
+ }
+
+CADENCE_NAND_CALC_ECC_BYTES(256)
+CADENCE_NAND_CALC_ECC_BYTES(512)
+CADENCE_NAND_CALC_ECC_BYTES(1024)
+CADENCE_NAND_CALC_ECC_BYTES(2048)
+CADENCE_NAND_CALC_ECC_BYTES(4096)
+
+/* Function reads BCH capabilities. */
+static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
+ int max_step_size = 0, nstrengths, i;
+ u32 reg;
+
+ reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
+ cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
+ cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
+ cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
+ cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
+
+ reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
+ cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
+ cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
+ cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
+ cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
+
+ reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
+ cdns_ctrl->ecc_stepinfos[0].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_0, reg);
+
+ cdns_ctrl->ecc_stepinfos[1].stepsize =
+ FIELD_GET(BCH_CFG_2_SECT_1, reg);
+
+ nstrengths = 0;
+ for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
+ if (cdns_ctrl->ecc_strengths[i] != 0)
+ nstrengths++;
+ }
+
+ ecc_caps->nstepinfos = 0;
+ for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
+ /* ECC strengths are common for all step infos. */
+ cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
+ cdns_ctrl->ecc_stepinfos[i].strengths =
+ cdns_ctrl->ecc_strengths;
+
+ if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
+ ecc_caps->nstepinfos++;
+
+ if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
+ max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
+ }
+ ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
+
+ switch (max_step_size) {
+ case 256:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
+ break;
+ case 512:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
+ break;
+ case 1024:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
+ break;
+ case 2048:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
+ break;
+ case 4096:
+ ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
+ break;
+ default:
+ dev_err(cdns_ctrl->dev,
+ "Unsupported sector size(ecc step size) %d\n",
+ max_step_size);
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/* Hardware initialization. */
+static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ int status;
+ u32 reg;
+
+ status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_INIT_COMP, false);
+ if (status)
+ return status;
+
+ reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
+ cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
+
+ dev_info(cdns_ctrl->dev,
+ "%s: cadence nand controller version reg %x\n",
+ __func__, reg);
+
+ /* Disable cache and multiplane. */
+ writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
+ writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
+
+ /* Clear all interrupts. */
+ writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
+
+ cadence_nand_get_caps(cdns_ctrl);
+ cadence_nand_read_bch_caps(cdns_ctrl);
+
+ /*
+ * Set IO width access to 8.
+ * It is because during SW device discovering width access
+ * is expected to be 8.
+ */
+ status = cadence_nand_set_access_width16(cdns_ctrl, false);
+
+ return status;
+}
+
+#define TT_MAIN_OOB_AREAS 2
+#define TT_RAW_PAGE 3
+#define TT_BBM 4
+#define TT_MAIN_OOB_AREA_EXT 5
+
+/* Prepare size of data to transfer. */
+static void
+cadence_nand_prepare_data_size(struct nand_chip *chip,
+ int transfer_type)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 sec_size = 0, offset = 0, sec_cnt = 1;
+ u32 last_sec_size = cdns_chip->sector_size;
+ u32 data_ctrl_size = 0;
+ u32 reg = 0;
+
+ if (cdns_ctrl->curr_trans_type == transfer_type)
+ return;
+
+ switch (transfer_type) {
+ case TT_MAIN_OOB_AREA_EXT:
+ sec_cnt = cdns_chip->sector_count;
+ sec_size = cdns_chip->sector_size;
+ data_ctrl_size = cdns_chip->avail_oob_size;
+ break;
+ case TT_MAIN_OOB_AREAS:
+ sec_cnt = cdns_chip->sector_count;
+ last_sec_size = cdns_chip->sector_size
+ + cdns_chip->avail_oob_size;
+ sec_size = cdns_chip->sector_size;
+ break;
+ case TT_RAW_PAGE:
+ last_sec_size = mtd->writesize + mtd->oobsize;
+ break;
+ case TT_BBM:
+ offset = mtd->writesize + cdns_chip->bbm_offs;
+ last_sec_size = 8;
+ break;
+ }
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
+ reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
+ writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
+
+ reg = 0;
+ reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
+ reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
+ writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
+
+ if (cdns_ctrl->caps2.data_control_supp) {
+ reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
+ reg &= ~CONTROL_DATA_CTRL_SIZE;
+ reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
+ writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
+ }
+
+ cdns_ctrl->curr_trans_type = transfer_type;
+}
+
+static int
+cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
+ int page, void *buf, void *ctrl_dat, u32 buf_size,
+ u32 ctrl_dat_size, enum dma_data_direction dir,
+ bool with_ecc)
+{
+ dma_addr_t dma_buf, dma_ctrl_dat = 0;
+ u8 thread_nr = chip_nr;
+ int status;
+ u16 ctype;
+
+ if (dir == DMA_FROM_DEVICE)
+ ctype = CDMA_CT_RD;
+ else
+ ctype = CDMA_CT_WR;
+
+ cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
+
+ dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
+ if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
+ dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+
+ if (ctrl_dat && ctrl_dat_size) {
+ dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
+ ctrl_dat_size, dir);
+ if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
+ dma_unmap_single(cdns_ctrl->dev, dma_buf,
+ buf_size, dir);
+ dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+ return -EIO;
+ }
+ }
+
+ cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
+ (void *)dma_buf, (void *)dma_ctrl_dat,
+ ctype);
+
+ status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
+
+ dma_unmap_single(cdns_ctrl->dev, dma_buf,
+ buf_size, dir);
+
+ if (ctrl_dat && ctrl_dat_size)
+ dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
+ ctrl_dat_size, dir);
+ if (status)
+ return status;
+
+ return cadence_nand_cdma_finish(cdns_ctrl);
+}
+
+static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
+ struct cadence_nand_timings *t)
+{
+ writel_relaxed(t->async_toggle_timings,
+ cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
+ writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
+ writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
+ writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
+
+ if (cdns_ctrl->caps2.is_phy_type_dll)
+ writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
+
+ writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
+
+ if (cdns_ctrl->caps2.is_phy_type_dll) {
+ writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
+ writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
+ writel_relaxed(t->phy_dqs_timing,
+ cdns_ctrl->reg + PHY_DQS_TIMING);
+ writel_relaxed(t->phy_gate_lpbk_ctrl,
+ cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
+ writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
+ cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
+ writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
+ }
+}
+
+static int cadence_nand_select_target(struct nand_chip *chip)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (chip == cdns_ctrl->selected_chip)
+ return 0;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
+
+ cadence_nand_set_ecc_strength(cdns_ctrl,
+ cdns_chip->corr_str_idx);
+
+ cadence_nand_set_erase_detection(cdns_ctrl, true,
+ chip->ecc.strength);
+
+ cdns_ctrl->curr_trans_type = -1;
+ cdns_ctrl->selected_chip = chip;
+
+ return 0;
+}
+
+static int cadence_nand_erase(struct nand_chip *chip, u32 page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ int status;
+ u8 thread_nr = cdns_chip->cs[chip->cur_cs];
+
+ cadence_nand_cdma_desc_prepare(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, NULL, NULL,
+ CDMA_CT_ERASE);
+ status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
+ if (status) {
+ dev_err(cdns_ctrl->dev, "erase operation failed\n");
+ return -EIO;
+ }
+
+ status = cadence_nand_cdma_finish(cdns_ctrl);
+ if (status)
+ return status;
+
+ return 0;
+}
+
+static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
+{
+ int status;
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ cadence_nand_prepare_data_size(chip, TT_BBM);
+
+ cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+ /*
+ * Read only bad block marker from offset
+ * defined by a memory manufacturer.
+ */
+ status = cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, cdns_ctrl->buf, NULL,
+ mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+ if (status) {
+ dev_err(cdns_ctrl->dev, "read BBM failed\n");
+ return -EIO;
+ }
+
+ memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
+
+ return 0;
+}
+
+static int cadence_nand_write_page(struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int status;
+ u16 marker_val = 0xFFFF;
+
+ status = cadence_nand_select_target(chip);
+ if (status)
+ return status;
+
+ cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
+ mtd->writesize
+ + cdns_chip->bbm_offs,
+ 1);
+
+ if (oob_required) {
+ marker_val = *(u16 *)(chip->oob_poi
+ + cdns_chip->bbm_offs);
+ } else {
+ /* Set oob data to 0xFF. */
+ memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
+ cdns_chip->avail_oob_size);
+ }
+
+ cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
+
+ cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
+
+ if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
+ cdns_ctrl->caps2.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cdns_ctrl->buf + mtd->writesize;
+
+ status = cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, (void *)buf, oob,
+ mtd->writesize,
+ cdns_chip->avail_oob_size,
+ DMA_TO_DEVICE, true);
+ if (status) {
+ dev_err(cdns_ctrl->dev, "write page failed\n");
+ return -EIO;
+ }
+
+ return 0;
+ }
+
+ if (oob_required) {
+ /* Transfer the data to the oob area. */
+ memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
+ cdns_chip->avail_oob_size);
+ }
+
+ memcpy(cdns_ctrl->buf, buf, mtd->writesize);
+
+ cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
+
+ return cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, cdns_ctrl->buf, NULL,
+ mtd->writesize
+ + cdns_chip->avail_oob_size,
+ 0, DMA_TO_DEVICE, true);
+}
+
+static int cadence_nand_write_oob(struct nand_chip *chip, int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
+
+ return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
+}
+
+static int cadence_nand_write_page_raw(struct nand_chip *chip,
+ const u8 *buf, int oob_required,
+ int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int writesize = mtd->writesize;
+ int oobsize = mtd->oobsize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cdns_ctrl->buf;
+ int oob_skip = cdns_chip->bbm_len;
+ size_t size = writesize + oobsize;
+ int i, pos, len;
+ int status = 0;
+
+ status = cadence_nand_select_target(chip);
+ if (status)
+ return status;
+
+ /*
+ * Fill the buffer with 0xff first except the full page transfer.
+ * This simplifies the logic.
+ */
+ if (!buf || !oob_required)
+ memset(tmp_buf, 0xff, size);
+
+ cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+ /* Arrange the buffer for syndrome payload/ecc layout. */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, buf, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(tmp_buf + writesize + oob_skip, buf,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ const u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+ (cdns_chip->sector_size + chip->ecc.bytes)
+ + cdns_chip->sector_size + oob_skip;
+
+ /* BBM at the beginning of the OOB area. */
+ memcpy(tmp_buf + writesize, oob, oob_skip);
+
+ /* OOB free. */
+ memcpy(tmp_buf + oob_data_offset, oob,
+ cdns_chip->avail_oob_size);
+ oob += cdns_chip->avail_oob_size;
+
+ /* OOB ECC. */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ if (i == (ecc_steps - 1))
+ pos += cdns_chip->avail_oob_size;
+
+ len = ecc_bytes;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(tmp_buf + pos, oob, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(tmp_buf + writesize + oob_skip, oob,
+ len);
+ oob += len;
+ }
+ }
+ }
+
+ cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
+
+ return cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, cdns_ctrl->buf, NULL,
+ mtd->writesize +
+ mtd->oobsize,
+ 0, DMA_TO_DEVICE, false);
+}
+
+static int cadence_nand_write_oob_raw(struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_write_page_raw(chip, NULL, true, page);
+}
+
+static int cadence_nand_read_page(struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int status = 0;
+ int ecc_err_count = 0;
+
+ status = cadence_nand_select_target(chip);
+ if (status)
+ return status;
+
+ cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
+ mtd->writesize
+ + cdns_chip->bbm_offs, 1);
+
+ /*
+ * If data buffer can be accessed by DMA and data_control feature
+ * is supported then transfer data and oob directly.
+ */
+ if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
+ cdns_ctrl->caps2.data_control_supp) {
+ u8 *oob;
+
+ if (oob_required)
+ oob = chip->oob_poi;
+ else
+ oob = cdns_ctrl->buf + mtd->writesize;
+
+ cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
+ status = cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, buf, oob,
+ mtd->writesize,
+ cdns_chip->avail_oob_size,
+ DMA_FROM_DEVICE, true);
+ /* Otherwise use bounce buffer. */
+ } else {
+ cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
+ status = cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, cdns_ctrl->buf,
+ NULL, mtd->writesize
+ + cdns_chip->avail_oob_size,
+ 0, DMA_FROM_DEVICE, true);
+
+ memcpy(buf, cdns_ctrl->buf, mtd->writesize);
+ if (oob_required)
+ memcpy(chip->oob_poi,
+ cdns_ctrl->buf + mtd->writesize,
+ mtd->oobsize);
+ }
+
+ switch (status) {
+ case STAT_ECC_UNCORR:
+ mtd->ecc_stats.failed++;
+ ecc_err_count++;
+ break;
+ case STAT_ECC_CORR:
+ ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
+ cdns_ctrl->cdma_desc->status);
+ mtd->ecc_stats.corrected += ecc_err_count;
+ break;
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cdns_ctrl->dev, "read page failed\n");
+ return -EIO;
+ }
+
+ if (oob_required)
+ if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
+ return -EIO;
+
+ return ecc_err_count;
+}
+
+/* Reads OOB data from the device. */
+static int cadence_nand_read_oob(struct nand_chip *chip, int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+
+ return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
+}
+
+static int cadence_nand_read_page_raw(struct nand_chip *chip,
+ u8 *buf, int oob_required, int page)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ int oob_skip = cdns_chip->bbm_len;
+ int writesize = mtd->writesize;
+ int ecc_steps = chip->ecc.steps;
+ int ecc_size = chip->ecc.size;
+ int ecc_bytes = chip->ecc.bytes;
+ void *tmp_buf = cdns_ctrl->buf;
+ int i, pos, len;
+ int status = 0;
+
+ status = cadence_nand_select_target(chip);
+ if (status)
+ return status;
+
+ cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
+
+ cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
+ status = cadence_nand_cdma_transfer(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ page, cdns_ctrl->buf, NULL,
+ mtd->writesize
+ + mtd->oobsize,
+ 0, DMA_FROM_DEVICE, false);
+
+ switch (status) {
+ case STAT_ERASED:
+ case STAT_OK:
+ break;
+ default:
+ dev_err(cdns_ctrl->dev, "read raw page failed\n");
+ return -EIO;
+ }
+
+ /* Arrange the buffer for syndrome payload/ecc layout. */
+ if (buf) {
+ for (i = 0; i < ecc_steps; i++) {
+ pos = i * (ecc_size + ecc_bytes);
+ len = ecc_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(buf, tmp_buf + pos, len);
+ buf += len;
+ if (len < ecc_size) {
+ len = ecc_size - len;
+ memcpy(buf, tmp_buf + writesize + oob_skip,
+ len);
+ buf += len;
+ }
+ }
+ }
+
+ if (oob_required) {
+ u8 *oob = chip->oob_poi;
+ u32 oob_data_offset = (cdns_chip->sector_count - 1) *
+ (cdns_chip->sector_size + chip->ecc.bytes)
+ + cdns_chip->sector_size + oob_skip;
+
+ /* OOB free. */
+ memcpy(oob, tmp_buf + oob_data_offset,
+ cdns_chip->avail_oob_size);
+
+ /* BBM at the beginning of the OOB area. */
+ memcpy(oob, tmp_buf + writesize, oob_skip);
+
+ oob += cdns_chip->avail_oob_size;
+
+ /* OOB ECC */
+ for (i = 0; i < ecc_steps; i++) {
+ pos = ecc_size + i * (ecc_size + ecc_bytes);
+ len = ecc_bytes;
+
+ if (i == (ecc_steps - 1))
+ pos += cdns_chip->avail_oob_size;
+
+ if (pos >= writesize)
+ pos += oob_skip;
+ else if (pos + len > writesize)
+ len = writesize - pos;
+
+ memcpy(oob, tmp_buf + pos, len);
+ oob += len;
+ if (len < ecc_bytes) {
+ len = ecc_bytes - len;
+ memcpy(oob, tmp_buf + writesize + oob_skip,
+ len);
+ oob += len;
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int cadence_nand_read_oob_raw(struct nand_chip *chip,
+ int page)
+{
+ return cadence_nand_read_page_raw(chip, NULL, true, page);
+}
+
+static void cadence_nand_slave_dma_transfer_finished(void *data)
+{
+ struct completion *finished = data;
+
+ complete(finished);
+}
+
+static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
+ void *buf,
+ dma_addr_t dev_dma, size_t len,
+ enum dma_data_direction dir)
+{
+ DECLARE_COMPLETION_ONSTACK(finished);
+ struct dma_chan *chan;
+ struct dma_device *dma_dev;
+ dma_addr_t src_dma, dst_dma, buf_dma;
+ struct dma_async_tx_descriptor *tx;
+ dma_cookie_t cookie;
+
+ chan = cdns_ctrl->dmac;
+ dma_dev = chan->device;
+
+ buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
+ if (dma_mapping_error(dma_dev->dev, buf_dma)) {
+ dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
+ goto err;
+ }
+
+ if (dir == DMA_FROM_DEVICE) {
+ src_dma = cdns_ctrl->io.dma;
+ dst_dma = buf_dma;
+ } else {
+ src_dma = buf_dma;
+ dst_dma = cdns_ctrl->io.dma;
+ }
+
+ tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
+ DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
+ if (!tx) {
+ dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
+ goto err_unmap;
+ }
+
+ tx->callback = cadence_nand_slave_dma_transfer_finished;
+ tx->callback_param = &finished;
+
+ cookie = dmaengine_submit(tx);
+ if (dma_submit_error(cookie)) {
+ dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
+ goto err_unmap;
+ }
+
+ dma_async_issue_pending(cdns_ctrl->dmac);
+ wait_for_completion(&finished);
+
+ dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
+
+ return 0;
+
+err_unmap:
+ dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
+
+err:
+ dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
+
+ return -EIO;
+}
+
+static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
+ u8 *buf, int len)
+{
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int status;
+
+ /* Wait until slave DMA interface is ready to data transfer. */
+ status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
+ if (status)
+ return status;
+
+ if (!cdns_ctrl->caps1->has_dma) {
+ int len_in_words = len >> 2;
+
+ /* read alingment data */
+ ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
+ if (sdma_size > len) {
+ /* read rest data from slave DMA interface if any */
+ ioread32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
+ sdma_size / 4 - len_in_words);
+ /* copy rest of data */
+ memcpy(buf + (len_in_words << 2), cdns_ctrl->buf,
+ len - (len_in_words << 2));
+ }
+ return 0;
+ }
+
+ if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
+ status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
+ cdns_ctrl->io.dma,
+ len, DMA_FROM_DEVICE);
+ if (status == 0)
+ return 0;
+
+ dev_warn(cdns_ctrl->dev,
+ "Slave DMA transfer failed. Try again using bounce buffer.");
+ }
+
+ /* If DMA transfer is not possible or failed then use bounce buffer. */
+ status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
+ cdns_ctrl->io.dma,
+ sdma_size, DMA_FROM_DEVICE);
+
+ if (status) {
+ dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
+ return status;
+ }
+
+ memcpy(buf, cdns_ctrl->buf, len);
+
+ return 0;
+}
+
+static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
+ const u8 *buf, int len)
+{
+ u8 thread_nr = 0;
+ u32 sdma_size;
+ int status;
+
+ /* Wait until slave DMA interface is ready to data transfer. */
+ status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
+ if (status)
+ return status;
+
+ if (!cdns_ctrl->caps1->has_dma) {
+ int len_in_words = len >> 2;
+
+ iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
+ if (sdma_size > len) {
+ /* copy rest of data */
+ memcpy(cdns_ctrl->buf, buf + (len_in_words << 2),
+ len - (len_in_words << 2));
+ /* write all expected by nand controller data */
+ iowrite32_rep(cdns_ctrl->io.virt, cdns_ctrl->buf,
+ sdma_size / 4 - len_in_words);
+ }
+
+ return 0;
+ }
+
+ if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
+ status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
+ cdns_ctrl->io.dma,
+ len, DMA_TO_DEVICE);
+ if (status == 0)
+ return 0;
+
+ dev_warn(cdns_ctrl->dev,
+ "Slave DMA transfer failed. Try again using bounce buffer.");
+ }
+
+ /* If DMA transfer is not possible or failed then use bounce buffer. */
+ memcpy(cdns_ctrl->buf, buf, len);
+
+ status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
+ cdns_ctrl->io.dma,
+ sdma_size, DMA_TO_DEVICE);
+
+ if (status)
+ dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
+
+ return status;
+}
+
+static int cadence_nand_force_byte_access(struct nand_chip *chip,
+ bool force_8bit)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ int status;
+
+ /*
+ * Callers of this function do not verify if the NAND is using a 16-bit
+ * an 8-bit bus for normal operations, so we need to take care of that
+ * here by leaving the configuration unchanged if the NAND does not have
+ * the NAND_BUSWIDTH_16 flag set.
+ */
+ if (!(chip->options & NAND_BUSWIDTH_16))
+ return 0;
+
+ status = cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
+
+ return status;
+}
+
+static int cadence_nand_cmd_opcode(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ const struct nand_op_instr *instr;
+ unsigned int op_id = 0;
+ u64 mini_ctrl_cmd = 0;
+ int ret;
+
+ instr = &subop->instrs[op_id];
+
+ if (instr->delay_ns > 0)
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_CMD);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
+ instr->ctx.cmd.opcode);
+
+ ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ mini_ctrl_cmd);
+ if (ret)
+ dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
+ instr->ctx.cmd.opcode);
+
+ return ret;
+}
+
+static int cadence_nand_cmd_address(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ const struct nand_op_instr *instr;
+ unsigned int op_id = 0;
+ u64 mini_ctrl_cmd = 0;
+ unsigned int offset, naddrs;
+ u64 address = 0;
+ const u8 *addrs;
+ int ret;
+ int i;
+
+ instr = &subop->instrs[op_id];
+
+ if (instr->delay_ns > 0)
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_ADDR);
+
+ offset = nand_subop_get_addr_start_off(subop, op_id);
+ naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+ addrs = &instr->ctx.addr.addrs[offset];
+
+ for (i = 0; i < naddrs; i++)
+ address |= (u64)addrs[i] << (8 * i);
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
+ address);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
+ naddrs - 1);
+
+ ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ mini_ctrl_cmd);
+ if (ret)
+ dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
+
+ return ret;
+}
+
+static int cadence_nand_cmd_erase(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ unsigned int op_id;
+
+ if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
+ int i;
+ const struct nand_op_instr *instr = NULL;
+ unsigned int offset, naddrs;
+ const u8 *addrs;
+ u32 page = 0;
+
+ instr = &subop->instrs[1];
+ offset = nand_subop_get_addr_start_off(subop, 1);
+ naddrs = nand_subop_get_num_addr_cyc(subop, 1);
+ addrs = &instr->ctx.addr.addrs[offset];
+
+ for (i = 0; i < naddrs; i++)
+ page |= (u32)addrs[i] << (8 * i);
+
+ return cadence_nand_erase(chip, page);
+ }
+
+ /*
+ * If it is not an erase operation then handle operation
+ * by calling exec_op function.
+ */
+ for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+ int ret;
+ const struct nand_operation nand_op = {
+ .cs = chip->cur_cs,
+ .instrs = &subop->instrs[op_id],
+ .ninstrs = 1};
+ ret = chip->controller->ops->exec_op(chip, &nand_op, false);
+ if (ret)
+ return ret;
+ }
+
+ return 0;
+}
+
+static int cadence_nand_cmd_data(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ const struct nand_op_instr *instr;
+ unsigned int offset, op_id = 0;
+ u64 mini_ctrl_cmd = 0;
+ int len = 0;
+ int ret;
+
+ instr = &subop->instrs[op_id];
+
+ if (instr->delay_ns > 0)
+ mini_ctrl_cmd |= GCMD_LAY_TWB;
+
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
+ GCMD_LAY_INSTR_DATA);
+
+ if (instr->type == NAND_OP_DATA_OUT_INSTR)
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
+ GCMD_DIR_WRITE);
+
+ len = nand_subop_get_data_len(subop, op_id);
+ offset = nand_subop_get_data_start_off(subop, op_id);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
+ mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
+ if (instr->ctx.data.force_8bit) {
+ ret = cadence_nand_force_byte_access(chip, true);
+ if (ret) {
+ dev_err(cdns_ctrl->dev,
+ "cannot change byte access generic data cmd failed\n");
+ return ret;
+ }
+ }
+
+ ret = cadence_nand_generic_cmd_send(cdns_ctrl,
+ cdns_chip->cs[chip->cur_cs],
+ mini_ctrl_cmd);
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
+ return ret;
+ }
+
+ if (instr->type == NAND_OP_DATA_IN_INSTR) {
+ void *buf = instr->ctx.data.buf.in + offset;
+
+ ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
+ } else {
+ const void *buf = instr->ctx.data.buf.out + offset;
+
+ ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
+ }
+
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
+ return ret;
+ }
+
+ if (instr->ctx.data.force_8bit) {
+ ret = cadence_nand_force_byte_access(chip, false);
+ if (ret) {
+ dev_err(cdns_ctrl->dev,
+ "cannot change byte access generic data cmd failed\n");
+ }
+ }
+
+ return ret;
+}
+
+static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
+ const struct nand_subop *subop)
+{
+ int status;
+ unsigned int op_id = 0;
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ const struct nand_op_instr *instr = &subop->instrs[op_id];
+ u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
+
+ status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
+ timeout_us,
+ BIT(cdns_chip->cs[chip->cur_cs]),
+ false);
+ return status;
+}
+
+static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_erase,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
+ NAND_OP_PARSER_PAT_CMD_ELEM(false),
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_opcode,
+ NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_address,
+ NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_data,
+ NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_data,
+ NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
+ NAND_OP_PARSER_PATTERN(
+ cadence_nand_cmd_waitrdy,
+ NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
+ );
+
+static int cadence_nand_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ int status = cadence_nand_select_target(chip);
+
+ if (status)
+ return status;
+
+ return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
+ check_only);
+}
+
+static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_chip->bbm_len;
+ oobregion->length = cdns_chip->avail_oob_size
+ - cdns_chip->bbm_len;
+
+ return 0;
+}
+
+static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = cdns_chip->avail_oob_size;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
+ .free = cadence_nand_ooblayout_free,
+ .ecc = cadence_nand_ooblayout_ecc,
+};
+
+static int calc_cycl(u32 timing, u32 clock)
+{
+ if (timing == 0 || clock == 0)
+ return 0;
+
+ if ((timing % clock) > 0)
+ return timing / clock;
+ else
+ return timing / clock - 1;
+}
+
+/* Calculate max data valid window. */
+static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+ u32 board_delay_skew_min, u32 ext_mode)
+{
+ if (ext_mode == 0)
+ clk_period /= 2;
+
+ return (trp_cnt + 1) * clk_period + trhoh_min +
+ board_delay_skew_min;
+}
+
+/* Calculate data valid window. */
+static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
+ u32 trea_max, u32 ext_mode)
+{
+ if (ext_mode == 0)
+ clk_period /= 2;
+
+ return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
+}
+
+static int
+cadence_nand_setup_data_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ const struct nand_sdr_timings *sdr;
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ struct cadence_nand_timings *t = &cdns_chip->timings;
+ u32 reg;
+ u32 board_delay = cdns_ctrl->board_delay;
+ u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
+ cdns_ctrl->nf_clk_rate);
+ u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
+ u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
+ u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
+ u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
+ u32 if_skew = cdns_ctrl->caps1->if_skew;
+ u32 board_delay_skew_min = board_delay - if_skew;
+ u32 board_delay_skew_max = board_delay + if_skew;
+ u32 dqs_sampl_res, phony_dqs_mod;
+ u32 tdvw, tdvw_min, tdvw_max;
+ u32 ext_rd_mode, ext_wr_mode;
+ u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
+ u32 sampling_point;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ memset(t, 0, sizeof(*t));
+ /* Sampling point calculation. */
+
+ if (cdns_ctrl->caps2.is_phy_type_dll)
+ phony_dqs_mod = 2;
+ else
+ phony_dqs_mod = 1;
+
+ dqs_sampl_res = clk_period / phony_dqs_mod;
+
+ tdvw_min = sdr->tREA_max + board_delay_skew_max;
+ /*
+ * The idea of those calculation is to get the optimum value
+ * for tRP and tRH timings. If it is NOT possible to sample data
+ * with optimal tRP/tRH settings, the parameters will be extended.
+ * If clk_period is 50ns (the lowest value) this condition is met
+ * for asynchronous timing modes 1, 2, 3, 4 and 5.
+ * If clk_period is 20ns the condition is met only
+ * for asynchronous timing mode 5.
+ */
+ if (sdr->tRC_min <= clk_period &&
+ sdr->tRP_min <= (clk_period / 2) &&
+ sdr->tREH_min <= (clk_period / 2)) {
+ /* Performance mode. */
+ ext_rd_mode = 0;
+ tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+ sdr->tREA_max, ext_rd_mode);
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
+ board_delay_skew_min,
+ ext_rd_mode);
+ /*
+ * Check if data valid window and sampling point can be found
+ * and is not on the edge (ie. we have hold margin).
+ * If not extend the tRP timings.
+ */
+ if (tdvw > 0) {
+ if (tdvw_max <= tdvw_min ||
+ (tdvw_max % dqs_sampl_res) == 0) {
+ /*
+ * No valid sampling point so the RE pulse need
+ * to be widen widening by half clock cycle.
+ */
+ ext_rd_mode = 1;
+ }
+ } else {
+ /*
+ * There is no valid window
+ * to be able to sample data the tRP need to be widen.
+ * Very safe calculations are performed here.
+ */
+ trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ + dqs_sampl_res) / clk_period;
+ ext_rd_mode = 1;
+ }
+
+ } else {
+ /* Extended read mode. */
+ u32 trh;
+
+ ext_rd_mode = 1;
+ trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
+ trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
+ if (sdr->tREH_min >= trh)
+ trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
+ else
+ trh_cnt = calc_cycl(trh, clk_period);
+
+ tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
+ sdr->tREA_max, ext_rd_mode);
+ /*
+ * Check if data valid window and sampling point can be found
+ * or if it is at the edge check if previous is valid
+ * - if not extend the tRP timings.
+ */
+ if (tdvw > 0) {
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+ sdr->tRHOH_min,
+ board_delay_skew_min,
+ ext_rd_mode);
+
+ if ((((tdvw_max / dqs_sampl_res)
+ * dqs_sampl_res) <= tdvw_min) ||
+ (((tdvw_max % dqs_sampl_res) == 0) &&
+ (((tdvw_max / dqs_sampl_res - 1)
+ * dqs_sampl_res) <= tdvw_min))) {
+ /*
+ * Data valid window width is lower than
+ * sampling resolution and do not hit any
+ * sampling point to be sure the sampling point
+ * will be found the RE low pulse width will be
+ * extended by one clock cycle.
+ */
+ trp_cnt = trp_cnt + 1;
+ }
+ } else {
+ /*
+ * There is no valid window to be able to sample data.
+ * The tRP need to be widen.
+ * Very safe calculations are performed here.
+ */
+ trp_cnt = (sdr->tREA_max + board_delay_skew_max
+ + dqs_sampl_res) / clk_period;
+ }
+ }
+
+ tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
+ sdr->tRHOH_min,
+ board_delay_skew_min, ext_rd_mode);
+
+ if (sdr->tWC_min <= clk_period &&
+ (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
+ (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
+ ext_wr_mode = 0;
+ } else {
+ u32 twh;
+
+ ext_wr_mode = 1;
+ twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
+ if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
+ twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
+ clk_period);
+
+ twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
+ if (sdr->tWH_min >= twh)
+ twh = sdr->tWH_min;
+
+ twh_cnt = calc_cycl(twh + if_skew, clk_period);
+ }
+
+ reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
+ reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
+ t->async_toggle_timings = reg;
+ dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
+
+ tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
+ tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
+ twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
+ trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
+ reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
+
+ /*
+ * If timing exceeds delay field in timing register
+ * then use maximum value.
+ */
+ if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
+ reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
+ else
+ reg |= TIMINGS0_TCCS;
+
+ reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
+ reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
+ t->timings0 = reg;
+ dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
+
+ /* The following is related to single signal so skew is not needed. */
+ trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
+ trhz_cnt = trhz_cnt + 1;
+ twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
+ /*
+ * Because of the two stage syncflop the value must be increased by 3
+ * first value is related with sync, second value is related
+ * with output if delay.
+ */
+ twb_cnt = twb_cnt + 3 + 5;
+ /*
+ * The following is related to the we edge of the random data input
+ * sequence so skew is not needed.
+ */
+ tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
+ reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
+ reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
+ t->timings1 = reg;
+ dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
+
+ tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
+ if (tfeat_cnt < twb_cnt)
+ tfeat_cnt = twb_cnt;
+
+ tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
+ tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
+
+ reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
+ reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
+ t->timings2 = reg;
+ dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
+
+ if (cdns_ctrl->caps2.is_phy_type_dll) {
+ reg = DLL_PHY_CTRL_DLL_RST_N;
+ if (ext_wr_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
+ if (ext_rd_mode)
+ reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
+
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
+ reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
+ t->dll_phy_ctrl = reg;
+ dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
+ }
+
+ /* Sampling point calculation. */
+ if ((tdvw_max % dqs_sampl_res) > 0)
+ sampling_point = tdvw_max / dqs_sampl_res;
+ else
+ sampling_point = (tdvw_max / dqs_sampl_res - 1);
+
+ if (sampling_point * dqs_sampl_res > tdvw_min) {
+ dll_phy_dqs_timing =
+ FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
+ dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
+ phony_dqs_timing = sampling_point / phony_dqs_mod;
+
+ if ((sampling_point % 2) > 0) {
+ dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
+ if ((tdvw_max % dqs_sampl_res) == 0)
+ /*
+ * Calculation for sampling point at the edge
+ * of data and being odd number.
+ */
+ phony_dqs_timing = (tdvw_max / dqs_sampl_res)
+ / phony_dqs_mod - 1;
+
+ if (!cdns_ctrl->caps2.is_phy_type_dll)
+ phony_dqs_timing--;
+
+ } else {
+ phony_dqs_timing--;
+ }
+ rd_del_sel = phony_dqs_timing + 3;
+ } else {
+ dev_warn(cdns_ctrl->dev,
+ "ERROR : cannot find valid sampling point\n");
+ }
+
+ reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
+ if (cdns_ctrl->caps2.is_phy_type_dll)
+ reg |= PHY_CTRL_SDR_DQS;
+ t->phy_ctrl = reg;
+ dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
+
+ if (cdns_ctrl->caps2.is_phy_type_dll) {
+ dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
+ dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
+ dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
+ dll_phy_dqs_timing);
+ t->phy_dqs_timing = dll_phy_dqs_timing;
+
+ reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
+ dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
+ reg);
+ t->phy_gate_lpbk_ctrl = reg;
+
+ dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
+ PHY_DLL_MASTER_CTRL_BYPASS_MODE);
+ dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
+ }
+
+ return 0;
+}
+
+int cadence_nand_attach_chip(struct nand_chip *chip)
+{
+ struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
+ struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
+ u32 ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ u32 max_oob_data_size;
+ int ret;
+
+ if (chip->options & NAND_BUSWIDTH_16) {
+ ret = cadence_nand_set_access_width16(cdns_ctrl, true);
+ if (ret)
+ return ret;
+ }
+
+ chip->bbt_options |= NAND_BBT_USE_FLASH;
+ chip->bbt_options |= NAND_BBT_NO_OOB;
+ chip->ecc.mode = NAND_ECC_HW;
+
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+
+ cdns_chip->bbm_offs = chip->badblockpos;
+ if (chip->options & NAND_BUSWIDTH_16) {
+ cdns_chip->bbm_offs &= ~0x01;
+ cdns_chip->bbm_len = 2;
+ } else {
+ cdns_chip->bbm_len = 1;
+ }
+
+ ret = nand_ecc_choose_conf(chip,
+ &cdns_ctrl->ecc_caps,
+ mtd->oobsize - cdns_chip->bbm_len);
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
+ return ret;
+ }
+
+ dev_dbg(cdns_ctrl->dev,
+ "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
+ chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
+
+ /* Error correction configuration. */
+ cdns_chip->sector_size = chip->ecc.size;
+ cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
+
+ cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
+
+ max_oob_data_size = MAX_OOB_SIZE_PER_SECTOR;
+
+ if (cdns_chip->avail_oob_size > max_oob_data_size)
+ cdns_chip->avail_oob_size = max_oob_data_size;
+
+ if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
+ > mtd->oobsize)
+ cdns_chip->avail_oob_size -= 4;
+
+ ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
+ if (ret < 0)
+ return -EINVAL;
+
+ cdns_chip->corr_str_idx = (u8)ret;
+
+ if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
+ 1000000,
+ CTRL_STATUS_CTRL_BUSY, true))
+ return -ETIMEDOUT;
+
+ cadence_nand_set_ecc_strength(cdns_ctrl,
+ cdns_chip->corr_str_idx);
+
+ cadence_nand_set_erase_detection(cdns_ctrl, true,
+ chip->ecc.strength);
+
+ /* Override the default read operations. */
+ chip->ecc.read_page = cadence_nand_read_page;
+ chip->ecc.read_page_raw = cadence_nand_read_page_raw;
+ chip->ecc.write_page = cadence_nand_write_page;
+ chip->ecc.write_page_raw = cadence_nand_write_page_raw;
+ chip->ecc.read_oob = cadence_nand_read_oob;
+ chip->ecc.write_oob = cadence_nand_write_oob;
+ chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
+ chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
+
+ if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
+ cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
+
+ /* Is 32-bit DMA supported? */
+ ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
+ return ret;
+ }
+
+ mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
+
+ return 0;
+}
+
+static const struct nand_controller_ops cadence_nand_controller_ops = {
+ .attach_chip = cadence_nand_attach_chip,
+ .exec_op = cadence_nand_exec_op,
+ .setup_data_interface = cadence_nand_setup_data_interface,
+};
+
+static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
+ struct device_node *np)
+{
+ struct cdns_nand_chip *cdns_chip;
+ struct mtd_info *mtd;
+ struct nand_chip *chip;
+ int nsels, ret, i;
+ u32 cs;
+
+ nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
+ if (nsels <= 0) {
+ dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
+ return -EINVAL;
+ }
+
+ /* Allocate the nand chip structure. */
+ cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
+ (nsels * sizeof(u8)),
+ GFP_KERNEL);
+ if (!cdns_chip) {
+ dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
+ return -ENOMEM;
+ }
+
+ cdns_chip->nsels = nsels;
+
+ for (i = 0; i < nsels; i++) {
+ /* Retrieve CS id. */
+ ret = of_property_read_u32_index(np, "reg", i, &cs);
+ if (ret) {
+ dev_err(cdns_ctrl->dev,
+ "could not retrieve reg property: %d\n",
+ ret);
+ return ret;
+ }
+
+ if (cs >= cdns_ctrl->caps2.max_banks) {
+ dev_err(cdns_ctrl->dev,
+ "invalid reg value: %u (max CS = %d)\n",
+ cs, cdns_ctrl->caps2.max_banks);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
+ dev_err(cdns_ctrl->dev,
+ "CS %d already assigned\n", cs);
+ return -EINVAL;
+ }
+
+ cdns_chip->cs[i] = cs;
+ }
+
+ chip = &cdns_chip->chip;
+ chip->controller = &cdns_ctrl->controller;
+ nand_set_flash_node(chip, np);
+
+ mtd = nand_to_mtd(chip);
+ mtd->dev.parent = cdns_ctrl->dev;
+
+ /*
+ * Default to HW ECC engine mode. If the nand-ecc-mode property is given
+ * in the DT node, this entry will be overwritten in nand_scan_ident().
+ */
+ chip->ecc.mode = NAND_ECC_HW;
+
+ ret = nand_scan(chip, cdns_chip->nsels);
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
+ return ret;
+ }
+
+ ret = mtd_device_register(mtd, NULL, 0);
+ if (ret) {
+ dev_err(cdns_ctrl->dev,
+ "failed to register mtd device: %d\n", ret);
+ nand_cleanup(chip);
+ return ret;
+ }
+
+ list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
+
+ return 0;
+}
+
+static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ struct cdns_nand_chip *entry, *temp;
+
+ list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
+ nand_release(&entry->chip);
+ list_del(&entry->node);
+ }
+}
+
+static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ struct device_node *np = cdns_ctrl->dev->of_node;
+ struct device_node *nand_np;
+ int max_cs = cdns_ctrl->caps2.max_banks;
+ int nchips, ret;
+
+ nchips = of_get_child_count(np);
+
+ if (nchips > max_cs) {
+ dev_err(cdns_ctrl->dev,
+ "too many NAND chips: %d (max = %d CS)\n",
+ nchips, max_cs);
+ return -EINVAL;
+ }
+
+ for_each_child_of_node(np, nand_np) {
+ ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
+ if (ret) {
+ of_node_put(nand_np);
+ cadence_nand_chips_cleanup(cdns_ctrl);
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+static void
+cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
+{
+ /* Disable interrupts. */
+ writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
+}
+
+static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ dma_cap_mask_t mask;
+ int ret;
+
+ cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
+ sizeof(*cdns_ctrl->cdma_desc),
+ &cdns_ctrl->dma_cdma_desc,
+ GFP_KERNEL);
+ if (!cdns_ctrl->dma_cdma_desc)
+ return -ENOMEM;
+
+ cdns_ctrl->buf_size = SZ_16K;
+ cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
+ if (!cdns_ctrl->buf) {
+ ret = -ENOMEM;
+ goto free_buf_desc;
+ }
+
+ if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
+ IRQF_SHARED, "cadence-nand-controller",
+ cdns_ctrl)) {
+ dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
+ ret = -ENODEV;
+ goto free_buf;
+ }
+
+ spin_lock_init(&cdns_ctrl->irq_lock);
+ init_completion(&cdns_ctrl->complete);
+
+ ret = cadence_nand_hw_init(cdns_ctrl);
+ if (ret)
+ goto disable_irq;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_MEMCPY, mask);
+
+ if (cdns_ctrl->caps1->has_dma) {
+ cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
+ if (!cdns_ctrl->dmac) {
+ dev_err(cdns_ctrl->dev,
+ "Unable to get a DMA channel\n");
+ ret = -EBUSY;
+ goto disable_irq;
+ }
+ }
+
+ nand_controller_init(&cdns_ctrl->controller);
+ INIT_LIST_HEAD(&cdns_ctrl->chips);
+
+ cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
+ cdns_ctrl->curr_corr_str_idx = 0xFF;
+
+ ret = cadence_nand_chips_init(cdns_ctrl);
+ if (ret) {
+ dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
+ ret);
+ goto dma_release_chnl;
+ }
+
+ kfree(cdns_ctrl->buf);
+ cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
+ if (!cdns_ctrl->buf) {
+ ret = -ENOMEM;
+ goto dma_release_chnl;
+ }
+
+ return 0;
+
+dma_release_chnl:
+ if (cdns_ctrl->dmac)
+ dma_release_channel(cdns_ctrl->dmac);
+
+disable_irq:
+ cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
+
+free_buf:
+ kfree(cdns_ctrl->buf);
+
+free_buf_desc:
+ dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
+ cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
+
+ return ret;
+}
+
+/* Driver exit point. */
+static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
+{
+ cadence_nand_chips_cleanup(cdns_ctrl);
+ cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
+ kfree(cdns_ctrl->buf);
+ dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
+ cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
+
+ if (cdns_ctrl->dmac)
+ dma_release_channel(cdns_ctrl->dmac);
+}
+
+struct cadence_nand_dt {
+ struct cdns_nand_ctrl cdns_ctrl;
+ struct clk *clk;
+};
+
+static const struct cadence_nand_dt_devdata cadence_nand_default = {
+ .if_skew = 0,
+ .has_dma = 1,
+};
+
+static const struct of_device_id cadence_nand_dt_ids[] = {
+ {
+ .compatible = "cdns,hp-nfc",
+ .data = &cadence_nand_default
+ }, {}
+};
+
+MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
+
+static int cadence_nand_dt_probe(struct platform_device *ofdev)
+{
+ struct resource *res;
+ struct cadence_nand_dt *dt;
+ struct cdns_nand_ctrl *cdns_ctrl;
+ int ret;
+ const struct of_device_id *of_id;
+ const struct cadence_nand_dt_devdata *devdata;
+ u32 val;
+
+ of_id = of_match_device(cadence_nand_dt_ids, &ofdev->dev);
+ if (of_id) {
+ ofdev->id_entry = of_id->data;
+ devdata = of_id->data;
+ } else {
+ pr_err("Failed to find the right device id.\n");
+ return -ENOMEM;
+ }
+
+ dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
+ if (!dt)
+ return -ENOMEM;
+
+ cdns_ctrl = &dt->cdns_ctrl;
+ cdns_ctrl->caps1 = devdata;
+
+ cdns_ctrl->dev = &ofdev->dev;
+ cdns_ctrl->irq = platform_get_irq(ofdev, 0);
+ if (cdns_ctrl->irq < 0)
+ return cdns_ctrl->irq;
+
+ dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
+
+ cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
+ if (IS_ERR(cdns_ctrl->reg)) {
+ dev_err(&ofdev->dev, "devm_ioremap_resource res 0 failed\n");
+ return PTR_ERR(cdns_ctrl->reg);
+ }
+
+ res = platform_get_resource(ofdev, IORESOURCE_MEM, 1);
+ cdns_ctrl->io.dma = res->start;
+ cdns_ctrl->io.virt = devm_ioremap_resource(&ofdev->dev, res);
+ if (IS_ERR(cdns_ctrl->io.virt)) {
+ dev_err(cdns_ctrl->dev, "devm_ioremap_resource res 1 failed\n");
+ return PTR_ERR(cdns_ctrl->io.virt);
+ }
+
+ dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
+ if (IS_ERR(dt->clk))
+ return PTR_ERR(dt->clk);
+
+ cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
+
+ ret = of_property_read_u32(ofdev->dev.of_node,
+ "cdns,board-delay-ps", &val);
+ if (ret) {
+ val = 4830;
+ dev_info(cdns_ctrl->dev,
+ "missing cdns,board-delay-ps property, %d was set\n",
+ val);
+ }
+ cdns_ctrl->board_delay = val;
+
+ ret = cadence_nand_init(cdns_ctrl);
+ if (ret)
+ return ret;
+
+ platform_set_drvdata(ofdev, dt);
+ return 0;
+}
+
+static int cadence_nand_dt_remove(struct platform_device *ofdev)
+{
+ struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
+
+ cadence_nand_remove(&dt->cdns_ctrl);
+
+ return 0;
+}
+
+static struct platform_driver cadence_nand_dt_driver = {
+ .probe = cadence_nand_dt_probe,
+ .remove = cadence_nand_dt_remove,
+ .driver = {
+ .name = "cadence-nand-controller",
+ .of_match_table = cadence_nand_dt_ids,
+ },
+};
+
+module_platform_driver(cadence_nand_dt_driver);
+
+MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");
+
diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c
index 5e14836f6bd5..8b779a899dcf 100644
--- a/drivers/mtd/nand/raw/denali_dt.c
+++ b/drivers/mtd/nand/raw/denali_dt.c
@@ -102,47 +102,6 @@ static int denali_dt_chip_init(struct denali_controller *denali,
return denali_chip_init(denali, dchip);
}
-/* Backward compatibility for old platforms */
-static int denali_dt_legacy_chip_init(struct denali_controller *denali)
-{
- struct denali_chip *dchip;
- int nsels, i;
-
- nsels = denali->nbanks;
-
- dchip = devm_kzalloc(denali->dev, struct_size(dchip, sels, nsels),
- GFP_KERNEL);
- if (!dchip)
- return -ENOMEM;
-
- dchip->nsels = nsels;
-
- for (i = 0; i < nsels; i++)
- dchip->sels[i].bank = i;
-
- nand_set_flash_node(&dchip->chip, denali->dev->of_node);
-
- return denali_chip_init(denali, dchip);
-}
-
-/*
- * Check the DT binding.
- * The new binding expects chip subnodes in the controller node.
- * So, #address-cells = <1>; #size-cells = <0>; are required.
- * Check the #size-cells to distinguish the binding.
- */
-static bool denali_dt_is_legacy_binding(struct device_node *np)
-{
- u32 cells;
- int ret;
-
- ret = of_property_read_u32(np, "#size-cells", &cells);
- if (ret)
- return true;
-
- return cells != 0;
-}
-
static int denali_dt_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
@@ -167,10 +126,8 @@ static int denali_dt_probe(struct platform_device *pdev)
denali->dev = dev;
denali->irq = platform_get_irq(pdev, 0);
- if (denali->irq < 0) {
- dev_err(dev, "no irq defined\n");
+ if (denali->irq < 0)
return denali->irq;
- }
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "denali_reg");
denali->reg = devm_ioremap_resource(dev, res);
@@ -213,17 +170,11 @@ static int denali_dt_probe(struct platform_device *pdev)
if (ret)
goto out_disable_clk_ecc;
- if (denali_dt_is_legacy_binding(dev->of_node)) {
- ret = denali_dt_legacy_chip_init(denali);
- if (ret)
+ for_each_child_of_node(dev->of_node, np) {
+ ret = denali_dt_chip_init(denali, np);
+ if (ret) {
+ of_node_put(np);
goto out_remove_denali;
- } else {
- for_each_child_of_node(dev->of_node, np) {
- ret = denali_dt_chip_init(denali, np);
- if (ret) {
- of_node_put(np);
- goto out_remove_denali;
- }
}
}
diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c
index 6c7ca41354be..a6964feeec77 100644
--- a/drivers/mtd/nand/raw/fsmc_nand.c
+++ b/drivers/mtd/nand/raw/fsmc_nand.c
@@ -613,28 +613,20 @@ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
+ nand_op_trace(" ", instr);
+
switch (instr->type) {
case NAND_OP_CMD_INSTR:
- pr_debug(" ->CMD [0x%02x]\n",
- instr->ctx.cmd.opcode);
-
writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
break;
case NAND_OP_ADDR_INSTR:
- pr_debug(" ->ADDR [%d cyc]",
- instr->ctx.addr.naddrs);
-
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb_relaxed(instr->ctx.addr.addrs[i],
host->addr_va);
break;
case NAND_OP_DATA_IN_INSTR:
- pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
-
if (host->mode == USE_DMA_ACCESS)
fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
instr->ctx.data.len);
@@ -644,10 +636,6 @@ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
break;
case NAND_OP_DATA_OUT_INSTR:
- pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
-
if (host->mode == USE_DMA_ACCESS)
fsmc_write_buf_dma(host,
instr->ctx.data.buf.out,
@@ -658,9 +646,6 @@ static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
break;
case NAND_OP_WAITRDY_INSTR:
- pr_debug(" ->WAITRDY [max %d ms]\n",
- instr->ctx.waitrdy.timeout_ms);
-
ret = nand_soft_waitrdy(chip,
instr->ctx.waitrdy.timeout_ms);
break;
diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile
index 30ceee9704d1..9bd81a31e02e 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/Makefile
+++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile
@@ -1,4 +1,3 @@
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o
gpmi_nand-objs += gpmi-nand.o
-gpmi_nand-objs += gpmi-lib.o
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
deleted file mode 100644
index a8b26d2e793c..000000000000
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c
+++ /dev/null
@@ -1,934 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0+
-/*
- * Freescale GPMI NAND Flash Driver
- *
- * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
- * Copyright (C) 2008 Embedded Alley Solutions, Inc.
- */
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/slab.h>
-
-#include "gpmi-nand.h"
-#include "gpmi-regs.h"
-#include "bch-regs.h"
-
-/* Converts time to clock cycles */
-#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
-
-#define MXS_SET_ADDR 0x4
-#define MXS_CLR_ADDR 0x8
-/*
- * Clear the bit and poll it cleared. This is usually called with
- * a reset address and mask being either SFTRST(bit 31) or CLKGATE
- * (bit 30).
- */
-static int clear_poll_bit(void __iomem *addr, u32 mask)
-{
- int timeout = 0x400;
-
- /* clear the bit */
- writel(mask, addr + MXS_CLR_ADDR);
-
- /*
- * SFTRST needs 3 GPMI clocks to settle, the reference manual
- * recommends to wait 1us.
- */
- udelay(1);
-
- /* poll the bit becoming clear */
- while ((readl(addr) & mask) && --timeout)
- /* nothing */;
-
- return !timeout;
-}
-
-#define MODULE_CLKGATE (1 << 30)
-#define MODULE_SFTRST (1 << 31)
-/*
- * The current mxs_reset_block() will do two things:
- * [1] enable the module.
- * [2] reset the module.
- *
- * In most of the cases, it's ok.
- * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
- * If you try to soft reset the BCH block, it becomes unusable until
- * the next hard reset. This case occurs in the NAND boot mode. When the board
- * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
- * So If the driver tries to reset the BCH again, the BCH will not work anymore.
- * You will see a DMA timeout in this case. The bug has been fixed
- * in the following chips, such as MX28.
- *
- * To avoid this bug, just add a new parameter `just_enable` for
- * the mxs_reset_block(), and rewrite it here.
- */
-static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
-{
- int ret;
- int timeout = 0x400;
-
- /* clear and poll SFTRST */
- ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
- if (unlikely(ret))
- goto error;
-
- /* clear CLKGATE */
- writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
-
- if (!just_enable) {
- /* set SFTRST to reset the block */
- writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
- udelay(1);
-
- /* poll CLKGATE becoming set */
- while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
- /* nothing */;
- if (unlikely(!timeout))
- goto error;
- }
-
- /* clear and poll SFTRST */
- ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
- if (unlikely(ret))
- goto error;
-
- /* clear and poll CLKGATE */
- ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
- if (unlikely(ret))
- goto error;
-
- return 0;
-
-error:
- pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
- return -ETIMEDOUT;
-}
-
-static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
-{
- struct clk *clk;
- int ret;
- int i;
-
- for (i = 0; i < GPMI_CLK_MAX; i++) {
- clk = this->resources.clock[i];
- if (!clk)
- break;
-
- if (v) {
- ret = clk_prepare_enable(clk);
- if (ret)
- goto err_clk;
- } else {
- clk_disable_unprepare(clk);
- }
- }
- return 0;
-
-err_clk:
- for (; i > 0; i--)
- clk_disable_unprepare(this->resources.clock[i - 1]);
- return ret;
-}
-
-int gpmi_enable_clk(struct gpmi_nand_data *this)
-{
- return __gpmi_enable_clk(this, true);
-}
-
-int gpmi_disable_clk(struct gpmi_nand_data *this)
-{
- return __gpmi_enable_clk(this, false);
-}
-
-int gpmi_init(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- int ret;
-
- ret = gpmi_enable_clk(this);
- if (ret)
- return ret;
- ret = gpmi_reset_block(r->gpmi_regs, false);
- if (ret)
- goto err_out;
-
- /*
- * Reset BCH here, too. We got failures otherwise :(
- * See later BCH reset for explanation of MX23 and MX28 handling
- */
- ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
- if (ret)
- goto err_out;
-
- /* Choose NAND mode. */
- writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
-
- /* Set the IRQ polarity. */
- writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
- r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* Disable Write-Protection. */
- writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* Select BCH ECC. */
- writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /*
- * Decouple the chip select from dma channel. We use dma0 for all
- * the chips.
- */
- writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
-
- gpmi_disable_clk(this);
- return 0;
-err_out:
- gpmi_disable_clk(this);
- return ret;
-}
-
-/* This function is very useful. It is called only when the bug occur. */
-void gpmi_dump_info(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- struct bch_geometry *geo = &this->bch_geometry;
- u32 reg;
- int i;
-
- dev_err(this->dev, "Show GPMI registers :\n");
- for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
- reg = readl(r->gpmi_regs + i * 0x10);
- dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
- }
-
- /* start to print out the BCH info */
- dev_err(this->dev, "Show BCH registers :\n");
- for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
- reg = readl(r->bch_regs + i * 0x10);
- dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
- }
- dev_err(this->dev, "BCH Geometry :\n"
- "GF length : %u\n"
- "ECC Strength : %u\n"
- "Page Size in Bytes : %u\n"
- "Metadata Size in Bytes : %u\n"
- "ECC Chunk Size in Bytes: %u\n"
- "ECC Chunk Count : %u\n"
- "Payload Size in Bytes : %u\n"
- "Auxiliary Size in Bytes: %u\n"
- "Auxiliary Status Offset: %u\n"
- "Block Mark Byte Offset : %u\n"
- "Block Mark Bit Offset : %u\n",
- geo->gf_len,
- geo->ecc_strength,
- geo->page_size,
- geo->metadata_size,
- geo->ecc_chunk_size,
- geo->ecc_chunk_count,
- geo->payload_size,
- geo->auxiliary_size,
- geo->auxiliary_status_offset,
- geo->block_mark_byte_offset,
- geo->block_mark_bit_offset);
-}
-
-/* Configures the geometry for BCH. */
-int bch_set_geometry(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- struct bch_geometry *bch_geo = &this->bch_geometry;
- unsigned int block_count;
- unsigned int block_size;
- unsigned int metadata_size;
- unsigned int ecc_strength;
- unsigned int page_size;
- unsigned int gf_len;
- int ret;
-
- ret = common_nfc_set_geometry(this);
- if (ret)
- return ret;
-
- block_count = bch_geo->ecc_chunk_count - 1;
- block_size = bch_geo->ecc_chunk_size;
- metadata_size = bch_geo->metadata_size;
- ecc_strength = bch_geo->ecc_strength >> 1;
- page_size = bch_geo->page_size;
- gf_len = bch_geo->gf_len;
-
- ret = gpmi_enable_clk(this);
- if (ret)
- return ret;
-
- /*
- * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
- * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
- * and MX28.
- */
- ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
- if (ret)
- goto err_out;
-
- /* Configure layout 0. */
- writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
- | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
- | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
- | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
- | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
- r->bch_regs + HW_BCH_FLASH0LAYOUT0);
-
- writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
- | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
- | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
- | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
- r->bch_regs + HW_BCH_FLASH0LAYOUT1);
-
- /* Set *all* chip selects to use layout 0. */
- writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
-
- /* Enable interrupts. */
- writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
- r->bch_regs + HW_BCH_CTRL_SET);
-
- gpmi_disable_clk(this);
- return 0;
-err_out:
- gpmi_disable_clk(this);
- return ret;
-}
-
-/*
- * <1> Firstly, we should know what's the GPMI-clock means.
- * The GPMI-clock is the internal clock in the gpmi nand controller.
- * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
- * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
- *
- * <2> Secondly, we should know what's the frequency on the nand chip pins.
- * The frequency on the nand chip pins is derived from the GPMI-clock.
- * We can get it from the following equation:
- *
- * F = G / (DS + DH)
- *
- * F : the frequency on the nand chip pins.
- * G : the GPMI clock, such as 100MHz.
- * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
- * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
- *
- * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
- * the nand EDO(extended Data Out) timing could be applied.
- * The GPMI implements a feedback read strobe to sample the read data.
- * The feedback read strobe can be delayed to support the nand EDO timing
- * where the read strobe may deasserts before the read data is valid, and
- * read data is valid for some time after read strobe.
- *
- * The following figure illustrates some aspects of a NAND Flash read:
- *
- * |<---tREA---->|
- * | |
- * | | |
- * |<--tRP-->| |
- * | | |
- * __ ___|__________________________________
- * RDN \________/ |
- * |
- * /---------\
- * Read Data --------------< >---------
- * \---------/
- * | |
- * |<-D->|
- * FeedbackRDN ________ ____________
- * \___________/
- *
- * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
- *
- *
- * <4> Now, we begin to describe how to compute the right RDN_DELAY.
- *
- * 4.1) From the aspect of the nand chip pins:
- * Delay = (tREA + C - tRP) {1}
- *
- * tREA : the maximum read access time.
- * C : a constant to adjust the delay. default is 4000ps.
- * tRP : the read pulse width, which is exactly:
- * tRP = (GPMI-clock-period) * DATA_SETUP
- *
- * 4.2) From the aspect of the GPMI nand controller:
- * Delay = RDN_DELAY * 0.125 * RP {2}
- *
- * RP : the DLL reference period.
- * if (GPMI-clock-period > DLL_THRETHOLD)
- * RP = GPMI-clock-period / 2;
- * else
- * RP = GPMI-clock-period;
- *
- * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
- * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
- * is 16000ps, but in mx6q, we use 12000ps.
- *
- * 4.3) since {1} equals {2}, we get:
- *
- * (tREA + 4000 - tRP) * 8
- * RDN_DELAY = ----------------------- {3}
- * RP
- */
-static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
- const struct nand_sdr_timings *sdr)
-{
- struct gpmi_nfc_hardware_timing *hw = &this->hw;
- unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
- unsigned int period_ps, reference_period_ps;
- unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
- unsigned int tRP_ps;
- bool use_half_period;
- int sample_delay_ps, sample_delay_factor;
- u16 busy_timeout_cycles;
- u8 wrn_dly_sel;
-
- if (sdr->tRC_min >= 30000) {
- /* ONFI non-EDO modes [0-3] */
- hw->clk_rate = 22000000;
- wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
- } else if (sdr->tRC_min >= 25000) {
- /* ONFI EDO mode 4 */
- hw->clk_rate = 80000000;
- wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
- } else {
- /* ONFI EDO mode 5 */
- hw->clk_rate = 100000000;
- wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
- }
-
- /* SDR core timings are given in picoseconds */
- period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
-
- addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
- data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
- data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
- busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
-
- hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
- BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
- BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
- hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
-
- /*
- * Derive NFC ideal delay from {3}:
- *
- * (tREA + 4000 - tRP) * 8
- * RDN_DELAY = -----------------------
- * RP
- */
- if (period_ps > dll_threshold_ps) {
- use_half_period = true;
- reference_period_ps = period_ps / 2;
- } else {
- use_half_period = false;
- reference_period_ps = period_ps;
- }
-
- tRP_ps = data_setup_cycles * period_ps;
- sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
- if (sample_delay_ps > 0)
- sample_delay_factor = sample_delay_ps / reference_period_ps;
- else
- sample_delay_factor = 0;
-
- hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
- if (sample_delay_factor)
- hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
- BM_GPMI_CTRL1_DLL_ENABLE |
- (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
-}
-
-void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
-{
- struct gpmi_nfc_hardware_timing *hw = &this->hw;
- struct resources *r = &this->resources;
- void __iomem *gpmi_regs = r->gpmi_regs;
- unsigned int dll_wait_time_us;
-
- clk_set_rate(r->clock[0], hw->clk_rate);
-
- writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
- writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
-
- /*
- * Clear several CTRL1 fields, DLL must be disabled when setting
- * RDN_DELAY or HALF_PERIOD.
- */
- writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
- writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
-
- /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
- dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
- if (!dll_wait_time_us)
- dll_wait_time_us = 1;
-
- /* Wait for the DLL to settle. */
- udelay(dll_wait_time_us);
-}
-
-int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
- const struct nand_data_interface *conf)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- const struct nand_sdr_timings *sdr;
-
- /* Retrieve required NAND timings */
- sdr = nand_get_sdr_timings(conf);
- if (IS_ERR(sdr))
- return PTR_ERR(sdr);
-
- /* Only MX6 GPMI controller can reach EDO timings */
- if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
- return -ENOTSUPP;
-
- /* Stop here if this call was just a check */
- if (chipnr < 0)
- return 0;
-
- /* Do the actual derivation of the controller timings */
- gpmi_nfc_compute_timings(this, sdr);
-
- this->hw.must_apply_timings = true;
-
- return 0;
-}
-
-/* Clears a BCH interrupt. */
-void gpmi_clear_bch(struct gpmi_nand_data *this)
-{
- struct resources *r = &this->resources;
- writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
-}
-
-/* Returns the Ready/Busy status of the given chip. */
-int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
-{
- struct resources *r = &this->resources;
- uint32_t mask = 0;
- uint32_t reg = 0;
-
- if (GPMI_IS_MX23(this)) {
- mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
- reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
- } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
- /*
- * In the imx6, all the ready/busy pins are bound
- * together. So we only need to check chip 0.
- */
- if (GPMI_IS_MX6(this))
- chip = 0;
-
- /* MX28 shares the same R/B register as MX6Q. */
- mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
- reg = readl(r->gpmi_regs + HW_GPMI_STAT);
- } else
- dev_err(this->dev, "unknown arch.\n");
- return reg & mask;
-}
-
-int gpmi_send_command(struct gpmi_nand_data *this)
-{
- struct dma_chan *channel = get_dma_chan(this);
- struct dma_async_tx_descriptor *desc;
- struct scatterlist *sgl;
- int chip = this->current_chip;
- int ret;
- u32 pio[3];
-
- /* [1] send out the PIO words */
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
- | BM_GPMI_CTRL0_ADDRESS_INCREMENT
- | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
- pio[1] = pio[2] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
- sgl = &this->cmd_sgl;
-
- sg_init_one(sgl, this->cmd_buffer, this->command_length);
- dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
- desc = dmaengine_prep_slave_sg(channel,
- sgl, 1, DMA_MEM_TO_DEV,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] submit the DMA */
- ret = start_dma_without_bch_irq(this, desc);
-
- dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
-
- return ret;
-}
-
-int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
-{
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- int ret;
- uint32_t command_mode;
- uint32_t address;
- u32 pio[2];
-
- /* [1] PIO */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(len);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] send DMA request */
- prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
- desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
- 1, DMA_MEM_TO_DEV,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] submit the DMA */
- ret = start_dma_without_bch_irq(this, desc);
-
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
-
- return ret;
-}
-
-int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
-{
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- int ret;
- u32 pio[2];
- bool direct;
-
- /* [1] : send PIO */
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
- | BF_GPMI_CTRL0_XFER_COUNT(len);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] : send DMA request */
- direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
- desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
- 1, DMA_DEV_TO_MEM,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] : submit the DMA */
-
- ret = start_dma_without_bch_irq(this, desc);
-
- dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
- if (!direct)
- memcpy(buf, this->data_buffer_dma, len);
-
- return ret;
-}
-
-int gpmi_send_page(struct gpmi_nand_data *this,
- dma_addr_t payload, dma_addr_t auxiliary)
-{
- struct bch_geometry *geo = &this->bch_geometry;
- uint32_t command_mode;
- uint32_t address;
- uint32_t ecc_command;
- uint32_t buffer_mask;
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- u32 pio[6];
-
- /* A DMA descriptor that does an ECC page read. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
- ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
- buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
- BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(0);
- pio[1] = 0;
- pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
- | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
- | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
- pio[3] = geo->page_size;
- pio[4] = payload;
- pio[5] = auxiliary;
-
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE,
- DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- return start_dma_with_bch_irq(this, desc);
-}
-
-int gpmi_read_page(struct gpmi_nand_data *this,
- dma_addr_t payload, dma_addr_t auxiliary)
-{
- struct bch_geometry *geo = &this->bch_geometry;
- uint32_t command_mode;
- uint32_t address;
- uint32_t ecc_command;
- uint32_t buffer_mask;
- struct dma_async_tx_descriptor *desc;
- struct dma_chan *channel = get_dma_chan(this);
- int chip = this->current_chip;
- u32 pio[6];
-
- /* [1] Wait for the chip to report ready. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(0);
- pio[1] = 0;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio, 2,
- DMA_TRANS_NONE, 0);
- if (!desc)
- return -EINVAL;
-
- /* [2] Enable the BCH block and read. */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
- ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
- buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
- | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
-
- pio[1] = 0;
- pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
- | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
- | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
- pio[3] = geo->page_size;
- pio[4] = payload;
- pio[5] = auxiliary;
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio,
- ARRAY_SIZE(pio), DMA_TRANS_NONE,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [3] Disable the BCH block */
- command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
- address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
-
- pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
- | BM_GPMI_CTRL0_WORD_LENGTH
- | BF_GPMI_CTRL0_CS(chip, this)
- | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
- | BF_GPMI_CTRL0_ADDRESS(address)
- | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
- pio[1] = 0;
- pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
- desc = dmaengine_prep_slave_sg(channel,
- (struct scatterlist *)pio, 3,
- DMA_TRANS_NONE,
- DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
- if (!desc)
- return -EINVAL;
-
- /* [4] submit the DMA */
- return start_dma_with_bch_irq(this, desc);
-}
-
-/**
- * gpmi_copy_bits - copy bits from one memory region to another
- * @dst: destination buffer
- * @dst_bit_off: bit offset we're starting to write at
- * @src: source buffer
- * @src_bit_off: bit offset we're starting to read from
- * @nbits: number of bits to copy
- *
- * This functions copies bits from one memory region to another, and is used by
- * the GPMI driver to copy ECC sections which are not guaranteed to be byte
- * aligned.
- *
- * src and dst should not overlap.
- *
- */
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
- const u8 *src, size_t src_bit_off,
- size_t nbits)
-{
- size_t i;
- size_t nbytes;
- u32 src_buffer = 0;
- size_t bits_in_src_buffer = 0;
-
- if (!nbits)
- return;
-
- /*
- * Move src and dst pointers to the closest byte pointer and store bit
- * offsets within a byte.
- */
- src += src_bit_off / 8;
- src_bit_off %= 8;
-
- dst += dst_bit_off / 8;
- dst_bit_off %= 8;
-
- /*
- * Initialize the src_buffer value with bits available in the first
- * byte of data so that we end up with a byte aligned src pointer.
- */
- if (src_bit_off) {
- src_buffer = src[0] >> src_bit_off;
- if (nbits >= (8 - src_bit_off)) {
- bits_in_src_buffer += 8 - src_bit_off;
- } else {
- src_buffer &= GENMASK(nbits - 1, 0);
- bits_in_src_buffer += nbits;
- }
- nbits -= bits_in_src_buffer;
- src++;
- }
-
- /* Calculate the number of bytes that can be copied from src to dst. */
- nbytes = nbits / 8;
-
- /* Try to align dst to a byte boundary. */
- if (dst_bit_off) {
- if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
- src_buffer |= src[0] << bits_in_src_buffer;
- bits_in_src_buffer += 8;
- src++;
- nbytes--;
- }
-
- if (bits_in_src_buffer >= (8 - dst_bit_off)) {
- dst[0] &= GENMASK(dst_bit_off - 1, 0);
- dst[0] |= src_buffer << dst_bit_off;
- src_buffer >>= (8 - dst_bit_off);
- bits_in_src_buffer -= (8 - dst_bit_off);
- dst_bit_off = 0;
- dst++;
- if (bits_in_src_buffer > 7) {
- bits_in_src_buffer -= 8;
- dst[0] = src_buffer;
- dst++;
- src_buffer >>= 8;
- }
- }
- }
-
- if (!bits_in_src_buffer && !dst_bit_off) {
- /*
- * Both src and dst pointers are byte aligned, thus we can
- * just use the optimized memcpy function.
- */
- if (nbytes)
- memcpy(dst, src, nbytes);
- } else {
- /*
- * src buffer is not byte aligned, hence we have to copy each
- * src byte to the src_buffer variable before extracting a byte
- * to store in dst.
- */
- for (i = 0; i < nbytes; i++) {
- src_buffer |= src[i] << bits_in_src_buffer;
- dst[i] = src_buffer;
- src_buffer >>= 8;
- }
- }
- /* Update dst and src pointers */
- dst += nbytes;
- src += nbytes;
-
- /*
- * nbits is the number of remaining bits. It should not exceed 8 as
- * we've already copied as much bytes as possible.
- */
- nbits %= 8;
-
- /*
- * If there's no more bits to copy to the destination and src buffer
- * was already byte aligned, then we're done.
- */
- if (!nbits && !bits_in_src_buffer)
- return;
-
- /* Copy the remaining bits to src_buffer */
- if (nbits)
- src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
- bits_in_src_buffer;
- bits_in_src_buffer += nbits;
-
- /*
- * In case there were not enough bits to get a byte aligned dst buffer
- * prepare the src_buffer variable to match the dst organization (shift
- * src_buffer by dst_bit_off and retrieve the least significant bits
- * from dst).
- */
- if (dst_bit_off)
- src_buffer = (src_buffer << dst_bit_off) |
- (*dst & GENMASK(dst_bit_off - 1, 0));
- bits_in_src_buffer += dst_bit_off;
-
- /*
- * Keep most significant bits from dst if we end up with an unaligned
- * number of bits.
- */
- nbytes = bits_in_src_buffer / 8;
- if (bits_in_src_buffer % 8) {
- src_buffer |= (dst[nbytes] &
- GENMASK(7, bits_in_src_buffer % 8)) <<
- (nbytes * 8);
- nbytes++;
- }
-
- /* Copy the remaining bytes to dst */
- for (i = 0; i < nbytes; i++) {
- dst[i] = src_buffer;
- src_buffer >>= 8;
- }
-}
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
index 40df20d1adf5..334fe3130285 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c
@@ -6,6 +6,7 @@
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*/
#include <linux/clk.h>
+#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
@@ -13,7 +14,10 @@
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_device.h>
+#include <linux/pm_runtime.h>
+#include <linux/dma/mxs-dma.h>
#include "gpmi-nand.h"
+#include "gpmi-regs.h"
#include "bch-regs.h"
/* Resource names for the GPMI NAND driver. */
@@ -21,149 +25,208 @@
#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch"
#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch"
-/* add our owner bbt descriptor */
-static uint8_t scan_ff_pattern[] = { 0xff };
-static struct nand_bbt_descr gpmi_bbt_descr = {
- .options = 0,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern
-};
+/* Converts time to clock cycles */
+#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
+#define MXS_SET_ADDR 0x4
+#define MXS_CLR_ADDR 0x8
/*
- * We may change the layout if we can get the ECC info from the datasheet,
- * else we will use all the (page + OOB).
+ * Clear the bit and poll it cleared. This is usually called with
+ * a reset address and mask being either SFTRST(bit 31) or CLKGATE
+ * (bit 30).
*/
-static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
+static int clear_poll_bit(void __iomem *addr, u32 mask)
{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- struct bch_geometry *geo = &this->bch_geometry;
+ int timeout = 0x400;
- if (section)
- return -ERANGE;
+ /* clear the bit */
+ writel(mask, addr + MXS_CLR_ADDR);
- oobregion->offset = 0;
- oobregion->length = geo->page_size - mtd->writesize;
+ /*
+ * SFTRST needs 3 GPMI clocks to settle, the reference manual
+ * recommends to wait 1us.
+ */
+ udelay(1);
- return 0;
+ /* poll the bit becoming clear */
+ while ((readl(addr) & mask) && --timeout)
+ /* nothing */;
+
+ return !timeout;
}
-static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
+#define MODULE_CLKGATE (1 << 30)
+#define MODULE_SFTRST (1 << 31)
+/*
+ * The current mxs_reset_block() will do two things:
+ * [1] enable the module.
+ * [2] reset the module.
+ *
+ * In most of the cases, it's ok.
+ * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
+ * If you try to soft reset the BCH block, it becomes unusable until
+ * the next hard reset. This case occurs in the NAND boot mode. When the board
+ * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
+ * So If the driver tries to reset the BCH again, the BCH will not work anymore.
+ * You will see a DMA timeout in this case. The bug has been fixed
+ * in the following chips, such as MX28.
+ *
+ * To avoid this bug, just add a new parameter `just_enable` for
+ * the mxs_reset_block(), and rewrite it here.
+ */
+static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
{
- struct nand_chip *chip = mtd_to_nand(mtd);
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- struct bch_geometry *geo = &this->bch_geometry;
+ int ret;
+ int timeout = 0x400;
+
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
+
+ /* clear CLKGATE */
+ writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
+
+ if (!just_enable) {
+ /* set SFTRST to reset the block */
+ writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
+ udelay(1);
+
+ /* poll CLKGATE becoming set */
+ while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
+ /* nothing */;
+ if (unlikely(!timeout))
+ goto error;
+ }
- if (section)
- return -ERANGE;
+ /* clear and poll SFTRST */
+ ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
+ if (unlikely(ret))
+ goto error;
- /* The available oob size we have. */
- if (geo->page_size < mtd->writesize + mtd->oobsize) {
- oobregion->offset = geo->page_size - mtd->writesize;
- oobregion->length = mtd->oobsize - oobregion->offset;
- }
+ /* clear and poll CLKGATE */
+ ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
+ if (unlikely(ret))
+ goto error;
return 0;
+
+error:
+ pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
+ return -ETIMEDOUT;
}
-static const char * const gpmi_clks_for_mx2x[] = {
- "gpmi_io",
-};
+static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
+{
+ struct clk *clk;
+ int ret;
+ int i;
-static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
- .ecc = gpmi_ooblayout_ecc,
- .free = gpmi_ooblayout_free,
-};
+ for (i = 0; i < GPMI_CLK_MAX; i++) {
+ clk = this->resources.clock[i];
+ if (!clk)
+ break;
-static const struct gpmi_devdata gpmi_devdata_imx23 = {
- .type = IS_MX23,
- .bch_max_ecc_strength = 20,
- .max_chain_delay = 16000,
- .clks = gpmi_clks_for_mx2x,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
+ if (v) {
+ ret = clk_prepare_enable(clk);
+ if (ret)
+ goto err_clk;
+ } else {
+ clk_disable_unprepare(clk);
+ }
+ }
+ return 0;
-static const struct gpmi_devdata gpmi_devdata_imx28 = {
- .type = IS_MX28,
- .bch_max_ecc_strength = 20,
- .max_chain_delay = 16000,
- .clks = gpmi_clks_for_mx2x,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
-};
+err_clk:
+ for (; i > 0; i--)
+ clk_disable_unprepare(this->resources.clock[i - 1]);
+ return ret;
+}
-static const char * const gpmi_clks_for_mx6[] = {
- "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
-};
+static int gpmi_init(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int ret;
-static const struct gpmi_devdata gpmi_devdata_imx6q = {
- .type = IS_MX6Q,
- .bch_max_ecc_strength = 40,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx6,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
+ ret = gpmi_reset_block(r->gpmi_regs, false);
+ if (ret)
+ goto err_out;
-static const struct gpmi_devdata gpmi_devdata_imx6sx = {
- .type = IS_MX6SX,
- .bch_max_ecc_strength = 62,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx6,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
-};
+ /*
+ * Reset BCH here, too. We got failures otherwise :(
+ * See later BCH reset for explanation of MX23 and MX28 handling
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+ if (ret)
+ goto err_out;
-static const char * const gpmi_clks_for_mx7d[] = {
- "gpmi_io", "gpmi_bch_apb",
-};
+ /* Choose NAND mode. */
+ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
-static const struct gpmi_devdata gpmi_devdata_imx7d = {
- .type = IS_MX7D,
- .bch_max_ecc_strength = 62,
- .max_chain_delay = 12000,
- .clks = gpmi_clks_for_mx7d,
- .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
-};
+ /* Set the IRQ polarity. */
+ writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
+ r->gpmi_regs + HW_GPMI_CTRL1_SET);
-static irqreturn_t bch_irq(int irq, void *cookie)
-{
- struct gpmi_nand_data *this = cookie;
+ /* Disable Write-Protection. */
+ writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
- gpmi_clear_bch(this);
- complete(&this->bch_done);
- return IRQ_HANDLED;
+ /* Select BCH ECC. */
+ writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /*
+ * Decouple the chip select from dma channel. We use dma0 for all
+ * the chips.
+ */
+ writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ return 0;
+err_out:
+ return ret;
}
-/*
- * Calculate the ECC strength by hand:
- * E : The ECC strength.
- * G : the length of Galois Field.
- * N : The chunk count of per page.
- * O : the oobsize of the NAND chip.
- * M : the metasize of per page.
- *
- * The formula is :
- * E * G * N
- * ------------ <= (O - M)
- * 8
- *
- * So, we get E by:
- * (O - M) * 8
- * E <= -------------
- * G * N
- */
-static inline int get_ecc_strength(struct gpmi_nand_data *this)
+/* This function is very useful. It is called only when the bug occur. */
+static void gpmi_dump_info(struct gpmi_nand_data *this)
{
+ struct resources *r = &this->resources;
struct bch_geometry *geo = &this->bch_geometry;
- struct mtd_info *mtd = nand_to_mtd(&this->nand);
- int ecc_strength;
+ u32 reg;
+ int i;
- ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
- / (geo->gf_len * geo->ecc_chunk_count);
+ dev_err(this->dev, "Show GPMI registers :\n");
+ for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
+ reg = readl(r->gpmi_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
- /* We need the minor even number. */
- return round_down(ecc_strength, 2);
+ /* start to print out the BCH info */
+ dev_err(this->dev, "Show BCH registers :\n");
+ for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
+ reg = readl(r->bch_regs + i * 0x10);
+ dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
+ }
+ dev_err(this->dev, "BCH Geometry :\n"
+ "GF length : %u\n"
+ "ECC Strength : %u\n"
+ "Page Size in Bytes : %u\n"
+ "Metadata Size in Bytes : %u\n"
+ "ECC Chunk Size in Bytes: %u\n"
+ "ECC Chunk Count : %u\n"
+ "Payload Size in Bytes : %u\n"
+ "Auxiliary Size in Bytes: %u\n"
+ "Auxiliary Status Offset: %u\n"
+ "Block Mark Byte Offset : %u\n"
+ "Block Mark Bit Offset : %u\n",
+ geo->gf_len,
+ geo->ecc_strength,
+ geo->page_size,
+ geo->metadata_size,
+ geo->ecc_chunk_size,
+ geo->ecc_chunk_count,
+ geo->payload_size,
+ geo->auxiliary_size,
+ geo->auxiliary_status_offset,
+ geo->block_mark_byte_offset,
+ geo->block_mark_bit_offset);
}
static inline bool gpmi_check_ecc(struct gpmi_nand_data *this)
@@ -296,6 +359,37 @@ static int set_geometry_by_ecc_info(struct gpmi_nand_data *this,
return 0;
}
+/*
+ * Calculate the ECC strength by hand:
+ * E : The ECC strength.
+ * G : the length of Galois Field.
+ * N : The chunk count of per page.
+ * O : the oobsize of the NAND chip.
+ * M : the metasize of per page.
+ *
+ * The formula is :
+ * E * G * N
+ * ------------ <= (O - M)
+ * 8
+ *
+ * So, we get E by:
+ * (O - M) * 8
+ * E <= -------------
+ * G * N
+ */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct mtd_info *mtd = nand_to_mtd(&this->nand);
+ int ecc_strength;
+
+ ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
+ / (geo->gf_len * geo->ecc_chunk_count);
+
+ /* We need the minor even number. */
+ return round_down(ecc_strength, 2);
+}
+
static int legacy_set_geometry(struct gpmi_nand_data *this)
{
struct bch_geometry *geo = &this->bch_geometry;
@@ -408,7 +502,7 @@ static int legacy_set_geometry(struct gpmi_nand_data *this)
return 0;
}
-int common_nfc_set_geometry(struct gpmi_nand_data *this)
+static int common_nfc_set_geometry(struct gpmi_nand_data *this)
{
struct nand_chip *chip = &this->nand;
@@ -430,18 +524,288 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this)
return 0;
}
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+/* Configures the geometry for BCH. */
+static int bch_set_geometry(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ int ret;
+
+ ret = common_nfc_set_geometry(this);
+ if (ret)
+ return ret;
+
+ ret = pm_runtime_get_sync(this->dev);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
+ * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
+ * and MX28.
+ */
+ ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this));
+ if (ret)
+ goto err_out;
+
+ /* Set *all* chip selects to use layout 0. */
+ writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
+
+ ret = 0;
+err_out:
+ pm_runtime_mark_last_busy(this->dev);
+ pm_runtime_put_autosuspend(this->dev);
+
+ return ret;
+}
+
+/*
+ * <1> Firstly, we should know what's the GPMI-clock means.
+ * The GPMI-clock is the internal clock in the gpmi nand controller.
+ * If you set 100MHz to gpmi nand controller, the GPMI-clock's period
+ * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
+ *
+ * <2> Secondly, we should know what's the frequency on the nand chip pins.
+ * The frequency on the nand chip pins is derived from the GPMI-clock.
+ * We can get it from the following equation:
+ *
+ * F = G / (DS + DH)
+ *
+ * F : the frequency on the nand chip pins.
+ * G : the GPMI clock, such as 100MHz.
+ * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
+ * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
+ *
+ * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
+ * the nand EDO(extended Data Out) timing could be applied.
+ * The GPMI implements a feedback read strobe to sample the read data.
+ * The feedback read strobe can be delayed to support the nand EDO timing
+ * where the read strobe may deasserts before the read data is valid, and
+ * read data is valid for some time after read strobe.
+ *
+ * The following figure illustrates some aspects of a NAND Flash read:
+ *
+ * |<---tREA---->|
+ * | |
+ * | | |
+ * |<--tRP-->| |
+ * | | |
+ * __ ___|__________________________________
+ * RDN \________/ |
+ * |
+ * /---------\
+ * Read Data --------------< >---------
+ * \---------/
+ * | |
+ * |<-D->|
+ * FeedbackRDN ________ ____________
+ * \___________/
+ *
+ * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
+ *
+ *
+ * <4> Now, we begin to describe how to compute the right RDN_DELAY.
+ *
+ * 4.1) From the aspect of the nand chip pins:
+ * Delay = (tREA + C - tRP) {1}
+ *
+ * tREA : the maximum read access time.
+ * C : a constant to adjust the delay. default is 4000ps.
+ * tRP : the read pulse width, which is exactly:
+ * tRP = (GPMI-clock-period) * DATA_SETUP
+ *
+ * 4.2) From the aspect of the GPMI nand controller:
+ * Delay = RDN_DELAY * 0.125 * RP {2}
+ *
+ * RP : the DLL reference period.
+ * if (GPMI-clock-period > DLL_THRETHOLD)
+ * RP = GPMI-clock-period / 2;
+ * else
+ * RP = GPMI-clock-period;
+ *
+ * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
+ * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
+ * is 16000ps, but in mx6q, we use 12000ps.
+ *
+ * 4.3) since {1} equals {2}, we get:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = ----------------------- {3}
+ * RP
+ */
+static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
+ const struct nand_sdr_timings *sdr)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
+ unsigned int period_ps, reference_period_ps;
+ unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
+ unsigned int tRP_ps;
+ bool use_half_period;
+ int sample_delay_ps, sample_delay_factor;
+ u16 busy_timeout_cycles;
+ u8 wrn_dly_sel;
+
+ if (sdr->tRC_min >= 30000) {
+ /* ONFI non-EDO modes [0-3] */
+ hw->clk_rate = 22000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
+ } else if (sdr->tRC_min >= 25000) {
+ /* ONFI EDO mode 4 */
+ hw->clk_rate = 80000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ } else {
+ /* ONFI EDO mode 5 */
+ hw->clk_rate = 100000000;
+ wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
+ }
+
+ /* SDR core timings are given in picoseconds */
+ period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
+
+ addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
+ data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
+ data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
+ busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
+
+ hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
+ BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
+ BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
+ hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
+
+ /*
+ * Derive NFC ideal delay from {3}:
+ *
+ * (tREA + 4000 - tRP) * 8
+ * RDN_DELAY = -----------------------
+ * RP
+ */
+ if (period_ps > dll_threshold_ps) {
+ use_half_period = true;
+ reference_period_ps = period_ps / 2;
+ } else {
+ use_half_period = false;
+ reference_period_ps = period_ps;
+ }
+
+ tRP_ps = data_setup_cycles * period_ps;
+ sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
+ if (sample_delay_ps > 0)
+ sample_delay_factor = sample_delay_ps / reference_period_ps;
+ else
+ sample_delay_factor = 0;
+
+ hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
+ if (sample_delay_factor)
+ hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
+ BM_GPMI_CTRL1_DLL_ENABLE |
+ (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
+}
+
+static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
+{
+ struct gpmi_nfc_hardware_timing *hw = &this->hw;
+ struct resources *r = &this->resources;
+ void __iomem *gpmi_regs = r->gpmi_regs;
+ unsigned int dll_wait_time_us;
+
+ clk_set_rate(r->clock[0], hw->clk_rate);
+
+ writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
+ writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
+
+ /*
+ * Clear several CTRL1 fields, DLL must be disabled when setting
+ * RDN_DELAY or HALF_PERIOD.
+ */
+ writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
+ writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
+
+ /* Wait 64 clock cycles before using the GPMI after enabling the DLL */
+ dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
+ if (!dll_wait_time_us)
+ dll_wait_time_us = 1;
+
+ /* Wait for the DLL to settle. */
+ udelay(dll_wait_time_us);
+}
+
+static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
+
+ /* Retrieve required NAND timings */
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ /* Only MX6 GPMI controller can reach EDO timings */
+ if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
+ return -ENOTSUPP;
+
+ /* Stop here if this call was just a check */
+ if (chipnr < 0)
+ return 0;
+
+ /* Do the actual derivation of the controller timings */
+ gpmi_nfc_compute_timings(this, sdr);
+
+ this->hw.must_apply_timings = true;
+
+ return 0;
+}
+
+/* Clears a BCH interrupt. */
+static void gpmi_clear_bch(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+ writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
+}
+
+static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
{
/* We use the DMA channel 0 to access all the nand chips. */
return this->dma_chans[0];
}
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct completion *dma_c = &this->dma_done;
+
+ complete(dma_c);
+}
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nand_data *this = cookie;
+
+ gpmi_clear_bch(this);
+ complete(&this->bch_done);
+ return IRQ_HANDLED;
+}
+
+static int gpmi_raw_len_to_len(struct gpmi_nand_data *this, int raw_len)
+{
+ /*
+ * raw_len is the length to read/write including bch data which
+ * we are passed in exec_op. Calculate the data length from it.
+ */
+ if (this->bch)
+ return ALIGN_DOWN(raw_len, this->bch_geometry.ecc_chunk_size);
+ else
+ return raw_len;
+}
+
/* Can we use the upper's buffer directly for DMA? */
-bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len,
- enum dma_data_direction dr)
+static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf,
+ int raw_len, struct scatterlist *sgl,
+ enum dma_data_direction dr)
{
- struct scatterlist *sgl = &this->data_sgl;
int ret;
+ int len = gpmi_raw_len_to_len(this, raw_len);
/* first try to map the upper buffer directly */
if (virt_addr_valid(buf) && !object_is_on_stack(buf)) {
@@ -457,7 +821,7 @@ map_fail:
/* We have to use our own DMA buffer. */
sg_init_one(sgl, this->data_buffer_dma, len);
- if (dr == DMA_TO_DEVICE)
+ if (dr == DMA_TO_DEVICE && buf != this->data_buffer_dma)
memcpy(this->data_buffer_dma, buf, len);
dma_map_sg(this->dev, sgl, 1, dr);
@@ -465,67 +829,263 @@ map_fail:
return false;
}
-/* This will be called after the DMA operation is finished. */
-static void dma_irq_callback(void *param)
+/**
+ * gpmi_copy_bits - copy bits from one memory region to another
+ * @dst: destination buffer
+ * @dst_bit_off: bit offset we're starting to write at
+ * @src: source buffer
+ * @src_bit_off: bit offset we're starting to read from
+ * @nbits: number of bits to copy
+ *
+ * This functions copies bits from one memory region to another, and is used by
+ * the GPMI driver to copy ECC sections which are not guaranteed to be byte
+ * aligned.
+ *
+ * src and dst should not overlap.
+ *
+ */
+static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src,
+ size_t src_bit_off, size_t nbits)
{
- struct gpmi_nand_data *this = param;
- struct completion *dma_c = &this->dma_done;
+ size_t i;
+ size_t nbytes;
+ u32 src_buffer = 0;
+ size_t bits_in_src_buffer = 0;
- complete(dma_c);
-}
+ if (!nbits)
+ return;
-int start_dma_without_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
-{
- struct completion *dma_c = &this->dma_done;
- unsigned long timeout;
+ /*
+ * Move src and dst pointers to the closest byte pointer and store bit
+ * offsets within a byte.
+ */
+ src += src_bit_off / 8;
+ src_bit_off %= 8;
- init_completion(dma_c);
+ dst += dst_bit_off / 8;
+ dst_bit_off %= 8;
- desc->callback = dma_irq_callback;
- desc->callback_param = this;
- dmaengine_submit(desc);
- dma_async_issue_pending(get_dma_chan(this));
+ /*
+ * Initialize the src_buffer value with bits available in the first
+ * byte of data so that we end up with a byte aligned src pointer.
+ */
+ if (src_bit_off) {
+ src_buffer = src[0] >> src_bit_off;
+ if (nbits >= (8 - src_bit_off)) {
+ bits_in_src_buffer += 8 - src_bit_off;
+ } else {
+ src_buffer &= GENMASK(nbits - 1, 0);
+ bits_in_src_buffer += nbits;
+ }
+ nbits -= bits_in_src_buffer;
+ src++;
+ }
- /* Wait for the interrupt from the DMA block. */
- timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
- if (!timeout) {
- dev_err(this->dev, "DMA timeout, last DMA\n");
- gpmi_dump_info(this);
- return -ETIMEDOUT;
+ /* Calculate the number of bytes that can be copied from src to dst. */
+ nbytes = nbits / 8;
+
+ /* Try to align dst to a byte boundary. */
+ if (dst_bit_off) {
+ if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
+ src_buffer |= src[0] << bits_in_src_buffer;
+ bits_in_src_buffer += 8;
+ src++;
+ nbytes--;
+ }
+
+ if (bits_in_src_buffer >= (8 - dst_bit_off)) {
+ dst[0] &= GENMASK(dst_bit_off - 1, 0);
+ dst[0] |= src_buffer << dst_bit_off;
+ src_buffer >>= (8 - dst_bit_off);
+ bits_in_src_buffer -= (8 - dst_bit_off);
+ dst_bit_off = 0;
+ dst++;
+ if (bits_in_src_buffer > 7) {
+ bits_in_src_buffer -= 8;
+ dst[0] = src_buffer;
+ dst++;
+ src_buffer >>= 8;
+ }
+ }
+ }
+
+ if (!bits_in_src_buffer && !dst_bit_off) {
+ /*
+ * Both src and dst pointers are byte aligned, thus we can
+ * just use the optimized memcpy function.
+ */
+ if (nbytes)
+ memcpy(dst, src, nbytes);
+ } else {
+ /*
+ * src buffer is not byte aligned, hence we have to copy each
+ * src byte to the src_buffer variable before extracting a byte
+ * to store in dst.
+ */
+ for (i = 0; i < nbytes; i++) {
+ src_buffer |= src[i] << bits_in_src_buffer;
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
+ }
+ }
+ /* Update dst and src pointers */
+ dst += nbytes;
+ src += nbytes;
+
+ /*
+ * nbits is the number of remaining bits. It should not exceed 8 as
+ * we've already copied as much bytes as possible.
+ */
+ nbits %= 8;
+
+ /*
+ * If there's no more bits to copy to the destination and src buffer
+ * was already byte aligned, then we're done.
+ */
+ if (!nbits && !bits_in_src_buffer)
+ return;
+
+ /* Copy the remaining bits to src_buffer */
+ if (nbits)
+ src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
+ bits_in_src_buffer;
+ bits_in_src_buffer += nbits;
+
+ /*
+ * In case there were not enough bits to get a byte aligned dst buffer
+ * prepare the src_buffer variable to match the dst organization (shift
+ * src_buffer by dst_bit_off and retrieve the least significant bits
+ * from dst).
+ */
+ if (dst_bit_off)
+ src_buffer = (src_buffer << dst_bit_off) |
+ (*dst & GENMASK(dst_bit_off - 1, 0));
+ bits_in_src_buffer += dst_bit_off;
+
+ /*
+ * Keep most significant bits from dst if we end up with an unaligned
+ * number of bits.
+ */
+ nbytes = bits_in_src_buffer / 8;
+ if (bits_in_src_buffer % 8) {
+ src_buffer |= (dst[nbytes] &
+ GENMASK(7, bits_in_src_buffer % 8)) <<
+ (nbytes * 8);
+ nbytes++;
+ }
+
+ /* Copy the remaining bytes to dst */
+ for (i = 0; i < nbytes; i++) {
+ dst[i] = src_buffer;
+ src_buffer >>= 8;
}
- return 0;
}
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
/*
- * This function is used in BCH reading or BCH writing pages.
- * It will wait for the BCH interrupt as long as ONE second.
- * Actually, we must wait for two interrupts :
- * [1] firstly the DMA interrupt and
- * [2] secondly the BCH interrupt.
+ * We may change the layout if we can get the ECC info from the datasheet,
+ * else we will use all the (page + OOB).
*/
-int start_dma_with_bch_irq(struct gpmi_nand_data *this,
- struct dma_async_tx_descriptor *desc)
+static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
{
- struct completion *bch_c = &this->bch_done;
- unsigned long timeout;
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
- /* Prepare to receive an interrupt from the BCH block. */
- init_completion(bch_c);
+ if (section)
+ return -ERANGE;
- /* start the DMA */
- start_dma_without_bch_irq(this, desc);
+ oobregion->offset = 0;
+ oobregion->length = geo->page_size - mtd->writesize;
- /* Wait for the interrupt from the BCH block. */
- timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
- if (!timeout) {
- dev_err(this->dev, "BCH timeout\n");
- gpmi_dump_info(this);
- return -ETIMEDOUT;
+ return 0;
+}
+
+static int gpmi_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
+
+ if (section)
+ return -ERANGE;
+
+ /* The available oob size we have. */
+ if (geo->page_size < mtd->writesize + mtd->oobsize) {
+ oobregion->offset = geo->page_size - mtd->writesize;
+ oobregion->length = mtd->oobsize - oobregion->offset;
}
+
return 0;
}
+static const char * const gpmi_clks_for_mx2x[] = {
+ "gpmi_io",
+};
+
+static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = {
+ .ecc = gpmi_ooblayout_ecc,
+ .free = gpmi_ooblayout_free,
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx23 = {
+ .type = IS_MX23,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16000,
+ .clks = gpmi_clks_for_mx2x,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx28 = {
+ .type = IS_MX28,
+ .bch_max_ecc_strength = 20,
+ .max_chain_delay = 16000,
+ .clks = gpmi_clks_for_mx2x,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x),
+};
+
+static const char * const gpmi_clks_for_mx6[] = {
+ "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6q = {
+ .type = IS_MX6Q,
+ .bch_max_ecc_strength = 40,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx6,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx6sx = {
+ .type = IS_MX6SX,
+ .bch_max_ecc_strength = 62,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx6,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6),
+};
+
+static const char * const gpmi_clks_for_mx7d[] = {
+ "gpmi_io", "gpmi_bch_apb",
+};
+
+static const struct gpmi_devdata gpmi_devdata_imx7d = {
+ .type = IS_MX7D,
+ .bch_max_ecc_strength = 62,
+ .max_chain_delay = 12000,
+ .clks = gpmi_clks_for_mx7d,
+ .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d),
+};
+
static int acquire_register_block(struct gpmi_nand_data *this,
const char *res_name)
{
@@ -667,68 +1227,20 @@ static void release_resources(struct gpmi_nand_data *this)
release_dma_channels(this);
}
-static int send_page_prepare(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void **use_virt, dma_addr_t *use_phys)
-{
- struct device *dev = this->dev;
-
- if (virt_addr_valid(source)) {
- dma_addr_t source_phys;
-
- source_phys = dma_map_single(dev, (void *)source, length,
- DMA_TO_DEVICE);
- if (dma_mapping_error(dev, source_phys)) {
- if (alt_size < length) {
- dev_err(dev, "Alternate buffer is too small\n");
- return -ENOMEM;
- }
- goto map_failed;
- }
- *use_virt = source;
- *use_phys = source_phys;
- return 0;
- }
-map_failed:
- /*
- * Copy the content of the source buffer into the alternate
- * buffer and set up the return values accordingly.
- */
- memcpy(alt_virt, source, length);
-
- *use_virt = alt_virt;
- *use_phys = alt_phys;
- return 0;
-}
-
-static void send_page_end(struct gpmi_nand_data *this,
- const void *source, unsigned length,
- void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
- const void *used_virt, dma_addr_t used_phys)
-{
- struct device *dev = this->dev;
- if (used_virt == source)
- dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
-}
-
static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
{
struct device *dev = this->dev;
+ struct bch_geometry *geo = &this->bch_geometry;
- if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
- dma_free_coherent(dev, this->page_buffer_size,
- this->page_buffer_virt,
- this->page_buffer_phys);
- kfree(this->cmd_buffer);
+ if (this->auxiliary_virt && virt_addr_valid(this->auxiliary_virt))
+ dma_free_coherent(dev, geo->auxiliary_size,
+ this->auxiliary_virt,
+ this->auxiliary_phys);
kfree(this->data_buffer_dma);
kfree(this->raw_buffer);
- this->cmd_buffer = NULL;
this->data_buffer_dma = NULL;
this->raw_buffer = NULL;
- this->page_buffer_virt = NULL;
- this->page_buffer_size = 0;
}
/* Allocate the DMA buffers */
@@ -738,11 +1250,6 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
struct device *dev = this->dev;
struct mtd_info *mtd = nand_to_mtd(&this->nand);
- /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
- this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
- if (this->cmd_buffer == NULL)
- goto error_alloc;
-
/*
* [2] Allocate a read/write data buffer.
* The gpmi_alloc_dma_buffer can be called twice.
@@ -756,29 +1263,15 @@ static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
if (this->data_buffer_dma == NULL)
goto error_alloc;
- /*
- * [3] Allocate the page buffer.
- *
- * Both the payload buffer and the auxiliary buffer must appear on
- * 32-bit boundaries. We presume the size of the payload buffer is a
- * power of two and is much larger than four, which guarantees the
- * auxiliary buffer will appear on a 32-bit boundary.
- */
- this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
- this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
- &this->page_buffer_phys, GFP_DMA);
- if (!this->page_buffer_virt)
+ this->auxiliary_virt = dma_alloc_coherent(dev, geo->auxiliary_size,
+ &this->auxiliary_phys, GFP_DMA);
+ if (!this->auxiliary_virt)
goto error_alloc;
- this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
+ this->raw_buffer = kzalloc((mtd->writesize ?: PAGE_SIZE) + mtd->oobsize, GFP_KERNEL);
if (!this->raw_buffer)
goto error_alloc;
- /* Slice up the page buffer. */
- this->payload_virt = this->page_buffer_virt;
- this->payload_phys = this->page_buffer_phys;
- this->auxiliary_virt = this->payload_virt + geo->payload_size;
- this->auxiliary_phys = this->payload_phys + geo->payload_size;
return 0;
error_alloc:
@@ -786,106 +1279,6 @@ error_alloc:
return -ENOMEM;
}
-static void gpmi_cmd_ctrl(struct nand_chip *chip, int data, unsigned int ctrl)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- int ret;
-
- /*
- * Every operation begins with a command byte and a series of zero or
- * more address bytes. These are distinguished by either the Address
- * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
- * asserted. When MTD is ready to execute the command, it will deassert
- * both latch enables.
- *
- * Rather than run a separate DMA operation for every single byte, we
- * queue them up and run a single DMA operation for the entire series
- * of command and data bytes. NAND_CMD_NONE means the END of the queue.
- */
- if ((ctrl & (NAND_ALE | NAND_CLE))) {
- if (data != NAND_CMD_NONE)
- this->cmd_buffer[this->command_length++] = data;
- return;
- }
-
- if (!this->command_length)
- return;
-
- ret = gpmi_send_command(this);
- if (ret)
- dev_err(this->dev, "Chip: %u, Error %d\n",
- this->current_chip, ret);
-
- this->command_length = 0;
-}
-
-static int gpmi_dev_ready(struct nand_chip *chip)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- return gpmi_is_ready(this, this->current_chip);
-}
-
-static void gpmi_select_chip(struct nand_chip *chip, int chipnr)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- int ret;
-
- /*
- * For power consumption matters, disable/enable the clock each time a
- * die is selected/unselected.
- */
- if (this->current_chip < 0 && chipnr >= 0) {
- ret = gpmi_enable_clk(this);
- if (ret)
- dev_err(this->dev, "Failed to enable the clock\n");
- } else if (this->current_chip >= 0 && chipnr < 0) {
- ret = gpmi_disable_clk(this);
- if (ret)
- dev_err(this->dev, "Failed to disable the clock\n");
- }
-
- /*
- * This driver currently supports only one NAND chip. Plus, dies share
- * the same configuration. So once timings have been applied on the
- * controller side, they will not change anymore. When the time will
- * come, the check on must_apply_timings will have to be dropped.
- */
- if (chipnr >= 0 && this->hw.must_apply_timings) {
- this->hw.must_apply_timings = false;
- gpmi_nfc_apply_timings(this);
- }
-
- this->current_chip = chipnr;
-}
-
-static void gpmi_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- dev_dbg(this->dev, "len is %d\n", len);
-
- gpmi_read_data(this, buf, len);
-}
-
-static void gpmi_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
-
- dev_dbg(this->dev, "len is %d\n", len);
-
- gpmi_send_data(this, buf, len);
-}
-
-static uint8_t gpmi_read_byte(struct nand_chip *chip)
-{
- struct gpmi_nand_data *this = nand_get_controller_data(chip);
- uint8_t *buf = this->data_buffer_dma;
-
- gpmi_read_buf(chip, buf, 1);
- return buf[0];
-}
-
/*
* Handles block mark swapping.
* It can be called in swapping the block mark, or swapping it back,
@@ -934,54 +1327,20 @@ static void block_mark_swapping(struct gpmi_nand_data *this,
p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
}
-static int gpmi_ecc_read_page_data(struct nand_chip *chip,
- uint8_t *buf, int oob_required,
- int page)
+static int gpmi_count_bitflips(struct nand_chip *chip, void *buf, int first,
+ int last, int meta)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
struct mtd_info *mtd = nand_to_mtd(chip);
- dma_addr_t payload_phys;
- unsigned int i;
+ int i;
unsigned char *status;
- unsigned int max_bitflips = 0;
- int ret;
- bool direct = false;
-
- dev_dbg(this->dev, "page number is : %d\n", page);
-
- payload_phys = this->payload_phys;
-
- if (virt_addr_valid(buf)) {
- dma_addr_t dest_phys;
-
- dest_phys = dma_map_single(this->dev, buf, nfc_geo->payload_size,
- DMA_FROM_DEVICE);
- if (!dma_mapping_error(this->dev, dest_phys)) {
- payload_phys = dest_phys;
- direct = true;
- }
- }
-
- /* go! */
- ret = gpmi_read_page(this, payload_phys, this->auxiliary_phys);
-
- if (direct)
- dma_unmap_single(this->dev, payload_phys, nfc_geo->payload_size,
- DMA_FROM_DEVICE);
-
- if (ret) {
- dev_err(this->dev, "Error in ECC-based read: %d\n", ret);
- return ret;
- }
+ unsigned int max_bitflips = 0;
/* Loop over status bytes, accumulating ECC status. */
- status = this->auxiliary_virt + nfc_geo->auxiliary_status_offset;
-
- if (!direct)
- memcpy(buf, this->payload_virt, nfc_geo->payload_size);
+ status = this->auxiliary_virt + ALIGN(meta, 4);
- for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ for (i = first; i < last; i++, status++) {
if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
continue;
@@ -1061,6 +1420,50 @@ static int gpmi_ecc_read_page_data(struct nand_chip *chip,
max_bitflips = max_t(unsigned int, max_bitflips, *status);
}
+ return max_bitflips;
+}
+
+static void gpmi_bch_layout_std(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ unsigned int ecc_strength = geo->ecc_strength >> 1;
+ unsigned int gf_len = geo->gf_len;
+ unsigned int block_size = geo->ecc_chunk_size;
+
+ this->bch_flashlayout0 =
+ BF_BCH_FLASH0LAYOUT0_NBLOCKS(geo->ecc_chunk_count - 1) |
+ BF_BCH_FLASH0LAYOUT0_META_SIZE(geo->metadata_size) |
+ BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) |
+ BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this);
+
+ this->bch_flashlayout1 =
+ BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(geo->page_size) |
+ BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) |
+ BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this);
+}
+
+static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct bch_geometry *geo = &this->bch_geometry;
+ unsigned int max_bitflips;
+ int ret;
+
+ gpmi_bch_layout_std(this);
+ this->bch = true;
+
+ ret = nand_read_page_op(chip, page, 0, buf, geo->page_size);
+ if (ret)
+ return ret;
+
+ max_bitflips = gpmi_count_bitflips(chip, buf, 0,
+ geo->ecc_chunk_count,
+ geo->auxiliary_status_offset);
+
/* handle the block mark swapping */
block_mark_swapping(this, buf, this->auxiliary_virt);
@@ -1082,30 +1485,20 @@ static int gpmi_ecc_read_page_data(struct nand_chip *chip,
return max_bitflips;
}
-static int gpmi_ecc_read_page(struct nand_chip *chip, uint8_t *buf,
- int oob_required, int page)
-{
- nand_read_page_op(chip, page, 0, NULL, 0);
-
- return gpmi_ecc_read_page_data(chip, buf, oob_required, page);
-}
-
/* Fake a virtual small page for the subpage read */
static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
uint32_t len, uint8_t *buf, int page)
{
struct gpmi_nand_data *this = nand_get_controller_data(chip);
- void __iomem *bch_regs = this->resources.bch_regs;
- struct bch_geometry old_geo = this->bch_geometry;
struct bch_geometry *geo = &this->bch_geometry;
int size = chip->ecc.size; /* ECC chunk size */
int meta, n, page_size;
- u32 r1_old, r2_old, r1_new, r2_new;
unsigned int max_bitflips;
+ unsigned int ecc_strength;
int first, last, marker_pos;
int ecc_parity_size;
int col = 0;
- int old_swap_block_mark = this->swap_block_mark;
+ int ret;
/* The size of ECC parity */
ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
@@ -1138,43 +1531,33 @@ static int gpmi_ecc_read_subpage(struct nand_chip *chip, uint32_t offs,
buf = buf + first * size;
}
- nand_read_page_op(chip, page, col, NULL, 0);
-
- /* Save the old environment */
- r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0);
- r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1);
+ ecc_parity_size = geo->gf_len * geo->ecc_strength / 8;
- /* change the BCH registers and bch_geometry{} */
n = last - first + 1;
page_size = meta + (size + ecc_parity_size) * n;
+ ecc_strength = geo->ecc_strength >> 1;
- r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS |
- BM_BCH_FLASH0LAYOUT0_META_SIZE);
- r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1)
- | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta);
- writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0);
+ this->bch_flashlayout0 = BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) |
+ BF_BCH_FLASH0LAYOUT0_META_SIZE(meta) |
+ BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT0_GF(geo->gf_len, this) |
+ BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(geo->ecc_chunk_size, this);
- r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE;
- r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size);
- writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1);
+ this->bch_flashlayout1 = BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
+ BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) |
+ BF_BCH_FLASH0LAYOUT1_GF(geo->gf_len, this) |
+ BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(geo->ecc_chunk_size, this);
- geo->ecc_chunk_count = n;
- geo->payload_size = n * size;
- geo->page_size = page_size;
- geo->auxiliary_status_offset = ALIGN(meta, 4);
+ this->bch = true;
+
+ ret = nand_read_page_op(chip, page, col, buf, page_size);
+ if (ret)
+ return ret;
dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n",
page, offs, len, col, first, n, page_size);
- /* Read the subpage now */
- this->swap_block_mark = false;
- max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page);
-
- /* Restore */
- writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0);
- writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1);
- this->bch_geometry = old_geo;
- this->swap_block_mark = old_swap_block_mark;
+ max_bitflips = gpmi_count_bitflips(chip, buf, first, last, meta);
return max_bitflips;
}
@@ -1185,81 +1568,29 @@ static int gpmi_ecc_write_page(struct nand_chip *chip, const uint8_t *buf,
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
struct bch_geometry *nfc_geo = &this->bch_geometry;
- const void *payload_virt;
- dma_addr_t payload_phys;
- const void *auxiliary_virt;
- dma_addr_t auxiliary_phys;
- int ret;
+ int ret;
dev_dbg(this->dev, "ecc write page.\n");
- nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+ gpmi_bch_layout_std(this);
+ this->bch = true;
+
+ memcpy(this->auxiliary_virt, chip->oob_poi, nfc_geo->auxiliary_size);
if (this->swap_block_mark) {
/*
- * If control arrives here, we're doing block mark swapping.
- * Since we can't modify the caller's buffers, we must copy them
- * into our own.
- */
- memcpy(this->payload_virt, buf, mtd->writesize);
- payload_virt = this->payload_virt;
- payload_phys = this->payload_phys;
-
- memcpy(this->auxiliary_virt, chip->oob_poi,
- nfc_geo->auxiliary_size);
- auxiliary_virt = this->auxiliary_virt;
- auxiliary_phys = this->auxiliary_phys;
-
- /* Handle block mark swapping. */
- block_mark_swapping(this,
- (void *)payload_virt, (void *)auxiliary_virt);
- } else {
- /*
- * If control arrives here, we're not doing block mark swapping,
- * so we can to try and use the caller's buffers.
+ * When doing bad block marker swapping we must always copy the
+ * input buffer as we can't modify the const buffer.
*/
- ret = send_page_prepare(this,
- buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- &payload_virt, &payload_phys);
- if (ret) {
- dev_err(this->dev, "Inadequate payload DMA buffer\n");
- return 0;
- }
-
- ret = send_page_prepare(this,
- chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- &auxiliary_virt, &auxiliary_phys);
- if (ret) {
- dev_err(this->dev, "Inadequate auxiliary DMA buffer\n");
- goto exit_auxiliary;
- }
+ memcpy(this->data_buffer_dma, buf, mtd->writesize);
+ buf = this->data_buffer_dma;
+ block_mark_swapping(this, this->data_buffer_dma,
+ this->auxiliary_virt);
}
- /* Ask the NFC. */
- ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
- if (ret)
- dev_err(this->dev, "Error in ECC-based write: %d\n", ret);
-
- if (!this->swap_block_mark) {
- send_page_end(this, chip->oob_poi, mtd->oobsize,
- this->auxiliary_virt, this->auxiliary_phys,
- nfc_geo->auxiliary_size,
- auxiliary_virt, auxiliary_phys);
-exit_auxiliary:
- send_page_end(this, buf, mtd->writesize,
- this->payload_virt, this->payload_phys,
- nfc_geo->payload_size,
- payload_virt, payload_phys);
- }
+ ret = nand_prog_page_op(chip, page, 0, buf, nfc_geo->page_size);
- if (ret)
- return ret;
-
- return nand_prog_page_end_op(chip);
+ return ret;
}
/*
@@ -1326,14 +1657,16 @@ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ int ret;
- dev_dbg(this->dev, "page number is %d\n", page);
/* clear the OOB buffer */
memset(chip->oob_poi, ~0, mtd->oobsize);
/* Read out the conventional OOB. */
- nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
- chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize);
+ ret = nand_read_page_op(chip, page, mtd->writesize, chip->oob_poi,
+ mtd->oobsize);
+ if (ret)
+ return ret;
/*
* Now, we want to make sure the block mark is correct. In the
@@ -1342,8 +1675,9 @@ static int gpmi_ecc_read_oob(struct nand_chip *chip, int page)
*/
if (GPMI_IS_MX23(this)) {
/* Read the block mark into the first byte of the OOB buffer. */
- nand_read_page_op(chip, page, 0, NULL, 0);
- chip->oob_poi[0] = chip->legacy.read_byte(chip);
+ ret = nand_read_page_op(chip, page, 0, chip->oob_poi, 1);
+ if (ret)
+ return ret;
}
return 0;
@@ -1392,9 +1726,12 @@ static int gpmi_ecc_read_page_raw(struct nand_chip *chip, uint8_t *buf,
size_t oob_byte_off;
uint8_t *oob = chip->oob_poi;
int step;
+ int ret;
- nand_read_page_op(chip, page, 0, tmp_buf,
- mtd->writesize + mtd->oobsize);
+ ret = nand_read_page_op(chip, page, 0, tmp_buf,
+ mtd->writesize + mtd->oobsize);
+ if (ret)
+ return ret;
/*
* If required, swap the bad block marker and the data stored in the
@@ -1606,13 +1943,12 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
- int saved_chip_number;
int found_an_ncb_fingerprint = false;
+ int ret;
/* Compute the number of strides in a search area. */
search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
- saved_chip_number = this->current_chip;
nand_select_target(chip, 0);
/*
@@ -1630,8 +1966,10 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
* Read the NCB fingerprint. The fingerprint is four bytes long
* and starts in the 12th byte of the page.
*/
- nand_read_page_op(chip, page, 12, NULL, 0);
- chip->legacy.read_buf(chip, buffer, strlen(fingerprint));
+ ret = nand_read_page_op(chip, page, 12, buffer,
+ strlen(fingerprint));
+ if (ret)
+ continue;
/* Look for the fingerprint. */
if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
@@ -1641,10 +1979,7 @@ static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
}
- if (saved_chip_number >= 0)
- nand_select_target(chip, saved_chip_number);
- else
- nand_deselect_target(chip);
+ nand_deselect_target(chip);
if (found_an_ncb_fingerprint)
dev_dbg(dev, "\tFound a fingerprint\n");
@@ -1668,7 +2003,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
unsigned int stride;
unsigned int page;
u8 *buffer = nand_get_data_buf(chip);
- int saved_chip_number;
int status;
/* Compute the search area geometry. */
@@ -1685,8 +2019,6 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
- /* Select chip 0. */
- saved_chip_number = this->current_chip;
nand_select_target(chip, 0);
/* Loop over blocks in the first search area, erasing them. */
@@ -1718,11 +2050,7 @@ static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
dev_err(dev, "[%s] Write failed.\n", __func__);
}
- /* Deselect chip 0. */
- if (saved_chip_number >= 0)
- nand_select_target(chip, saved_chip_number);
- else
- nand_deselect_target(chip);
+ nand_deselect_target(chip);
return 0;
}
@@ -1773,10 +2101,13 @@ static int mx23_boot_init(struct gpmi_nand_data *this)
/* Send the command to read the conventional block mark. */
nand_select_target(chip, chipnr);
- nand_read_page_op(chip, page, mtd->writesize, NULL, 0);
- block_mark = chip->legacy.read_byte(chip);
+ ret = nand_read_page_op(chip, page, mtd->writesize, &block_mark,
+ 1);
nand_deselect_target(chip);
+ if (ret)
+ continue;
+
/*
* Check if the block is marked bad. If so, we need to mark it
* again, but this time the result will be a mark in the
@@ -1890,9 +2221,330 @@ static int gpmi_nand_attach_chip(struct nand_chip *chip)
return 0;
}
+static struct gpmi_transfer *get_next_transfer(struct gpmi_nand_data *this)
+{
+ struct gpmi_transfer *transfer = &this->transfers[this->ntransfers];
+
+ this->ntransfers++;
+
+ if (this->ntransfers == GPMI_MAX_TRANSFERS)
+ return NULL;
+
+ return transfer;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_command(
+ struct gpmi_nand_data *this, u8 cmd, const u8 *addr, int naddr)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct dma_async_tx_descriptor *desc;
+ struct gpmi_transfer *transfer;
+ int chip = this->nand.cur_cs;
+ u32 pio[3];
+
+ /* [1] send out the PIO words */
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(chip, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
+ | BM_GPMI_CTRL0_ADDRESS_INCREMENT
+ | BF_GPMI_CTRL0_XFER_COUNT(naddr + 1);
+ pio[1] = 0;
+ pio[2] = 0;
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE, 0);
+ if (!desc)
+ return NULL;
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->cmdbuf[0] = cmd;
+ if (naddr)
+ memcpy(&transfer->cmdbuf[1], addr, naddr);
+
+ sg_init_one(&transfer->sgl, transfer->cmdbuf, naddr + 1);
+ dma_map_sg(this->dev, &transfer->sgl, 1, DMA_TO_DEVICE);
+
+ transfer->direction = DMA_TO_DEVICE;
+
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1, DMA_MEM_TO_DEV,
+ MXS_DMA_CTRL_WAIT4END);
+ return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_wait_ready(
+ struct gpmi_nand_data *this)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ u32 pio[2];
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(0);
+ pio[1] = 0;
+
+ return mxs_dmaengine_prep_pio(channel, pio, 2, DMA_TRANS_NONE,
+ MXS_DMA_CTRL_WAIT4END | MXS_DMA_CTRL_WAIT4RDY);
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_read(
+ struct gpmi_nand_data *this, void *buf, int raw_len, bool *direct)
+{
+ struct dma_async_tx_descriptor *desc;
+ struct dma_chan *channel = get_dma_chan(this);
+ struct gpmi_transfer *transfer;
+ u32 pio[6] = {};
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->direction = DMA_FROM_DEVICE;
+
+ *direct = prepare_data_dma(this, buf, raw_len, &transfer->sgl,
+ DMA_FROM_DEVICE);
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+ if (this->bch) {
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
+ | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+ pio[3] = raw_len;
+ pio[4] = transfer->sgl.dma_address;
+ pio[5] = this->auxiliary_phys;
+ }
+
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE, 0);
+ if (!desc)
+ return NULL;
+
+ if (!this->bch)
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+ DMA_DEV_TO_MEM,
+ MXS_DMA_CTRL_WAIT4END);
+
+ return desc;
+}
+
+static struct dma_async_tx_descriptor *gpmi_chain_data_write(
+ struct gpmi_nand_data *this, const void *buf, int raw_len)
+{
+ struct dma_chan *channel = get_dma_chan(this);
+ struct dma_async_tx_descriptor *desc;
+ struct gpmi_transfer *transfer;
+ u32 pio[6] = {};
+
+ transfer = get_next_transfer(this);
+ if (!transfer)
+ return NULL;
+
+ transfer->direction = DMA_TO_DEVICE;
+
+ prepare_data_dma(this, buf, raw_len, &transfer->sgl, DMA_TO_DEVICE);
+
+ pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
+ | BM_GPMI_CTRL0_WORD_LENGTH
+ | BF_GPMI_CTRL0_CS(this->nand.cur_cs, this)
+ | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
+ | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
+ | BF_GPMI_CTRL0_XFER_COUNT(raw_len);
+
+ if (this->bch) {
+ pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
+ | BF_GPMI_ECCCTRL_ECC_CMD(BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE)
+ | BF_GPMI_ECCCTRL_BUFFER_MASK(BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
+ BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY);
+ pio[3] = raw_len;
+ pio[4] = transfer->sgl.dma_address;
+ pio[5] = this->auxiliary_phys;
+ }
+
+ desc = mxs_dmaengine_prep_pio(channel, pio, ARRAY_SIZE(pio),
+ DMA_TRANS_NONE,
+ (this->bch ? MXS_DMA_CTRL_WAIT4END : 0));
+ if (!desc)
+ return NULL;
+
+ if (!this->bch)
+ desc = dmaengine_prep_slave_sg(channel, &transfer->sgl, 1,
+ DMA_MEM_TO_DEV,
+ MXS_DMA_CTRL_WAIT4END);
+
+ return desc;
+}
+
+static int gpmi_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op,
+ bool check_only)
+{
+ const struct nand_op_instr *instr;
+ struct gpmi_nand_data *this = nand_get_controller_data(chip);
+ struct dma_async_tx_descriptor *desc = NULL;
+ int i, ret, buf_len = 0, nbufs = 0;
+ u8 cmd = 0;
+ void *buf_read = NULL;
+ const void *buf_write = NULL;
+ bool direct = false;
+ struct completion *completion;
+ unsigned long to;
+
+ this->ntransfers = 0;
+ for (i = 0; i < GPMI_MAX_TRANSFERS; i++)
+ this->transfers[i].direction = DMA_NONE;
+
+ ret = pm_runtime_get_sync(this->dev);
+ if (ret < 0)
+ return ret;
+
+ /*
+ * This driver currently supports only one NAND chip. Plus, dies share
+ * the same configuration. So once timings have been applied on the
+ * controller side, they will not change anymore. When the time will
+ * come, the check on must_apply_timings will have to be dropped.
+ */
+ if (this->hw.must_apply_timings) {
+ this->hw.must_apply_timings = false;
+ gpmi_nfc_apply_timings(this);
+ }
+
+ dev_dbg(this->dev, "%s: %d instructions\n", __func__, op->ninstrs);
+
+ for (i = 0; i < op->ninstrs; i++) {
+ instr = &op->instrs[i];
+
+ nand_op_trace(" ", instr);
+
+ switch (instr->type) {
+ case NAND_OP_WAITRDY_INSTR:
+ desc = gpmi_chain_wait_ready(this);
+ break;
+ case NAND_OP_CMD_INSTR:
+ cmd = instr->ctx.cmd.opcode;
+
+ /*
+ * When this command has an address cycle chain it
+ * together with the address cycle
+ */
+ if (i + 1 != op->ninstrs &&
+ op->instrs[i + 1].type == NAND_OP_ADDR_INSTR)
+ continue;
+
+ desc = gpmi_chain_command(this, cmd, NULL, 0);
+
+ break;
+ case NAND_OP_ADDR_INSTR:
+ desc = gpmi_chain_command(this, cmd, instr->ctx.addr.addrs,
+ instr->ctx.addr.naddrs);
+ break;
+ case NAND_OP_DATA_OUT_INSTR:
+ buf_write = instr->ctx.data.buf.out;
+ buf_len = instr->ctx.data.len;
+ nbufs++;
+
+ desc = gpmi_chain_data_write(this, buf_write, buf_len);
+
+ break;
+ case NAND_OP_DATA_IN_INSTR:
+ if (!instr->ctx.data.len)
+ break;
+ buf_read = instr->ctx.data.buf.in;
+ buf_len = instr->ctx.data.len;
+ nbufs++;
+
+ desc = gpmi_chain_data_read(this, buf_read, buf_len,
+ &direct);
+ break;
+ }
+
+ if (!desc) {
+ ret = -ENXIO;
+ goto unmap;
+ }
+ }
+
+ dev_dbg(this->dev, "%s setup done\n", __func__);
+
+ if (nbufs > 1) {
+ dev_err(this->dev, "Multiple data instructions not supported\n");
+ ret = -EINVAL;
+ goto unmap;
+ }
+
+ if (this->bch) {
+ writel(this->bch_flashlayout0,
+ this->resources.bch_regs + HW_BCH_FLASH0LAYOUT0);
+ writel(this->bch_flashlayout1,
+ this->resources.bch_regs + HW_BCH_FLASH0LAYOUT1);
+ }
+
+ if (this->bch && buf_read) {
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ this->resources.bch_regs + HW_BCH_CTRL_SET);
+ completion = &this->bch_done;
+ } else {
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ completion = &this->dma_done;
+ }
+
+ init_completion(completion);
+
+ dmaengine_submit(desc);
+ dma_async_issue_pending(get_dma_chan(this));
+
+ to = wait_for_completion_timeout(completion, msecs_to_jiffies(1000));
+ if (!to) {
+ dev_err(this->dev, "DMA timeout, last DMA\n");
+ gpmi_dump_info(this);
+ ret = -ETIMEDOUT;
+ goto unmap;
+ }
+
+ writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
+ this->resources.bch_regs + HW_BCH_CTRL_CLR);
+ gpmi_clear_bch(this);
+
+ ret = 0;
+
+unmap:
+ for (i = 0; i < this->ntransfers; i++) {
+ struct gpmi_transfer *transfer = &this->transfers[i];
+
+ if (transfer->direction != DMA_NONE)
+ dma_unmap_sg(this->dev, &transfer->sgl, 1,
+ transfer->direction);
+ }
+
+ if (!ret && buf_read && !direct)
+ memcpy(buf_read, this->data_buffer_dma,
+ gpmi_raw_len_to_len(this, buf_len));
+
+ this->bch = false;
+
+ pm_runtime_mark_last_busy(this->dev);
+ pm_runtime_put_autosuspend(this->dev);
+
+ return ret;
+}
+
static const struct nand_controller_ops gpmi_nand_controller_ops = {
.attach_chip = gpmi_nand_attach_chip,
.setup_data_interface = gpmi_setup_data_interface,
+ .exec_op = gpmi_nfc_exec_op,
};
static int gpmi_nand_init(struct gpmi_nand_data *this)
@@ -1901,9 +2553,6 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
- /* init current chip */
- this->current_chip = -1;
-
/* init the MTD data structures */
mtd->name = "gpmi-nand";
mtd->dev.parent = this->dev;
@@ -1911,14 +2560,8 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
/* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
nand_set_controller_data(chip, this);
nand_set_flash_node(chip, this->pdev->dev.of_node);
- chip->legacy.select_chip = gpmi_select_chip;
- chip->legacy.cmd_ctrl = gpmi_cmd_ctrl;
- chip->legacy.dev_ready = gpmi_dev_ready;
- chip->legacy.read_byte = gpmi_read_byte;
- chip->legacy.read_buf = gpmi_read_buf;
- chip->legacy.write_buf = gpmi_write_buf;
- chip->badblock_pattern = &gpmi_bbt_descr;
chip->legacy.block_markbad = gpmi_block_markbad;
+ chip->badblock_pattern = &gpmi_bbt_descr;
chip->options |= NAND_NO_SUBPAGE_WRITE;
/* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
@@ -1934,7 +2577,10 @@ static int gpmi_nand_init(struct gpmi_nand_data *this)
if (ret)
goto err_out;
- chip->legacy.dummy_controller.ops = &gpmi_nand_controller_ops;
+ nand_controller_init(&this->base);
+ this->base.ops = &gpmi_nand_controller_ops;
+ chip->controller = &this->base;
+
ret = nand_scan(chip, GPMI_IS_MX6(this) ? 2 : 1);
if (ret)
goto err_out;
@@ -2004,6 +2650,16 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_acquire_resources;
+ ret = __gpmi_enable_clk(this, true);
+ if (ret)
+ goto exit_nfc_init;
+
+ pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
+ pm_runtime_use_autosuspend(&pdev->dev);
+ pm_runtime_set_active(&pdev->dev);
+ pm_runtime_enable(&pdev->dev);
+ pm_runtime_get_sync(&pdev->dev);
+
ret = gpmi_init(this);
if (ret)
goto exit_nfc_init;
@@ -2012,11 +2668,16 @@ static int gpmi_nand_probe(struct platform_device *pdev)
if (ret)
goto exit_nfc_init;
+ pm_runtime_mark_last_busy(&pdev->dev);
+ pm_runtime_put_autosuspend(&pdev->dev);
+
dev_info(this->dev, "driver registered.\n");
return 0;
exit_nfc_init:
+ pm_runtime_put(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
release_resources(this);
exit_acquire_resources:
@@ -2027,6 +2688,9 @@ static int gpmi_nand_remove(struct platform_device *pdev)
{
struct gpmi_nand_data *this = platform_get_drvdata(pdev);
+ pm_runtime_put_sync(&pdev->dev);
+ pm_runtime_disable(&pdev->dev);
+
nand_release(&this->nand);
gpmi_free_dma_buffer(this);
release_resources(this);
@@ -2069,8 +2733,23 @@ static int gpmi_pm_resume(struct device *dev)
}
#endif /* CONFIG_PM_SLEEP */
+static int __maybe_unused gpmi_runtime_suspend(struct device *dev)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+ return __gpmi_enable_clk(this, false);
+}
+
+static int __maybe_unused gpmi_runtime_resume(struct device *dev)
+{
+ struct gpmi_nand_data *this = dev_get_drvdata(dev);
+
+ return __gpmi_enable_clk(this, true);
+}
+
static const struct dev_pm_ops gpmi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume)
+ SET_RUNTIME_PM_OPS(gpmi_runtime_suspend, gpmi_runtime_resume, NULL)
};
static struct platform_driver gpmi_nand_driver = {
diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
index a804a4a5bd46..fdc5ed7de083 100644
--- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
+++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h
@@ -103,6 +103,14 @@ struct gpmi_nfc_hardware_timing {
u32 ctrl1n;
};
+#define GPMI_MAX_TRANSFERS 8
+
+struct gpmi_transfer {
+ u8 cmdbuf[8];
+ struct scatterlist sgl;
+ enum dma_data_direction direction;
+};
+
struct gpmi_nand_data {
/* Devdata */
const struct gpmi_devdata *devdata;
@@ -126,25 +134,18 @@ struct gpmi_nand_data {
struct boot_rom_geometry rom_geometry;
/* MTD / NAND */
+ struct nand_controller base;
struct nand_chip nand;
- /* General-use Variables */
- int current_chip;
- unsigned int command_length;
+ struct gpmi_transfer transfers[GPMI_MAX_TRANSFERS];
+ int ntransfers;
- struct scatterlist cmd_sgl;
- char *cmd_buffer;
+ bool bch;
+ uint32_t bch_flashlayout0;
+ uint32_t bch_flashlayout1;
- struct scatterlist data_sgl;
char *data_buffer_dma;
- void *page_buffer_virt;
- dma_addr_t page_buffer_phys;
- unsigned int page_buffer_size;
-
- void *payload_virt;
- dma_addr_t payload_phys;
-
void *auxiliary_virt;
dma_addr_t auxiliary_phys;
@@ -154,45 +155,8 @@ struct gpmi_nand_data {
#define DMA_CHANS 8
struct dma_chan *dma_chans[DMA_CHANS];
struct completion dma_done;
-
- /* private */
- void *private;
};
-/* Common Services */
-int common_nfc_set_geometry(struct gpmi_nand_data *);
-struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
-bool prepare_data_dma(struct gpmi_nand_data *, const void *buf, int len,
- enum dma_data_direction dr);
-int start_dma_without_bch_irq(struct gpmi_nand_data *,
- struct dma_async_tx_descriptor *);
-int start_dma_with_bch_irq(struct gpmi_nand_data *,
- struct dma_async_tx_descriptor *);
-
-/* GPMI-NAND helper function library */
-int gpmi_init(struct gpmi_nand_data *);
-void gpmi_clear_bch(struct gpmi_nand_data *);
-void gpmi_dump_info(struct gpmi_nand_data *);
-int bch_set_geometry(struct gpmi_nand_data *);
-int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
-int gpmi_send_command(struct gpmi_nand_data *);
-int gpmi_enable_clk(struct gpmi_nand_data *this);
-int gpmi_disable_clk(struct gpmi_nand_data *this);
-int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr,
- const struct nand_data_interface *conf);
-void gpmi_nfc_apply_timings(struct gpmi_nand_data *this);
-int gpmi_read_data(struct gpmi_nand_data *, void *buf, int len);
-int gpmi_send_data(struct gpmi_nand_data *, const void *buf, int len);
-
-int gpmi_send_page(struct gpmi_nand_data *,
- dma_addr_t payload, dma_addr_t auxiliary);
-int gpmi_read_page(struct gpmi_nand_data *,
- dma_addr_t payload, dma_addr_t auxiliary);
-
-void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
- const u8 *src, size_t src_bit_off,
- size_t nbits);
-
/* BCH : Status Block Completion Codes */
#define STATUS_GOOD 0x00
#define STATUS_ERASED 0xff
diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c
index 6a4626a8bf95..0b48be54ba6f 100644
--- a/drivers/mtd/nand/raw/hisi504_nand.c
+++ b/drivers/mtd/nand/raw/hisi504_nand.c
@@ -751,10 +751,8 @@ static int hisi_nfc_probe(struct platform_device *pdev)
mtd = nand_to_mtd(chip);
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "no IRQ resource defined\n");
+ if (irq < 0)
return -ENXIO;
- }
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->iobase = devm_ioremap_resource(dev, res);
diff --git a/drivers/mtd/nand/raw/ingenic/Kconfig b/drivers/mtd/nand/raw/ingenic/Kconfig
index 66b7cffdb0c2..e30feb56b650 100644
--- a/drivers/mtd/nand/raw/ingenic/Kconfig
+++ b/drivers/mtd/nand/raw/ingenic/Kconfig
@@ -1,11 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-only
-config MTD_NAND_JZ4740
- tristate "JZ4740 NAND controller"
- depends on MACH_JZ4740 || COMPILE_TEST
- depends on HAS_IOMEM
- help
- Enables support for NAND Flash on JZ4740 SoC based boards.
-
config MTD_NAND_JZ4780
tristate "JZ4780 NAND controller"
depends on JZ4780_NEMC
diff --git a/drivers/mtd/nand/raw/ingenic/Makefile b/drivers/mtd/nand/raw/ingenic/Makefile
index b63d36889263..4c53f5e759c3 100644
--- a/drivers/mtd/nand/raw/ingenic/Makefile
+++ b/drivers/mtd/nand/raw/ingenic/Makefile
@@ -1,5 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-only
-obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
obj-$(CONFIG_MTD_NAND_JZ4780) += ingenic_nand.o
ingenic_nand-y += ingenic_nand_drv.o
diff --git a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
index d7b7c0f13909..49afebee50db 100644
--- a/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
+++ b/drivers/mtd/nand/raw/ingenic/ingenic_nand_drv.c
@@ -310,7 +310,6 @@ static int ingenic_nand_init_chip(struct platform_device *pdev,
struct device *dev = &pdev->dev;
struct ingenic_nand *nand;
struct ingenic_nand_cs *cs;
- struct resource *res;
struct nand_chip *chip;
struct mtd_info *mtd;
const __be32 *reg;
@@ -326,8 +325,7 @@ static int ingenic_nand_init_chip(struct platform_device *pdev,
jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
- res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr);
- cs->base = devm_ioremap_resource(dev, res);
+ cs->base = devm_platform_ioremap_resource(pdev, chipnr);
if (IS_ERR(cs->base))
return PTR_ERR(cs->base);
@@ -418,6 +416,7 @@ static int ingenic_nand_init_chips(struct ingenic_nfc *nfc,
ret = ingenic_nand_init_chip(pdev, nfc, np, i);
if (ret) {
ingenic_nand_cleanup_chips(nfc);
+ of_node_put(np);
return ret;
}
diff --git a/drivers/mtd/nand/raw/ingenic/jz4740_nand.c b/drivers/mtd/nand/raw/ingenic/jz4740_nand.c
deleted file mode 100644
index acdf674fcc87..000000000000
--- a/drivers/mtd/nand/raw/ingenic/jz4740_nand.c
+++ /dev/null
@@ -1,536 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
- * JZ4740 SoC NAND controller driver
- */
-
-#include <linux/io.h>
-#include <linux/ioport.h>
-#include <linux/kernel.h>
-#include <linux/module.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#include <linux/gpio/consumer.h>
-
-#include <linux/platform_data/jz4740/jz4740_nand.h>
-
-#define JZ_REG_NAND_CTRL 0x50
-#define JZ_REG_NAND_ECC_CTRL 0x100
-#define JZ_REG_NAND_DATA 0x104
-#define JZ_REG_NAND_PAR0 0x108
-#define JZ_REG_NAND_PAR1 0x10C
-#define JZ_REG_NAND_PAR2 0x110
-#define JZ_REG_NAND_IRQ_STAT 0x114
-#define JZ_REG_NAND_IRQ_CTRL 0x118
-#define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2))
-
-#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4)
-#define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
-#define JZ_NAND_ECC_CTRL_RS BIT(2)
-#define JZ_NAND_ECC_CTRL_RESET BIT(1)
-#define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
-
-#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29))
-#define JZ_NAND_STATUS_PAD_FINISH BIT(4)
-#define JZ_NAND_STATUS_DEC_FINISH BIT(3)
-#define JZ_NAND_STATUS_ENC_FINISH BIT(2)
-#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1)
-#define JZ_NAND_STATUS_ERROR BIT(0)
-
-#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
-#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
-#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa
-
-#define JZ_NAND_MEM_CMD_OFFSET 0x08000
-#define JZ_NAND_MEM_ADDR_OFFSET 0x10000
-
-struct jz_nand {
- struct nand_chip chip;
- void __iomem *base;
- struct resource *mem;
-
- unsigned char banks[JZ_NAND_NUM_BANKS];
- void __iomem *bank_base[JZ_NAND_NUM_BANKS];
- struct resource *bank_mem[JZ_NAND_NUM_BANKS];
-
- int selected_bank;
-
- struct gpio_desc *busy_gpio;
- bool is_reading;
-};
-
-static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct jz_nand, chip);
-}
-
-static void jz_nand_select_chip(struct nand_chip *chip, int chipnr)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- uint32_t ctrl;
- int banknr;
-
- ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
- ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK;
-
- if (chipnr == -1) {
- banknr = -1;
- } else {
- banknr = nand->banks[chipnr] - 1;
- chip->legacy.IO_ADDR_R = nand->bank_base[banknr];
- chip->legacy.IO_ADDR_W = nand->bank_base[banknr];
- }
- writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
-
- nand->selected_bank = banknr;
-}
-
-static void jz_nand_cmd_ctrl(struct nand_chip *chip, int dat,
- unsigned int ctrl)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- uint32_t reg;
- void __iomem *bank_base = nand->bank_base[nand->selected_bank];
-
- BUG_ON(nand->selected_bank < 0);
-
- if (ctrl & NAND_CTRL_CHANGE) {
- BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
- if (ctrl & NAND_ALE)
- bank_base += JZ_NAND_MEM_ADDR_OFFSET;
- else if (ctrl & NAND_CLE)
- bank_base += JZ_NAND_MEM_CMD_OFFSET;
- chip->legacy.IO_ADDR_W = bank_base;
-
- reg = readl(nand->base + JZ_REG_NAND_CTRL);
- if (ctrl & NAND_NCE)
- reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
- else
- reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank);
- writel(reg, nand->base + JZ_REG_NAND_CTRL);
- }
- if (dat != NAND_CMD_NONE)
- writeb(dat, chip->legacy.IO_ADDR_W);
-}
-
-static int jz_nand_dev_ready(struct nand_chip *chip)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- return gpiod_get_value_cansleep(nand->busy_gpio);
-}
-
-static void jz_nand_hwctl(struct nand_chip *chip, int mode)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- uint32_t reg;
-
- writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
- reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
-
- reg |= JZ_NAND_ECC_CTRL_RESET;
- reg |= JZ_NAND_ECC_CTRL_ENABLE;
- reg |= JZ_NAND_ECC_CTRL_RS;
-
- switch (mode) {
- case NAND_ECC_READ:
- reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
- nand->is_reading = true;
- break;
- case NAND_ECC_WRITE:
- reg |= JZ_NAND_ECC_CTRL_ENCODING;
- nand->is_reading = false;
- break;
- default:
- break;
- }
-
- writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-}
-
-static int jz_nand_calculate_ecc_rs(struct nand_chip *chip, const uint8_t *dat,
- uint8_t *ecc_code)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- uint32_t reg, status;
- int i;
- unsigned int timeout = 1000;
- static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
- 0x8b, 0xff, 0xb7, 0x6f};
-
- if (nand->is_reading)
- return 0;
-
- do {
- status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
- } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
-
- if (timeout == 0)
- return -1;
-
- reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
- reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
- writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
- for (i = 0; i < 9; ++i)
- ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
-
- /* If the written data is completly 0xff, we also want to write 0xff as
- * ecc, otherwise we will get in trouble when doing subpage writes. */
- if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
- memset(ecc_code, 0xff, 9);
-
- return 0;
-}
-
-static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
-{
- int offset = index & 0x7;
- uint16_t data;
-
- index += (index >> 3);
-
- data = dat[index];
- data |= dat[index+1] << 8;
-
- mask ^= (data >> offset) & 0x1ff;
- data &= ~(0x1ff << offset);
- data |= (mask << offset);
-
- dat[index] = data & 0xff;
- dat[index+1] = (data >> 8) & 0xff;
-}
-
-static int jz_nand_correct_ecc_rs(struct nand_chip *chip, uint8_t *dat,
- uint8_t *read_ecc, uint8_t *calc_ecc)
-{
- struct jz_nand *nand = mtd_to_jz_nand(nand_to_mtd(chip));
- int i, error_count, index;
- uint32_t reg, status, error;
- unsigned int timeout = 1000;
-
- for (i = 0; i < 9; ++i)
- writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
-
- reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
- reg |= JZ_NAND_ECC_CTRL_PAR_READY;
- writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
- do {
- status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
- } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
-
- if (timeout == 0)
- return -ETIMEDOUT;
-
- reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
- reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
- writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
-
- if (status & JZ_NAND_STATUS_ERROR) {
- if (status & JZ_NAND_STATUS_UNCOR_ERROR)
- return -EBADMSG;
-
- error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
-
- for (i = 0; i < error_count; ++i) {
- error = readl(nand->base + JZ_REG_NAND_ERR(i));
- index = ((error >> 16) & 0x1ff) - 1;
- if (index >= 0 && index < 512)
- jz_nand_correct_data(dat, index, error & 0x1ff);
- }
-
- return error_count;
- }
-
- return 0;
-}
-
-static int jz_nand_ioremap_resource(struct platform_device *pdev,
- const char *name, struct resource **res, void __iomem **base)
-{
- int ret;
-
- *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
- if (!*res) {
- dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
- ret = -ENXIO;
- goto err;
- }
-
- *res = request_mem_region((*res)->start, resource_size(*res),
- pdev->name);
- if (!*res) {
- dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
- ret = -EBUSY;
- goto err;
- }
-
- *base = ioremap((*res)->start, resource_size(*res));
- if (!*base) {
- dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
- ret = -EBUSY;
- goto err_release_mem;
- }
-
- return 0;
-
-err_release_mem:
- release_mem_region((*res)->start, resource_size(*res));
-err:
- *res = NULL;
- *base = NULL;
- return ret;
-}
-
-static inline void jz_nand_iounmap_resource(struct resource *res,
- void __iomem *base)
-{
- iounmap(base);
- release_mem_region(res->start, resource_size(res));
-}
-
-static int jz_nand_detect_bank(struct platform_device *pdev,
- struct jz_nand *nand, unsigned char bank,
- size_t chipnr, uint8_t *nand_maf_id,
- uint8_t *nand_dev_id)
-{
- int ret;
- char res_name[6];
- uint32_t ctrl;
- struct nand_chip *chip = &nand->chip;
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nand_memory_organization *memorg;
- u8 id[2];
-
- memorg = nanddev_get_memorg(&chip->base);
-
- /* Request I/O resource. */
- sprintf(res_name, "bank%d", bank);
- ret = jz_nand_ioremap_resource(pdev, res_name,
- &nand->bank_mem[bank - 1],
- &nand->bank_base[bank - 1]);
- if (ret)
- return ret;
-
- /* Enable chip in bank. */
- ctrl = readl(nand->base + JZ_REG_NAND_CTRL);
- ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1);
- writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
-
- if (chipnr == 0) {
- /* Detect first chip. */
- ret = nand_scan(chip, 1);
- if (ret)
- goto notfound_id;
-
- /* Retrieve the IDs from the first chip. */
- nand_select_target(chip, 0);
- nand_reset_op(chip);
- nand_readid_op(chip, 0, id, sizeof(id));
- *nand_maf_id = id[0];
- *nand_dev_id = id[1];
- } else {
- /* Detect additional chip. */
- nand_select_target(chip, chipnr);
- nand_reset_op(chip);
- nand_readid_op(chip, 0, id, sizeof(id));
- if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) {
- ret = -ENODEV;
- goto notfound_id;
- }
-
- /* Update size of the MTD. */
- memorg->ntargets++;
- mtd->size += nanddev_target_size(&chip->base);
- }
-
- dev_info(&pdev->dev, "Found chip %zu on bank %i\n", chipnr, bank);
- return 0;
-
-notfound_id:
- dev_info(&pdev->dev, "No chip found on bank %i\n", bank);
- ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1));
- writel(ctrl, nand->base + JZ_REG_NAND_CTRL);
- jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
- nand->bank_base[bank - 1]);
- return ret;
-}
-
-static int jz_nand_attach_chip(struct nand_chip *chip)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct device *dev = mtd->dev.parent;
- struct jz_nand_platform_data *pdata = dev_get_platdata(dev);
- struct platform_device *pdev = to_platform_device(dev);
-
- if (pdata && pdata->ident_callback)
- pdata->ident_callback(pdev, mtd, &pdata->partitions,
- &pdata->num_partitions);
-
- return 0;
-}
-
-static const struct nand_controller_ops jz_nand_controller_ops = {
- .attach_chip = jz_nand_attach_chip,
-};
-
-static int jz_nand_probe(struct platform_device *pdev)
-{
- int ret;
- struct jz_nand *nand;
- struct nand_chip *chip;
- struct mtd_info *mtd;
- struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
- size_t chipnr, bank_idx;
- uint8_t nand_maf_id = 0, nand_dev_id = 0;
-
- nand = kzalloc(sizeof(*nand), GFP_KERNEL);
- if (!nand)
- return -ENOMEM;
-
- ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
- if (ret)
- goto err_free;
-
- nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN);
- if (IS_ERR(nand->busy_gpio)) {
- ret = PTR_ERR(nand->busy_gpio);
- dev_err(&pdev->dev, "Failed to request busy gpio %d\n",
- ret);
- goto err_iounmap_mmio;
- }
-
- chip = &nand->chip;
- mtd = nand_to_mtd(chip);
- mtd->dev.parent = &pdev->dev;
- mtd->name = "jz4740-nand";
-
- chip->ecc.hwctl = jz_nand_hwctl;
- chip->ecc.calculate = jz_nand_calculate_ecc_rs;
- chip->ecc.correct = jz_nand_correct_ecc_rs;
- chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
- chip->ecc.size = 512;
- chip->ecc.bytes = 9;
- chip->ecc.strength = 4;
- chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
-
- chip->legacy.chip_delay = 50;
- chip->legacy.cmd_ctrl = jz_nand_cmd_ctrl;
- chip->legacy.select_chip = jz_nand_select_chip;
- chip->legacy.dummy_controller.ops = &jz_nand_controller_ops;
-
- if (nand->busy_gpio)
- chip->legacy.dev_ready = jz_nand_dev_ready;
-
- platform_set_drvdata(pdev, nand);
-
- /* We are going to autodetect NAND chips in the banks specified in the
- * platform data. Although nand_scan_ident() can detect multiple chips,
- * it requires those chips to be numbered consecuitively, which is not
- * always the case for external memory banks. And a fixed chip-to-bank
- * mapping is not practical either, since for example Dingoo units
- * produced at different times have NAND chips in different banks.
- */
- chipnr = 0;
- for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) {
- unsigned char bank;
-
- /* If there is no platform data, look for NAND in bank 1,
- * which is the most likely bank since it is the only one
- * that can be booted from.
- */
- bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1;
- if (bank == 0)
- break;
- if (bank > JZ_NAND_NUM_BANKS) {
- dev_warn(&pdev->dev,
- "Skipping non-existing bank: %d\n", bank);
- continue;
- }
- /* The detection routine will directly or indirectly call
- * jz_nand_select_chip(), so nand->banks has to contain the
- * bank we're checking.
- */
- nand->banks[chipnr] = bank;
- if (jz_nand_detect_bank(pdev, nand, bank, chipnr,
- &nand_maf_id, &nand_dev_id) == 0)
- chipnr++;
- else
- nand->banks[chipnr] = 0;
- }
- if (chipnr == 0) {
- dev_err(&pdev->dev, "No NAND chips found\n");
- goto err_iounmap_mmio;
- }
-
- ret = mtd_device_register(mtd, pdata ? pdata->partitions : NULL,
- pdata ? pdata->num_partitions : 0);
-
- if (ret) {
- dev_err(&pdev->dev, "Failed to add mtd device\n");
- goto err_cleanup_nand;
- }
-
- dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
-
- return 0;
-
-err_cleanup_nand:
- nand_cleanup(chip);
- while (chipnr--) {
- unsigned char bank = nand->banks[chipnr];
- jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
- nand->bank_base[bank - 1]);
- }
- writel(0, nand->base + JZ_REG_NAND_CTRL);
-err_iounmap_mmio:
- jz_nand_iounmap_resource(nand->mem, nand->base);
-err_free:
- kfree(nand);
- return ret;
-}
-
-static int jz_nand_remove(struct platform_device *pdev)
-{
- struct jz_nand *nand = platform_get_drvdata(pdev);
- size_t i;
-
- nand_release(&nand->chip);
-
- /* Deassert and disable all chips */
- writel(0, nand->base + JZ_REG_NAND_CTRL);
-
- for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) {
- unsigned char bank = nand->banks[i];
- if (bank != 0) {
- jz_nand_iounmap_resource(nand->bank_mem[bank - 1],
- nand->bank_base[bank - 1]);
- }
- }
-
- jz_nand_iounmap_resource(nand->mem, nand->base);
-
- kfree(nand);
-
- return 0;
-}
-
-static struct platform_driver jz_nand_driver = {
- .probe = jz_nand_probe,
- .remove = jz_nand_remove,
- .driver = {
- .name = "jz4740-nand",
- },
-};
-
-module_platform_driver(jz_nand_driver);
-
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
-MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
-MODULE_ALIAS("platform:jz4740-nand");
diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c
index 78b31f845c50..241b58b83240 100644
--- a/drivers/mtd/nand/raw/lpc32xx_mlc.c
+++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c
@@ -773,7 +773,6 @@ static int lpc32xx_nand_probe(struct platform_device *pdev)
host->irq = platform_get_irq(pdev, 0);
if (host->irq < 0) {
- dev_err(&pdev->dev, "failed to get platform irq\n");
res = -EINVAL;
goto release_dma_chan;
}
diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c
index fc49e13d81ec..fb5abdcfb007 100644
--- a/drivers/mtd/nand/raw/marvell_nand.c
+++ b/drivers/mtd/nand/raw/marvell_nand.c
@@ -2862,10 +2862,8 @@ static int marvell_nfc_probe(struct platform_device *pdev)
return PTR_ERR(nfc->regs);
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "failed to retrieve irq\n");
+ if (irq < 0)
return irq;
- }
nfc->core_clk = devm_clk_get(&pdev->dev, "core");
diff --git a/drivers/mtd/nand/raw/meson_nand.c b/drivers/mtd/nand/raw/meson_nand.c
index ea57ddcec41e..9f17b5b8efbf 100644
--- a/drivers/mtd/nand/raw/meson_nand.c
+++ b/drivers/mtd/nand/raw/meson_nand.c
@@ -1320,6 +1320,7 @@ static int meson_nfc_nand_chips_init(struct device *dev,
ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
meson_nfc_nand_chip_cleanup(nfc);
+ of_node_put(nand_np);
return ret;
}
}
@@ -1398,10 +1399,8 @@ static int meson_nfc_probe(struct platform_device *pdev)
}
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "no NFC IRQ resource\n");
+ if (irq < 0)
return -EINVAL;
- }
ret = meson_nfc_clk_init(nfc);
if (ret) {
diff --git a/drivers/mtd/nand/raw/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c
index 0f90e060dae8..75f1fa3d4d35 100644
--- a/drivers/mtd/nand/raw/mtk_ecc.c
+++ b/drivers/mtd/nand/raw/mtk_ecc.c
@@ -1,4 +1,4 @@
-// SPDX-License-Identifier: GPL-2.0-only
+// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* MTK ECC controller driver.
* Copyright (C) 2016 MediaTek Inc.
@@ -527,10 +527,8 @@ static int mtk_ecc_probe(struct platform_device *pdev)
}
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "failed to get irq: %d\n", irq);
+ if (irq < 0)
return irq;
- }
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret) {
@@ -596,4 +594,4 @@ module_platform_driver(mtk_ecc_driver);
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
MODULE_DESCRIPTION("MTK Nand ECC Driver");
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("Dual MIT/GPL");
diff --git a/drivers/mtd/nand/raw/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h
index aa52e94c771d..0e48c36e6ca0 100644
--- a/drivers/mtd/nand/raw/mtk_ecc.h
+++ b/drivers/mtd/nand/raw/mtk_ecc.h
@@ -1,4 +1,4 @@
-/* SPDX-License-Identifier: GPL-2.0-only */
+/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/*
* MTK SDG1 ECC controller
*
diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c
index dceff28c9a31..b8305e39ab51 100644
--- a/drivers/mtd/nand/raw/mtk_nand.c
+++ b/drivers/mtd/nand/raw/mtk_nand.c
@@ -1,4 +1,4 @@
-// SPDX-License-Identifier: GPL-2.0-only
+// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* MTK NAND Flash controller driver.
* Copyright (C) 2016 MediaTek Inc.
@@ -79,6 +79,10 @@
#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
#define NFI_FDM_MAX_SIZE (8)
#define NFI_FDM_MIN_SIZE (1)
+#define NFI_DEBUG_CON1 (0x220)
+#define STROBE_MASK GENMASK(4, 3)
+#define STROBE_SHIFT (3)
+#define MAX_STROBE_DLY (3)
#define NFI_MASTER_STA (0x224)
#define MASTER_STA_MASK (0x0FFF)
#define NFI_EMPTY_THRESH (0x23C)
@@ -150,6 +154,8 @@ struct mtk_nfc {
struct list_head chips;
u8 *buffer;
+
+ unsigned long assigned_cs;
};
/*
@@ -500,7 +506,8 @@ static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
{
struct mtk_nfc *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *timings;
- u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
+ u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst = 0, trlt = 0;
+ u32 temp, tsel = 0;
timings = nand_get_sdr_timings(conf);
if (IS_ERR(timings))
@@ -536,14 +543,53 @@ static int mtk_nfc_setup_data_interface(struct nand_chip *chip, int csline,
twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
twh &= 0xf;
- twst = timings->tWP_min / 1000;
+ /* Calculate real WE#/RE# hold time in nanosecond */
+ temp = (twh + 1) * 1000000 / rate;
+ /* nanosecond to picosecond */
+ temp *= 1000;
+
+ /*
+ * WE# low level time should be expaned to meet WE# pulse time
+ * and WE# cycle time at the same time.
+ */
+ if (temp < timings->tWC_min)
+ twst = timings->tWC_min - temp;
+ twst = max(timings->tWP_min, twst) / 1000;
twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
twst &= 0xf;
- trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
+ /*
+ * RE# low level time should be expaned to meet RE# pulse time
+ * and RE# cycle time at the same time.
+ */
+ if (temp < timings->tRC_min)
+ trlt = timings->tRC_min - temp;
+ trlt = max(trlt, timings->tRP_min) / 1000;
trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
trlt &= 0xf;
+ /* Calculate RE# pulse time in nanosecond. */
+ temp = (trlt + 1) * 1000000 / rate;
+ /* nanosecond to picosecond */
+ temp *= 1000;
+ /*
+ * If RE# access time is bigger than RE# pulse time,
+ * delay sampling data timing.
+ */
+ if (temp < timings->tREA_max) {
+ tsel = timings->tREA_max / 1000;
+ tsel = DIV_ROUND_UP(tsel * rate, 1000000);
+ tsel -= (trlt + 1);
+ if (tsel > MAX_STROBE_DLY) {
+ trlt += tsel - MAX_STROBE_DLY;
+ tsel = MAX_STROBE_DLY;
+ }
+ }
+ temp = nfi_readl(nfc, NFI_DEBUG_CON1);
+ temp &= ~STROBE_MASK;
+ temp |= tsel << STROBE_SHIFT;
+ nfi_writel(nfc, temp, NFI_DEBUG_CON1);
+
/*
* ACCON: access timing control register
* -------------------------------------
@@ -835,19 +881,21 @@ static int mtk_nfc_write_oob_std(struct nand_chip *chip, int page)
return mtk_nfc_write_page_raw(chip, NULL, 1, page);
}
-static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
+static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 start,
+ u32 sectors)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mtk_nfc *nfc = nand_get_controller_data(chip);
struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
struct mtk_ecc_stats stats;
+ u32 reg_size = mtk_nand->fdm.reg_size;
int rc, i;
rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
if (rc) {
memset(buf, 0xff, sectors * chip->ecc.size);
for (i = 0; i < sectors; i++)
- memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
+ memset(oob_ptr(chip, start + i), 0xff, reg_size);
return 0;
}
@@ -867,7 +915,7 @@ static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
u32 spare = mtk_nand->spare_per_sector;
u32 column, sectors, start, end, reg;
dma_addr_t addr;
- int bitflips;
+ int bitflips = 0;
size_t len;
u8 *buf;
int rc;
@@ -934,14 +982,11 @@ static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
if (rc < 0) {
dev_err(nfc->dev, "subpage done timeout\n");
bitflips = -EIO;
- } else {
- bitflips = 0;
- if (!raw) {
- rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
- bitflips = rc < 0 ? -ETIMEDOUT :
- mtk_nfc_update_ecc_stats(mtd, buf, sectors);
- mtk_nfc_read_fdm(chip, start, sectors);
- }
+ } else if (!raw) {
+ rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
+ bitflips = rc < 0 ? -ETIMEDOUT :
+ mtk_nfc_update_ecc_stats(mtd, buf, start, sectors);
+ mtk_nfc_read_fdm(chip, start, sectors);
}
dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
@@ -1315,6 +1360,17 @@ static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
dev_err(dev, "reg property failure : %d\n", ret);
return ret;
}
+
+ if (tmp >= MTK_NAND_MAX_NSELS) {
+ dev_err(dev, "invalid CS: %u\n", tmp);
+ return -EINVAL;
+ }
+
+ if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
+ dev_err(dev, "CS %u already assigned\n", tmp);
+ return -EINVAL;
+ }
+
chip->sels[i] = tmp;
}
@@ -1484,7 +1540,6 @@ static int mtk_nfc_probe(struct platform_device *pdev)
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
- dev_err(dev, "no nfi irq resource\n");
ret = -EINVAL;
goto clk_disable;
}
@@ -1589,6 +1644,6 @@ static struct platform_driver mtk_nfc_driver = {
module_platform_driver(mtk_nfc_driver);
-MODULE_LICENSE("GPL");
+MODULE_LICENSE("Dual MIT/GPL");
MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
diff --git a/drivers/mtd/nand/raw/mxic_nand.c b/drivers/mtd/nand/raw/mxic_nand.c
new file mode 100644
index 000000000000..ed7a4e021bf5
--- /dev/null
+++ b/drivers/mtd/nand/raw/mxic_nand.c
@@ -0,0 +1,580 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Macronix International Co., Ltd.
+ *
+ * Author:
+ * Mason Yang <masonccyang@mxic.com.tw>
+ */
+
+#include <linux/clk.h>
+#include <linux/io.h>
+#include <linux/iopoll.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/platform_device.h>
+
+#include "internals.h"
+
+#define HC_CFG 0x0
+#define HC_CFG_IF_CFG(x) ((x) << 27)
+#define HC_CFG_DUAL_SLAVE BIT(31)
+#define HC_CFG_INDIVIDUAL BIT(30)
+#define HC_CFG_NIO(x) (((x) / 4) << 27)
+#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
+#define HC_CFG_TYPE_SPI_NOR 0
+#define HC_CFG_TYPE_SPI_NAND 1
+#define HC_CFG_TYPE_SPI_RAM 2
+#define HC_CFG_TYPE_RAW_NAND 3
+#define HC_CFG_SLV_ACT(x) ((x) << 21)
+#define HC_CFG_CLK_PH_EN BIT(20)
+#define HC_CFG_CLK_POL_INV BIT(19)
+#define HC_CFG_BIG_ENDIAN BIT(18)
+#define HC_CFG_DATA_PASS BIT(17)
+#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
+#define HC_CFG_MAN_START_EN BIT(3)
+#define HC_CFG_MAN_START BIT(2)
+#define HC_CFG_MAN_CS_EN BIT(1)
+#define HC_CFG_MAN_CS_ASSERT BIT(0)
+
+#define INT_STS 0x4
+#define INT_STS_EN 0x8
+#define INT_SIG_EN 0xc
+#define INT_STS_ALL GENMASK(31, 0)
+#define INT_RDY_PIN BIT(26)
+#define INT_RDY_SR BIT(25)
+#define INT_LNR_SUSP BIT(24)
+#define INT_ECC_ERR BIT(17)
+#define INT_CRC_ERR BIT(16)
+#define INT_LWR_DIS BIT(12)
+#define INT_LRD_DIS BIT(11)
+#define INT_SDMA_INT BIT(10)
+#define INT_DMA_FINISH BIT(9)
+#define INT_RX_NOT_FULL BIT(3)
+#define INT_RX_NOT_EMPTY BIT(2)
+#define INT_TX_NOT_FULL BIT(1)
+#define INT_TX_EMPTY BIT(0)
+
+#define HC_EN 0x10
+#define HC_EN_BIT BIT(0)
+
+#define TXD(x) (0x14 + ((x) * 4))
+#define RXD 0x24
+
+#define SS_CTRL(s) (0x30 + ((s) * 4))
+#define LRD_CFG 0x44
+#define LWR_CFG 0x80
+#define RWW_CFG 0x70
+#define OP_READ BIT(23)
+#define OP_DUMMY_CYC(x) ((x) << 17)
+#define OP_ADDR_BYTES(x) ((x) << 14)
+#define OP_CMD_BYTES(x) (((x) - 1) << 13)
+#define OP_OCTA_CRC_EN BIT(12)
+#define OP_DQS_EN BIT(11)
+#define OP_ENHC_EN BIT(10)
+#define OP_PREAMBLE_EN BIT(9)
+#define OP_DATA_DDR BIT(8)
+#define OP_DATA_BUSW(x) ((x) << 6)
+#define OP_ADDR_DDR BIT(5)
+#define OP_ADDR_BUSW(x) ((x) << 3)
+#define OP_CMD_DDR BIT(2)
+#define OP_CMD_BUSW(x) (x)
+#define OP_BUSW_1 0
+#define OP_BUSW_2 1
+#define OP_BUSW_4 2
+#define OP_BUSW_8 3
+
+#define OCTA_CRC 0x38
+#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
+#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
+#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
+
+#define ONFI_DIN_CNT(s) (0x3c + (s))
+
+#define LRD_CTRL 0x48
+#define RWW_CTRL 0x74
+#define LWR_CTRL 0x84
+#define LMODE_EN BIT(31)
+#define LMODE_SLV_ACT(x) ((x) << 21)
+#define LMODE_CMD1(x) ((x) << 8)
+#define LMODE_CMD0(x) (x)
+
+#define LRD_ADDR 0x4c
+#define LWR_ADDR 0x88
+#define LRD_RANGE 0x50
+#define LWR_RANGE 0x8c
+
+#define AXI_SLV_ADDR 0x54
+
+#define DMAC_RD_CFG 0x58
+#define DMAC_WR_CFG 0x94
+#define DMAC_CFG_PERIPH_EN BIT(31)
+#define DMAC_CFG_ALLFLUSH_EN BIT(30)
+#define DMAC_CFG_LASTFLUSH_EN BIT(29)
+#define DMAC_CFG_QE(x) (((x) + 1) << 16)
+#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
+#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
+#define DMAC_CFG_DIR_READ BIT(1)
+#define DMAC_CFG_START BIT(0)
+
+#define DMAC_RD_CNT 0x5c
+#define DMAC_WR_CNT 0x98
+
+#define SDMA_ADDR 0x60
+
+#define DMAM_CFG 0x64
+#define DMAM_CFG_START BIT(31)
+#define DMAM_CFG_CONT BIT(30)
+#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
+#define DMAM_CFG_DIR_READ BIT(1)
+#define DMAM_CFG_EN BIT(0)
+
+#define DMAM_CNT 0x68
+
+#define LNR_TIMER_TH 0x6c
+
+#define RDM_CFG0 0x78
+#define RDM_CFG0_POLY(x) (x)
+
+#define RDM_CFG1 0x7c
+#define RDM_CFG1_RDM_EN BIT(31)
+#define RDM_CFG1_SEED(x) (x)
+
+#define LWR_SUSP_CTRL 0x90
+#define LWR_SUSP_CTRL_EN BIT(31)
+
+#define DMAS_CTRL 0x9c
+#define DMAS_CTRL_EN BIT(31)
+#define DMAS_CTRL_DIR_READ BIT(30)
+
+#define DATA_STROB 0xa0
+#define DATA_STROB_EDO_EN BIT(2)
+#define DATA_STROB_INV_POL BIT(1)
+#define DATA_STROB_DELAY_2CYC BIT(0)
+
+#define IDLY_CODE(x) (0xa4 + ((x) * 4))
+#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
+
+#define GPIO 0xc4
+#define GPIO_PT(x) BIT(3 + ((x) * 16))
+#define GPIO_RESET(x) BIT(2 + ((x) * 16))
+#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
+#define GPIO_WPB(x) BIT((x) * 16)
+
+#define HC_VER 0xd0
+
+#define HW_TEST(x) (0xe0 + ((x) * 4))
+
+#define MXIC_NFC_MAX_CLK_HZ 50000000
+#define IRQ_TIMEOUT 1000
+
+struct mxic_nand_ctlr {
+ struct clk *ps_clk;
+ struct clk *send_clk;
+ struct clk *send_dly_clk;
+ struct completion complete;
+ void __iomem *regs;
+ struct nand_controller controller;
+ struct device *dev;
+ struct nand_chip chip;
+};
+
+static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
+{
+ int ret;
+
+ ret = clk_prepare_enable(nfc->ps_clk);
+ if (ret)
+ return ret;
+
+ ret = clk_prepare_enable(nfc->send_clk);
+ if (ret)
+ goto err_ps_clk;
+
+ ret = clk_prepare_enable(nfc->send_dly_clk);
+ if (ret)
+ goto err_send_dly_clk;
+
+ return ret;
+
+err_send_dly_clk:
+ clk_disable_unprepare(nfc->send_clk);
+err_ps_clk:
+ clk_disable_unprepare(nfc->ps_clk);
+
+ return ret;
+}
+
+static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
+{
+ clk_disable_unprepare(nfc->send_clk);
+ clk_disable_unprepare(nfc->send_dly_clk);
+ clk_disable_unprepare(nfc->ps_clk);
+}
+
+static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
+{
+ writel(IDLY_CODE_VAL(0, idly_code) |
+ IDLY_CODE_VAL(1, idly_code) |
+ IDLY_CODE_VAL(2, idly_code) |
+ IDLY_CODE_VAL(3, idly_code),
+ nfc->regs + IDLY_CODE(0));
+ writel(IDLY_CODE_VAL(4, idly_code) |
+ IDLY_CODE_VAL(5, idly_code) |
+ IDLY_CODE_VAL(6, idly_code) |
+ IDLY_CODE_VAL(7, idly_code),
+ nfc->regs + IDLY_CODE(1));
+}
+
+static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
+{
+ int ret;
+
+ ret = clk_set_rate(nfc->send_clk, freq);
+ if (ret)
+ return ret;
+
+ ret = clk_set_rate(nfc->send_dly_clk, freq);
+ if (ret)
+ return ret;
+
+ /*
+ * A constant delay range from 0x0 ~ 0x1F for input delay,
+ * the unit is 78 ps, the max input delay is 2.418 ns.
+ */
+ mxic_nfc_set_input_delay(nfc, 0xf);
+
+ /*
+ * Phase degree = 360 * freq * output-delay
+ * where output-delay is a constant value 1 ns in FPGA.
+ *
+ * Get Phase degree = 360 * freq * 1 ns
+ * = 360 * freq * 1 sec / 1000000000
+ * = 9 * freq / 25000000
+ */
+ ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
+{
+ int ret;
+
+ if (freq > MXIC_NFC_MAX_CLK_HZ)
+ freq = MXIC_NFC_MAX_CLK_HZ;
+
+ mxic_nfc_clk_disable(nfc);
+ ret = mxic_nfc_clk_setup(nfc, freq);
+ if (ret)
+ return ret;
+
+ ret = mxic_nfc_clk_enable(nfc);
+ if (ret)
+ return ret;
+
+ return 0;
+}
+
+static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
+{
+ struct mxic_nand_ctlr *nfc = dev_id;
+ u32 sts;
+
+ sts = readl(nfc->regs + INT_STS);
+ if (sts & INT_RDY_PIN)
+ complete(&nfc->complete);
+ else
+ return IRQ_NONE;
+
+ return IRQ_HANDLED;
+}
+
+static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
+{
+ writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
+ HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
+ HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
+ writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
+ writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
+ writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+ writel(0, nfc->regs + LRD_CFG);
+ writel(0, nfc->regs + LRD_CTRL);
+ writel(0x0, nfc->regs + HC_EN);
+}
+
+static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
+{
+ writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
+ nfc->regs + HC_CFG);
+ writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
+ nfc->regs + HC_CFG);
+}
+
+static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
+{
+ writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
+ nfc->regs + HC_CFG);
+}
+
+static int mxic_nfc_wait_ready(struct nand_chip *chip)
+{
+ struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+ int ret;
+
+ ret = wait_for_completion_timeout(&nfc->complete,
+ msecs_to_jiffies(IRQ_TIMEOUT));
+ if (!ret) {
+ dev_err(nfc->dev, "nand device timeout\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
+ void *rxbuf, unsigned int len)
+{
+ unsigned int pos = 0;
+
+ while (pos < len) {
+ unsigned int nbytes = len - pos;
+ u32 data = 0xffffffff;
+ u32 sts;
+ int ret;
+
+ if (nbytes > 4)
+ nbytes = 4;
+
+ if (txbuf)
+ memcpy(&data, txbuf + pos, nbytes);
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
+ if (ret)
+ return ret;
+
+ writel(data, nfc->regs + TXD(nbytes % 4));
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
+ if (ret)
+ return ret;
+
+ ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
+ sts & INT_RX_NOT_EMPTY, 0,
+ USEC_PER_SEC);
+ if (ret)
+ return ret;
+
+ data = readl(nfc->regs + RXD);
+ if (rxbuf) {
+ data >>= (8 * (4 - nbytes));
+ memcpy(rxbuf + pos, &data, nbytes);
+ }
+ if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
+ dev_warn(nfc->dev, "RX FIFO not empty\n");
+
+ pos += nbytes;
+ }
+
+ return 0;
+}
+
+static int mxic_nfc_exec_op(struct nand_chip *chip,
+ const struct nand_operation *op, bool check_only)
+{
+ struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+ const struct nand_op_instr *instr = NULL;
+ int ret = 0;
+ unsigned int op_id;
+
+ mxic_nfc_cs_enable(nfc);
+ init_completion(&nfc->complete);
+ for (op_id = 0; op_id < op->ninstrs; op_id++) {
+ instr = &op->instrs[op_id];
+
+ switch (instr->type) {
+ case NAND_OP_CMD_INSTR:
+ writel(0, nfc->regs + HC_EN);
+ writel(HC_EN_BIT, nfc->regs + HC_EN);
+ writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
+
+ ret = mxic_nfc_data_xfer(nfc,
+ &instr->ctx.cmd.opcode,
+ NULL, 1);
+ break;
+
+ case NAND_OP_ADDR_INSTR:
+ writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_ADDR_BYTES(instr->ctx.addr.naddrs),
+ nfc->regs + SS_CTRL(0));
+ ret = mxic_nfc_data_xfer(nfc,
+ instr->ctx.addr.addrs, NULL,
+ instr->ctx.addr.naddrs);
+ break;
+
+ case NAND_OP_DATA_IN_INSTR:
+ writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
+ writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
+ OP_READ, nfc->regs + SS_CTRL(0));
+ ret = mxic_nfc_data_xfer(nfc, NULL,
+ instr->ctx.data.buf.in,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_DATA_OUT_INSTR:
+ writel(instr->ctx.data.len,
+ nfc->regs + ONFI_DIN_CNT(0));
+ writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
+ nfc->regs + SS_CTRL(0));
+ ret = mxic_nfc_data_xfer(nfc,
+ instr->ctx.data.buf.out, NULL,
+ instr->ctx.data.len);
+ break;
+
+ case NAND_OP_WAITRDY_INSTR:
+ ret = mxic_nfc_wait_ready(chip);
+ break;
+ }
+ }
+ mxic_nfc_cs_disable(nfc);
+
+ return ret;
+}
+
+static int mxic_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
+ const struct nand_data_interface *conf)
+{
+ struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
+ const struct nand_sdr_timings *sdr;
+ unsigned long freq;
+ int ret;
+
+ sdr = nand_get_sdr_timings(conf);
+ if (IS_ERR(sdr))
+ return PTR_ERR(sdr);
+
+ if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
+ return 0;
+
+ freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
+
+ ret = mxic_nfc_set_freq(nfc, freq);
+ if (ret)
+ dev_err(nfc->dev, "set freq:%ld failed\n", freq);
+
+ if (sdr->tRC_min < 30000)
+ writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
+
+ return 0;
+}
+
+static const struct nand_controller_ops mxic_nand_controller_ops = {
+ .exec_op = mxic_nfc_exec_op,
+ .setup_data_interface = mxic_nfc_setup_data_interface,
+};
+
+static int mxic_nfc_probe(struct platform_device *pdev)
+{
+ struct device_node *nand_np, *np = pdev->dev.of_node;
+ struct mtd_info *mtd;
+ struct mxic_nand_ctlr *nfc;
+ struct nand_chip *nand_chip;
+ int err;
+ int irq;
+
+ nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
+ GFP_KERNEL);
+ if (!nfc)
+ return -ENOMEM;
+
+ nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
+ if (IS_ERR(nfc->ps_clk))
+ return PTR_ERR(nfc->ps_clk);
+
+ nfc->send_clk = devm_clk_get(&pdev->dev, "send");
+ if (IS_ERR(nfc->send_clk))
+ return PTR_ERR(nfc->send_clk);
+
+ nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
+ if (IS_ERR(nfc->send_dly_clk))
+ return PTR_ERR(nfc->send_dly_clk);
+
+ nfc->regs = devm_platform_ioremap_resource(pdev, 0);
+ if (IS_ERR(nfc->regs))
+ return PTR_ERR(nfc->regs);
+
+ nand_chip = &nfc->chip;
+ mtd = nand_to_mtd(nand_chip);
+ mtd->dev.parent = &pdev->dev;
+
+ for_each_child_of_node(np, nand_np)
+ nand_set_flash_node(nand_chip, nand_np);
+
+ nand_chip->priv = nfc;
+ nfc->dev = &pdev->dev;
+ nfc->controller.ops = &mxic_nand_controller_ops;
+ nand_controller_init(&nfc->controller);
+ nand_chip->controller = &nfc->controller;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ mxic_nfc_hw_init(nfc);
+
+ err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
+ 0, "mxic-nfc", nfc);
+ if (err)
+ goto fail;
+
+ err = nand_scan(nand_chip, 1);
+ if (err)
+ goto fail;
+
+ err = mtd_device_register(mtd, NULL, 0);
+ if (err)
+ goto fail;
+
+ platform_set_drvdata(pdev, nfc);
+ return 0;
+
+fail:
+ mxic_nfc_clk_disable(nfc);
+ return err;
+}
+
+static int mxic_nfc_remove(struct platform_device *pdev)
+{
+ struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
+
+ nand_release(&nfc->chip);
+ mxic_nfc_clk_disable(nfc);
+ return 0;
+}
+
+static const struct of_device_id mxic_nfc_of_ids[] = {
+ { .compatible = "mxic,multi-itfc-v009-nand-controller", },
+ {},
+};
+MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
+
+static struct platform_driver mxic_nfc_driver = {
+ .probe = mxic_nfc_probe,
+ .remove = mxic_nfc_remove,
+ .driver = {
+ .name = "mxic-nfc",
+ .of_match_table = mxic_nfc_of_ids,
+ },
+};
+module_platform_driver(mxic_nfc_driver);
+
+MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
+MODULE_DESCRIPTION("Macronix raw NAND controller driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c
index 6eb131292eb2..f64e3b6605c6 100644
--- a/drivers/mtd/nand/raw/nand_base.c
+++ b/drivers/mtd/nand/raw/nand_base.c
@@ -292,12 +292,16 @@ int nand_bbm_get_next_page(struct nand_chip *chip, int page)
struct mtd_info *mtd = nand_to_mtd(chip);
int last_page = ((mtd->erasesize - mtd->writesize) >>
chip->page_shift) & chip->pagemask;
+ unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
+ | NAND_BBM_LASTPAGE;
+ if (page == 0 && !(chip->options & bbm_flags))
+ return 0;
if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
return 0;
- else if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
+ if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
return 1;
- else if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
+ if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
return last_page;
return -EINVAL;
@@ -2111,35 +2115,7 @@ static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
if (instr == &ctx->subop.instrs[0])
prefix = " ->";
- switch (instr->type) {
- case NAND_OP_CMD_INSTR:
- pr_debug("%sCMD [0x%02x]\n", prefix,
- instr->ctx.cmd.opcode);
- break;
- case NAND_OP_ADDR_INSTR:
- pr_debug("%sADDR [%d cyc: %*ph]\n", prefix,
- instr->ctx.addr.naddrs,
- instr->ctx.addr.naddrs < 64 ?
- instr->ctx.addr.naddrs : 64,
- instr->ctx.addr.addrs);
- break;
- case NAND_OP_DATA_IN_INSTR:
- pr_debug("%sDATA_IN [%d B%s]\n", prefix,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
- break;
- case NAND_OP_DATA_OUT_INSTR:
- pr_debug("%sDATA_OUT [%d B%s]\n", prefix,
- instr->ctx.data.len,
- instr->ctx.data.force_8bit ?
- ", force 8-bit" : "");
- break;
- case NAND_OP_WAITRDY_INSTR:
- pr_debug("%sWAITRDY [max %d ms]\n", prefix,
- instr->ctx.waitrdy.timeout_ms);
- break;
- }
+ nand_op_trace(prefix, instr);
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
prefix = " ";
@@ -2152,6 +2128,22 @@ static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
}
#endif
+static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
+ const struct nand_op_parser_ctx *b)
+{
+ if (a->subop.ninstrs < b->subop.ninstrs)
+ return -1;
+ else if (a->subop.ninstrs > b->subop.ninstrs)
+ return 1;
+
+ if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
+ return -1;
+ else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
+ return 1;
+
+ return 0;
+}
+
/**
* nand_op_parser_exec_op - exec_op parser
* @chip: the NAND chip
@@ -2186,32 +2178,40 @@ int nand_op_parser_exec_op(struct nand_chip *chip,
unsigned int i;
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
- int ret;
+ const struct nand_op_parser_pattern *pattern;
+ struct nand_op_parser_ctx best_ctx;
+ int ret, best_pattern = -1;
for (i = 0; i < parser->npatterns; i++) {
- const struct nand_op_parser_pattern *pattern;
+ struct nand_op_parser_ctx test_ctx = ctx;
pattern = &parser->patterns[i];
- if (!nand_op_parser_match_pat(pattern, &ctx))
+ if (!nand_op_parser_match_pat(pattern, &test_ctx))
continue;
- nand_op_parser_trace(&ctx);
-
- if (check_only)
- break;
-
- ret = pattern->exec(chip, &ctx.subop);
- if (ret)
- return ret;
+ if (best_pattern >= 0 &&
+ nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
+ continue;
- break;
+ best_pattern = i;
+ best_ctx = test_ctx;
}
- if (i == parser->npatterns) {
+ if (best_pattern < 0) {
pr_debug("->exec_op() parser: pattern not found!\n");
return -ENOTSUPP;
}
+ ctx = best_ctx;
+ nand_op_parser_trace(&ctx);
+
+ if (!check_only) {
+ pattern = &parser->patterns[best_pattern];
+ ret = pattern->exec(chip, &ctx.subop);
+ if (ret)
+ return ret;
+ }
+
/*
* Update the context structure by pointing to the start of the
* next subop.
@@ -4116,7 +4116,7 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
- int ret = -ENOTSUPP;
+ int ret;
ops->retlen = 0;
diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c
index 2ef15ef94525..96045d60471e 100644
--- a/drivers/mtd/nand/raw/nand_bbt.c
+++ b/drivers/mtd/nand/raw/nand_bbt.c
@@ -1232,7 +1232,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
if (!td) {
if ((res = nand_memory_bbt(this, bd))) {
pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
- goto err;
+ goto err_free_bbt;
}
return 0;
}
@@ -1245,7 +1245,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
buf = vmalloc(len);
if (!buf) {
res = -ENOMEM;
- goto err;
+ goto err_free_bbt;
}
/* Is the bbt at a given page? */
@@ -1258,7 +1258,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
res = check_create(this, buf, bd);
if (res)
- goto err;
+ goto err_free_buf;
/* Prevent the bbt regions from erasing / writing */
mark_bbt_region(this, td);
@@ -1268,7 +1268,9 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
vfree(buf);
return 0;
-err:
+err_free_buf:
+ vfree(buf);
+err_free_bbt:
kfree(this->bbt);
this->bbt = NULL;
return res;
diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c
index 55aa4c1cd414..17527310c3a1 100644
--- a/drivers/mtd/nand/raw/nand_bch.c
+++ b/drivers/mtd/nand/raw/nand_bch.c
@@ -170,7 +170,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
goto fail;
}
- nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL);
+ nbc->eccmask = kzalloc(eccbytes, GFP_KERNEL);
nbc->errloc = kmalloc_array(t, sizeof(*nbc->errloc), GFP_KERNEL);
if (!nbc->eccmask || !nbc->errloc)
goto fail;
@@ -182,7 +182,6 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd)
goto fail;
memset(erased_page, 0xff, eccsize);
- memset(nbc->eccmask, 0, eccbytes);
encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask);
kfree(erased_page);
diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c
index 223fbd8052b3..09fdced659f5 100644
--- a/drivers/mtd/nand/raw/nand_ecc.c
+++ b/drivers/mtd/nand/raw/nand_ecc.c
@@ -11,7 +11,7 @@
* Thomas Gleixner (tglx@linutronix.de)
*
* Information on how this algorithm works and how it was developed
- * can be found in Documentation/mtd/nand_ecc.txt
+ * can be found in Documentation/driver-api/mtd/nand_ecc.rst
*/
#include <linux/types.h>
diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c
index fad57c378dd2..58511aeb0c9a 100644
--- a/drivers/mtd/nand/raw/nand_macronix.c
+++ b/drivers/mtd/nand/raw/nand_macronix.c
@@ -8,6 +8,50 @@
#include "internals.h"
+#define MACRONIX_READ_RETRY_BIT BIT(0)
+#define MACRONIX_NUM_READ_RETRY_MODES 6
+
+struct nand_onfi_vendor_macronix {
+ u8 reserved;
+ u8 reliability_func;
+} __packed;
+
+static int macronix_nand_setup_read_retry(struct nand_chip *chip, int mode)
+{
+ u8 feature[ONFI_SUBFEATURE_PARAM_LEN];
+
+ if (!chip->parameters.supports_set_get_features ||
+ !test_bit(ONFI_FEATURE_ADDR_READ_RETRY,
+ chip->parameters.set_feature_list))
+ return -ENOTSUPP;
+
+ feature[0] = mode;
+ return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature);
+}
+
+static void macronix_nand_onfi_init(struct nand_chip *chip)
+{
+ struct nand_parameters *p = &chip->parameters;
+ struct nand_onfi_vendor_macronix *mxic;
+
+ if (!p->onfi)
+ return;
+
+ mxic = (struct nand_onfi_vendor_macronix *)p->onfi->vendor;
+ if ((mxic->reliability_func & MACRONIX_READ_RETRY_BIT) == 0)
+ return;
+
+ chip->read_retries = MACRONIX_NUM_READ_RETRY_MODES;
+ chip->setup_read_retry = macronix_nand_setup_read_retry;
+
+ if (p->supports_set_get_features) {
+ bitmap_set(p->set_feature_list,
+ ONFI_FEATURE_ADDR_READ_RETRY, 1);
+ bitmap_set(p->get_feature_list,
+ ONFI_FEATURE_ADDR_READ_RETRY, 1);
+ }
+}
+
/*
* Macronix AC series does not support using SET/GET_FEATURES to change
* the timings unlike what is declared in the parameter page. Unflag
@@ -56,6 +100,7 @@ static int macronix_nand_init(struct nand_chip *chip)
chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
macronix_nand_fix_broken_get_timings(chip);
+ macronix_nand_onfi_init(chip);
return 0;
}
diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c
index 1622d3145587..56654030ec7f 100644
--- a/drivers/mtd/nand/raw/nand_micron.c
+++ b/drivers/mtd/nand/raw/nand_micron.c
@@ -390,6 +390,14 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
(chip->id.data[4] & MICRON_ID_INTERNAL_ECC_MASK) != 0x2)
return MICRON_ON_DIE_UNSUPPORTED;
+ /*
+ * It seems that there are devices which do not support ECC officially.
+ * At least the MT29F2G08ABAGA / MT29F2G08ABBGA devices supports
+ * enabling the ECC feature but don't reflect that to the READ_ID table.
+ * So we have to guarantee that we disable the ECC feature directly
+ * after we did the READ_ID table command. Later we can evaluate the
+ * ECC_ENABLE support.
+ */
ret = micron_nand_on_die_ecc_setup(chip, true);
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
@@ -398,13 +406,13 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
- if (!(id[4] & MICRON_ID_ECC_ENABLED))
- return MICRON_ON_DIE_UNSUPPORTED;
-
ret = micron_nand_on_die_ecc_setup(chip, false);
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
+ if (!(id[4] & MICRON_ID_ECC_ENABLED))
+ return MICRON_ON_DIE_UNSUPPORTED;
+
ret = nand_readid_op(chip, 0, id, sizeof(id));
if (ret)
return MICRON_ON_DIE_UNSUPPORTED;
@@ -438,8 +446,10 @@ static int micron_nand_init(struct nand_chip *chip)
if (ret)
goto err_free_manuf_data;
+ chip->options |= NAND_BBM_FIRSTPAGE;
+
if (mtd->writesize == 2048)
- chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
+ chip->options |= NAND_BBM_SECONDPAGE;
ondie = micron_supports_on_die_ecc(chip);
diff --git a/drivers/mtd/nand/raw/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c
deleted file mode 100644
index 13bf7b2894d3..000000000000
--- a/drivers/mtd/nand/raw/nuc900_nand.c
+++ /dev/null
@@ -1,304 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Copyright © 2009 Nuvoton technology corporation.
- *
- * Wan ZongShun <mcuos.com@gmail.com>
- */
-
-#include <linux/slab.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/io.h>
-#include <linux/platform_device.h>
-#include <linux/delay.h>
-#include <linux/clk.h>
-#include <linux/err.h>
-
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/mtd/partitions.h>
-
-#define REG_FMICSR 0x00
-#define REG_SMCSR 0xa0
-#define REG_SMISR 0xac
-#define REG_SMCMD 0xb0
-#define REG_SMADDR 0xb4
-#define REG_SMDATA 0xb8
-
-#define RESET_FMI 0x01
-#define NAND_EN 0x08
-#define READYBUSY (0x01 << 18)
-
-#define SWRST 0x01
-#define PSIZE (0x01 << 3)
-#define DMARWEN (0x03 << 1)
-#define BUSWID (0x01 << 4)
-#define ECC4EN (0x01 << 5)
-#define WP (0x01 << 24)
-#define NANDCS (0x01 << 25)
-#define ENDADDR (0x01 << 31)
-
-#define read_data_reg(dev) \
- __raw_readl((dev)->reg + REG_SMDATA)
-
-#define write_data_reg(dev, val) \
- __raw_writel((val), (dev)->reg + REG_SMDATA)
-
-#define write_cmd_reg(dev, val) \
- __raw_writel((val), (dev)->reg + REG_SMCMD)
-
-#define write_addr_reg(dev, val) \
- __raw_writel((val), (dev)->reg + REG_SMADDR)
-
-struct nuc900_nand {
- struct nand_chip chip;
- void __iomem *reg;
- struct clk *clk;
- spinlock_t lock;
-};
-
-static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
-{
- return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
-}
-
-static const struct mtd_partition partitions[] = {
- {
- .name = "NAND FS 0",
- .offset = 0,
- .size = 8 * 1024 * 1024
- },
- {
- .name = "NAND FS 1",
- .offset = MTDPART_OFS_APPEND,
- .size = MTDPART_SIZ_FULL
- }
-};
-
-static unsigned char nuc900_nand_read_byte(struct nand_chip *chip)
-{
- unsigned char ret;
- struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
-
- ret = (unsigned char)read_data_reg(nand);
-
- return ret;
-}
-
-static void nuc900_nand_read_buf(struct nand_chip *chip,
- unsigned char *buf, int len)
-{
- int i;
- struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
-
- for (i = 0; i < len; i++)
- buf[i] = (unsigned char)read_data_reg(nand);
-}
-
-static void nuc900_nand_write_buf(struct nand_chip *chip,
- const unsigned char *buf, int len)
-{
- int i;
- struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
-
- for (i = 0; i < len; i++)
- write_data_reg(nand, buf[i]);
-}
-
-static int nuc900_check_rb(struct nuc900_nand *nand)
-{
- unsigned int val;
- spin_lock(&nand->lock);
- val = __raw_readl(nand->reg + REG_SMISR);
- val &= READYBUSY;
- spin_unlock(&nand->lock);
-
- return val;
-}
-
-static int nuc900_nand_devready(struct nand_chip *chip)
-{
- struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
- int ready;
-
- ready = (nuc900_check_rb(nand)) ? 1 : 0;
- return ready;
-}
-
-static void nuc900_nand_command_lp(struct nand_chip *chip,
- unsigned int command,
- int column, int page_addr)
-{
- struct mtd_info *mtd = nand_to_mtd(chip);
- struct nuc900_nand *nand = mtd_to_nuc900(mtd);
-
- if (command == NAND_CMD_READOOB) {
- column += mtd->writesize;
- command = NAND_CMD_READ0;
- }
-
- write_cmd_reg(nand, command & 0xff);
-
- if (column != -1 || page_addr != -1) {
-
- if (column != -1) {
- if (chip->options & NAND_BUSWIDTH_16 &&
- !nand_opcode_8bits(command))
- column >>= 1;
- write_addr_reg(nand, column);
- write_addr_reg(nand, column >> 8 | ENDADDR);
- }
- if (page_addr != -1) {
- write_addr_reg(nand, page_addr);
-
- if (chip->options & NAND_ROW_ADDR_3) {
- write_addr_reg(nand, page_addr >> 8);
- write_addr_reg(nand, page_addr >> 16 | ENDADDR);
- } else {
- write_addr_reg(nand, page_addr >> 8 | ENDADDR);
- }
- }
- }
-
- switch (command) {
- case NAND_CMD_CACHEDPROG:
- case NAND_CMD_PAGEPROG:
- case NAND_CMD_ERASE1:
- case NAND_CMD_ERASE2:
- case NAND_CMD_SEQIN:
- case NAND_CMD_RNDIN:
- case NAND_CMD_STATUS:
- return;
-
- case NAND_CMD_RESET:
- if (chip->legacy.dev_ready)
- break;
- udelay(chip->legacy.chip_delay);
-
- write_cmd_reg(nand, NAND_CMD_STATUS);
- write_cmd_reg(nand, command);
-
- while (!nuc900_check_rb(nand))
- ;
-
- return;
-
- case NAND_CMD_RNDOUT:
- write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
- return;
-
- case NAND_CMD_READ0:
- write_cmd_reg(nand, NAND_CMD_READSTART);
- /* fall through */
-
- default:
-
- if (!chip->legacy.dev_ready) {
- udelay(chip->legacy.chip_delay);
- return;
- }
- }
-
- /* Apply this short delay always to ensure that we do wait tWB in
- * any case on any machine. */
- ndelay(100);
-
- while (!chip->legacy.dev_ready(chip))
- ;
-}
-
-
-static void nuc900_nand_enable(struct nuc900_nand *nand)
-{
- unsigned int val;
- spin_lock(&nand->lock);
- __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
-
- val = __raw_readl(nand->reg + REG_FMICSR);
-
- if (!(val & NAND_EN))
- __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
-
- val = __raw_readl(nand->reg + REG_SMCSR);
-
- val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
- val |= WP;
-
- __raw_writel(val, nand->reg + REG_SMCSR);
-
- spin_unlock(&nand->lock);
-}
-
-static int nuc900_nand_probe(struct platform_device *pdev)
-{
- struct nuc900_nand *nuc900_nand;
- struct nand_chip *chip;
- struct mtd_info *mtd;
- struct resource *res;
-
- nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
- GFP_KERNEL);
- if (!nuc900_nand)
- return -ENOMEM;
- chip = &(nuc900_nand->chip);
- mtd = nand_to_mtd(chip);
-
- mtd->dev.parent = &pdev->dev;
- spin_lock_init(&nuc900_nand->lock);
-
- nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(nuc900_nand->clk))
- return -ENOENT;
- clk_enable(nuc900_nand->clk);
-
- chip->legacy.cmdfunc = nuc900_nand_command_lp;
- chip->legacy.dev_ready = nuc900_nand_devready;
- chip->legacy.read_byte = nuc900_nand_read_byte;
- chip->legacy.write_buf = nuc900_nand_write_buf;
- chip->legacy.read_buf = nuc900_nand_read_buf;
- chip->legacy.chip_delay = 50;
- chip->options = 0;
- chip->ecc.mode = NAND_ECC_SOFT;
- chip->ecc.algo = NAND_ECC_HAMMING;
-
- res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
- if (IS_ERR(nuc900_nand->reg))
- return PTR_ERR(nuc900_nand->reg);
-
- nuc900_nand_enable(nuc900_nand);
-
- if (nand_scan(chip, 1))
- return -ENXIO;
-
- mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
-
- platform_set_drvdata(pdev, nuc900_nand);
-
- return 0;
-}
-
-static int nuc900_nand_remove(struct platform_device *pdev)
-{
- struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
-
- nand_release(&nuc900_nand->chip);
- clk_disable(nuc900_nand->clk);
-
- return 0;
-}
-
-static struct platform_driver nuc900_nand_driver = {
- .probe = nuc900_nand_probe,
- .remove = nuc900_nand_remove,
- .driver = {
- .name = "nuc900-fmi",
- },
-};
-
-module_platform_driver(nuc900_nand_driver);
-
-MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
-MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
-MODULE_LICENSE("GPL");
-MODULE_ALIAS("platform:nuc900-fmi");
diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c
index 8d881a28140e..ad77c112a78a 100644
--- a/drivers/mtd/nand/raw/omap2.c
+++ b/drivers/mtd/nand/raw/omap2.c
@@ -1501,7 +1501,7 @@ static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
}
/* Update number of correctable errors */
- stat += err_vec[i].error_count;
+ stat = max_t(unsigned int, stat, err_vec[i].error_count);
/* Update page data with sector size */
data += ecc->size;
@@ -1967,10 +1967,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
case NAND_OMAP_PREFETCH_IRQ:
info->gpmc_irq_fifo = platform_get_irq(info->pdev, 0);
- if (info->gpmc_irq_fifo <= 0) {
- dev_err(dev, "Error getting fifo IRQ\n");
+ if (info->gpmc_irq_fifo <= 0)
return -ENODEV;
- }
err = devm_request_irq(dev, info->gpmc_irq_fifo,
omap_nand_irq, IRQF_SHARED,
"gpmc-nand-fifo", info);
@@ -1982,10 +1980,8 @@ static int omap_nand_attach_chip(struct nand_chip *chip)
}
info->gpmc_irq_count = platform_get_irq(info->pdev, 1);
- if (info->gpmc_irq_count <= 0) {
- dev_err(dev, "Error getting IRQ count\n");
+ if (info->gpmc_irq_count <= 0)
return -ENODEV;
- }
err = devm_request_irq(dev, info->gpmc_irq_count,
omap_nand_irq, IRQF_SHARED,
"gpmc-nand-count", info);
diff --git a/drivers/mtd/nand/raw/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c
index 30c51f772de6..c43cb4d92d3d 100644
--- a/drivers/mtd/nand/raw/oxnas_nand.c
+++ b/drivers/mtd/nand/raw/oxnas_nand.c
@@ -116,7 +116,7 @@ static int oxnas_nand_probe(struct platform_device *pdev)
GFP_KERNEL);
if (!chip) {
err = -ENOMEM;
- goto err_clk_unprepare;
+ goto err_release_child;
}
chip->controller = &oxnas->base;
@@ -137,12 +137,12 @@ static int oxnas_nand_probe(struct platform_device *pdev)
/* Scan to find existence of the device */
err = nand_scan(chip, 1);
if (err)
- goto err_clk_unprepare;
+ goto err_release_child;
err = mtd_device_register(mtd, NULL, 0);
if (err) {
nand_release(chip);
- goto err_clk_unprepare;
+ goto err_release_child;
}
oxnas->chips[nchips] = chip;
@@ -159,6 +159,8 @@ static int oxnas_nand_probe(struct platform_device *pdev)
return 0;
+err_release_child:
+ of_node_put(nand_np);
err_clk_unprepare:
clk_disable_unprepare(oxnas->clk);
return err;
diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c
index dae0d235bb17..77774250fb11 100644
--- a/drivers/mtd/nand/raw/r852.c
+++ b/drivers/mtd/nand/raw/r852.c
@@ -998,7 +998,7 @@ static void r852_shutdown(struct pci_dev *pci_dev)
#ifdef CONFIG_PM_SLEEP
static int r852_suspend(struct device *device)
{
- struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
+ struct r852_device *dev = dev_get_drvdata(device);
if (dev->ctlreg & R852_CTL_CARDENABLE)
return -EBUSY;
@@ -1019,7 +1019,7 @@ static int r852_suspend(struct device *device)
static int r852_resume(struct device *device)
{
- struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
+ struct r852_device *dev = dev_get_drvdata(device);
r852_disable_irqs(dev);
r852_card_update_present(dev);
diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c
index e509c93737c4..058e99d0cbcf 100644
--- a/drivers/mtd/nand/raw/sh_flctl.c
+++ b/drivers/mtd/nand/raw/sh_flctl.c
@@ -1129,10 +1129,8 @@ static int flctl_probe(struct platform_device *pdev)
flctl->fifo = res->start + 0x24; /* FLDTFIFO */
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq);
+ if (irq < 0)
return irq;
- }
ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
"flste", flctl);
diff --git a/drivers/mtd/nand/raw/stm32_fmc2_nand.c b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
index 999ca6a66036..9e63800f768a 100644
--- a/drivers/mtd/nand/raw/stm32_fmc2_nand.c
+++ b/drivers/mtd/nand/raw/stm32_fmc2_nand.c
@@ -37,6 +37,8 @@
/* Max ECC buffer length */
#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
+#define FMC2_TIMEOUT_MS 1000
+
/* Timings */
#define FMC2_THIZ 1
#define FMC2_TIO 8000
@@ -530,7 +532,8 @@ static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
int ret;
ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
- sr, sr & FMC2_SR_NWRF, 10, 1000);
+ sr, sr & FMC2_SR_NWRF, 10,
+ FMC2_TIMEOUT_MS);
if (ret) {
dev_err(fmc2->dev, "ham timeout\n");
return ret;
@@ -611,7 +614,7 @@ static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
/* Wait until the BCH code is ready */
if (!wait_for_completion_timeout(&fmc2->complete,
- msecs_to_jiffies(1000))) {
+ msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "bch timeout\n");
stm32_fmc2_disable_bch_irq(fmc2);
return -ETIMEDOUT;
@@ -696,7 +699,7 @@ static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
/* Wait until the decoding error is ready */
if (!wait_for_completion_timeout(&fmc2->complete,
- msecs_to_jiffies(1000))) {
+ msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "bch timeout\n");
stm32_fmc2_disable_bch_irq(fmc2);
return -ETIMEDOUT;
@@ -969,7 +972,7 @@ static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
/* Wait end of sequencer transfer */
if (!wait_for_completion_timeout(&fmc2->complete,
- msecs_to_jiffies(1000))) {
+ msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "seq timeout\n");
stm32_fmc2_disable_seq_irq(fmc2);
dmaengine_terminate_all(dma_ch);
@@ -981,7 +984,7 @@ static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
/* Wait DMA data transfer completion */
if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
- msecs_to_jiffies(100))) {
+ msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "data DMA timeout\n");
dmaengine_terminate_all(dma_ch);
ret = -ETIMEDOUT;
@@ -990,7 +993,7 @@ static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
/* Wait DMA ECC transfer completion */
if (!write_data && !raw) {
if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
- msecs_to_jiffies(100))) {
+ msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "ECC DMA timeout\n");
dmaengine_terminate_all(fmc2->dma_ecc_ch);
ret = -ETIMEDOUT;
@@ -1424,21 +1427,16 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
struct stm32_fmc2_timings *tims = &nand->timings;
unsigned long hclk = clk_get_rate(fmc2->clk);
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
- int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
-
- tar = hclkp;
- if (tar < sdrt->tAR_min)
- tar = sdrt->tAR_min;
- tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
- if (tims->tar > FMC2_PCR_TIMING_MASK)
- tims->tar = FMC2_PCR_TIMING_MASK;
-
- tclr = hclkp;
- if (tclr < sdrt->tCLR_min)
- tclr = sdrt->tCLR_min;
- tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
- if (tims->tclr > FMC2_PCR_TIMING_MASK)
- tims->tclr = FMC2_PCR_TIMING_MASK;
+ unsigned long timing, tar, tclr, thiz, twait;
+ unsigned long tset_mem, tset_att, thold_mem, thold_att;
+
+ tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
+ timing = DIV_ROUND_UP(tar, hclkp) - 1;
+ tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
+
+ tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
+ timing = DIV_ROUND_UP(tclr, hclkp) - 1;
+ tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tims->thiz = FMC2_THIZ;
thiz = (tims->thiz + 1) * hclkp;
@@ -1448,18 +1446,11 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
* tWAIT > tWP
* tWAIT > tREA + tIO
*/
- twait = hclkp;
- if (twait < sdrt->tRP_min)
- twait = sdrt->tRP_min;
- if (twait < sdrt->tWP_min)
- twait = sdrt->tWP_min;
- if (twait < sdrt->tREA_max + FMC2_TIO)
- twait = sdrt->tREA_max + FMC2_TIO;
- tims->twait = DIV_ROUND_UP(twait, hclkp);
- if (tims->twait == 0)
- tims->twait = 1;
- else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
- tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
+ twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
+ twait = max_t(unsigned long, twait, sdrt->tWP_min);
+ twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
+ timing = DIV_ROUND_UP(twait, hclkp);
+ tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_MEM > tCS - tWAIT
@@ -1474,20 +1465,15 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_mem < sdrt->tDS_min - (twait - thiz)))
tset_mem = sdrt->tDS_min - (twait - thiz);
- tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
- if (tims->tset_mem == 0)
- tims->tset_mem = 1;
- else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
- tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
+ timing = DIV_ROUND_UP(tset_mem, hclkp);
+ tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_MEM > tCH
* tHOLD_MEM > tREH - tSETUP_MEM
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
*/
- thold_mem = hclkp;
- if (thold_mem < sdrt->tCH_min)
- thold_mem = sdrt->tCH_min;
+ thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
if (sdrt->tREH_min > tset_mem &&
(thold_mem < sdrt->tREH_min - tset_mem))
thold_mem = sdrt->tREH_min - tset_mem;
@@ -1497,11 +1483,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if ((sdrt->tWC_min > tset_mem + twait) &&
(thold_mem < sdrt->tWC_min - (tset_mem + twait)))
thold_mem = sdrt->tWC_min - (tset_mem + twait);
- tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
- if (tims->thold_mem == 0)
- tims->thold_mem = 1;
- else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
- tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
+ timing = DIV_ROUND_UP(thold_mem, hclkp);
+ tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_ATT > tCS - tWAIT
@@ -1523,11 +1506,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_att < sdrt->tDS_min - (twait - thiz)))
tset_att = sdrt->tDS_min - (twait - thiz);
- tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
- if (tims->tset_att == 0)
- tims->tset_att = 1;
- else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
- tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
+ timing = DIV_ROUND_UP(tset_att, hclkp);
+ tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_ATT > tALH
@@ -1542,17 +1522,11 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
*/
- thold_att = hclkp;
- if (thold_att < sdrt->tALH_min)
- thold_att = sdrt->tALH_min;
- if (thold_att < sdrt->tCH_min)
- thold_att = sdrt->tCH_min;
- if (thold_att < sdrt->tCLH_min)
- thold_att = sdrt->tCLH_min;
- if (thold_att < sdrt->tCOH_min)
- thold_att = sdrt->tCOH_min;
- if (thold_att < sdrt->tDH_min)
- thold_att = sdrt->tDH_min;
+ thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
+ thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
+ thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
+ thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
+ thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
(thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
@@ -1571,11 +1545,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if ((sdrt->tWC_min > tset_att + twait) &&
(thold_att < sdrt->tWC_min - (tset_att + twait)))
thold_att = sdrt->tWC_min - (tset_att + twait);
- tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
- if (tims->thold_att == 0)
- tims->thold_att = 1;
- else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
- tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
+ timing = DIV_ROUND_UP(thold_att, hclkp);
+ tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}
static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
@@ -1909,6 +1880,9 @@ static int stm32_fmc2_probe(struct platform_device *pdev)
}
irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
dev_name(dev), fmc2);
if (ret) {
diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c
index 89773293c64d..37a4ac0dd85b 100644
--- a/drivers/mtd/nand/raw/sunxi_nand.c
+++ b/drivers/mtd/nand/raw/sunxi_nand.c
@@ -2071,10 +2071,8 @@ static int sunxi_nfc_probe(struct platform_device *pdev)
return PTR_ERR(nfc->regs);
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "failed to retrieve irq\n");
+ if (irq < 0)
return irq;
- }
nfc->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(nfc->ahb_clk)) {
diff --git a/drivers/mtd/nand/raw/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c
index b3f2cabcc7c0..9acf2de37ee0 100644
--- a/drivers/mtd/nand/raw/tango_nand.c
+++ b/drivers/mtd/nand/raw/tango_nand.c
@@ -659,6 +659,7 @@ static int tango_nand_probe(struct platform_device *pdev)
err = chip_init(&pdev->dev, np);
if (err) {
tango_nand_remove(pdev);
+ of_node_put(np);
return err;
}
}
diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c
index e4fe8c4bc711..6b399a75f9ae 100644
--- a/drivers/mtd/nand/raw/vf610_nfc.c
+++ b/drivers/mtd/nand/raw/vf610_nfc.c
@@ -862,6 +862,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
dev_err(nfc->dev,
"Only one NAND chip supported!\n");
err = -EINVAL;
+ of_node_put(child);
goto err_disable_clk;
}
diff --git a/drivers/mtd/nand/spi/Makefile b/drivers/mtd/nand/spi/Makefile
index 753125082640..9662b9c1d5a9 100644
--- a/drivers/mtd/nand/spi/Makefile
+++ b/drivers/mtd/nand/spi/Makefile
@@ -1,3 +1,3 @@
# SPDX-License-Identifier: GPL-2.0
-spinand-objs := core.o gigadevice.o macronix.o micron.o toshiba.o winbond.o
+spinand-objs := core.o gigadevice.o macronix.o micron.o paragon.o toshiba.o winbond.o
obj-$(CONFIG_MTD_SPI_NAND) += spinand.o
diff --git a/drivers/mtd/nand/spi/core.c b/drivers/mtd/nand/spi/core.c
index 4c15bb58c623..89f6beefb01c 100644
--- a/drivers/mtd/nand/spi/core.c
+++ b/drivers/mtd/nand/spi/core.c
@@ -511,12 +511,12 @@ static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
if (ret == -EBADMSG) {
ecc_failed = true;
mtd->ecc_stats.failed++;
- ret = 0;
} else {
mtd->ecc_stats.corrected += ret;
max_bitflips = max_t(unsigned int, max_bitflips, ret);
}
+ ret = 0;
ops->retlen += iter.req.datalen;
ops->oobretlen += iter.req.ooblen;
}
@@ -757,6 +757,7 @@ static const struct spinand_manufacturer *spinand_manufacturers[] = {
&gigadevice_spinand_manufacturer,
&macronix_spinand_manufacturer,
&micron_spinand_manufacturer,
+ &paragon_spinand_manufacturer,
&toshiba_spinand_manufacturer,
&winbond_spinand_manufacturer,
};
@@ -845,7 +846,7 @@ spinand_select_op_variant(struct spinand_device *spinand,
*/
int spinand_match_and_init(struct spinand_device *spinand,
const struct spinand_info *table,
- unsigned int table_size, u8 devid)
+ unsigned int table_size, u16 devid)
{
struct nand_device *nand = spinand_to_nand(spinand);
unsigned int i;
diff --git a/drivers/mtd/nand/spi/gigadevice.c b/drivers/mtd/nand/spi/gigadevice.c
index e6c646007cda..e99d425aa93f 100644
--- a/drivers/mtd/nand/spi/gigadevice.c
+++ b/drivers/mtd/nand/spi/gigadevice.c
@@ -9,11 +9,17 @@
#include <linux/mtd/spinand.h>
#define SPINAND_MFR_GIGADEVICE 0xC8
+
#define GD5FXGQ4XA_STATUS_ECC_1_7_BITFLIPS (1 << 4)
#define GD5FXGQ4XA_STATUS_ECC_8_BITFLIPS (3 << 4)
#define GD5FXGQ4UEXXG_REG_STATUS2 0xf0
+#define GD5FXGQ4UXFXXG_STATUS_ECC_MASK (7 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS (0 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS (1 << 4)
+#define GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR (7 << 4)
+
static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
@@ -22,6 +28,14 @@ static SPINAND_OP_VARIANTS(read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+static SPINAND_OP_VARIANTS(read_cache_variants_f,
+ SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_OP_3A(true, 0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_OP_3A(false, 0, 0, NULL, 0));
+
static SPINAND_OP_VARIANTS(write_cache_variants,
SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
SPINAND_PROG_LOAD(true, 0, NULL, 0));
@@ -59,6 +73,11 @@ static int gd5fxgq4xa_ooblayout_free(struct mtd_info *mtd, int section,
return 0;
}
+static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = {
+ .ecc = gd5fxgq4xa_ooblayout_ecc,
+ .free = gd5fxgq4xa_ooblayout_free,
+};
+
static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
@@ -83,7 +102,7 @@ static int gd5fxgq4xa_ecc_get_status(struct spinand_device *spinand,
return -EINVAL;
}
-static int gd5fxgq4uexxg_ooblayout_ecc(struct mtd_info *mtd, int section,
+static int gd5fxgq4_variant2_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
@@ -95,7 +114,7 @@ static int gd5fxgq4uexxg_ooblayout_ecc(struct mtd_info *mtd, int section,
return 0;
}
-static int gd5fxgq4uexxg_ooblayout_free(struct mtd_info *mtd, int section,
+static int gd5fxgq4_variant2_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
@@ -108,6 +127,11 @@ static int gd5fxgq4uexxg_ooblayout_free(struct mtd_info *mtd, int section,
return 0;
}
+static const struct mtd_ooblayout_ops gd5fxgq4_variant2_ooblayout = {
+ .ecc = gd5fxgq4_variant2_ooblayout_ecc,
+ .free = gd5fxgq4_variant2_ooblayout_free,
+};
+
static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
@@ -150,15 +174,25 @@ static int gd5fxgq4uexxg_ecc_get_status(struct spinand_device *spinand,
return -EINVAL;
}
-static const struct mtd_ooblayout_ops gd5fxgq4xa_ooblayout = {
- .ecc = gd5fxgq4xa_ooblayout_ecc,
- .free = gd5fxgq4xa_ooblayout_free,
-};
+static int gd5fxgq4ufxxg_ecc_get_status(struct spinand_device *spinand,
+ u8 status)
+{
+ switch (status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) {
+ case GD5FXGQ4UXFXXG_STATUS_ECC_NO_BITFLIPS:
+ return 0;
-static const struct mtd_ooblayout_ops gd5fxgq4uexxg_ooblayout = {
- .ecc = gd5fxgq4uexxg_ooblayout_ecc,
- .free = gd5fxgq4uexxg_ooblayout_free,
-};
+ case GD5FXGQ4UXFXXG_STATUS_ECC_1_3_BITFLIPS:
+ return 3;
+
+ case GD5FXGQ4UXFXXG_STATUS_ECC_UNCOR_ERROR:
+ return -EBADMSG;
+
+ default: /* (2 << 4) through (6 << 4) are 4-8 corrected errors */
+ return ((status & GD5FXGQ4UXFXXG_STATUS_ECC_MASK) >> 4) + 2;
+ }
+
+ return -EINVAL;
+}
static const struct spinand_info gigadevice_spinand_table[] = {
SPINAND_INFO("GD5F1GQ4xA", 0xF1,
@@ -195,25 +229,40 @@ static const struct spinand_info gigadevice_spinand_table[] = {
&write_cache_variants,
&update_cache_variants),
0,
- SPINAND_ECCINFO(&gd5fxgq4uexxg_ooblayout,
+ SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
gd5fxgq4uexxg_ecc_get_status)),
+ SPINAND_INFO("GD5F1GQ4UFxxG", 0xb148,
+ NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
+ NAND_ECCREQ(8, 512),
+ SPINAND_INFO_OP_VARIANTS(&read_cache_variants_f,
+ &write_cache_variants,
+ &update_cache_variants),
+ 0,
+ SPINAND_ECCINFO(&gd5fxgq4_variant2_ooblayout,
+ gd5fxgq4ufxxg_ecc_get_status)),
};
static int gigadevice_spinand_detect(struct spinand_device *spinand)
{
u8 *id = spinand->id.data;
+ u16 did;
int ret;
/*
- * For GD NANDs, There is an address byte needed to shift in before IDs
- * are read out, so the first byte in raw_id is dummy.
+ * Earlier GDF5-series devices (A,E) return [0][MID][DID]
+ * Later (F) devices return [MID][DID1][DID2]
*/
- if (id[1] != SPINAND_MFR_GIGADEVICE)
+
+ if (id[0] == SPINAND_MFR_GIGADEVICE)
+ did = (id[1] << 8) + id[2];
+ else if (id[0] == 0 && id[1] == SPINAND_MFR_GIGADEVICE)
+ did = id[2];
+ else
return 0;
ret = spinand_match_and_init(spinand, gigadevice_spinand_table,
ARRAY_SIZE(gigadevice_spinand_table),
- id[2]);
+ did);
if (ret)
return ret;
diff --git a/drivers/mtd/nand/spi/paragon.c b/drivers/mtd/nand/spi/paragon.c
new file mode 100644
index 000000000000..52307681cbd0
--- /dev/null
+++ b/drivers/mtd/nand/spi/paragon.c
@@ -0,0 +1,147 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (C) 2019 Jeff Kletsky
+ *
+ * Author: Jeff Kletsky <git-commits@allycomm.com>
+ */
+
+#include <linux/device.h>
+#include <linux/kernel.h>
+#include <linux/mtd/spinand.h>
+
+
+#define SPINAND_MFR_PARAGON 0xa1
+
+
+#define PN26G0XA_STATUS_ECC_BITMASK (3 << 4)
+
+#define PN26G0XA_STATUS_ECC_NONE_DETECTED (0 << 4)
+#define PN26G0XA_STATUS_ECC_1_7_CORRECTED (1 << 4)
+#define PN26G0XA_STATUS_ECC_ERRORED (2 << 4)
+#define PN26G0XA_STATUS_ECC_8_CORRECTED (3 << 4)
+
+
+static SPINAND_OP_VARIANTS(read_cache_variants,
+ SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(0, 2, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_X4_OP(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_X2_OP(0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_OP(true, 0, 1, NULL, 0),
+ SPINAND_PAGE_READ_FROM_CACHE_OP(false, 0, 1, NULL, 0));
+
+static SPINAND_OP_VARIANTS(write_cache_variants,
+ SPINAND_PROG_LOAD_X4(true, 0, NULL, 0),
+ SPINAND_PROG_LOAD(true, 0, NULL, 0));
+
+static SPINAND_OP_VARIANTS(update_cache_variants,
+ SPINAND_PROG_LOAD_X4(false, 0, NULL, 0),
+ SPINAND_PROG_LOAD(false, 0, NULL, 0));
+
+
+static int pn26g0xa_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ if (section > 3)
+ return -ERANGE;
+
+ region->offset = 6 + (15 * section); /* 4 BBM + 2 user bytes */
+ region->length = 13;
+
+ return 0;
+}
+
+static int pn26g0xa_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *region)
+{
+ if (section > 4)
+ return -ERANGE;
+
+ if (section == 4) {
+ region->offset = 64;
+ region->length = 64;
+ } else {
+ region->offset = 4 + (15 * section);
+ region->length = 2;
+ }
+
+ return 0;
+}
+
+static int pn26g0xa_ecc_get_status(struct spinand_device *spinand,
+ u8 status)
+{
+ switch (status & PN26G0XA_STATUS_ECC_BITMASK) {
+ case PN26G0XA_STATUS_ECC_NONE_DETECTED:
+ return 0;
+
+ case PN26G0XA_STATUS_ECC_1_7_CORRECTED:
+ return 7; /* Return upper limit by convention */
+
+ case PN26G0XA_STATUS_ECC_8_CORRECTED:
+ return 8;
+
+ case PN26G0XA_STATUS_ECC_ERRORED:
+ return -EBADMSG;
+
+ default:
+ break;
+ }
+
+ return -EINVAL;
+}
+
+static const struct mtd_ooblayout_ops pn26g0xa_ooblayout = {
+ .ecc = pn26g0xa_ooblayout_ecc,
+ .free = pn26g0xa_ooblayout_free,
+};
+
+
+static const struct spinand_info paragon_spinand_table[] = {
+ SPINAND_INFO("PN26G01A", 0xe1,
+ NAND_MEMORG(1, 2048, 128, 64, 1024, 21, 1, 1, 1),
+ NAND_ECCREQ(8, 512),
+ SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+ &write_cache_variants,
+ &update_cache_variants),
+ 0,
+ SPINAND_ECCINFO(&pn26g0xa_ooblayout,
+ pn26g0xa_ecc_get_status)),
+ SPINAND_INFO("PN26G02A", 0xe2,
+ NAND_MEMORG(1, 2048, 128, 64, 2048, 41, 1, 1, 1),
+ NAND_ECCREQ(8, 512),
+ SPINAND_INFO_OP_VARIANTS(&read_cache_variants,
+ &write_cache_variants,
+ &update_cache_variants),
+ 0,
+ SPINAND_ECCINFO(&pn26g0xa_ooblayout,
+ pn26g0xa_ecc_get_status)),
+};
+
+static int paragon_spinand_detect(struct spinand_device *spinand)
+{
+ u8 *id = spinand->id.data;
+ int ret;
+
+ /* Read ID returns [0][MID][DID] */
+
+ if (id[1] != SPINAND_MFR_PARAGON)
+ return 0;
+
+ ret = spinand_match_and_init(spinand, paragon_spinand_table,
+ ARRAY_SIZE(paragon_spinand_table),
+ id[2]);
+ if (ret)
+ return ret;
+
+ return 1;
+}
+
+static const struct spinand_manufacturer_ops paragon_spinand_manuf_ops = {
+ .detect = paragon_spinand_detect,
+};
+
+const struct spinand_manufacturer paragon_spinand_manufacturer = {
+ .id = SPINAND_MFR_PARAGON,
+ .name = "Paragon",
+ .ops = &paragon_spinand_manuf_ops,
+};
diff --git a/drivers/mtd/parsers/Kconfig b/drivers/mtd/parsers/Kconfig
index 176b75a375b1..f98363c9b363 100644
--- a/drivers/mtd/parsers/Kconfig
+++ b/drivers/mtd/parsers/Kconfig
@@ -1,4 +1,72 @@
# SPDX-License-Identifier: GPL-2.0-only
+config MTD_AR7_PARTS
+ tristate "TI AR7 partitioning parser"
+ help
+ TI AR7 partitioning parser support
+
+config MTD_BCM47XX_PARTS
+ tristate "BCM47XX partitioning parser"
+ depends on BCM47XX || ARCH_BCM_5301X
+ help
+ This provides partitions parser for devices based on BCM47xx
+ boards.
+
+config MTD_BCM63XX_PARTS
+ tristate "BCM63XX CFE partitioning parser"
+ depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST
+ select CRC32
+ select MTD_PARSER_IMAGETAG
+ help
+ This provides partition parsing for BCM63xx devices with CFE
+ bootloaders.
+
+config MTD_CMDLINE_PARTS
+ tristate "Command line partition table parsing"
+ depends on MTD
+ help
+ Allow generic configuration of the MTD partition tables via the kernel
+ command line. Multiple flash resources are supported for hardware where
+ different kinds of flash memory are available.
+
+ You will still need the parsing functions to be called by the driver
+ for your particular device. It won't happen automatically. The
+ SA1100 map driver (CONFIG_MTD_SA1100) has an option for this, for
+ example.
+
+ The format for the command line is as follows:
+
+ mtdparts=<mtddef>[;<mtddef]
+ <mtddef> := <mtd-id>:<partdef>[,<partdef>]
+ <partdef> := <size>[@offset][<name>][ro]
+ <mtd-id> := unique id used in mapping driver/device
+ <size> := standard linux memsize OR "-" to denote all
+ remaining space
+ <name> := (NAME)
+
+ Due to the way Linux handles the command line, no spaces are
+ allowed in the partition definition, including mtd id's and partition
+ names.
+
+ Examples:
+
+ 1 flash resource (mtd-id "sa1100"), with 1 single writable partition:
+ mtdparts=sa1100:-
+
+ Same flash, but 2 named partitions, the first one being read-only:
+ mtdparts=sa1100:256k(ARMboot)ro,-(root)
+
+ If unsure, say 'N'.
+
+config MTD_OF_PARTS
+ tristate "OpenFirmware (device tree) partitioning parser"
+ default y
+ depends on OF
+ help
+ This provides a open firmware device tree partition parser
+ which derives the partition map from the children of the
+ flash memory node, as described in
+ Documentation/devicetree/bindings/mtd/partition.txt.
+
config MTD_PARSER_IMAGETAG
tristate "Parser for BCM963XX Image Tag format partitions"
depends on BCM63XX || BMIPS_GENERIC || COMPILE_TEST
diff --git a/drivers/mtd/parsers/Makefile b/drivers/mtd/parsers/Makefile
index dd566bdd16e2..b0c5f62f9e85 100644
--- a/drivers/mtd/parsers/Makefile
+++ b/drivers/mtd/parsers/Makefile
@@ -1,4 +1,9 @@
# SPDX-License-Identifier: GPL-2.0-only
+obj-$(CONFIG_MTD_AR7_PARTS) += ar7part.o
+obj-$(CONFIG_MTD_BCM47XX_PARTS) += bcm47xxpart.o
+obj-$(CONFIG_MTD_BCM63XX_PARTS) += bcm63xxpart.o
+obj-$(CONFIG_MTD_CMDLINE_PARTS) += cmdlinepart.o
+obj-$(CONFIG_MTD_OF_PARTS) += ofpart.o
obj-$(CONFIG_MTD_PARSER_IMAGETAG) += parser_imagetag.o
obj-$(CONFIG_MTD_AFS_PARTS) += afs.o
obj-$(CONFIG_MTD_PARSER_TRX) += parser_trx.o
diff --git a/drivers/mtd/parsers/afs.c b/drivers/mtd/parsers/afs.c
index f24d768eee30..752b6cf005f7 100644
--- a/drivers/mtd/parsers/afs.c
+++ b/drivers/mtd/parsers/afs.c
@@ -371,8 +371,7 @@ static int parse_afs_partitions(struct mtd_info *mtd,
out_free_parts:
while (i >= 0) {
- if (parts[i].name)
- kfree(parts[i].name);
+ kfree(parts[i].name);
i--;
}
kfree(parts);
diff --git a/drivers/mtd/ar7part.c b/drivers/mtd/parsers/ar7part.c
index 8cd683711ac6..8cd683711ac6 100644
--- a/drivers/mtd/ar7part.c
+++ b/drivers/mtd/parsers/ar7part.c
diff --git a/drivers/mtd/bcm47xxpart.c b/drivers/mtd/parsers/bcm47xxpart.c
index 6012a10f10c8..6012a10f10c8 100644
--- a/drivers/mtd/bcm47xxpart.c
+++ b/drivers/mtd/parsers/bcm47xxpart.c
diff --git a/drivers/mtd/bcm63xxpart.c b/drivers/mtd/parsers/bcm63xxpart.c
index 78f90c6c18fd..78f90c6c18fd 100644
--- a/drivers/mtd/bcm63xxpart.c
+++ b/drivers/mtd/parsers/bcm63xxpart.c
diff --git a/drivers/mtd/cmdlinepart.c b/drivers/mtd/parsers/cmdlinepart.c
index c86f2db8c882..c86f2db8c882 100644
--- a/drivers/mtd/cmdlinepart.c
+++ b/drivers/mtd/parsers/cmdlinepart.c
diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/parsers/ofpart.c
index 3caeabf27987..3caeabf27987 100644
--- a/drivers/mtd/ofpart.c
+++ b/drivers/mtd/parsers/ofpart.c
diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c
index dfc47a444b90..4744bf94ad9a 100644
--- a/drivers/mtd/sm_ftl.c
+++ b/drivers/mtd/sm_ftl.c
@@ -774,8 +774,11 @@ static int sm_init_zone(struct sm_ftl *ftl, int zone_num)
continue;
/* Read the oob of first sector */
- if (sm_read_sector(ftl, zone_num, block, 0, NULL, &oob))
+ if (sm_read_sector(ftl, zone_num, block, 0, NULL, &oob)) {
+ kfifo_free(&zone->free_sectors);
+ kfree(zone->lba_to_phys_table);
return -EIO;
+ }
/* Test to see if block is erased. It is enough to test
first sector, because erase happens in one shot */
diff --git a/drivers/mtd/spi-nor/Kconfig b/drivers/mtd/spi-nor/Kconfig
index 8e14248d2720..f237fcdf7f86 100644
--- a/drivers/mtd/spi-nor/Kconfig
+++ b/drivers/mtd/spi-nor/Kconfig
@@ -2,6 +2,8 @@
menuconfig MTD_SPI_NOR
tristate "SPI-NOR device support"
depends on MTD
+ depends on MTD && SPI_MASTER
+ select SPI_MEM
help
This is the framework for the SPI NOR which can be used by the SPI
device drivers and the SPI-NOR device driver.
@@ -105,11 +107,4 @@ config SPI_INTEL_SPI_PLATFORM
To compile this driver as a module, choose M here: the module
will be called intel-spi-platform.
-config SPI_STM32_QUADSPI
- tristate "STM32 Quad SPI controller"
- depends on ARCH_STM32 || COMPILE_TEST
- help
- This enables support for the STM32 Quad SPI controller.
- We only connect the NOR to this controller.
-
endif # MTD_SPI_NOR
diff --git a/drivers/mtd/spi-nor/Makefile b/drivers/mtd/spi-nor/Makefile
index 189a15cca3ec..9c5ed03cdc19 100644
--- a/drivers/mtd/spi-nor/Makefile
+++ b/drivers/mtd/spi-nor/Makefile
@@ -8,4 +8,3 @@ obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
obj-$(CONFIG_SPI_INTEL_SPI_PCI) += intel-spi-pci.o
obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o
-obj-$(CONFIG_SPI_STM32_QUADSPI) += stm32-quadspi.o
diff --git a/drivers/mtd/spi-nor/aspeed-smc.c b/drivers/mtd/spi-nor/aspeed-smc.c
index 19b8757325d2..2b7cabbb680c 100644
--- a/drivers/mtd/spi-nor/aspeed-smc.c
+++ b/drivers/mtd/spi-nor/aspeed-smc.c
@@ -320,7 +320,8 @@ static void aspeed_smc_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
mutex_unlock(&chip->controller->mutex);
}
-static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
{
struct aspeed_smc_chip *chip = nor->priv;
@@ -331,8 +332,8 @@ static int aspeed_smc_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
return 0;
}
-static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
- int len)
+static int aspeed_smc_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
{
struct aspeed_smc_chip *chip = nor->priv;
@@ -746,6 +747,15 @@ static int aspeed_smc_chip_setup_finish(struct aspeed_smc_chip *chip)
return 0;
}
+static const struct spi_nor_controller_ops aspeed_smc_controller_ops = {
+ .prepare = aspeed_smc_prep,
+ .unprepare = aspeed_smc_unprep,
+ .read_reg = aspeed_smc_read_reg,
+ .write_reg = aspeed_smc_write_reg,
+ .read = aspeed_smc_read_user,
+ .write = aspeed_smc_write_user,
+};
+
static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
struct device_node *np, struct resource *r)
{
@@ -805,12 +815,7 @@ static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
nor->dev = dev;
nor->priv = chip;
spi_nor_set_flash_node(nor, child);
- nor->read = aspeed_smc_read_user;
- nor->write = aspeed_smc_write_user;
- nor->read_reg = aspeed_smc_read_reg;
- nor->write_reg = aspeed_smc_write_reg;
- nor->prepare = aspeed_smc_prep;
- nor->unprepare = aspeed_smc_unprep;
+ nor->controller_ops = &aspeed_smc_controller_ops;
ret = aspeed_smc_chip_setup_init(chip, r);
if (ret)
@@ -836,8 +841,10 @@ static int aspeed_smc_setup_flash(struct aspeed_smc_controller *controller,
controller->chips[cs] = chip;
}
- if (ret)
+ if (ret) {
+ of_node_put(child);
aspeed_smc_unregister(controller);
+ }
return ret;
}
diff --git a/drivers/mtd/spi-nor/cadence-quadspi.c b/drivers/mtd/spi-nor/cadence-quadspi.c
index 67ade2c81b21..06f997247d0f 100644
--- a/drivers/mtd/spi-nor/cadence-quadspi.c
+++ b/drivers/mtd/spi-nor/cadence-quadspi.c
@@ -13,6 +13,7 @@
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
+#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
@@ -23,6 +24,7 @@
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
+#include <linux/reset.h>
#include <linux/sched.h>
#include <linux/spi/spi.h>
#include <linux/timer.h>
@@ -240,23 +242,13 @@ struct cqspi_driver_platdata {
#define CQSPI_IRQ_STATUS_MASK 0x1FFFF
-static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
+static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
{
- unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
u32 val;
- while (1) {
- val = readl(reg);
- if (clear)
- val = ~val;
- val &= mask;
-
- if (val == mask)
- return 0;
-
- if (time_after(jiffies, end))
- return -ETIMEDOUT;
- }
+ return readl_relaxed_poll_timeout(reg, val,
+ (((clr ? ~val : val) & mask) == mask),
+ 10, CQSPI_TIMEOUT_MS * 1000);
}
static bool cqspi_is_idle(struct cqspi_st *cqspi)
@@ -293,7 +285,7 @@ static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
return IRQ_HANDLED;
}
-static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
+static unsigned int cqspi_calc_rdreg(struct spi_nor *nor)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
u32 rdreg = 0;
@@ -362,27 +354,27 @@ static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
return cqspi_wait_idle(cqspi);
}
-static int cqspi_command_read(struct spi_nor *nor,
- const u8 *txbuf, const unsigned n_tx,
- u8 *rxbuf, const unsigned n_rx)
+static int cqspi_command_read(struct spi_nor *nor, u8 opcode,
+ u8 *rxbuf, size_t n_rx)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int rdreg;
unsigned int reg;
- unsigned int read_len;
+ size_t read_len;
int status;
if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
- dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
+ dev_err(nor->dev,
+ "Invalid input argument, len %zu rxbuf 0x%p\n",
n_rx, rxbuf);
return -EINVAL;
}
- reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
+ reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
- rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
+ rdreg = cqspi_calc_rdreg(nor);
writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
@@ -412,19 +404,19 @@ static int cqspi_command_read(struct spi_nor *nor,
}
static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
- const u8 *txbuf, const unsigned n_tx)
+ const u8 *txbuf, size_t n_tx)
{
struct cqspi_flash_pdata *f_pdata = nor->priv;
struct cqspi_st *cqspi = f_pdata->cqspi;
void __iomem *reg_base = cqspi->iobase;
unsigned int reg;
unsigned int data;
- u32 write_len;
+ size_t write_len;
int ret;
if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
dev_err(nor->dev,
- "Invalid input argument, cmdlen %d txbuf 0x%p\n",
+ "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
n_tx, txbuf);
return -EINVAL;
}
@@ -478,7 +470,7 @@ static int cqspi_read_setup(struct spi_nor *nor)
unsigned int reg;
reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
- reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
+ reg |= cqspi_calc_rdreg(nor);
/* Setup dummy clock cycles */
dummy_clk = nor->read_dummy;
@@ -611,7 +603,7 @@ static int cqspi_write_setup(struct spi_nor *nor)
/* Set opcode. */
reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
writel(reg, reg_base + CQSPI_REG_WR_INSTR);
- reg = cqspi_calc_rdreg(nor, nor->program_opcode);
+ reg = cqspi_calc_rdreg(nor);
writel(reg, reg_base + CQSPI_REG_RD_INSTR);
reg = readl(reg_base + CQSPI_REG_SIZE);
@@ -1058,7 +1050,7 @@ static int cqspi_erase(struct spi_nor *nor, loff_t offs)
return ret;
/* Send write enable, then erase commands. */
- ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
if (ret)
return ret;
@@ -1088,18 +1080,19 @@ static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
mutex_unlock(&cqspi->bus_mutex);
}
-static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len)
{
int ret;
ret = cqspi_set_protocol(nor, 0);
if (!ret)
- ret = cqspi_command_read(nor, &opcode, 1, buf, len);
+ ret = cqspi_command_read(nor, opcode, buf, len);
return ret;
}
-static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
{
int ret;
@@ -1224,6 +1217,16 @@ static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
init_completion(&cqspi->rx_dma_complete);
}
+static const struct spi_nor_controller_ops cqspi_controller_ops = {
+ .prepare = cqspi_prep,
+ .unprepare = cqspi_unprep,
+ .read_reg = cqspi_read_reg,
+ .write_reg = cqspi_write_reg,
+ .read = cqspi_read,
+ .write = cqspi_write,
+ .erase = cqspi_erase,
+};
+
static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
{
struct platform_device *pdev = cqspi->pdev;
@@ -1273,14 +1276,7 @@ static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = f_pdata;
-
- nor->read_reg = cqspi_read_reg;
- nor->write_reg = cqspi_write_reg;
- nor->read = cqspi_read;
- nor->write = cqspi_write;
- nor->erase = cqspi_erase;
- nor->prepare = cqspi_prep;
- nor->unprepare = cqspi_unprep;
+ nor->controller_ops = &cqspi_controller_ops;
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
dev_name(dev), cs);
@@ -1325,6 +1321,7 @@ static int cqspi_probe(struct platform_device *pdev)
struct cqspi_st *cqspi;
struct resource *res;
struct resource *res_ahb;
+ struct reset_control *rstc, *rstc_ocp;
const struct cqspi_driver_platdata *ddata;
int ret;
int irq;
@@ -1373,10 +1370,8 @@ static int cqspi_probe(struct platform_device *pdev)
/* Obtain IRQ line. */
irq = platform_get_irq(pdev, 0);
- if (irq < 0) {
- dev_err(dev, "Cannot obtain IRQ.\n");
+ if (irq < 0)
return -ENXIO;
- }
pm_runtime_enable(dev);
ret = pm_runtime_get_sync(dev);
@@ -1391,6 +1386,25 @@ static int cqspi_probe(struct platform_device *pdev)
goto probe_clk_failed;
}
+ /* Obtain QSPI reset control */
+ rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
+ if (IS_ERR(rstc)) {
+ dev_err(dev, "Cannot get QSPI reset.\n");
+ return PTR_ERR(rstc);
+ }
+
+ rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
+ if (IS_ERR(rstc_ocp)) {
+ dev_err(dev, "Cannot get QSPI OCP reset.\n");
+ return PTR_ERR(rstc_ocp);
+ }
+
+ reset_control_assert(rstc);
+ reset_control_deassert(rstc);
+
+ reset_control_assert(rstc_ocp);
+ reset_control_deassert(rstc_ocp);
+
cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
ddata = of_device_get_match_data(dev);
if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
diff --git a/drivers/mtd/spi-nor/hisi-sfc.c b/drivers/mtd/spi-nor/hisi-sfc.c
index dea43ea3eea3..a1258216f89d 100644
--- a/drivers/mtd/spi-nor/hisi-sfc.c
+++ b/drivers/mtd/spi-nor/hisi-sfc.c
@@ -177,7 +177,7 @@ static void hisi_spi_nor_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
}
static int hisi_spi_nor_op_reg(struct spi_nor *nor,
- u8 opcode, int len, u8 optype)
+ u8 opcode, size_t len, u8 optype)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
@@ -200,7 +200,7 @@ static int hisi_spi_nor_op_reg(struct spi_nor *nor,
}
static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
- int len)
+ size_t len)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
@@ -215,7 +215,7 @@ static int hisi_spi_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
}
static int hisi_spi_nor_write_reg(struct spi_nor *nor, u8 opcode,
- u8 *buf, int len)
+ const u8 *buf, size_t len)
{
struct hifmc_priv *priv = nor->priv;
struct hifmc_host *host = priv->host;
@@ -311,6 +311,15 @@ static ssize_t hisi_spi_nor_write(struct spi_nor *nor, loff_t to,
return len;
}
+static const struct spi_nor_controller_ops hisi_controller_ops = {
+ .prepare = hisi_spi_nor_prep,
+ .unprepare = hisi_spi_nor_unprep,
+ .read_reg = hisi_spi_nor_read_reg,
+ .write_reg = hisi_spi_nor_write_reg,
+ .read = hisi_spi_nor_read,
+ .write = hisi_spi_nor_write,
+};
+
/**
* Get spi flash device information and register it as a mtd device.
*/
@@ -357,14 +366,8 @@ static int hisi_spi_nor_register(struct device_node *np,
}
priv->host = host;
nor->priv = priv;
+ nor->controller_ops = &hisi_controller_ops;
- nor->prepare = hisi_spi_nor_prep;
- nor->unprepare = hisi_spi_nor_unprep;
- nor->read_reg = hisi_spi_nor_read_reg;
- nor->write_reg = hisi_spi_nor_write_reg;
- nor->read = hisi_spi_nor_read;
- nor->write = hisi_spi_nor_write;
- nor->erase = NULL;
ret = spi_nor_scan(nor, NULL, &hwcaps);
if (ret)
return ret;
@@ -401,6 +404,7 @@ static int hisi_spi_nor_register_all(struct hifmc_host *host)
if (host->num_chip == HIFMC_MAX_CHIP_NUM) {
dev_warn(dev, "Flash device number exceeds the maximum chipselect number\n");
+ of_node_put(np);
break;
}
}
diff --git a/drivers/mtd/spi-nor/intel-spi-pci.c b/drivers/mtd/spi-nor/intel-spi-pci.c
index 5e2344768d53..3d8987baea2a 100644
--- a/drivers/mtd/spi-nor/intel-spi-pci.c
+++ b/drivers/mtd/spi-nor/intel-spi-pci.c
@@ -20,6 +20,10 @@ static const struct intel_spi_boardinfo bxt_info = {
.type = INTEL_SPI_BXT,
};
+static const struct intel_spi_boardinfo cnl_info = {
+ .type = INTEL_SPI_CNL,
+};
+
static int intel_spi_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
@@ -61,11 +65,15 @@ static void intel_spi_pci_remove(struct pci_dev *pdev)
static const struct pci_device_id intel_spi_pci_ids[] = {
{ PCI_VDEVICE(INTEL, 0x02a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x06a4), (unsigned long)&bxt_info },
{ PCI_VDEVICE(INTEL, 0x18e0), (unsigned long)&bxt_info },
{ PCI_VDEVICE(INTEL, 0x19e0), (unsigned long)&bxt_info },
{ PCI_VDEVICE(INTEL, 0x34a4), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0x4b24), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa0a4), (unsigned long)&bxt_info },
{ PCI_VDEVICE(INTEL, 0xa1a4), (unsigned long)&bxt_info },
{ PCI_VDEVICE(INTEL, 0xa224), (unsigned long)&bxt_info },
+ { PCI_VDEVICE(INTEL, 0xa324), (unsigned long)&cnl_info },
{ },
};
MODULE_DEVICE_TABLE(pci, intel_spi_pci_ids);
diff --git a/drivers/mtd/spi-nor/intel-spi.c b/drivers/mtd/spi-nor/intel-spi.c
index 1ccf23fe7e4b..61d2a0ad2131 100644
--- a/drivers/mtd/spi-nor/intel-spi.c
+++ b/drivers/mtd/spi-nor/intel-spi.c
@@ -108,6 +108,10 @@
#define BXT_FREG_NUM 12
#define BXT_PR_NUM 6
+#define CNL_PR 0x84
+#define CNL_FREG_NUM 6
+#define CNL_PR_NUM 5
+
#define LVSCC 0xc4
#define UVSCC 0xc8
#define ERASE_OPCODE_SHIFT 8
@@ -187,12 +191,16 @@ static void intel_spi_dump_regs(struct intel_spi *ispi)
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
readl(ispi->pregs + PR(i)));
- value = readl(ispi->sregs + SSFSTS_CTL);
- dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
- dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
- readl(ispi->sregs + PREOP_OPTYPE));
- dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
- dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
+ if (ispi->sregs) {
+ value = readl(ispi->sregs + SSFSTS_CTL);
+ dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
+ dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
+ readl(ispi->sregs + PREOP_OPTYPE));
+ dev_dbg(ispi->dev, "OPMENU0=0x%08x\n",
+ readl(ispi->sregs + OPMENU0));
+ dev_dbg(ispi->dev, "OPMENU1=0x%08x\n",
+ readl(ispi->sregs + OPMENU1));
+ }
if (ispi->info->type == INTEL_SPI_BYT)
dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
@@ -340,6 +348,13 @@ static int intel_spi_init(struct intel_spi *ispi)
ispi->erase_64k = true;
break;
+ case INTEL_SPI_CNL:
+ ispi->sregs = NULL;
+ ispi->pregs = ispi->base + CNL_PR;
+ ispi->nregions = CNL_FREG_NUM;
+ ispi->pr_num = CNL_PR_NUM;
+ break;
+
default:
return -EINVAL;
}
@@ -367,6 +382,11 @@ static int intel_spi_init(struct intel_spi *ispi)
!(uvscc & ERASE_64K_OPCODE_MASK))
ispi->erase_64k = false;
+ if (ispi->sregs == NULL && (ispi->swseq_reg || ispi->swseq_erase)) {
+ dev_err(ispi->dev, "software sequencer not supported, but required\n");
+ return -EINVAL;
+ }
+
/*
* Some controllers can only do basic operations using hardware
* sequencer. All other operations are supposed to be carried out
@@ -383,7 +403,7 @@ static int intel_spi_init(struct intel_spi *ispi)
val = readl(ispi->base + HSFSTS_CTL);
ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
- if (ispi->locked) {
+ if (ispi->locked && ispi->sregs) {
/*
* BIOS programs allowed opcodes and then locks down the
* register. So read back what opcodes it decided to support.
@@ -426,7 +446,7 @@ static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
return 0;
}
-static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
+static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, size_t len)
{
u32 val, status;
int ret;
@@ -469,7 +489,7 @@ static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
return 0;
}
-static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
+static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, size_t len,
int optype)
{
u32 val = 0, status;
@@ -535,7 +555,8 @@ static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
return 0;
}
-static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
{
struct intel_spi *ispi = nor->priv;
int ret;
@@ -555,7 +576,8 @@ static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
return intel_spi_read_block(ispi, buf, len);
}
-static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
{
struct intel_spi *ispi = nor->priv;
int ret;
@@ -621,6 +643,8 @@ static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
switch (nor->read_opcode) {
case SPINOR_OP_READ:
case SPINOR_OP_READ_FAST:
+ case SPINOR_OP_READ_4B:
+ case SPINOR_OP_READ_FAST_4B:
break;
default:
return -EINVAL;
@@ -862,6 +886,14 @@ static void intel_spi_fill_partition(struct intel_spi *ispi,
}
}
+static const struct spi_nor_controller_ops intel_spi_controller_ops = {
+ .read_reg = intel_spi_read_reg,
+ .write_reg = intel_spi_write_reg,
+ .read = intel_spi_read,
+ .write = intel_spi_write,
+ .erase = intel_spi_erase,
+};
+
struct intel_spi *intel_spi_probe(struct device *dev,
struct resource *mem, const struct intel_spi_boardinfo *info)
{
@@ -895,11 +927,7 @@ struct intel_spi *intel_spi_probe(struct device *dev,
ispi->nor.dev = ispi->dev;
ispi->nor.priv = ispi;
- ispi->nor.read_reg = intel_spi_read_reg;
- ispi->nor.write_reg = intel_spi_write_reg;
- ispi->nor.read = intel_spi_read;
- ispi->nor.write = intel_spi_write;
- ispi->nor.erase = intel_spi_erase;
+ ispi->nor.controller_ops = &intel_spi_controller_ops;
ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
if (ret) {
diff --git a/drivers/mtd/spi-nor/mtk-quadspi.c b/drivers/mtd/spi-nor/mtk-quadspi.c
index 34db01ab6cab..b1691680d174 100644
--- a/drivers/mtd/spi-nor/mtk-quadspi.c
+++ b/drivers/mtd/spi-nor/mtk-quadspi.c
@@ -151,9 +151,9 @@ static int mtk_nor_execute_cmd(struct mtk_nor *mtk_nor, u8 cmdval)
}
static int mtk_nor_do_tx_rx(struct mtk_nor *mtk_nor, u8 op,
- u8 *tx, int txlen, u8 *rx, int rxlen)
+ const u8 *tx, size_t txlen, u8 *rx, size_t rxlen)
{
- int len = 1 + txlen + rxlen;
+ size_t len = 1 + txlen + rxlen;
int i, ret, idx;
if (len > MTK_NOR_MAX_SHIFT)
@@ -193,7 +193,7 @@ static int mtk_nor_do_tx_rx(struct mtk_nor *mtk_nor, u8 op,
}
/* Do a WRSR (Write Status Register) command */
-static int mtk_nor_wr_sr(struct mtk_nor *mtk_nor, u8 sr)
+static int mtk_nor_wr_sr(struct mtk_nor *mtk_nor, const u8 sr)
{
writeb(sr, mtk_nor->base + MTK_NOR_PRGDATA5_REG);
writeb(8, mtk_nor->base + MTK_NOR_CNT_REG);
@@ -354,7 +354,7 @@ static ssize_t mtk_nor_write(struct spi_nor *nor, loff_t to, size_t len,
return len;
}
-static int mtk_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int mtk_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len)
{
int ret;
struct mtk_nor *mtk_nor = nor->priv;
@@ -376,8 +376,8 @@ static int mtk_nor_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
return ret;
}
-static int mtk_nor_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
- int len)
+static int mtk_nor_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
{
int ret;
struct mtk_nor *mtk_nor = nor->priv;
@@ -419,6 +419,13 @@ static int mtk_nor_enable_clk(struct mtk_nor *mtk_nor)
return 0;
}
+static const struct spi_nor_controller_ops mtk_controller_ops = {
+ .read_reg = mtk_nor_read_reg,
+ .write_reg = mtk_nor_write_reg,
+ .read = mtk_nor_read,
+ .write = mtk_nor_write,
+};
+
static int mtk_nor_init(struct mtk_nor *mtk_nor,
struct device_node *flash_node)
{
@@ -438,12 +445,8 @@ static int mtk_nor_init(struct mtk_nor *mtk_nor,
nor->dev = mtk_nor->dev;
nor->priv = mtk_nor;
spi_nor_set_flash_node(nor, flash_node);
+ nor->controller_ops = &mtk_controller_ops;
- /* fill the hooks to spi nor */
- nor->read = mtk_nor_read;
- nor->read_reg = mtk_nor_read_reg;
- nor->write = mtk_nor_write;
- nor->write_reg = mtk_nor_write_reg;
nor->mtd.name = "mtk_nor";
/* initialized with NULL */
ret = spi_nor_scan(nor, NULL, &hwcaps);
diff --git a/drivers/mtd/spi-nor/nxp-spifi.c b/drivers/mtd/spi-nor/nxp-spifi.c
index 4a871587392b..9a5b1a7c636a 100644
--- a/drivers/mtd/spi-nor/nxp-spifi.c
+++ b/drivers/mtd/spi-nor/nxp-spifi.c
@@ -123,7 +123,8 @@ static int nxp_spifi_set_memory_mode_on(struct nxp_spifi *spifi)
return ret;
}
-static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
+ size_t len)
{
struct nxp_spifi *spifi = nor->priv;
u32 cmd;
@@ -145,7 +146,8 @@ static int nxp_spifi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
return nxp_spifi_wait_for_cmd(spifi);
}
-static int nxp_spifi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
+static int nxp_spifi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
+ size_t len)
{
struct nxp_spifi *spifi = nor->priv;
u32 cmd;
@@ -263,9 +265,18 @@ static int nxp_spifi_setup_memory_cmd(struct nxp_spifi *spifi)
static void nxp_spifi_dummy_id_read(struct spi_nor *nor)
{
u8 id[SPI_NOR_MAX_ID_LEN];
- nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
+ nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
+ SPI_NOR_MAX_ID_LEN);
}
+static const struct spi_nor_controller_ops nxp_spifi_controller_ops = {
+ .read_reg = nxp_spifi_read_reg,
+ .write_reg = nxp_spifi_write_reg,
+ .read = nxp_spifi_read,
+ .write = nxp_spifi_write,
+ .erase = nxp_spifi_erase,
+};
+
static int nxp_spifi_setup_flash(struct nxp_spifi *spifi,
struct device_node *np)
{
@@ -332,11 +343,7 @@ static int nxp_spifi_setup_flash(struct nxp_spifi *spifi,
spifi->nor.dev = spifi->dev;
spi_nor_set_flash_node(&spifi->nor, np);
spifi->nor.priv = spifi;
- spifi->nor.read = nxp_spifi_read;
- spifi->nor.write = nxp_spifi_write;
- spifi->nor.erase = nxp_spifi_erase;
- spifi->nor.read_reg = nxp_spifi_read_reg;
- spifi->nor.write_reg = nxp_spifi_write_reg;
+ spifi->nor.controller_ops = &nxp_spifi_controller_ops;
/*
* The first read on a hard reset isn't reliable so do a
diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c
index 0c2ec1c21434..f4afe123e9dc 100644
--- a/drivers/mtd/spi-nor/spi-nor.c
+++ b/drivers/mtd/spi-nor/spi-nor.c
@@ -19,6 +19,7 @@
#include <linux/mtd/mtd.h>
#include <linux/of_platform.h>
+#include <linux/sched/task_stack.h>
#include <linux/spi/flash.h>
#include <linux/mtd/spi-nor.h>
@@ -39,71 +40,6 @@
#define SPI_NOR_MAX_ID_LEN 6
#define SPI_NOR_MAX_ADDR_WIDTH 4
-struct spi_nor_read_command {
- u8 num_mode_clocks;
- u8 num_wait_states;
- u8 opcode;
- enum spi_nor_protocol proto;
-};
-
-struct spi_nor_pp_command {
- u8 opcode;
- enum spi_nor_protocol proto;
-};
-
-enum spi_nor_read_command_index {
- SNOR_CMD_READ,
- SNOR_CMD_READ_FAST,
- SNOR_CMD_READ_1_1_1_DTR,
-
- /* Dual SPI */
- SNOR_CMD_READ_1_1_2,
- SNOR_CMD_READ_1_2_2,
- SNOR_CMD_READ_2_2_2,
- SNOR_CMD_READ_1_2_2_DTR,
-
- /* Quad SPI */
- SNOR_CMD_READ_1_1_4,
- SNOR_CMD_READ_1_4_4,
- SNOR_CMD_READ_4_4_4,
- SNOR_CMD_READ_1_4_4_DTR,
-
- /* Octal SPI */
- SNOR_CMD_READ_1_1_8,
- SNOR_CMD_READ_1_8_8,
- SNOR_CMD_READ_8_8_8,
- SNOR_CMD_READ_1_8_8_DTR,
-
- SNOR_CMD_READ_MAX
-};
-
-enum spi_nor_pp_command_index {
- SNOR_CMD_PP,
-
- /* Quad SPI */
- SNOR_CMD_PP_1_1_4,
- SNOR_CMD_PP_1_4_4,
- SNOR_CMD_PP_4_4_4,
-
- /* Octal SPI */
- SNOR_CMD_PP_1_1_8,
- SNOR_CMD_PP_1_8_8,
- SNOR_CMD_PP_8_8_8,
-
- SNOR_CMD_PP_MAX
-};
-
-struct spi_nor_flash_parameter {
- u64 size;
- u32 page_size;
-
- struct spi_nor_hwcaps hwcaps;
- struct spi_nor_read_command reads[SNOR_CMD_READ_MAX];
- struct spi_nor_pp_command page_programs[SNOR_CMD_PP_MAX];
-
- int (*quad_enable)(struct spi_nor *nor);
-};
-
struct sfdp_parameter_header {
u8 id_lsb;
u8 minor;
@@ -200,7 +136,7 @@ struct sfdp_header {
* register does not modify status register 2.
* - 101b: QE is bit 1 of status register 2. Status register 1 is read using
* Read Status instruction 05h. Status register2 is read using
- * instruction 35h. QE is set via Writ Status instruction 01h with
+ * instruction 35h. QE is set via Write Status instruction 01h with
* two data bytes where bit 1 of the second byte is one.
* [...]
*/
@@ -218,16 +154,26 @@ struct sfdp_bfpt {
/**
* struct spi_nor_fixups - SPI NOR fixup hooks
+ * @default_init: called after default flash parameters init. Used to tweak
+ * flash parameters when information provided by the flash_info
+ * table is incomplete or wrong.
* @post_bfpt: called after the BFPT table has been parsed
+ * @post_sfdp: called after SFDP has been parsed (is also called for SPI NORs
+ * that do not support RDSFDP). Typically used to tweak various
+ * parameters that could not be extracted by other means (i.e.
+ * when information provided by the SFDP/flash_info tables are
+ * incomplete or wrong).
*
* Those hooks can be used to tweak the SPI NOR configuration when the SFDP
* table is broken or not available.
*/
struct spi_nor_fixups {
+ void (*default_init)(struct spi_nor *nor);
int (*post_bfpt)(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
struct spi_nor_flash_parameter *params);
+ void (*post_sfdp)(struct spi_nor *nor);
};
struct flash_info {
@@ -265,6 +211,14 @@ struct flash_info {
* bit. Must be used with
* SPI_NOR_HAS_LOCK.
*/
+#define SPI_NOR_XSR_RDY BIT(10) /*
+ * S3AN flashes have specific opcode to
+ * read the status register.
+ * Flags SPI_NOR_XSR_RDY and SPI_S3AN
+ * use the same bit as one implies the
+ * other, but we will get rid of
+ * SPI_S3AN soon.
+ */
#define SPI_S3AN BIT(10) /*
* Xilinx Spartan 3AN In-System Flash
* (MFR cannot be used for probing
@@ -282,293 +236,629 @@ struct flash_info {
/* Part specific fixup hooks. */
const struct spi_nor_fixups *fixups;
-
- int (*quad_enable)(struct spi_nor *nor);
};
#define JEDEC_MFR(info) ((info)->id[0])
-/*
- * Read the status register, returning its value in the location
- * Return the status register value.
- * Returns negative if error occurred.
+/**
+ * spi_nor_spimem_xfer_data() - helper function to read/write data to
+ * flash's memory region
+ * @nor: pointer to 'struct spi_nor'
+ * @op: pointer to 'struct spi_mem_op' template for transfer
+ *
+ * Return: number of bytes transferred on success, -errno otherwise
*/
-static int read_sr(struct spi_nor *nor)
+static ssize_t spi_nor_spimem_xfer_data(struct spi_nor *nor,
+ struct spi_mem_op *op)
{
+ bool usebouncebuf = false;
+ void *rdbuf = NULL;
+ const void *buf;
int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
- if (ret < 0) {
- pr_err("error %d reading SR\n", (int) ret);
- return ret;
+ if (op->data.dir == SPI_MEM_DATA_IN)
+ buf = op->data.buf.in;
+ else
+ buf = op->data.buf.out;
+
+ if (object_is_on_stack(buf) || !virt_addr_valid(buf))
+ usebouncebuf = true;
+
+ if (usebouncebuf) {
+ if (op->data.nbytes > nor->bouncebuf_size)
+ op->data.nbytes = nor->bouncebuf_size;
+
+ if (op->data.dir == SPI_MEM_DATA_IN) {
+ rdbuf = op->data.buf.in;
+ op->data.buf.in = nor->bouncebuf;
+ } else {
+ op->data.buf.out = nor->bouncebuf;
+ memcpy(nor->bouncebuf, buf,
+ op->data.nbytes);
+ }
}
- return val;
+ ret = spi_mem_adjust_op_size(nor->spimem, op);
+ if (ret)
+ return ret;
+
+ ret = spi_mem_exec_op(nor->spimem, op);
+ if (ret)
+ return ret;
+
+ if (usebouncebuf && op->data.dir == SPI_MEM_DATA_IN)
+ memcpy(rdbuf, nor->bouncebuf, op->data.nbytes);
+
+ return op->data.nbytes;
}
-/*
- * Read the flag status register, returning its value in the location
- * Return the status register value.
- * Returns negative if error occurred.
+/**
+ * spi_nor_spimem_read_data() - read data from flash's memory region via
+ * spi-mem
+ * @nor: pointer to 'struct spi_nor'
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @buf: pointer to dst buffer
+ *
+ * Return: number of bytes read successfully, -errno otherwise
*/
-static int read_fsr(struct spi_nor *nor)
+static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
+ size_t len, u8 *buf)
{
- int ret;
- u8 val;
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
+ SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
+ SPI_MEM_OP_DATA_IN(len, buf, 1));
+
+ /* get transfer protocols. */
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
+ op.dummy.buswidth = op.addr.buswidth;
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
+
+ /* convert the dummy cycles to the number of bytes */
+ op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
+
+ return spi_nor_spimem_xfer_data(nor, &op);
+}
- ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
- if (ret < 0) {
- pr_err("error %d reading FSR\n", ret);
- return ret;
- }
+/**
+ * spi_nor_read_data() - read data from flash memory
+ * @nor: pointer to 'struct spi_nor'
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @buf: pointer to dst buffer
+ *
+ * Return: number of bytes read successfully, -errno otherwise
+ */
+static ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len,
+ u8 *buf)
+{
+ if (nor->spimem)
+ return spi_nor_spimem_read_data(nor, from, len, buf);
- return val;
+ return nor->controller_ops->read(nor, from, len, buf);
}
-/*
- * Read configuration register, returning its value in the
- * location. Return the configuration register value.
- * Returns negative if error occurred.
+/**
+ * spi_nor_spimem_write_data() - write data to flash memory via
+ * spi-mem
+ * @nor: pointer to 'struct spi_nor'
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @buf: pointer to src buffer
+ *
+ * Return: number of bytes written successfully, -errno otherwise
*/
-static int read_cr(struct spi_nor *nor)
+static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
+ size_t len, const u8 *buf)
{
- int ret;
- u8 val;
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(len, buf, 1));
- ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
- if (ret < 0) {
- dev_err(nor->dev, "error %d reading CR\n", ret);
- return ret;
- }
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
- return val;
+ if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
+ op.addr.nbytes = 0;
+
+ return spi_nor_spimem_xfer_data(nor, &op);
}
-/*
- * Write status register 1 byte
- * Returns negative if error occurred.
+/**
+ * spi_nor_write_data() - write data to flash memory
+ * @nor: pointer to 'struct spi_nor'
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @buf: pointer to src buffer
+ *
+ * Return: number of bytes written successfully, -errno otherwise
*/
-static int write_sr(struct spi_nor *nor, u8 val)
+static ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
+ const u8 *buf)
{
- nor->cmd_buf[0] = val;
- return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1);
+ if (nor->spimem)
+ return spi_nor_spimem_write_data(nor, to, len, buf);
+
+ return nor->controller_ops->write(nor, to, len, buf);
}
-/*
- * Set write enable latch with Write Enable command.
- * Returns negative if error occurred.
+/**
+ * spi_nor_write_enable() - Set write enable latch with Write Enable command.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
*/
-static int write_enable(struct spi_nor *nor)
+static int spi_nor_write_enable(struct spi_nor *nor)
{
- return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
+
+ return ret;
}
-/*
- * Send write disable instruction to the chip.
+/**
+ * spi_nor_write_disable() - Send Write Disable instruction to the chip.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
*/
-static int write_disable(struct spi_nor *nor)
+static int spi_nor_write_disable(struct spi_nor *nor)
{
- return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0);
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
+
+ return ret;
}
-static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
+/**
+ * spi_nor_read_sr() - Read the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to a DMA-able buffer where the value of the
+ * Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
{
- return mtd->priv;
-}
+ int ret;
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr, 1));
-static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
+ sr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading SR\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_read_fsr() - Read the Flag Status Register.
+ * @nor: pointer to 'struct spi_nor'
+ * @fsr: pointer to a DMA-able buffer where the value of the
+ * Flag Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
{
- size_t i;
+ int ret;
- for (i = 0; i < size; i++)
- if (table[i][0] == opcode)
- return table[i][1];
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, fsr, 1));
- /* No conversion found, keep input op code. */
- return opcode;
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
+ fsr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading FSR\n", ret);
+
+ return ret;
}
-static u8 spi_nor_convert_3to4_read(u8 opcode)
+/**
+ * spi_nor_read_cr() - Read the Configuration Register using the
+ * SPINOR_OP_RDCR (35h) command.
+ * @nor: pointer to 'struct spi_nor'
+ * @cr: pointer to a DMA-able buffer where the value of the
+ * Configuration Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
{
- static const u8 spi_nor_3to4_read[][2] = {
- { SPINOR_OP_READ, SPINOR_OP_READ_4B },
- { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
- { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
- { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
- { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
- { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
- { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
- { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
+ int ret;
- { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
- { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
- { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
- };
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, cr, 1));
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
- ARRAY_SIZE(spi_nor_3to4_read));
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading CR\n", ret);
+
+ return ret;
}
-static u8 spi_nor_convert_3to4_program(u8 opcode)
+/**
+ * macronix_set_4byte() - Set 4-byte address mode for Macronix flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int macronix_set_4byte(struct spi_nor *nor, bool enable)
{
- static const u8 spi_nor_3to4_program[][2] = {
- { SPINOR_OP_PP, SPINOR_OP_PP_4B },
- { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
- { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
- { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
- { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
- };
+ int ret;
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
- ARRAY_SIZE(spi_nor_3to4_program));
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
+ SPINOR_OP_EN4B :
+ SPINOR_OP_EX4B,
+ 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor,
+ enable ? SPINOR_OP_EN4B :
+ SPINOR_OP_EX4B,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
+
+ return ret;
}
-static u8 spi_nor_convert_3to4_erase(u8 opcode)
+/**
+ * st_micron_set_4byte() - Set 4-byte address mode for ST and Micron flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int st_micron_set_4byte(struct spi_nor *nor, bool enable)
{
- static const u8 spi_nor_3to4_erase[][2] = {
- { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
- { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
- { SPINOR_OP_SE, SPINOR_OP_SE_4B },
- };
+ int ret;
- return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
- ARRAY_SIZE(spi_nor_3to4_erase));
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
+
+ ret = macronix_set_4byte(nor, enable);
+ if (ret)
+ return ret;
+
+ return spi_nor_write_disable(nor);
}
-static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
+/**
+ * spansion_set_4byte() - Set 4-byte address mode for Spansion flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spansion_set_4byte(struct spi_nor *nor, bool enable)
{
- /* Do some manufacturer fixups first */
- switch (JEDEC_MFR(nor->info)) {
- case SNOR_MFR_SPANSION:
- /* No small sector erase for 4-byte command set */
- nor->erase_opcode = SPINOR_OP_SE;
- nor->mtd.erasesize = nor->info->sector_size;
- break;
+ int ret;
- default:
- break;
+ nor->bouncebuf[0] = enable << 7;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
+ nor->bouncebuf, 1);
}
- nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
- nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
- nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
+ if (ret)
+ dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
- if (!spi_nor_has_uniform_erase(nor)) {
- struct spi_nor_erase_map *map = &nor->erase_map;
- struct spi_nor_erase_type *erase;
- int i;
+ return ret;
+}
- for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
- erase = &map->erase_type[i];
- erase->opcode =
- spi_nor_convert_3to4_erase(erase->opcode);
- }
+/**
+ * spi_nor_write_ear() - Write Extended Address Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @ear: value to write to the Extended Address Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
+{
+ int ret;
+
+ nor->bouncebuf[0] = ear;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
+ nor->bouncebuf, 1);
}
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d writing EAR\n", ret);
+
+ return ret;
}
-/* Enable/disable 4-byte addressing mode. */
-static int set_4byte(struct spi_nor *nor, bool enable)
+/**
+ * winbond_set_4byte() - Set 4-byte address mode for Winbond flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
+ * address mode.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int winbond_set_4byte(struct spi_nor *nor, bool enable)
{
- int status;
- bool need_wren = false;
- u8 cmd;
+ int ret;
- switch (JEDEC_MFR(nor->info)) {
- case SNOR_MFR_ST:
- case SNOR_MFR_MICRON:
- /* Some Micron need WREN command; all will accept it */
- need_wren = true;
- /* fall through */
- case SNOR_MFR_MACRONIX:
- case SNOR_MFR_WINBOND:
- if (need_wren)
- write_enable(nor);
+ ret = macronix_set_4byte(nor, enable);
+ if (ret || enable)
+ return ret;
- cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
- status = nor->write_reg(nor, cmd, NULL, 0);
- if (need_wren)
- write_disable(nor);
+ /*
+ * On Winbond W25Q256FV, leaving 4byte mode causes the Extended Address
+ * Register to be set to 1, so all 3-byte-address reads come from the
+ * second 16M. We must clear the register to enable normal behavior.
+ */
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
- if (!status && !enable &&
- JEDEC_MFR(nor->info) == SNOR_MFR_WINBOND) {
- /*
- * On Winbond W25Q256FV, leaving 4byte mode causes
- * the Extended Address Register to be set to 1, so all
- * 3-byte-address reads come from the second 16M.
- * We must clear the register to enable normal behavior.
- */
- write_enable(nor);
- nor->cmd_buf[0] = 0;
- nor->write_reg(nor, SPINOR_OP_WREAR, nor->cmd_buf, 1);
- write_disable(nor);
- }
+ ret = spi_nor_write_ear(nor, 0);
+ if (ret)
+ return ret;
- return status;
- default:
- /* Spansion style */
- nor->cmd_buf[0] = enable << 7;
- return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1);
+ return spi_nor_write_disable(nor);
+}
+
+/**
+ * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to a DMA-able buffer where the value of the
+ * Status Register will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
+ sr, 1);
}
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
+
+ return ret;
}
+/**
+ * s3an_sr_ready() - Query the Status Register of the S3AN flash to see if the
+ * flash is ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
static int s3an_sr_ready(struct spi_nor *nor)
{
int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
- if (ret < 0) {
- dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
+ ret = spi_nor_xread_sr(nor, nor->bouncebuf);
+ if (ret)
return ret;
+
+ return !!(nor->bouncebuf[0] & XSR_RDY);
+}
+
+/**
+ * spi_nor_clear_sr() - Clear the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ */
+static void spi_nor_clear_sr(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
+ NULL, 0);
}
- return !!(val & XSR_RDY);
+ if (ret)
+ dev_dbg(nor->dev, "error %d clearing SR\n", ret);
}
+/**
+ * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
+ * for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
static int spi_nor_sr_ready(struct spi_nor *nor)
{
- int sr = read_sr(nor);
- if (sr < 0)
- return sr;
+ int ret = spi_nor_read_sr(nor, nor->bouncebuf);
+
+ if (ret)
+ return ret;
- if (nor->flags & SNOR_F_USE_CLSR && sr & (SR_E_ERR | SR_P_ERR)) {
- if (sr & SR_E_ERR)
+ if (nor->flags & SNOR_F_USE_CLSR &&
+ nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
+ if (nor->bouncebuf[0] & SR_E_ERR)
dev_err(nor->dev, "Erase Error occurred\n");
else
dev_err(nor->dev, "Programming Error occurred\n");
- nor->write_reg(nor, SPINOR_OP_CLSR, NULL, 0);
+ spi_nor_clear_sr(nor);
return -EIO;
}
- return !(sr & SR_WIP);
+ return !(nor->bouncebuf[0] & SR_WIP);
}
+/**
+ * spi_nor_clear_fsr() - Clear the Flag Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ */
+static void spi_nor_clear_fsr(struct spi_nor *nor)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
+}
+
+/**
+ * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
+ * ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
static int spi_nor_fsr_ready(struct spi_nor *nor)
{
- int fsr = read_fsr(nor);
- if (fsr < 0)
- return fsr;
+ int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
+
+ if (ret)
+ return ret;
- if (fsr & (FSR_E_ERR | FSR_P_ERR)) {
- if (fsr & FSR_E_ERR)
+ if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
+ if (nor->bouncebuf[0] & FSR_E_ERR)
dev_err(nor->dev, "Erase operation failed.\n");
else
dev_err(nor->dev, "Program operation failed.\n");
- if (fsr & FSR_PT_ERR)
+ if (nor->bouncebuf[0] & FSR_PT_ERR)
dev_err(nor->dev,
"Attempted to modify a protected sector.\n");
- nor->write_reg(nor, SPINOR_OP_CLFSR, NULL, 0);
+ spi_nor_clear_fsr(nor);
return -EIO;
}
- return fsr & FSR_READY;
+ return nor->bouncebuf[0] & FSR_READY;
}
+/**
+ * spi_nor_ready() - Query the flash to see if it is ready for new commands.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
static int spi_nor_ready(struct spi_nor *nor)
{
int sr, fsr;
@@ -585,9 +875,13 @@ static int spi_nor_ready(struct spi_nor *nor)
return sr && fsr;
}
-/*
- * Service routine to read status register until ready, or timeout occurs.
- * Returns non-zero if error.
+/**
+ * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
+ * Status Register until ready, or timeout occurs.
+ * @nor: pointer to "struct spi_nor".
+ * @timeout_jiffies: jiffies to wait until timeout.
+ *
+ * Return: 0 on success, -errno otherwise.
*/
static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
unsigned long timeout_jiffies)
@@ -610,27 +904,407 @@ static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
cond_resched();
}
- dev_err(nor->dev, "flash operation timed out\n");
+ dev_dbg(nor->dev, "flash operation timed out\n");
return -ETIMEDOUT;
}
+/**
+ * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
+ * flash to be ready, or timeout occurs.
+ * @nor: pointer to "struct spi_nor".
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
static int spi_nor_wait_till_ready(struct spi_nor *nor)
{
return spi_nor_wait_till_ready_with_timeout(nor,
DEFAULT_READY_WAIT_JIFFIES);
}
-/*
- * Erase the whole flash memory
+/**
+ * spi_nor_write_sr() - Write the Status Register.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr: pointer to DMA-able buffer to write to the Status Register.
+ * @len: number of bytes to write to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
+{
+ int ret;
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(len, sr, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
+ sr, len);
+ }
+
+ if (ret) {
+ dev_dbg(nor->dev, "error %d writing SR\n", ret);
+ return ret;
+ }
+
+ return spi_nor_wait_till_ready(nor);
+}
+
+/**
+ * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
+ * ensure that the byte written match the received value.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
+{
+ int ret;
+
+ nor->bouncebuf[0] = sr1;
+
+ ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
+ if (ret)
+ return ret;
+
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ if (nor->bouncebuf[0] != sr1) {
+ dev_dbg(nor->dev, "SR1: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
+ * Status Register 2 in one shot. Ensure that the byte written in the Status
+ * Register 1 match the received value, and that the 16-bit Write did not
+ * affect what was already in the Status Register 2.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register 1.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
+{
+ int ret;
+ u8 *sr_cr = nor->bouncebuf;
+ u8 cr_written;
+
+ /* Make sure we don't overwrite the contents of Status Register 2. */
+ if (!(nor->flags & SNOR_F_NO_READ_CR)) {
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+ } else if (nor->params.quad_enable) {
+ /*
+ * If the Status Register 2 Read command (35h) is not
+ * supported, we should at least be sure we don't
+ * change the value of the SR2 Quad Enable bit.
+ *
+ * We can safely assume that when the Quad Enable method is
+ * set, the value of the QE bit is one, as a consequence of the
+ * nor->params.quad_enable() call.
+ *
+ * We can safely assume that the Quad Enable bit is present in
+ * the Status Register 2 at BIT(1). According to the JESD216
+ * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
+ * Write Status (01h) command is available just for the cases
+ * in which the QE bit is described in SR2 at BIT(1).
+ */
+ sr_cr[1] = SR2_QUAD_EN_BIT1;
+ } else {
+ sr_cr[1] = 0;
+ }
+
+ sr_cr[0] = sr1;
+
+ ret = spi_nor_write_sr(nor, sr_cr, 2);
+ if (ret)
+ return ret;
+
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return 0;
+
+ cr_written = sr_cr[1];
+
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+
+ if (cr_written != sr_cr[1]) {
+ dev_dbg(nor->dev, "CR: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
+ * Configuration Register in one shot. Ensure that the byte written in the
+ * Configuration Register match the received value, and that the 16-bit Write
+ * did not affect what was already in the Status Register 1.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @cr: byte value to be written to the Configuration Register.
*
- * Returns 0 if successful, non-zero otherwise.
+ * Return: 0 on success, -errno otherwise.
*/
-static int erase_chip(struct spi_nor *nor)
+static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
{
+ int ret;
+ u8 *sr_cr = nor->bouncebuf;
+ u8 sr_written;
+
+ /* Keep the current value of the Status Register 1. */
+ ret = spi_nor_read_sr(nor, sr_cr);
+ if (ret)
+ return ret;
+
+ sr_cr[1] = cr;
+
+ ret = spi_nor_write_sr(nor, sr_cr, 2);
+ if (ret)
+ return ret;
+
+ sr_written = sr_cr[0];
+
+ ret = spi_nor_read_sr(nor, sr_cr);
+ if (ret)
+ return ret;
+
+ if (sr_written != sr_cr[0]) {
+ dev_dbg(nor->dev, "SR: Read back test failed\n");
+ return -EIO;
+ }
+
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return 0;
+
+ ret = spi_nor_read_cr(nor, &sr_cr[1]);
+ if (ret)
+ return ret;
+
+ if (cr != sr_cr[1]) {
+ dev_dbg(nor->dev, "CR: read back test failed\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
+ * the byte written match the received value without affecting other bits in the
+ * Status Register 1 and 2.
+ * @nor: pointer to a 'struct spi_nor'.
+ * @sr1: byte value to be written to the Status Register.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
+{
+ if (nor->flags & SNOR_F_HAS_16BIT_SR)
+ return spi_nor_write_16bit_sr_and_check(nor, sr1);
+
+ return spi_nor_write_sr1_and_check(nor, sr1);
+}
+
+/**
+ * spi_nor_write_sr2() - Write the Status Register 2 using the
+ * SPINOR_OP_WRSR2 (3eh) command.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
+{
+ int ret;
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ return ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(1, sr2, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
+ sr2, 1);
+ }
+
+ if (ret) {
+ dev_dbg(nor->dev, "error %d writing SR2\n", ret);
+ return ret;
+ }
+
+ return spi_nor_wait_till_ready(nor);
+}
+
+/**
+ * spi_nor_read_sr2() - Read the Status Register 2 using the
+ * SPINOR_OP_RDSR2 (3fh) command.
+ * @nor: pointer to 'struct spi_nor'.
+ * @sr2: pointer to DMA-able buffer where the value of the
+ * Status Register 2 will be written.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
+{
+ int ret;
+
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(1, sr2, 1));
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
+ sr2, 1);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d reading SR2\n", ret);
+
+ return ret;
+}
+
+/**
+ * spi_nor_erase_chip() - Erase the entire flash memory.
+ * @nor: pointer to 'struct spi_nor'.
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_erase_chip(struct spi_nor *nor)
+{
+ int ret;
+
dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
- return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0);
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ ret = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
+ NULL, 0);
+ }
+
+ if (ret)
+ dev_dbg(nor->dev, "error %d erasing chip\n", ret);
+
+ return ret;
+}
+
+static struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
+{
+ return mtd->priv;
+}
+
+static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
+{
+ size_t i;
+
+ for (i = 0; i < size; i++)
+ if (table[i][0] == opcode)
+ return table[i][1];
+
+ /* No conversion found, keep input op code. */
+ return opcode;
+}
+
+static u8 spi_nor_convert_3to4_read(u8 opcode)
+{
+ static const u8 spi_nor_3to4_read[][2] = {
+ { SPINOR_OP_READ, SPINOR_OP_READ_4B },
+ { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
+ { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
+ { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
+ { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
+ { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
+ { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
+ { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
+
+ { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
+ { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
+ { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
+ ARRAY_SIZE(spi_nor_3to4_read));
+}
+
+static u8 spi_nor_convert_3to4_program(u8 opcode)
+{
+ static const u8 spi_nor_3to4_program[][2] = {
+ { SPINOR_OP_PP, SPINOR_OP_PP_4B },
+ { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
+ { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
+ { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
+ { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
+ ARRAY_SIZE(spi_nor_3to4_program));
+}
+
+static u8 spi_nor_convert_3to4_erase(u8 opcode)
+{
+ static const u8 spi_nor_3to4_erase[][2] = {
+ { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
+ { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
+ { SPINOR_OP_SE, SPINOR_OP_SE_4B },
+ };
+
+ return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
+ ARRAY_SIZE(spi_nor_3to4_erase));
+}
+
+static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
+{
+ nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
+ nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
+ nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
+
+ if (!spi_nor_has_uniform_erase(nor)) {
+ struct spi_nor_erase_map *map = &nor->params.erase_map;
+ struct spi_nor_erase_type *erase;
+ int i;
+
+ for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
+ erase = &map->erase_type[i];
+ erase->opcode =
+ spi_nor_convert_3to4_erase(erase->opcode);
+ }
+ }
}
static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
@@ -639,10 +1313,9 @@ static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
mutex_lock(&nor->lock);
- if (nor->prepare) {
- ret = nor->prepare(nor, ops);
+ if (nor->controller_ops && nor->controller_ops->prepare) {
+ ret = nor->controller_ops->prepare(nor, ops);
if (ret) {
- dev_err(nor->dev, "failed in the preparation.\n");
mutex_unlock(&nor->lock);
return ret;
}
@@ -652,8 +1325,8 @@ static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
- if (nor->unprepare)
- nor->unprepare(nor, ops);
+ if (nor->controller_ops && nor->controller_ops->unprepare)
+ nor->controller_ops->unprepare(nor, ops);
mutex_unlock(&nor->lock);
}
@@ -666,10 +1339,9 @@ static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
* Addr can safely be unsigned int, the biggest S3AN device is smaller than
* 4 MiB.
*/
-static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
+static u32 s3an_convert_addr(struct spi_nor *nor, u32 addr)
{
- unsigned int offset;
- unsigned int page;
+ u32 offset, page;
offset = addr % nor->page_size;
page = addr / nor->page_size;
@@ -678,30 +1350,46 @@ static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr)
return page | offset;
}
+static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
+{
+ if (!nor->params.convert_addr)
+ return addr;
+
+ return nor->params.convert_addr(nor, addr);
+}
+
/*
* Initiate the erasure of a single sector
*/
static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
{
- u8 buf[SPI_NOR_MAX_ADDR_WIDTH];
int i;
- if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
- addr = spi_nor_s3an_addr_convert(nor, addr);
+ addr = spi_nor_convert_addr(nor, addr);
- if (nor->erase)
- return nor->erase(nor, addr);
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
+ SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_NO_DATA);
+
+ return spi_mem_exec_op(nor->spimem, &op);
+ } else if (nor->controller_ops->erase) {
+ return nor->controller_ops->erase(nor, addr);
+ }
/*
* Default implementation, if driver doesn't have a specialized HW
* control
*/
for (i = nor->addr_width - 1; i >= 0; i--) {
- buf[i] = addr & 0xff;
+ nor->bouncebuf[i] = addr & 0xff;
addr >>= 8;
}
- return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width);
+ return nor->controller_ops->write_reg(nor, nor->erase_opcode,
+ nor->bouncebuf, nor->addr_width);
}
/**
@@ -876,7 +1564,7 @@ static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
struct list_head *erase_list,
u64 addr, u32 len)
{
- const struct spi_nor_erase_map *map = &nor->erase_map;
+ const struct spi_nor_erase_map *map = &nor->params.erase_map;
const struct spi_nor_erase_type *erase, *prev_erase = NULL;
struct spi_nor_erase_region *region;
struct spi_nor_erase_command *cmd = NULL;
@@ -951,7 +1639,9 @@ static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
list_for_each_entry_safe(cmd, next, &erase_list, list) {
nor->erase_opcode = cmd->opcode;
while (cmd->count) {
- write_enable(nor);
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto destroy_erase_cmd_list;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
@@ -1006,12 +1696,13 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
unsigned long timeout;
- write_enable(nor);
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto erase_err;
- if (erase_chip(nor)) {
- ret = -EIO;
+ ret = spi_nor_erase_chip(nor);
+ if (ret)
goto erase_err;
- }
/*
* Scale the timeout linearly with the size of the flash, with
@@ -1034,7 +1725,9 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
/* "sector"-at-a-time erase */
} else if (spi_nor_has_uniform_erase(nor)) {
while (len) {
- write_enable(nor);
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto erase_err;
ret = spi_nor_erase_sector(nor, addr);
if (ret)
@@ -1055,7 +1748,7 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
goto erase_err;
}
- write_disable(nor);
+ ret = spi_nor_write_disable(nor);
erase_err:
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
@@ -1063,27 +1756,6 @@ erase_err:
return ret;
}
-/* Write status register and ensure bits in mask match written values */
-static int write_sr_and_check(struct spi_nor *nor, u8 status_new, u8 mask)
-{
- int ret;
-
- write_enable(nor);
- ret = write_sr(nor, status_new);
- if (ret)
- return ret;
-
- ret = spi_nor_wait_till_ready(nor);
- if (ret)
- return ret;
-
- ret = read_sr(nor);
- if (ret < 0)
- return ret;
-
- return ((ret & mask) != (status_new & mask)) ? -EIO : 0;
-}
-
static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs,
uint64_t *len)
{
@@ -1176,16 +1848,18 @@ static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
- int status_old, status_new;
+ int ret, status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
- status_old = read_sr(nor);
- if (status_old < 0)
- return status_old;
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ status_old = nor->bouncebuf[0];
/* If nothing in our range is unlocked, we don't need to do anything */
if (stm_is_locked_sr(nor, ofs, len, status_old))
@@ -1245,7 +1919,7 @@ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
if ((status_new & mask) < (status_old & mask))
return -EINVAL;
- return write_sr_and_check(nor, status_new, mask);
+ return spi_nor_write_sr_and_check(nor, status_new);
}
/*
@@ -1256,16 +1930,18 @@ static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
struct mtd_info *mtd = &nor->mtd;
- int status_old, status_new;
+ int ret, status_old, status_new;
u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
u8 shift = ffs(mask) - 1, pow, val;
loff_t lock_len;
bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
bool use_top;
- status_old = read_sr(nor);
- if (status_old < 0)
- return status_old;
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
+
+ status_old = nor->bouncebuf[0];
/* If nothing in our range is locked, we don't need to do anything */
if (stm_is_unlocked_sr(nor, ofs, len, status_old))
@@ -1328,7 +2004,7 @@ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
if ((status_new & mask) > (status_old & mask))
return -EINVAL;
- return write_sr_and_check(nor, status_new, mask);
+ return spi_nor_write_sr_and_check(nor, status_new);
}
/*
@@ -1340,15 +2016,21 @@ static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
*/
static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
{
- int status;
+ int ret;
- status = read_sr(nor);
- if (status < 0)
- return status;
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
+ if (ret)
+ return ret;
- return stm_is_locked_sr(nor, ofs, len, status);
+ return stm_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
}
+static const struct spi_nor_locking_ops stm_locking_ops = {
+ .lock = stm_lock,
+ .unlock = stm_unlock,
+ .is_locked = stm_is_locked,
+};
+
static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
@@ -1358,7 +2040,7 @@ static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
if (ret)
return ret;
- ret = nor->flash_lock(nor, ofs, len);
+ ret = nor->params.locking_ops->lock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
return ret;
@@ -1373,7 +2055,7 @@ static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
if (ret)
return ret;
- ret = nor->flash_unlock(nor, ofs, len);
+ ret = nor->params.locking_ops->unlock(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
@@ -1388,205 +2070,65 @@ static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
if (ret)
return ret;
- ret = nor->flash_is_locked(nor, ofs, len);
+ ret = nor->params.locking_ops->is_locked(nor, ofs, len);
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
return ret;
}
-/*
- * Write status Register and configuration register with 2 bytes
- * The first byte will be written to the status register, while the
- * second byte will be written to the configuration register.
- * Return negative if error occurred.
- */
-static int write_sr_cr(struct spi_nor *nor, u8 *sr_cr)
-{
- int ret;
-
- write_enable(nor);
-
- ret = nor->write_reg(nor, SPINOR_OP_WRSR, sr_cr, 2);
- if (ret < 0) {
- dev_err(nor->dev,
- "error while writing configuration register\n");
- return -EINVAL;
- }
-
- ret = spi_nor_wait_till_ready(nor);
- if (ret) {
- dev_err(nor->dev,
- "timeout while writing configuration register\n");
- return ret;
- }
-
- return 0;
-}
-
/**
- * macronix_quad_enable() - set QE bit in Status Register.
+ * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
+ * Register 1.
* @nor: pointer to a 'struct spi_nor'
*
- * Set the Quad Enable (QE) bit in the Status Register.
- *
- * bit 6 of the Status Register is the QE bit for Macronix like QSPI memories.
+ * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
-static int macronix_quad_enable(struct spi_nor *nor)
+static int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
{
- int ret, val;
-
- val = read_sr(nor);
- if (val < 0)
- return val;
- if (val & SR_QUAD_EN_MX)
- return 0;
-
- write_enable(nor);
-
- write_sr(nor, val | SR_QUAD_EN_MX);
-
- ret = spi_nor_wait_till_ready(nor);
- if (ret)
- return ret;
-
- ret = read_sr(nor);
- if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
- dev_err(nor->dev, "Macronix Quad bit not set\n");
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * spansion_quad_enable() - set QE bit in Configuraiton Register.
- * @nor: pointer to a 'struct spi_nor'
- *
- * Set the Quad Enable (QE) bit in the Configuration Register.
- * This function is kept for legacy purpose because it has been used for a
- * long time without anybody complaining but it should be considered as
- * deprecated and maybe buggy.
- * First, this function doesn't care about the previous values of the Status
- * and Configuration Registers when it sets the QE bit (bit 1) in the
- * Configuration Register: all other bits are cleared, which may have unwanted
- * side effects like removing some block protections.
- * Secondly, it uses the Read Configuration Register (35h) instruction though
- * some very old and few memories don't support this instruction. If a pull-up
- * resistor is present on the MISO/IO1 line, we might still be able to pass the
- * "read back" test because the QSPI memory doesn't recognize the command,
- * so leaves the MISO/IO1 line state unchanged, hence read_cr() returns 0xFF.
- *
- * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
- * memories.
- *
- * Return: 0 on success, -errno otherwise.
- */
-static int spansion_quad_enable(struct spi_nor *nor)
-{
- u8 sr_cr[2] = {0, CR_QUAD_EN_SPAN};
int ret;
- ret = write_sr_cr(nor, sr_cr);
+ ret = spi_nor_read_sr(nor, nor->bouncebuf);
if (ret)
return ret;
- /* read back and check it */
- ret = read_cr(nor);
- if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
- dev_err(nor->dev, "Spansion Quad bit not set\n");
- return -EINVAL;
- }
-
- return 0;
-}
-
-/**
- * spansion_no_read_cr_quad_enable() - set QE bit in Configuration Register.
- * @nor: pointer to a 'struct spi_nor'
- *
- * Set the Quad Enable (QE) bit in the Configuration Register.
- * This function should be used with QSPI memories not supporting the Read
- * Configuration Register (35h) instruction.
- *
- * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
- * memories.
- *
- * Return: 0 on success, -errno otherwise.
- */
-static int spansion_no_read_cr_quad_enable(struct spi_nor *nor)
-{
- u8 sr_cr[2];
- int ret;
+ if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
+ return 0;
- /* Keep the current value of the Status Register. */
- ret = read_sr(nor);
- if (ret < 0) {
- dev_err(nor->dev, "error while reading status register\n");
- return -EINVAL;
- }
- sr_cr[0] = ret;
- sr_cr[1] = CR_QUAD_EN_SPAN;
+ nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
- return write_sr_cr(nor, sr_cr);
+ return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
}
/**
- * spansion_read_cr_quad_enable() - set QE bit in Configuration Register.
- * @nor: pointer to a 'struct spi_nor'
+ * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
+ * Register 2.
+ * @nor: pointer to a 'struct spi_nor'.
*
- * Set the Quad Enable (QE) bit in the Configuration Register.
- * This function should be used with QSPI memories supporting the Read
- * Configuration Register (35h) instruction.
- *
- * bit 1 of the Configuration Register is the QE bit for Spansion like QSPI
- * memories.
+ * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
*
* Return: 0 on success, -errno otherwise.
*/
-static int spansion_read_cr_quad_enable(struct spi_nor *nor)
+static int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
{
- struct device *dev = nor->dev;
- u8 sr_cr[2];
int ret;
- /* Check current Quad Enable bit value. */
- ret = read_cr(nor);
- if (ret < 0) {
- dev_err(dev, "error while reading configuration register\n");
- return -EINVAL;
- }
-
- if (ret & CR_QUAD_EN_SPAN)
- return 0;
-
- sr_cr[1] = ret | CR_QUAD_EN_SPAN;
-
- /* Keep the current value of the Status Register. */
- ret = read_sr(nor);
- if (ret < 0) {
- dev_err(dev, "error while reading status register\n");
- return -EINVAL;
- }
- sr_cr[0] = ret;
+ if (nor->flags & SNOR_F_NO_READ_CR)
+ return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
- ret = write_sr_cr(nor, sr_cr);
+ ret = spi_nor_read_cr(nor, nor->bouncebuf);
if (ret)
return ret;
- /* Read back and check it. */
- ret = read_cr(nor);
- if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
- dev_err(nor->dev, "Spansion Quad bit not set\n");
- return -EINVAL;
- }
+ if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
+ return 0;
- return 0;
+ return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
}
/**
- * sr2_bit7_quad_enable() - set QE bit in Status Register 2.
+ * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
* @nor: pointer to a 'struct spi_nor'
*
* Set the Quad Enable (QE) bit in the Status Register 2.
@@ -1597,132 +2139,39 @@ static int spansion_read_cr_quad_enable(struct spi_nor *nor)
*
* Return: 0 on success, -errno otherwise.
*/
-static int sr2_bit7_quad_enable(struct spi_nor *nor)
+static int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
{
- u8 sr2;
+ u8 *sr2 = nor->bouncebuf;
int ret;
+ u8 sr2_written;
/* Check current Quad Enable bit value. */
- ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
+ ret = spi_nor_read_sr2(nor, sr2);
if (ret)
return ret;
- if (sr2 & SR2_QUAD_EN_BIT7)
+ if (*sr2 & SR2_QUAD_EN_BIT7)
return 0;
/* Update the Quad Enable bit. */
- sr2 |= SR2_QUAD_EN_BIT7;
-
- write_enable(nor);
-
- ret = nor->write_reg(nor, SPINOR_OP_WRSR2, &sr2, 1);
- if (ret < 0) {
- dev_err(nor->dev, "error while writing status register 2\n");
- return -EINVAL;
- }
-
- ret = spi_nor_wait_till_ready(nor);
- if (ret < 0) {
- dev_err(nor->dev, "timeout while writing status register 2\n");
- return ret;
- }
-
- /* Read back and check it. */
- ret = nor->read_reg(nor, SPINOR_OP_RDSR2, &sr2, 1);
- if (!(ret > 0 && (sr2 & SR2_QUAD_EN_BIT7))) {
- dev_err(nor->dev, "SR2 Quad bit not set\n");
- return -EINVAL;
- }
-
- return 0;
-}
+ *sr2 |= SR2_QUAD_EN_BIT7;
-/**
- * spi_nor_clear_sr_bp() - clear the Status Register Block Protection bits.
- * @nor: pointer to a 'struct spi_nor'
- *
- * Read-modify-write function that clears the Block Protection bits from the
- * Status Register without affecting other bits.
- *
- * Return: 0 on success, -errno otherwise.
- */
-static int spi_nor_clear_sr_bp(struct spi_nor *nor)
-{
- int ret;
- u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
-
- ret = read_sr(nor);
- if (ret < 0) {
- dev_err(nor->dev, "error while reading status register\n");
+ ret = spi_nor_write_sr2(nor, sr2);
+ if (ret)
return ret;
- }
-
- write_enable(nor);
- ret = write_sr(nor, ret & ~mask);
- if (ret) {
- dev_err(nor->dev, "write to status register failed\n");
- return ret;
- }
+ sr2_written = *sr2;
- ret = spi_nor_wait_till_ready(nor);
+ /* Read back and check it. */
+ ret = spi_nor_read_sr2(nor, sr2);
if (ret)
- dev_err(nor->dev, "timeout while writing status register\n");
- return ret;
-}
-
-/**
- * spi_nor_spansion_clear_sr_bp() - clear the Status Register Block Protection
- * bits on spansion flashes.
- * @nor: pointer to a 'struct spi_nor'
- *
- * Read-modify-write function that clears the Block Protection bits from the
- * Status Register without affecting other bits. The function is tightly
- * coupled with the spansion_quad_enable() function. Both assume that the Write
- * Register with 16 bits, together with the Read Configuration Register (35h)
- * instructions are supported.
- *
- * Return: 0 on success, -errno otherwise.
- */
-static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor)
-{
- int ret;
- u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
- u8 sr_cr[2] = {0};
-
- /* Check current Quad Enable bit value. */
- ret = read_cr(nor);
- if (ret < 0) {
- dev_err(nor->dev,
- "error while reading configuration register\n");
return ret;
- }
-
- /*
- * When the configuration register Quad Enable bit is one, only the
- * Write Status (01h) command with two data bytes may be used.
- */
- if (ret & CR_QUAD_EN_SPAN) {
- sr_cr[1] = ret;
-
- ret = read_sr(nor);
- if (ret < 0) {
- dev_err(nor->dev,
- "error while reading status register\n");
- return ret;
- }
- sr_cr[0] = ret & ~mask;
- ret = write_sr_cr(nor, sr_cr);
- if (ret)
- dev_err(nor->dev, "16-bit write register failed\n");
- return ret;
+ if (*sr2 != sr2_written) {
+ dev_dbg(nor->dev, "SR2: Read back test failed\n");
+ return -EIO;
}
- /*
- * If the Quad Enable bit is zero, use the Write Status (01h) command
- * with one data byte.
- */
- return spi_nor_clear_sr_bp(nor);
+ return 0;
}
/* Used when the "_ext_id" is two bytes at most */
@@ -1776,6 +2225,28 @@ static int spi_nor_spansion_clear_sr_bp(struct spi_nor *nor)
.flags = SPI_NOR_NO_FR | SPI_S3AN,
static int
+is25lp256_post_bfpt_fixups(struct spi_nor *nor,
+ const struct sfdp_parameter_header *bfpt_header,
+ const struct sfdp_bfpt *bfpt,
+ struct spi_nor_flash_parameter *params)
+{
+ /*
+ * IS25LP256 supports 4B opcodes, but the BFPT advertises a
+ * BFPT_DWORD1_ADDRESS_BYTES_3_ONLY address width.
+ * Overwrite the address width advertised by the BFPT.
+ */
+ if ((bfpt->dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) ==
+ BFPT_DWORD1_ADDRESS_BYTES_3_ONLY)
+ nor->addr_width = 4;
+
+ return 0;
+}
+
+static struct spi_nor_fixups is25lp256_fixups = {
+ .post_bfpt = is25lp256_post_bfpt_fixups,
+};
+
+static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
const struct sfdp_bfpt *bfpt,
@@ -1800,6 +2271,21 @@ static struct spi_nor_fixups mx25l25635_fixups = {
.post_bfpt = mx25l25635_post_bfpt_fixups,
};
+static void gd25q256_default_init(struct spi_nor *nor)
+{
+ /*
+ * Some manufacturer like GigaDevice may use different
+ * bit to set QE on different memories, so the MFR can't
+ * indicate the quad_enable method for this case, we need
+ * to set it in the default_init fixup hook.
+ */
+ nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
+}
+
+static struct spi_nor_fixups gd25q256_fixups = {
+ .default_init = gd25q256_default_init,
+};
+
/* NOTE: double check command sets and memory organization when you add
* more nor chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
@@ -1836,6 +2322,8 @@ static const struct flash_info spi_nor_ids[] = {
{ "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
{ "en25q80a", INFO(0x1c3014, 0, 64 * 1024, 16,
SECT_4K | SPI_NOR_DUAL_READ) },
+ { "en25qh16", INFO(0x1c7015, 0, 64 * 1024, 32,
+ SECT_4K | SPI_NOR_DUAL_READ) },
{ "en25qh32", INFO(0x1c7016, 0, 64 * 1024, 64, 0) },
{ "en25qh64", INFO(0x1c7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ) },
@@ -1892,7 +2380,7 @@ static const struct flash_info spi_nor_ids[] = {
"gd25q256", INFO(0xc84019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
SPI_NOR_4B_OPCODES | SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
- .quad_enable = macronix_quad_enable,
+ .fixups = &gd25q256_fixups,
},
/* Intel/Numonyx -- xxxs33b */
@@ -1916,13 +2404,18 @@ static const struct flash_info spi_nor_ids[] = {
SECT_4K | SPI_NOR_DUAL_READ) },
{ "is25lp256", INFO(0x9d6019, 0, 64 * 1024, 512,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
- SPI_NOR_4B_OPCODES) },
+ SPI_NOR_4B_OPCODES)
+ .fixups = &is25lp256_fixups },
{ "is25wp032", INFO(0x9d7016, 0, 64 * 1024, 64,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp064", INFO(0x9d7017, 0, 64 * 1024, 128,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "is25wp128", INFO(0x9d7018, 0, 64 * 1024, 256,
SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "is25wp256", INFO(0x9d7019, 0, 64 * 1024, 512,
+ SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
+ SPI_NOR_4B_OPCODES)
+ .fixups = &is25lp256_fixups },
/* Macronix */
{ "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) },
@@ -1965,10 +2458,16 @@ static const struct flash_info spi_nor_ids[] = {
{ "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) },
- { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) },
{ "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
+ { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096,
+ SECT_4K | USE_FSR | SPI_NOR_QUAD_READ |
+ NO_CHIP_ERASE) },
+ { "mt25qu512a (n25q512a)", INFO(0x20bb20, 0, 64 * 1024, 1024,
+ SECT_4K | USE_FSR | SPI_NOR_DUAL_READ |
+ SPI_NOR_QUAD_READ |
+ SPI_NOR_4B_OPCODES) },
{ "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
/* Micron */
@@ -1977,6 +2476,9 @@ static const struct flash_info spi_nor_ids[] = {
SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
SPI_NOR_4B_OPCODES)
},
+ { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048,
+ SECT_4K | USE_FSR | SPI_NOR_OCTAL_READ |
+ SPI_NOR_4B_OPCODES) },
/* PMC */
{ "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
@@ -1996,7 +2498,7 @@ static const struct flash_info spi_nor_ids[] = {
{ "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s25fl512s", INFO6(0x010220, 0x4d0080, 256 * 1024, 256,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
- SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | USE_CLSR) },
+ SPI_NOR_HAS_LOCK | USE_CLSR) },
{ "s25fs512s", INFO6(0x010220, 0x4d0081, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | USE_CLSR) },
{ "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
{ "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
@@ -2034,6 +2536,8 @@ static const struct flash_info spi_nor_ids[] = {
{ "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) },
{ "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
{ "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
+ { "sst26wf016b", INFO(0xbf2651, 0, 64 * 1024, 32, SECT_4K |
+ SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "sst26vf064b", INFO(0xbf2643, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
/* ST Microelectronics -- newer production may have feature updates */
@@ -2085,6 +2589,11 @@ static const struct flash_info spi_nor_ids[] = {
SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
},
{ "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
+ {
+ "w25q16jv-im/jm", INFO(0xef7015, 0, 64 * 1024, 32,
+ SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
+ SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB)
+ },
{ "w25q20cl", INFO(0xef4012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20bw", INFO(0xef5012, 0, 64 * 1024, 4, SECT_4K) },
{ "w25q20ew", INFO(0xef6012, 0, 64 * 1024, 4, SECT_4K) },
@@ -2120,6 +2629,10 @@ static const struct flash_info spi_nor_ids[] = {
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "w25q256jvm", INFO(0xef7019, 0, 64 * 1024, 512,
+ SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
+ { "w25q256jw", INFO(0xef6019, 0, 64 * 1024, 512,
+ SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
{ "w25m512jv", INFO(0xef7119, 0, 64 * 1024, 1024,
SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_DUAL_READ) },
@@ -2146,11 +2659,22 @@ static const struct flash_info spi_nor_ids[] = {
static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
{
int tmp;
- u8 id[SPI_NOR_MAX_ID_LEN];
+ u8 *id = nor->bouncebuf;
const struct flash_info *info;
- tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN);
- if (tmp < 0) {
+ if (nor->spimem) {
+ struct spi_mem_op op =
+ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
+ SPI_MEM_OP_NO_ADDR,
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
+
+ tmp = spi_mem_exec_op(nor->spimem, &op);
+ } else {
+ tmp = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
+ SPI_NOR_MAX_ID_LEN);
+ }
+ if (tmp) {
dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp);
return ERR_PTR(tmp);
}
@@ -2171,7 +2695,7 @@ static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
- int ret;
+ ssize_t ret;
dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
@@ -2182,10 +2706,9 @@ static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
while (len) {
loff_t addr = from;
- if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
- addr = spi_nor_s3an_addr_convert(nor, addr);
+ addr = spi_nor_convert_addr(nor, addr);
- ret = nor->read(nor, addr, len, buf);
+ ret = spi_nor_read_data(nor, addr, len, buf);
if (ret == 0) {
/* We shouldn't see 0-length reads */
ret = -EIO;
@@ -2211,7 +2734,7 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct spi_nor *nor = mtd_to_spi_nor(mtd);
- size_t actual;
+ size_t actual = 0;
int ret;
dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
@@ -2220,67 +2743,74 @@ static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
if (ret)
return ret;
- write_enable(nor);
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto out;
nor->sst_write_second = false;
- actual = to % 2;
/* Start write from odd address. */
- if (actual) {
+ if (to % 2) {
nor->program_opcode = SPINOR_OP_BP;
/* write one byte. */
- ret = nor->write(nor, to, 1, buf);
+ ret = spi_nor_write_data(nor, to, 1, buf);
if (ret < 0)
- goto sst_write_err;
- WARN(ret != 1, "While writing 1 byte written %i bytes\n",
- (int)ret);
+ goto out;
+ WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
- goto sst_write_err;
+ goto out;
+
+ to++;
+ actual++;
}
- to += actual;
/* Write out most of the data here. */
for (; actual < len - 1; actual += 2) {
nor->program_opcode = SPINOR_OP_AAI_WP;
/* write two bytes. */
- ret = nor->write(nor, to, 2, buf + actual);
+ ret = spi_nor_write_data(nor, to, 2, buf + actual);
if (ret < 0)
- goto sst_write_err;
- WARN(ret != 2, "While writing 2 bytes written %i bytes\n",
- (int)ret);
+ goto out;
+ WARN(ret != 2, "While writing 2 bytes written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
- goto sst_write_err;
+ goto out;
to += 2;
nor->sst_write_second = true;
}
nor->sst_write_second = false;
- write_disable(nor);
+ ret = spi_nor_write_disable(nor);
+ if (ret)
+ goto out;
+
ret = spi_nor_wait_till_ready(nor);
if (ret)
- goto sst_write_err;
+ goto out;
/* Write out trailing byte if it exists. */
if (actual != len) {
- write_enable(nor);
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto out;
nor->program_opcode = SPINOR_OP_BP;
- ret = nor->write(nor, to, 1, buf + actual);
+ ret = spi_nor_write_data(nor, to, 1, buf + actual);
if (ret < 0)
- goto sst_write_err;
- WARN(ret != 1, "While writing 1 byte written %i bytes\n",
- (int)ret);
+ goto out;
+ WARN(ret != 1, "While writing 1 byte written %i bytes\n", ret);
ret = spi_nor_wait_till_ready(nor);
if (ret)
- goto sst_write_err;
- write_disable(nor);
+ goto out;
+
actual += 1;
+
+ ret = spi_nor_write_disable(nor);
}
-sst_write_err:
+out:
*retlen += actual;
spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
return ret;
@@ -2327,11 +2857,13 @@ static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
page_remain = min_t(size_t,
nor->page_size - page_offset, len - i);
- if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT)
- addr = spi_nor_s3an_addr_convert(nor, addr);
+ addr = spi_nor_convert_addr(nor, addr);
+
+ ret = spi_nor_write_enable(nor);
+ if (ret)
+ goto write_err;
- write_enable(nor);
- ret = nor->write(nor, addr, page_remain, buf + i);
+ ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
if (ret < 0)
goto write_err;
written = ret;
@@ -2350,25 +2882,33 @@ write_err:
static int spi_nor_check(struct spi_nor *nor)
{
- if (!nor->dev || !nor->read || !nor->write ||
- !nor->read_reg || !nor->write_reg) {
+ if (!nor->dev ||
+ (!nor->spimem && !nor->controller_ops) ||
+ (!nor->spimem && nor->controller_ops &&
+ (!nor->controller_ops->read ||
+ !nor->controller_ops->write ||
+ !nor->controller_ops->read_reg ||
+ !nor->controller_ops->write_reg))) {
pr_err("spi-nor: please fill all the necessary fields!\n");
return -EINVAL;
}
+ if (nor->spimem && nor->controller_ops) {
+ dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
+ return -EINVAL;
+ }
+
return 0;
}
-static int s3an_nor_scan(struct spi_nor *nor)
+static int s3an_nor_setup(struct spi_nor *nor,
+ const struct spi_nor_hwcaps *hwcaps)
{
int ret;
- u8 val;
- ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1);
- if (ret < 0) {
- dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret);
+ ret = spi_nor_xread_sr(nor, nor->bouncebuf);
+ if (ret)
return ret;
- }
nor->erase_opcode = SPINOR_OP_XSE;
nor->program_opcode = SPINOR_OP_XPP;
@@ -2386,7 +2926,7 @@ static int s3an_nor_scan(struct spi_nor *nor)
* The current addressing mode can be read from the XRDSR register
* and should not be changed, because is a destructive operation.
*/
- if (val & XSR_PAGESIZE) {
+ if (nor->bouncebuf[0] & XSR_PAGESIZE) {
/* Flash in Power of 2 mode */
nor->page_size = (nor->page_size == 264) ? 256 : 512;
nor->mtd.writebufsize = nor->page_size;
@@ -2394,7 +2934,8 @@ static int s3an_nor_scan(struct spi_nor *nor)
nor->mtd.erasesize = 8 * nor->page_size;
} else {
/* Flash in Default addressing mode */
- nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT;
+ nor->params.convert_addr = s3an_convert_addr;
+ nor->mtd.erasesize = nor->info->sector_size;
}
return 0;
@@ -2491,14 +3032,14 @@ static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
*/
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
- int ret;
+ ssize_t ret;
while (len) {
- ret = nor->read(nor, addr, len, buf);
- if (!ret || ret > len)
- return -EIO;
+ ret = spi_nor_read_data(nor, addr, len, buf);
if (ret < 0)
return ret;
+ if (!ret || ret > len)
+ return -EIO;
buf += ret;
addr += ret;
@@ -2544,6 +3085,126 @@ static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
}
/**
+ * spi_nor_spimem_check_op - check if the operation is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@op: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_op(struct spi_nor *nor,
+ struct spi_mem_op *op)
+{
+ /*
+ * First test with 4 address bytes. The opcode itself might
+ * be a 3B addressing opcode but we don't care, because
+ * SPI controller implementation should not check the opcode,
+ * but just the sequence.
+ */
+ op->addr.nbytes = 4;
+ if (!spi_mem_supports_op(nor->spimem, op)) {
+ if (nor->mtd.size > SZ_16M)
+ return -ENOTSUPP;
+
+ /* If flash size <= 16MB, 3 address bytes are sufficient */
+ op->addr.nbytes = 3;
+ if (!spi_mem_supports_op(nor->spimem, op))
+ return -ENOTSUPP;
+ }
+
+ return 0;
+}
+
+/**
+ * spi_nor_spimem_check_readop - check if the read op is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@read: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_readop(struct spi_nor *nor,
+ const struct spi_nor_read_command *read)
+{
+ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
+ SPI_MEM_OP_ADDR(3, 0, 1),
+ SPI_MEM_OP_DUMMY(0, 1),
+ SPI_MEM_OP_DATA_IN(0, NULL, 1));
+
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
+ op.dummy.buswidth = op.addr.buswidth;
+ op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
+ op.dummy.buswidth / 8;
+
+ return spi_nor_spimem_check_op(nor, &op);
+}
+
+/**
+ * spi_nor_spimem_check_pp - check if the page program op is supported
+ * by controller
+ *@nor: pointer to a 'struct spi_nor'
+ *@pp: pointer to op template to be checked
+ *
+ * Returns 0 if operation is supported, -ENOTSUPP otherwise.
+ */
+static int spi_nor_spimem_check_pp(struct spi_nor *nor,
+ const struct spi_nor_pp_command *pp)
+{
+ struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
+ SPI_MEM_OP_ADDR(3, 0, 1),
+ SPI_MEM_OP_NO_DUMMY,
+ SPI_MEM_OP_DATA_OUT(0, NULL, 1));
+
+ op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
+ op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
+ op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
+
+ return spi_nor_spimem_check_op(nor, &op);
+}
+
+/**
+ * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
+ * based on SPI controller capabilities
+ * @nor: pointer to a 'struct spi_nor'
+ * @hwcaps: pointer to resulting capabilities after adjusting
+ * according to controller and flash's capability
+ */
+static void
+spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
+{
+ struct spi_nor_flash_parameter *params = &nor->params;
+ unsigned int cap;
+
+ /* DTR modes are not supported yet, mask them all. */
+ *hwcaps &= ~SNOR_HWCAPS_DTR;
+
+ /* X-X-X modes are not supported yet, mask them all. */
+ *hwcaps &= ~SNOR_HWCAPS_X_X_X;
+
+ for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
+ int rdidx, ppidx;
+
+ if (!(*hwcaps & BIT(cap)))
+ continue;
+
+ rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
+ if (rdidx >= 0 &&
+ spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
+ *hwcaps &= ~BIT(cap);
+
+ ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
+ if (ppidx < 0)
+ continue;
+
+ if (spi_nor_spimem_check_pp(nor,
+ &params->page_programs[ppidx]))
+ *hwcaps &= ~BIT(cap);
+ }
+}
+
+/**
* spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
@@ -2861,7 +3522,7 @@ static int spi_nor_parse_bfpt(struct spi_nor *nor,
const struct sfdp_parameter_header *bfpt_header,
struct spi_nor_flash_parameter *params)
{
- struct spi_nor_erase_map *map = &nor->erase_map;
+ struct spi_nor_erase_map *map = &params->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
struct sfdp_bfpt bfpt;
size_t len;
@@ -2942,7 +3603,7 @@ static int spi_nor_parse_bfpt(struct spi_nor *nor,
* Erase Types defined in the bfpt table.
*/
erase_mask = 0;
- memset(&nor->erase_map, 0, sizeof(nor->erase_map));
+ memset(&params->erase_map, 0, sizeof(params->erase_map));
for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
u32 erasesize;
@@ -2995,20 +3656,39 @@ static int spi_nor_parse_bfpt(struct spi_nor *nor,
break;
case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
+ /*
+ * Writing only one byte to the Status Register has the
+ * side-effect of clearing Status Register 2.
+ */
case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
- params->quad_enable = spansion_no_read_cr_quad_enable;
+ /*
+ * Read Configuration Register (35h) instruction is not
+ * supported.
+ */
+ nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
+ params->quad_enable = spi_nor_sr2_bit1_quad_enable;
break;
case BFPT_DWORD15_QER_SR1_BIT6:
- params->quad_enable = macronix_quad_enable;
+ nor->flags &= ~SNOR_F_HAS_16BIT_SR;
+ params->quad_enable = spi_nor_sr1_bit6_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT7:
- params->quad_enable = sr2_bit7_quad_enable;
+ nor->flags &= ~SNOR_F_HAS_16BIT_SR;
+ params->quad_enable = spi_nor_sr2_bit7_quad_enable;
break;
case BFPT_DWORD15_QER_SR2_BIT1:
- params->quad_enable = spansion_read_cr_quad_enable;
+ /*
+ * JESD216 rev B or later does not specify if writing only one
+ * byte to the Status Register clears or not the Status
+ * Register 2, so let's be cautious and keep the default
+ * assumption of a 16-bit Write Status (01h) command.
+ */
+ nor->flags |= SNOR_F_HAS_16BIT_SR;
+
+ params->quad_enable = spi_nor_sr2_bit1_quad_enable;
break;
default:
@@ -3217,14 +3897,18 @@ spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
/**
* spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
* @nor: pointer to a 'struct spi_nor'
+ * @params: pointer to a duplicate 'struct spi_nor_flash_parameter' that is
+ * used for storing SFDP parsed data
* @smpt: pointer to the sector map parameter table
*
* Return: 0 on success, -errno otherwise.
*/
-static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
- const u32 *smpt)
+static int
+spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
+ struct spi_nor_flash_parameter *params,
+ const u32 *smpt)
{
- struct spi_nor_erase_map *map = &nor->erase_map;
+ struct spi_nor_erase_map *map = &params->erase_map;
struct spi_nor_erase_type *erase = map->erase_type;
struct spi_nor_erase_region *region;
u64 offset;
@@ -3303,6 +3987,8 @@ static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
* spi_nor_parse_smpt() - parse Sector Map Parameter Table
* @nor: pointer to a 'struct spi_nor'
* @smpt_header: sector map parameter table header
+ * @params: pointer to a duplicate 'struct spi_nor_flash_parameter'
+ * that is used for storing SFDP parsed data
*
* This table is optional, but when available, we parse it to identify the
* location and size of sectors within the main data array of the flash memory
@@ -3311,7 +3997,8 @@ static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_smpt(struct spi_nor *nor,
- const struct sfdp_parameter_header *smpt_header)
+ const struct sfdp_parameter_header *smpt_header,
+ struct spi_nor_flash_parameter *params)
{
const u32 *sector_map;
u32 *smpt;
@@ -3340,11 +4027,11 @@ static int spi_nor_parse_smpt(struct spi_nor *nor,
goto out;
}
- ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
+ ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
if (ret)
goto out;
- spi_nor_regions_sort_erase_types(&nor->erase_map);
+ spi_nor_regions_sort_erase_types(&params->erase_map);
/* fall through */
out:
kfree(smpt);
@@ -3400,7 +4087,7 @@ static int spi_nor_parse_4bait(struct spi_nor *nor,
{ 0u /* not used */, BIT(12) },
};
struct spi_nor_pp_command *params_pp = params->page_programs;
- struct spi_nor_erase_map *map = &nor->erase_map;
+ struct spi_nor_erase_map *map = &params->erase_map;
struct spi_nor_erase_type *erase_type = map->erase_type;
u32 *dwords;
size_t len;
@@ -3422,7 +4109,7 @@ static int spi_nor_parse_4bait(struct spi_nor *nor,
addr = SFDP_PARAM_HEADER_PTP(param_header);
ret = spi_nor_read_sfdp(nor, addr, len, dwords);
if (ret)
- return ret;
+ goto out;
/* Fix endianness of the 4BAIT DWORDs. */
for (i = 0; i < SFDP_4BAIT_DWORD_MAX; i++)
@@ -3600,7 +4287,7 @@ static int spi_nor_parse_sfdp(struct spi_nor *nor,
err = spi_nor_read_sfdp(nor, sizeof(header),
psize, param_headers);
if (err < 0) {
- dev_err(dev, "failed to read SFDP parameter headers\n");
+ dev_dbg(dev, "failed to read SFDP parameter headers\n");
goto exit;
}
}
@@ -3630,7 +4317,7 @@ static int spi_nor_parse_sfdp(struct spi_nor *nor,
switch (SFDP_PARAM_HEADER_ID(param_header)) {
case SFDP_SECTOR_MAP_ID:
- err = spi_nor_parse_smpt(nor, param_header);
+ err = spi_nor_parse_smpt(nor, param_header, params);
break;
case SFDP_4BAIT_ID:
@@ -3659,135 +4346,7 @@ exit:
return err;
}
-static int spi_nor_init_params(struct spi_nor *nor,
- struct spi_nor_flash_parameter *params)
-{
- struct spi_nor_erase_map *map = &nor->erase_map;
- const struct flash_info *info = nor->info;
- u8 i, erase_mask;
-
- /* Set legacy flash parameters as default. */
- memset(params, 0, sizeof(*params));
-
- /* Set SPI NOR sizes. */
- params->size = (u64)info->sector_size * info->n_sectors;
- params->page_size = info->page_size;
-
- /* (Fast) Read settings. */
- params->hwcaps.mask |= SNOR_HWCAPS_READ;
- spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
- 0, 0, SPINOR_OP_READ,
- SNOR_PROTO_1_1_1);
-
- if (!(info->flags & SPI_NOR_NO_FR)) {
- params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
- spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
- 0, 8, SPINOR_OP_READ_FAST,
- SNOR_PROTO_1_1_1);
- }
-
- if (info->flags & SPI_NOR_DUAL_READ) {
- params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
- spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
- 0, 8, SPINOR_OP_READ_1_1_2,
- SNOR_PROTO_1_1_2);
- }
-
- if (info->flags & SPI_NOR_QUAD_READ) {
- params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
- spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
- 0, 8, SPINOR_OP_READ_1_1_4,
- SNOR_PROTO_1_1_4);
- }
-
- if (info->flags & SPI_NOR_OCTAL_READ) {
- params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
- spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
- 0, 8, SPINOR_OP_READ_1_1_8,
- SNOR_PROTO_1_1_8);
- }
-
- /* Page Program settings. */
- params->hwcaps.mask |= SNOR_HWCAPS_PP;
- spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
- SPINOR_OP_PP, SNOR_PROTO_1_1_1);
-
- /*
- * Sector Erase settings. Sort Erase Types in ascending order, with the
- * smallest erase size starting at BIT(0).
- */
- erase_mask = 0;
- i = 0;
- if (info->flags & SECT_4K_PMC) {
- erase_mask |= BIT(i);
- spi_nor_set_erase_type(&map->erase_type[i], 4096u,
- SPINOR_OP_BE_4K_PMC);
- i++;
- } else if (info->flags & SECT_4K) {
- erase_mask |= BIT(i);
- spi_nor_set_erase_type(&map->erase_type[i], 4096u,
- SPINOR_OP_BE_4K);
- i++;
- }
- erase_mask |= BIT(i);
- spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
- SPINOR_OP_SE);
- spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
-
- /* Select the procedure to set the Quad Enable bit. */
- if (params->hwcaps.mask & (SNOR_HWCAPS_READ_QUAD |
- SNOR_HWCAPS_PP_QUAD)) {
- switch (JEDEC_MFR(info)) {
- case SNOR_MFR_MACRONIX:
- params->quad_enable = macronix_quad_enable;
- break;
-
- case SNOR_MFR_ST:
- case SNOR_MFR_MICRON:
- break;
-
- default:
- /* Kept only for backward compatibility purpose. */
- params->quad_enable = spansion_quad_enable;
- if (nor->clear_sr_bp)
- nor->clear_sr_bp = spi_nor_spansion_clear_sr_bp;
- break;
- }
-
- /*
- * Some manufacturer like GigaDevice may use different
- * bit to set QE on different memories, so the MFR can't
- * indicate the quad_enable method for this case, we need
- * set it in flash info list.
- */
- if (info->quad_enable)
- params->quad_enable = info->quad_enable;
- }
-
- if ((info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
- !(info->flags & SPI_NOR_SKIP_SFDP)) {
- struct spi_nor_flash_parameter sfdp_params;
- struct spi_nor_erase_map prev_map;
-
- memcpy(&sfdp_params, params, sizeof(sfdp_params));
- memcpy(&prev_map, &nor->erase_map, sizeof(prev_map));
-
- if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
- nor->addr_width = 0;
- nor->flags &= ~SNOR_F_4B_OPCODES;
- /* restore previous erase map */
- memcpy(&nor->erase_map, &prev_map,
- sizeof(nor->erase_map));
- } else {
- memcpy(params, &sfdp_params, sizeof(*params));
- }
- }
-
- return 0;
-}
-
static int spi_nor_select_read(struct spi_nor *nor,
- const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
@@ -3800,7 +4359,7 @@ static int spi_nor_select_read(struct spi_nor *nor,
if (cmd < 0)
return -EINVAL;
- read = &params->reads[cmd];
+ read = &nor->params.reads[cmd];
nor->read_opcode = read->opcode;
nor->read_proto = read->proto;
@@ -3819,7 +4378,6 @@ static int spi_nor_select_read(struct spi_nor *nor,
}
static int spi_nor_select_pp(struct spi_nor *nor,
- const struct spi_nor_flash_parameter *params,
u32 shared_hwcaps)
{
int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
@@ -3832,7 +4390,7 @@ static int spi_nor_select_pp(struct spi_nor *nor,
if (cmd < 0)
return -EINVAL;
- pp = &params->page_programs[cmd];
+ pp = &nor->params.page_programs[cmd];
nor->program_opcode = pp->opcode;
nor->write_proto = pp->proto;
return 0;
@@ -3891,11 +4449,12 @@ spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
return erase;
}
-static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
+static int spi_nor_select_erase(struct spi_nor *nor)
{
- struct spi_nor_erase_map *map = &nor->erase_map;
+ struct spi_nor_erase_map *map = &nor->params.erase_map;
const struct spi_nor_erase_type *erase = NULL;
struct mtd_info *mtd = &nor->mtd;
+ u32 wanted_size = nor->info->sector_size;
int i;
/*
@@ -3938,12 +4497,11 @@ static int spi_nor_select_erase(struct spi_nor *nor, u32 wanted_size)
return 0;
}
-static int spi_nor_setup(struct spi_nor *nor,
- const struct spi_nor_flash_parameter *params,
- const struct spi_nor_hwcaps *hwcaps)
+static int spi_nor_default_setup(struct spi_nor *nor,
+ const struct spi_nor_hwcaps *hwcaps)
{
+ struct spi_nor_flash_parameter *params = &nor->params;
u32 ignored_mask, shared_mask;
- bool enable_quad_io;
int err;
/*
@@ -3952,49 +4510,408 @@ static int spi_nor_setup(struct spi_nor *nor,
*/
shared_mask = hwcaps->mask & params->hwcaps.mask;
- /* SPI n-n-n protocols are not supported yet. */
- ignored_mask = (SNOR_HWCAPS_READ_2_2_2 |
- SNOR_HWCAPS_READ_4_4_4 |
- SNOR_HWCAPS_READ_8_8_8 |
- SNOR_HWCAPS_PP_4_4_4 |
- SNOR_HWCAPS_PP_8_8_8);
- if (shared_mask & ignored_mask) {
- dev_dbg(nor->dev,
- "SPI n-n-n protocols are not supported yet.\n");
- shared_mask &= ~ignored_mask;
+ if (nor->spimem) {
+ /*
+ * When called from spi_nor_probe(), all caps are set and we
+ * need to discard some of them based on what the SPI
+ * controller actually supports (using spi_mem_supports_op()).
+ */
+ spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
+ } else {
+ /*
+ * SPI n-n-n protocols are not supported when the SPI
+ * controller directly implements the spi_nor interface.
+ * Yet another reason to switch to spi-mem.
+ */
+ ignored_mask = SNOR_HWCAPS_X_X_X;
+ if (shared_mask & ignored_mask) {
+ dev_dbg(nor->dev,
+ "SPI n-n-n protocols are not supported.\n");
+ shared_mask &= ~ignored_mask;
+ }
}
/* Select the (Fast) Read command. */
- err = spi_nor_select_read(nor, params, shared_mask);
+ err = spi_nor_select_read(nor, shared_mask);
if (err) {
- dev_err(nor->dev,
+ dev_dbg(nor->dev,
"can't select read settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Page Program command. */
- err = spi_nor_select_pp(nor, params, shared_mask);
+ err = spi_nor_select_pp(nor, shared_mask);
if (err) {
- dev_err(nor->dev,
+ dev_dbg(nor->dev,
"can't select write settings supported by both the SPI controller and memory.\n");
return err;
}
/* Select the Sector Erase command. */
- err = spi_nor_select_erase(nor, nor->info->sector_size);
+ err = spi_nor_select_erase(nor);
if (err) {
- dev_err(nor->dev,
+ dev_dbg(nor->dev,
"can't select erase settings supported by both the SPI controller and memory.\n");
return err;
}
- /* Enable Quad I/O if needed. */
- enable_quad_io = (spi_nor_get_protocol_width(nor->read_proto) == 4 ||
- spi_nor_get_protocol_width(nor->write_proto) == 4);
- if (enable_quad_io && params->quad_enable)
- nor->quad_enable = params->quad_enable;
- else
- nor->quad_enable = NULL;
+ return 0;
+}
+
+static int spi_nor_setup(struct spi_nor *nor,
+ const struct spi_nor_hwcaps *hwcaps)
+{
+ if (!nor->params.setup)
+ return 0;
+
+ return nor->params.setup(nor, hwcaps);
+}
+
+static void atmel_set_default_init(struct spi_nor *nor)
+{
+ nor->flags |= SNOR_F_HAS_LOCK;
+}
+
+static void intel_set_default_init(struct spi_nor *nor)
+{
+ nor->flags |= SNOR_F_HAS_LOCK;
+}
+
+static void issi_set_default_init(struct spi_nor *nor)
+{
+ nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
+}
+
+static void macronix_set_default_init(struct spi_nor *nor)
+{
+ nor->params.quad_enable = spi_nor_sr1_bit6_quad_enable;
+ nor->params.set_4byte = macronix_set_4byte;
+}
+
+static void sst_set_default_init(struct spi_nor *nor)
+{
+ nor->flags |= SNOR_F_HAS_LOCK;
+}
+
+static void st_micron_set_default_init(struct spi_nor *nor)
+{
+ nor->flags |= SNOR_F_HAS_LOCK;
+ nor->params.quad_enable = NULL;
+ nor->params.set_4byte = st_micron_set_4byte;
+}
+
+static void winbond_set_default_init(struct spi_nor *nor)
+{
+ nor->params.set_4byte = winbond_set_4byte;
+}
+
+/**
+ * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
+ * settings based on MFR register and ->default_init() hook.
+ * @nor: pointer to a 'struct spi-nor'.
+ */
+static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
+{
+ /* Init flash parameters based on MFR */
+ switch (JEDEC_MFR(nor->info)) {
+ case SNOR_MFR_ATMEL:
+ atmel_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_INTEL:
+ intel_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_ISSI:
+ issi_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_MACRONIX:
+ macronix_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_ST:
+ case SNOR_MFR_MICRON:
+ st_micron_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_SST:
+ sst_set_default_init(nor);
+ break;
+
+ case SNOR_MFR_WINBOND:
+ winbond_set_default_init(nor);
+ break;
+
+ default:
+ break;
+ }
+
+ if (nor->info->fixups && nor->info->fixups->default_init)
+ nor->info->fixups->default_init(nor);
+}
+
+/**
+ * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
+ * based on JESD216 SFDP standard.
+ * @nor: pointer to a 'struct spi-nor'.
+ *
+ * The method has a roll-back mechanism: in case the SFDP parsing fails, the
+ * legacy flash parameters and settings will be restored.
+ */
+static void spi_nor_sfdp_init_params(struct spi_nor *nor)
+{
+ struct spi_nor_flash_parameter sfdp_params;
+
+ memcpy(&sfdp_params, &nor->params, sizeof(sfdp_params));
+
+ if (spi_nor_parse_sfdp(nor, &sfdp_params)) {
+ nor->addr_width = 0;
+ nor->flags &= ~SNOR_F_4B_OPCODES;
+ } else {
+ memcpy(&nor->params, &sfdp_params, sizeof(nor->params));
+ }
+}
+
+/**
+ * spi_nor_info_init_params() - Initialize the flash's parameters and settings
+ * based on nor->info data.
+ * @nor: pointer to a 'struct spi-nor'.
+ */
+static void spi_nor_info_init_params(struct spi_nor *nor)
+{
+ struct spi_nor_flash_parameter *params = &nor->params;
+ struct spi_nor_erase_map *map = &params->erase_map;
+ const struct flash_info *info = nor->info;
+ struct device_node *np = spi_nor_get_flash_node(nor);
+ u8 i, erase_mask;
+
+ /* Initialize legacy flash parameters and settings. */
+ params->quad_enable = spi_nor_sr2_bit1_quad_enable;
+ params->set_4byte = spansion_set_4byte;
+ params->setup = spi_nor_default_setup;
+ /* Default to 16-bit Write Status (01h) Command */
+ nor->flags |= SNOR_F_HAS_16BIT_SR;
+
+ /* Set SPI NOR sizes. */
+ params->size = (u64)info->sector_size * info->n_sectors;
+ params->page_size = info->page_size;
+
+ if (!(info->flags & SPI_NOR_NO_FR)) {
+ /* Default to Fast Read for DT and non-DT platform devices. */
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
+
+ /* Mask out Fast Read if not requested at DT instantiation. */
+ if (np && !of_property_read_bool(np, "m25p,fast-read"))
+ params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
+ }
+
+ /* (Fast) Read settings. */
+ params->hwcaps.mask |= SNOR_HWCAPS_READ;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
+ 0, 0, SPINOR_OP_READ,
+ SNOR_PROTO_1_1_1);
+
+ if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
+ 0, 8, SPINOR_OP_READ_FAST,
+ SNOR_PROTO_1_1_1);
+
+ if (info->flags & SPI_NOR_DUAL_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
+ 0, 8, SPINOR_OP_READ_1_1_2,
+ SNOR_PROTO_1_1_2);
+ }
+
+ if (info->flags & SPI_NOR_QUAD_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
+ 0, 8, SPINOR_OP_READ_1_1_4,
+ SNOR_PROTO_1_1_4);
+ }
+
+ if (info->flags & SPI_NOR_OCTAL_READ) {
+ params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
+ spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
+ 0, 8, SPINOR_OP_READ_1_1_8,
+ SNOR_PROTO_1_1_8);
+ }
+
+ /* Page Program settings. */
+ params->hwcaps.mask |= SNOR_HWCAPS_PP;
+ spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
+ SPINOR_OP_PP, SNOR_PROTO_1_1_1);
+
+ /*
+ * Sector Erase settings. Sort Erase Types in ascending order, with the
+ * smallest erase size starting at BIT(0).
+ */
+ erase_mask = 0;
+ i = 0;
+ if (info->flags & SECT_4K_PMC) {
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], 4096u,
+ SPINOR_OP_BE_4K_PMC);
+ i++;
+ } else if (info->flags & SECT_4K) {
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], 4096u,
+ SPINOR_OP_BE_4K);
+ i++;
+ }
+ erase_mask |= BIT(i);
+ spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
+ SPINOR_OP_SE);
+ spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
+}
+
+static void spansion_post_sfdp_fixups(struct spi_nor *nor)
+{
+ struct mtd_info *mtd = &nor->mtd;
+
+ if (mtd->size <= SZ_16M)
+ return;
+
+ nor->flags |= SNOR_F_4B_OPCODES;
+ /* No small sector erase for 4-byte command set */
+ nor->erase_opcode = SPINOR_OP_SE;
+ nor->mtd.erasesize = nor->info->sector_size;
+}
+
+static void s3an_post_sfdp_fixups(struct spi_nor *nor)
+{
+ nor->params.setup = s3an_nor_setup;
+}
+
+/**
+ * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
+ * after SFDP has been parsed (is also called for SPI NORs that do not
+ * support RDSFDP).
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Typically used to tweak various parameters that could not be extracted by
+ * other means (i.e. when information provided by the SFDP/flash_info tables
+ * are incomplete or wrong).
+ */
+static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
+{
+ switch (JEDEC_MFR(nor->info)) {
+ case SNOR_MFR_SPANSION:
+ spansion_post_sfdp_fixups(nor);
+ break;
+
+ default:
+ break;
+ }
+
+ if (nor->info->flags & SPI_S3AN)
+ s3an_post_sfdp_fixups(nor);
+
+ if (nor->info->fixups && nor->info->fixups->post_sfdp)
+ nor->info->fixups->post_sfdp(nor);
+}
+
+/**
+ * spi_nor_late_init_params() - Late initialization of default flash parameters.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Used to set default flash parameters and settings when the ->default_init()
+ * hook or the SFDP parser let voids.
+ */
+static void spi_nor_late_init_params(struct spi_nor *nor)
+{
+ /*
+ * NOR protection support. When locking_ops are not provided, we pick
+ * the default ones.
+ */
+ if (nor->flags & SNOR_F_HAS_LOCK && !nor->params.locking_ops)
+ nor->params.locking_ops = &stm_locking_ops;
+}
+
+/**
+ * spi_nor_init_params() - Initialize the flash's parameters and settings.
+ * @nor: pointer to a 'struct spi-nor'.
+ *
+ * The flash parameters and settings are initialized based on a sequence of
+ * calls that are ordered by priority:
+ *
+ * 1/ Default flash parameters initialization. The initializations are done
+ * based on nor->info data:
+ * spi_nor_info_init_params()
+ *
+ * which can be overwritten by:
+ * 2/ Manufacturer flash parameters initialization. The initializations are
+ * done based on MFR register, or when the decisions can not be done solely
+ * based on MFR, by using specific flash_info tweeks, ->default_init():
+ * spi_nor_manufacturer_init_params()
+ *
+ * which can be overwritten by:
+ * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
+ * should be more accurate that the above.
+ * spi_nor_sfdp_init_params()
+ *
+ * Please note that there is a ->post_bfpt() fixup hook that can overwrite
+ * the flash parameters and settings immediately after parsing the Basic
+ * Flash Parameter Table.
+ *
+ * which can be overwritten by:
+ * 4/ Post SFDP flash parameters initialization. Used to tweak various
+ * parameters that could not be extracted by other means (i.e. when
+ * information provided by the SFDP/flash_info tables are incomplete or
+ * wrong).
+ * spi_nor_post_sfdp_fixups()
+ *
+ * 5/ Late default flash parameters initialization, used when the
+ * ->default_init() hook or the SFDP parser do not set specific params.
+ * spi_nor_late_init_params()
+ */
+static void spi_nor_init_params(struct spi_nor *nor)
+{
+ spi_nor_info_init_params(nor);
+
+ spi_nor_manufacturer_init_params(nor);
+
+ if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
+ !(nor->info->flags & SPI_NOR_SKIP_SFDP))
+ spi_nor_sfdp_init_params(nor);
+
+ spi_nor_post_sfdp_fixups(nor);
+
+ spi_nor_late_init_params(nor);
+}
+
+/**
+ * spi_nor_quad_enable() - enable Quad I/O if needed.
+ * @nor: pointer to a 'struct spi_nor'
+ *
+ * Return: 0 on success, -errno otherwise.
+ */
+static int spi_nor_quad_enable(struct spi_nor *nor)
+{
+ if (!nor->params.quad_enable)
+ return 0;
+
+ if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
+ spi_nor_get_protocol_width(nor->write_proto) == 4))
+ return 0;
+
+ return nor->params.quad_enable(nor);
+}
+
+/**
+ * spi_nor_unlock_all() - Unlocks the entire flash memory array.
+ * @nor: pointer to a 'struct spi_nor'.
+ *
+ * Some SPI NOR flashes are write protected by default after a power-on reset
+ * cycle, in order to avoid inadvertent writes during power-up. Backward
+ * compatibility imposes to unlock the entire flash memory array at power-up
+ * by default.
+ */
+static int spi_nor_unlock_all(struct spi_nor *nor)
+{
+ if (nor->flags & SNOR_F_HAS_LOCK)
+ return spi_nor_unlock(&nor->mtd, 0, nor->params.size);
return 0;
}
@@ -4003,21 +4920,16 @@ static int spi_nor_init(struct spi_nor *nor)
{
int err;
- if (nor->clear_sr_bp) {
- err = nor->clear_sr_bp(nor);
- if (err) {
- dev_err(nor->dev,
- "fail to clear block protection bits\n");
- return err;
- }
+ err = spi_nor_quad_enable(nor);
+ if (err) {
+ dev_dbg(nor->dev, "quad mode not supported\n");
+ return err;
}
- if (nor->quad_enable) {
- err = nor->quad_enable(nor);
- if (err) {
- dev_err(nor->dev, "quad mode not supported\n");
- return err;
- }
+ err = spi_nor_unlock_all(nor);
+ if (err) {
+ dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
+ return err;
}
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
@@ -4030,7 +4942,7 @@ static int spi_nor_init(struct spi_nor *nor)
*/
WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
"enabling reset hack; may not recover from unexpected reboots\n");
- set_4byte(nor, true);
+ nor->params.set_4byte(nor, true);
}
return 0;
@@ -4054,7 +4966,7 @@ void spi_nor_restore(struct spi_nor *nor)
/* restore the addressing mode */
if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
nor->flags & SNOR_F_BROKEN_RESET)
- set_4byte(nor, false);
+ nor->params.set_4byte(nor, false);
}
EXPORT_SYMBOL_GPL(spi_nor_restore);
@@ -4070,25 +4982,47 @@ static const struct flash_info *spi_nor_match_id(const char *name)
return NULL;
}
-int spi_nor_scan(struct spi_nor *nor, const char *name,
- const struct spi_nor_hwcaps *hwcaps)
+static int spi_nor_set_addr_width(struct spi_nor *nor)
+{
+ if (nor->addr_width) {
+ /* already configured from SFDP */
+ } else if (nor->info->addr_width) {
+ nor->addr_width = nor->info->addr_width;
+ } else if (nor->mtd.size > 0x1000000) {
+ /* enable 4-byte addressing if the device exceeds 16MiB */
+ nor->addr_width = 4;
+ } else {
+ nor->addr_width = 3;
+ }
+
+ if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
+ dev_dbg(nor->dev, "address width is too large: %u\n",
+ nor->addr_width);
+ return -EINVAL;
+ }
+
+ /* Set 4byte opcodes when possible. */
+ if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
+ !(nor->flags & SNOR_F_HAS_4BAIT))
+ spi_nor_set_4byte_opcodes(nor);
+
+ return 0;
+}
+
+static void spi_nor_debugfs_init(struct spi_nor *nor,
+ const struct flash_info *info)
{
- struct spi_nor_flash_parameter params;
- const struct flash_info *info = NULL;
- struct device *dev = nor->dev;
struct mtd_info *mtd = &nor->mtd;
- struct device_node *np = spi_nor_get_flash_node(nor);
- int ret;
- int i;
- ret = spi_nor_check(nor);
- if (ret)
- return ret;
+ mtd->dbg.partname = info->name;
+ mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
+ info->id_len, info->id);
+}
- /* Reset SPI protocol for all commands. */
- nor->reg_proto = SNOR_PROTO_1_1_1;
- nor->read_proto = SNOR_PROTO_1_1_1;
- nor->write_proto = SNOR_PROTO_1_1_1;
+static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
+ const char *name)
+{
+ const struct flash_info *info = NULL;
if (name)
info = spi_nor_match_id(name);
@@ -4096,7 +5030,7 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
if (!info)
info = spi_nor_read_id(nor);
if (IS_ERR_OR_NULL(info))
- return -ENOENT;
+ return ERR_PTR(-ENOENT);
/*
* If caller has specified name of flash model that can normally be
@@ -4107,7 +5041,7 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
jinfo = spi_nor_read_id(nor);
if (IS_ERR(jinfo)) {
- return PTR_ERR(jinfo);
+ return jinfo;
} else if (jinfo != info) {
/*
* JEDEC knows better, so overwrite platform ID. We
@@ -4116,14 +5050,57 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
* marked read-only, and we don't want to lose that
* information, even if it's not 100% accurate.
*/
- dev_warn(dev, "found %s, expected %s\n",
+ dev_warn(nor->dev, "found %s, expected %s\n",
jinfo->name, info->name);
info = jinfo;
}
}
+ return info;
+}
+
+int spi_nor_scan(struct spi_nor *nor, const char *name,
+ const struct spi_nor_hwcaps *hwcaps)
+{
+ const struct flash_info *info;
+ struct device *dev = nor->dev;
+ struct mtd_info *mtd = &nor->mtd;
+ struct device_node *np = spi_nor_get_flash_node(nor);
+ struct spi_nor_flash_parameter *params = &nor->params;
+ int ret;
+ int i;
+
+ ret = spi_nor_check(nor);
+ if (ret)
+ return ret;
+
+ /* Reset SPI protocol for all commands. */
+ nor->reg_proto = SNOR_PROTO_1_1_1;
+ nor->read_proto = SNOR_PROTO_1_1_1;
+ nor->write_proto = SNOR_PROTO_1_1_1;
+
+ /*
+ * We need the bounce buffer early to read/write registers when going
+ * through the spi-mem layer (buffers have to be DMA-able).
+ * For spi-mem drivers, we'll reallocate a new buffer if
+ * nor->page_size turns out to be greater than PAGE_SIZE (which
+ * shouldn't happen before long since NOR pages are usually less
+ * than 1KB) after spi_nor_scan() returns.
+ */
+ nor->bouncebuf_size = PAGE_SIZE;
+ nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
+ GFP_KERNEL);
+ if (!nor->bouncebuf)
+ return -ENOMEM;
+
+ info = spi_nor_get_flash_info(nor, name);
+ if (IS_ERR(info))
+ return PTR_ERR(info);
+
nor->info = info;
+ spi_nor_debugfs_init(nor, info);
+
mutex_init(&nor->lock);
/*
@@ -4131,23 +5108,14 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
* spi_nor_wait_till_ready(). Xilinx S3AN share MFR
* with Atmel spi-nor
*/
- if (info->flags & SPI_S3AN)
+ if (info->flags & SPI_NOR_XSR_RDY)
nor->flags |= SNOR_F_READY_XSR_RDY;
- /*
- * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up
- * with the software protection bits set.
- */
- if (JEDEC_MFR(nor->info) == SNOR_MFR_ATMEL ||
- JEDEC_MFR(nor->info) == SNOR_MFR_INTEL ||
- JEDEC_MFR(nor->info) == SNOR_MFR_SST ||
- nor->info->flags & SPI_NOR_HAS_LOCK)
- nor->clear_sr_bp = spi_nor_clear_sr_bp;
-
- /* Parse the Serial Flash Discoverable Parameters table. */
- ret = spi_nor_init_params(nor, &params);
- if (ret)
- return ret;
+ if (info->flags & SPI_NOR_HAS_LOCK)
+ nor->flags |= SNOR_F_HAS_LOCK;
+
+ /* Init flash parameters based on flash_info struct and SFDP */
+ spi_nor_init_params(nor);
if (!mtd->name)
mtd->name = dev_name(dev);
@@ -4155,21 +5123,12 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
- mtd->size = params.size;
+ mtd->size = params->size;
mtd->_erase = spi_nor_erase;
mtd->_read = spi_nor_read;
mtd->_resume = spi_nor_resume;
- /* NOR protection support for STmicro/Micron chips and similar */
- if (JEDEC_MFR(info) == SNOR_MFR_ST ||
- JEDEC_MFR(info) == SNOR_MFR_MICRON ||
- info->flags & SPI_NOR_HAS_LOCK) {
- nor->flash_lock = stm_lock;
- nor->flash_unlock = stm_unlock;
- nor->flash_is_locked = stm_is_locked;
- }
-
- if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) {
+ if (nor->params.locking_ops) {
mtd->_lock = spi_nor_lock;
mtd->_unlock = spi_nor_unlock;
mtd->_is_locked = spi_nor_is_locked;
@@ -4194,68 +5153,28 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
mtd->flags |= MTD_NO_ERASE;
mtd->dev.parent = dev;
- nor->page_size = params.page_size;
+ nor->page_size = params->page_size;
mtd->writebufsize = nor->page_size;
- if (np) {
- /* If we were instantiated by DT, use it */
- if (of_property_read_bool(np, "m25p,fast-read"))
- params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
- else
- params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
- } else {
- /* If we weren't instantiated by DT, default to fast-read */
- params.hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
- }
-
if (of_property_read_bool(np, "broken-flash-reset"))
nor->flags |= SNOR_F_BROKEN_RESET;
- /* Some devices cannot do fast-read, no matter what DT tells us */
- if (info->flags & SPI_NOR_NO_FR)
- params.hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
-
/*
* Configure the SPI memory:
* - select op codes for (Fast) Read, Page Program and Sector Erase.
* - set the number of dummy cycles (mode cycles + wait states).
* - set the SPI protocols for register and memory accesses.
- * - set the Quad Enable bit if needed (required by SPI x-y-4 protos).
*/
- ret = spi_nor_setup(nor, &params, hwcaps);
+ ret = spi_nor_setup(nor, hwcaps);
if (ret)
return ret;
- if (nor->addr_width) {
- /* already configured from SFDP */
- } else if (info->addr_width) {
- nor->addr_width = info->addr_width;
- } else if (mtd->size > 0x1000000) {
- /* enable 4-byte addressing if the device exceeds 16MiB */
- nor->addr_width = 4;
- } else {
- nor->addr_width = 3;
- }
-
- if (info->flags & SPI_NOR_4B_OPCODES ||
- (JEDEC_MFR(info) == SNOR_MFR_SPANSION && mtd->size > SZ_16M))
+ if (info->flags & SPI_NOR_4B_OPCODES)
nor->flags |= SNOR_F_4B_OPCODES;
- if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
- !(nor->flags & SNOR_F_HAS_4BAIT))
- spi_nor_set_4byte_opcodes(nor);
-
- if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
- dev_err(dev, "address width is too large: %u\n",
- nor->addr_width);
- return -EINVAL;
- }
-
- if (info->flags & SPI_S3AN) {
- ret = s3an_nor_scan(nor);
- if (ret)
- return ret;
- }
+ ret = spi_nor_set_addr_width(nor);
+ if (ret)
+ return ret;
/* Send all the required SPI flash commands to initialize device */
ret = spi_nor_init(nor);
@@ -4285,6 +5204,174 @@ int spi_nor_scan(struct spi_nor *nor, const char *name,
}
EXPORT_SYMBOL_GPL(spi_nor_scan);
+static int spi_nor_probe(struct spi_mem *spimem)
+{
+ struct spi_device *spi = spimem->spi;
+ struct flash_platform_data *data = dev_get_platdata(&spi->dev);
+ struct spi_nor *nor;
+ /*
+ * Enable all caps by default. The core will mask them after
+ * checking what's really supported using spi_mem_supports_op().
+ */
+ const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
+ char *flash_name;
+ int ret;
+
+ nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
+ if (!nor)
+ return -ENOMEM;
+
+ nor->spimem = spimem;
+ nor->dev = &spi->dev;
+ spi_nor_set_flash_node(nor, spi->dev.of_node);
+
+ spi_mem_set_drvdata(spimem, nor);
+
+ if (data && data->name)
+ nor->mtd.name = data->name;
+
+ if (!nor->mtd.name)
+ nor->mtd.name = spi_mem_get_name(spimem);
+
+ /*
+ * For some (historical?) reason many platforms provide two different
+ * names in flash_platform_data: "name" and "type". Quite often name is
+ * set to "m25p80" and then "type" provides a real chip name.
+ * If that's the case, respect "type" and ignore a "name".
+ */
+ if (data && data->type)
+ flash_name = data->type;
+ else if (!strcmp(spi->modalias, "spi-nor"))
+ flash_name = NULL; /* auto-detect */
+ else
+ flash_name = spi->modalias;
+
+ ret = spi_nor_scan(nor, flash_name, &hwcaps);
+ if (ret)
+ return ret;
+
+ /*
+ * None of the existing parts have > 512B pages, but let's play safe
+ * and add this logic so that if anyone ever adds support for such
+ * a NOR we don't end up with buffer overflows.
+ */
+ if (nor->page_size > PAGE_SIZE) {
+ nor->bouncebuf_size = nor->page_size;
+ devm_kfree(nor->dev, nor->bouncebuf);
+ nor->bouncebuf = devm_kmalloc(nor->dev,
+ nor->bouncebuf_size,
+ GFP_KERNEL);
+ if (!nor->bouncebuf)
+ return -ENOMEM;
+ }
+
+ return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
+ data ? data->nr_parts : 0);
+}
+
+static int spi_nor_remove(struct spi_mem *spimem)
+{
+ struct spi_nor *nor = spi_mem_get_drvdata(spimem);
+
+ spi_nor_restore(nor);
+
+ /* Clean up MTD stuff. */
+ return mtd_device_unregister(&nor->mtd);
+}
+
+static void spi_nor_shutdown(struct spi_mem *spimem)
+{
+ struct spi_nor *nor = spi_mem_get_drvdata(spimem);
+
+ spi_nor_restore(nor);
+}
+
+/*
+ * Do NOT add to this array without reading the following:
+ *
+ * Historically, many flash devices are bound to this driver by their name. But
+ * since most of these flash are compatible to some extent, and their
+ * differences can often be differentiated by the JEDEC read-ID command, we
+ * encourage new users to add support to the spi-nor library, and simply bind
+ * against a generic string here (e.g., "jedec,spi-nor").
+ *
+ * Many flash names are kept here in this list (as well as in spi-nor.c) to
+ * keep them available as module aliases for existing platforms.
+ */
+static const struct spi_device_id spi_nor_dev_ids[] = {
+ /*
+ * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
+ * hack around the fact that the SPI core does not provide uevent
+ * matching for .of_match_table
+ */
+ {"spi-nor"},
+
+ /*
+ * Entries not used in DTs that should be safe to drop after replacing
+ * them with "spi-nor" in platform data.
+ */
+ {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
+
+ /*
+ * Entries that were used in DTs without "jedec,spi-nor" fallback and
+ * should be kept for backward compatibility.
+ */
+ {"at25df321a"}, {"at25df641"}, {"at26df081a"},
+ {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
+ {"mx25l25635e"},{"mx66l51235l"},
+ {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
+ {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
+ {"s25fl064k"},
+ {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
+ {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
+ {"m25p64"}, {"m25p128"},
+ {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
+ {"w25q80bl"}, {"w25q128"}, {"w25q256"},
+
+ /* Flashes that can't be detected using JEDEC */
+ {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
+ {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
+ {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
+
+ /* Everspin MRAMs (non-JEDEC) */
+ { "mr25h128" }, /* 128 Kib, 40 MHz */
+ { "mr25h256" }, /* 256 Kib, 40 MHz */
+ { "mr25h10" }, /* 1 Mib, 40 MHz */
+ { "mr25h40" }, /* 4 Mib, 40 MHz */
+
+ { },
+};
+MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
+
+static const struct of_device_id spi_nor_of_table[] = {
+ /*
+ * Generic compatibility for SPI NOR that can be identified by the
+ * JEDEC READ ID opcode (0x9F). Use this, if possible.
+ */
+ { .compatible = "jedec,spi-nor" },
+ { /* sentinel */ },
+};
+MODULE_DEVICE_TABLE(of, spi_nor_of_table);
+
+/*
+ * REVISIT: many of these chips have deep power-down modes, which
+ * should clearly be entered on suspend() to minimize power use.
+ * And also when they're otherwise idle...
+ */
+static struct spi_mem_driver spi_nor_driver = {
+ .spidrv = {
+ .driver = {
+ .name = "spi-nor",
+ .of_match_table = spi_nor_of_table,
+ },
+ .id_table = spi_nor_dev_ids,
+ },
+ .probe = spi_nor_probe,
+ .remove = spi_nor_remove,
+ .shutdown = spi_nor_shutdown,
+};
+module_spi_mem_driver(spi_nor_driver);
+
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
MODULE_AUTHOR("Mike Lavender");
diff --git a/drivers/mtd/spi-nor/stm32-quadspi.c b/drivers/mtd/spi-nor/stm32-quadspi.c
deleted file mode 100644
index 33534f9e296b..000000000000
--- a/drivers/mtd/spi-nor/stm32-quadspi.c
+++ /dev/null
@@ -1,707 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * Driver for stm32 quadspi controller
- *
- * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
- * Author(s): Ludovic Barre author <ludovic.barre@st.com>.
- */
-#include <linux/clk.h>
-#include <linux/errno.h>
-#include <linux/io.h>
-#include <linux/iopoll.h>
-#include <linux/interrupt.h>
-#include <linux/module.h>
-#include <linux/mtd/mtd.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/spi-nor.h>
-#include <linux/mutex.h>
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <linux/platform_device.h>
-#include <linux/reset.h>
-#include <linux/sizes.h>
-
-#define QUADSPI_CR 0x00
-#define CR_EN BIT(0)
-#define CR_ABORT BIT(1)
-#define CR_DMAEN BIT(2)
-#define CR_TCEN BIT(3)
-#define CR_SSHIFT BIT(4)
-#define CR_DFM BIT(6)
-#define CR_FSEL BIT(7)
-#define CR_FTHRES_SHIFT 8
-#define CR_FTHRES_MASK GENMASK(12, 8)
-#define CR_FTHRES(n) (((n) << CR_FTHRES_SHIFT) & CR_FTHRES_MASK)
-#define CR_TEIE BIT(16)
-#define CR_TCIE BIT(17)
-#define CR_FTIE BIT(18)
-#define CR_SMIE BIT(19)
-#define CR_TOIE BIT(20)
-#define CR_PRESC_SHIFT 24
-#define CR_PRESC_MASK GENMASK(31, 24)
-#define CR_PRESC(n) (((n) << CR_PRESC_SHIFT) & CR_PRESC_MASK)
-
-#define QUADSPI_DCR 0x04
-#define DCR_CSHT_SHIFT 8
-#define DCR_CSHT_MASK GENMASK(10, 8)
-#define DCR_CSHT(n) (((n) << DCR_CSHT_SHIFT) & DCR_CSHT_MASK)
-#define DCR_FSIZE_SHIFT 16
-#define DCR_FSIZE_MASK GENMASK(20, 16)
-#define DCR_FSIZE(n) (((n) << DCR_FSIZE_SHIFT) & DCR_FSIZE_MASK)
-
-#define QUADSPI_SR 0x08
-#define SR_TEF BIT(0)
-#define SR_TCF BIT(1)
-#define SR_FTF BIT(2)
-#define SR_SMF BIT(3)
-#define SR_TOF BIT(4)
-#define SR_BUSY BIT(5)
-#define SR_FLEVEL_SHIFT 8
-#define SR_FLEVEL_MASK GENMASK(13, 8)
-
-#define QUADSPI_FCR 0x0c
-#define FCR_CTCF BIT(1)
-
-#define QUADSPI_DLR 0x10
-
-#define QUADSPI_CCR 0x14
-#define CCR_INST_SHIFT 0
-#define CCR_INST_MASK GENMASK(7, 0)
-#define CCR_INST(n) (((n) << CCR_INST_SHIFT) & CCR_INST_MASK)
-#define CCR_IMODE_NONE (0U << 8)
-#define CCR_IMODE_1 (1U << 8)
-#define CCR_IMODE_2 (2U << 8)
-#define CCR_IMODE_4 (3U << 8)
-#define CCR_ADMODE_NONE (0U << 10)
-#define CCR_ADMODE_1 (1U << 10)
-#define CCR_ADMODE_2 (2U << 10)
-#define CCR_ADMODE_4 (3U << 10)
-#define CCR_ADSIZE_SHIFT 12
-#define CCR_ADSIZE_MASK GENMASK(13, 12)
-#define CCR_ADSIZE(n) (((n) << CCR_ADSIZE_SHIFT) & CCR_ADSIZE_MASK)
-#define CCR_ABMODE_NONE (0U << 14)
-#define CCR_ABMODE_1 (1U << 14)
-#define CCR_ABMODE_2 (2U << 14)
-#define CCR_ABMODE_4 (3U << 14)
-#define CCR_ABSIZE_8 (0U << 16)
-#define CCR_ABSIZE_16 (1U << 16)
-#define CCR_ABSIZE_24 (2U << 16)
-#define CCR_ABSIZE_32 (3U << 16)
-#define CCR_DCYC_SHIFT 18
-#define CCR_DCYC_MASK GENMASK(22, 18)
-#define CCR_DCYC(n) (((n) << CCR_DCYC_SHIFT) & CCR_DCYC_MASK)
-#define CCR_DMODE_NONE (0U << 24)
-#define CCR_DMODE_1 (1U << 24)
-#define CCR_DMODE_2 (2U << 24)
-#define CCR_DMODE_4 (3U << 24)
-#define CCR_FMODE_INDW (0U << 26)
-#define CCR_FMODE_INDR (1U << 26)
-#define CCR_FMODE_APM (2U << 26)
-#define CCR_FMODE_MM (3U << 26)
-
-#define QUADSPI_AR 0x18
-#define QUADSPI_ABR 0x1c
-#define QUADSPI_DR 0x20
-#define QUADSPI_PSMKR 0x24
-#define QUADSPI_PSMAR 0x28
-#define QUADSPI_PIR 0x2c
-#define QUADSPI_LPTR 0x30
-#define LPTR_DFT_TIMEOUT 0x10
-
-#define FSIZE_VAL(size) (__fls(size) - 1)
-
-#define STM32_MAX_MMAP_SZ SZ_256M
-#define STM32_MAX_NORCHIP 2
-
-#define STM32_QSPI_FIFO_SZ 32
-#define STM32_QSPI_FIFO_TIMEOUT_US 30000
-#define STM32_QSPI_BUSY_TIMEOUT_US 100000
-
-struct stm32_qspi_flash {
- struct spi_nor nor;
- struct stm32_qspi *qspi;
- u32 cs;
- u32 fsize;
- u32 presc;
- u32 read_mode;
- bool registered;
- u32 prefetch_limit;
-};
-
-struct stm32_qspi {
- struct device *dev;
- void __iomem *io_base;
- void __iomem *mm_base;
- resource_size_t mm_size;
- u32 nor_num;
- struct clk *clk;
- u32 clk_rate;
- struct stm32_qspi_flash flash[STM32_MAX_NORCHIP];
- struct completion cmd_completion;
-
- /*
- * to protect device configuration, could be different between
- * 2 flash access (bk1, bk2)
- */
- struct mutex lock;
-};
-
-struct stm32_qspi_cmd {
- u8 addr_width;
- u8 dummy;
- bool tx_data;
- u8 opcode;
- u32 framemode;
- u32 qspimode;
- u32 addr;
- size_t len;
- void *buf;
-};
-
-static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
-{
- u32 cr;
- int err = 0;
-
- if (readl_relaxed(qspi->io_base + QUADSPI_SR) & SR_TCF)
- return 0;
-
- reinit_completion(&qspi->cmd_completion);
- cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
- writel_relaxed(cr | CR_TCIE, qspi->io_base + QUADSPI_CR);
-
- if (!wait_for_completion_interruptible_timeout(&qspi->cmd_completion,
- msecs_to_jiffies(1000)))
- err = -ETIMEDOUT;
-
- writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
- return err;
-}
-
-static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
-{
- u32 sr;
-
- return readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR, sr,
- !(sr & SR_BUSY), 10,
- STM32_QSPI_BUSY_TIMEOUT_US);
-}
-
-static void stm32_qspi_set_framemode(struct spi_nor *nor,
- struct stm32_qspi_cmd *cmd, bool read)
-{
- u32 dmode = CCR_DMODE_1;
-
- cmd->framemode = CCR_IMODE_1;
-
- if (read) {
- switch (nor->read_proto) {
- default:
- case SNOR_PROTO_1_1_1:
- dmode = CCR_DMODE_1;
- break;
- case SNOR_PROTO_1_1_2:
- dmode = CCR_DMODE_2;
- break;
- case SNOR_PROTO_1_1_4:
- dmode = CCR_DMODE_4;
- break;
- }
- }
-
- cmd->framemode |= cmd->tx_data ? dmode : 0;
- cmd->framemode |= cmd->addr_width ? CCR_ADMODE_1 : 0;
-}
-
-static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
-{
- *val = readb_relaxed(addr);
-}
-
-static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
-{
- writeb_relaxed(*val, addr);
-}
-
-static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
- const struct stm32_qspi_cmd *cmd)
-{
- void (*tx_fifo)(u8 *, void __iomem *);
- u32 len = cmd->len, sr;
- u8 *buf = cmd->buf;
- int ret;
-
- if (cmd->qspimode == CCR_FMODE_INDW)
- tx_fifo = stm32_qspi_write_fifo;
- else
- tx_fifo = stm32_qspi_read_fifo;
-
- while (len--) {
- ret = readl_relaxed_poll_timeout(qspi->io_base + QUADSPI_SR,
- sr, (sr & SR_FTF), 10,
- STM32_QSPI_FIFO_TIMEOUT_US);
- if (ret) {
- dev_err(qspi->dev, "fifo timeout (stat:%#x)\n", sr);
- return ret;
- }
- tx_fifo(buf++, qspi->io_base + QUADSPI_DR);
- }
-
- return 0;
-}
-
-static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
- const struct stm32_qspi_cmd *cmd)
-{
- memcpy_fromio(cmd->buf, qspi->mm_base + cmd->addr, cmd->len);
- return 0;
-}
-
-static int stm32_qspi_tx(struct stm32_qspi *qspi,
- const struct stm32_qspi_cmd *cmd)
-{
- if (!cmd->tx_data)
- return 0;
-
- if (cmd->qspimode == CCR_FMODE_MM)
- return stm32_qspi_tx_mm(qspi, cmd);
-
- return stm32_qspi_tx_poll(qspi, cmd);
-}
-
-static int stm32_qspi_send(struct stm32_qspi_flash *flash,
- const struct stm32_qspi_cmd *cmd)
-{
- struct stm32_qspi *qspi = flash->qspi;
- u32 ccr, dcr, cr;
- u32 last_byte;
- int err;
-
- err = stm32_qspi_wait_nobusy(qspi);
- if (err)
- goto abort;
-
- dcr = readl_relaxed(qspi->io_base + QUADSPI_DCR) & ~DCR_FSIZE_MASK;
- dcr |= DCR_FSIZE(flash->fsize);
- writel_relaxed(dcr, qspi->io_base + QUADSPI_DCR);
-
- cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
- cr &= ~CR_PRESC_MASK & ~CR_FSEL;
- cr |= CR_PRESC(flash->presc);
- cr |= flash->cs ? CR_FSEL : 0;
- writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
-
- if (cmd->tx_data)
- writel_relaxed(cmd->len - 1, qspi->io_base + QUADSPI_DLR);
-
- ccr = cmd->framemode | cmd->qspimode;
-
- if (cmd->dummy)
- ccr |= CCR_DCYC(cmd->dummy);
-
- if (cmd->addr_width)
- ccr |= CCR_ADSIZE(cmd->addr_width - 1);
-
- ccr |= CCR_INST(cmd->opcode);
- writel_relaxed(ccr, qspi->io_base + QUADSPI_CCR);
-
- if (cmd->addr_width && cmd->qspimode != CCR_FMODE_MM)
- writel_relaxed(cmd->addr, qspi->io_base + QUADSPI_AR);
-
- err = stm32_qspi_tx(qspi, cmd);
- if (err)
- goto abort;
-
- if (cmd->qspimode != CCR_FMODE_MM) {
- err = stm32_qspi_wait_cmd(qspi);
- if (err)
- goto abort;
- writel_relaxed(FCR_CTCF, qspi->io_base + QUADSPI_FCR);
- } else {
- last_byte = cmd->addr + cmd->len;
- if (last_byte > flash->prefetch_limit)
- goto abort;
- }
-
- return err;
-
-abort:
- cr = readl_relaxed(qspi->io_base + QUADSPI_CR) | CR_ABORT;
- writel_relaxed(cr, qspi->io_base + QUADSPI_CR);
-
- if (err)
- dev_err(qspi->dev, "%s abort err:%d\n", __func__, err);
-
- return err;
-}
-
-static int stm32_qspi_read_reg(struct spi_nor *nor,
- u8 opcode, u8 *buf, int len)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct device *dev = flash->qspi->dev;
- struct stm32_qspi_cmd cmd;
-
- dev_dbg(dev, "read_reg: cmd:%#.2x buf:%pK len:%#x\n", opcode, buf, len);
-
- memset(&cmd, 0, sizeof(cmd));
- cmd.opcode = opcode;
- cmd.tx_data = true;
- cmd.len = len;
- cmd.buf = buf;
- cmd.qspimode = CCR_FMODE_INDR;
-
- stm32_qspi_set_framemode(nor, &cmd, false);
-
- return stm32_qspi_send(flash, &cmd);
-}
-
-static int stm32_qspi_write_reg(struct spi_nor *nor, u8 opcode,
- u8 *buf, int len)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct device *dev = flash->qspi->dev;
- struct stm32_qspi_cmd cmd;
-
- dev_dbg(dev, "write_reg: cmd:%#.2x buf:%pK len:%#x\n", opcode, buf, len);
-
- memset(&cmd, 0, sizeof(cmd));
- cmd.opcode = opcode;
- cmd.tx_data = !!(buf && len > 0);
- cmd.len = len;
- cmd.buf = buf;
- cmd.qspimode = CCR_FMODE_INDW;
-
- stm32_qspi_set_framemode(nor, &cmd, false);
-
- return stm32_qspi_send(flash, &cmd);
-}
-
-static ssize_t stm32_qspi_read(struct spi_nor *nor, loff_t from, size_t len,
- u_char *buf)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct stm32_qspi *qspi = flash->qspi;
- struct stm32_qspi_cmd cmd;
- int err;
-
- dev_dbg(qspi->dev, "read(%#.2x): buf:%pK from:%#.8x len:%#zx\n",
- nor->read_opcode, buf, (u32)from, len);
-
- memset(&cmd, 0, sizeof(cmd));
- cmd.opcode = nor->read_opcode;
- cmd.addr_width = nor->addr_width;
- cmd.addr = (u32)from;
- cmd.tx_data = true;
- cmd.dummy = nor->read_dummy;
- cmd.len = len;
- cmd.buf = buf;
- cmd.qspimode = flash->read_mode;
-
- stm32_qspi_set_framemode(nor, &cmd, true);
- err = stm32_qspi_send(flash, &cmd);
-
- return err ? err : len;
-}
-
-static ssize_t stm32_qspi_write(struct spi_nor *nor, loff_t to, size_t len,
- const u_char *buf)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct device *dev = flash->qspi->dev;
- struct stm32_qspi_cmd cmd;
- int err;
-
- dev_dbg(dev, "write(%#.2x): buf:%p to:%#.8x len:%#zx\n",
- nor->program_opcode, buf, (u32)to, len);
-
- memset(&cmd, 0, sizeof(cmd));
- cmd.opcode = nor->program_opcode;
- cmd.addr_width = nor->addr_width;
- cmd.addr = (u32)to;
- cmd.tx_data = true;
- cmd.len = len;
- cmd.buf = (void *)buf;
- cmd.qspimode = CCR_FMODE_INDW;
-
- stm32_qspi_set_framemode(nor, &cmd, false);
- err = stm32_qspi_send(flash, &cmd);
-
- return err ? err : len;
-}
-
-static int stm32_qspi_erase(struct spi_nor *nor, loff_t offs)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct device *dev = flash->qspi->dev;
- struct stm32_qspi_cmd cmd;
-
- dev_dbg(dev, "erase(%#.2x):offs:%#x\n", nor->erase_opcode, (u32)offs);
-
- memset(&cmd, 0, sizeof(cmd));
- cmd.opcode = nor->erase_opcode;
- cmd.addr_width = nor->addr_width;
- cmd.addr = (u32)offs;
- cmd.qspimode = CCR_FMODE_INDW;
-
- stm32_qspi_set_framemode(nor, &cmd, false);
-
- return stm32_qspi_send(flash, &cmd);
-}
-
-static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
-{
- struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
- u32 cr, sr, fcr = 0;
-
- cr = readl_relaxed(qspi->io_base + QUADSPI_CR);
- sr = readl_relaxed(qspi->io_base + QUADSPI_SR);
-
- if ((cr & CR_TCIE) && (sr & SR_TCF)) {
- /* tx complete */
- fcr |= FCR_CTCF;
- complete(&qspi->cmd_completion);
- } else {
- dev_info_ratelimited(qspi->dev, "spurious interrupt\n");
- }
-
- writel_relaxed(fcr, qspi->io_base + QUADSPI_FCR);
-
- return IRQ_HANDLED;
-}
-
-static int stm32_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct stm32_qspi *qspi = flash->qspi;
-
- mutex_lock(&qspi->lock);
- return 0;
-}
-
-static void stm32_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
-{
- struct stm32_qspi_flash *flash = nor->priv;
- struct stm32_qspi *qspi = flash->qspi;
-
- mutex_unlock(&qspi->lock);
-}
-
-static int stm32_qspi_flash_setup(struct stm32_qspi *qspi,
- struct device_node *np)
-{
- struct spi_nor_hwcaps hwcaps = {
- .mask = SNOR_HWCAPS_READ |
- SNOR_HWCAPS_READ_FAST |
- SNOR_HWCAPS_PP,
- };
- u32 width, presc, cs_num, max_rate = 0;
- struct stm32_qspi_flash *flash;
- struct mtd_info *mtd;
- int ret;
-
- of_property_read_u32(np, "reg", &cs_num);
- if (cs_num >= STM32_MAX_NORCHIP)
- return -EINVAL;
-
- of_property_read_u32(np, "spi-max-frequency", &max_rate);
- if (!max_rate)
- return -EINVAL;
-
- presc = DIV_ROUND_UP(qspi->clk_rate, max_rate) - 1;
-
- if (of_property_read_u32(np, "spi-rx-bus-width", &width))
- width = 1;
-
- if (width == 4)
- hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
- else if (width == 2)
- hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
- else if (width != 1)
- return -EINVAL;
-
- flash = &qspi->flash[cs_num];
- flash->qspi = qspi;
- flash->cs = cs_num;
- flash->presc = presc;
-
- flash->nor.dev = qspi->dev;
- spi_nor_set_flash_node(&flash->nor, np);
- flash->nor.priv = flash;
- mtd = &flash->nor.mtd;
-
- flash->nor.read = stm32_qspi_read;
- flash->nor.write = stm32_qspi_write;
- flash->nor.erase = stm32_qspi_erase;
- flash->nor.read_reg = stm32_qspi_read_reg;
- flash->nor.write_reg = stm32_qspi_write_reg;
- flash->nor.prepare = stm32_qspi_prep;
- flash->nor.unprepare = stm32_qspi_unprep;
-
- writel_relaxed(LPTR_DFT_TIMEOUT, qspi->io_base + QUADSPI_LPTR);
-
- writel_relaxed(CR_PRESC(presc) | CR_FTHRES(3) | CR_TCEN | CR_SSHIFT
- | CR_EN, qspi->io_base + QUADSPI_CR);
-
- /*
- * in stm32 qspi controller, QUADSPI_DCR register has a fsize field
- * which define the size of nor flash.
- * if fsize is NULL, the controller can't sent spi-nor command.
- * set a temporary value just to discover the nor flash with
- * "spi_nor_scan". After, the right value (mtd->size) can be set.
- */
- flash->fsize = FSIZE_VAL(SZ_1K);
-
- ret = spi_nor_scan(&flash->nor, NULL, &hwcaps);
- if (ret) {
- dev_err(qspi->dev, "device scan failed\n");
- return ret;
- }
-
- flash->fsize = FSIZE_VAL(mtd->size);
- flash->prefetch_limit = mtd->size - STM32_QSPI_FIFO_SZ;
-
- flash->read_mode = CCR_FMODE_MM;
- if (mtd->size > qspi->mm_size)
- flash->read_mode = CCR_FMODE_INDR;
-
- writel_relaxed(DCR_CSHT(1), qspi->io_base + QUADSPI_DCR);
-
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret) {
- dev_err(qspi->dev, "mtd device parse failed\n");
- return ret;
- }
-
- flash->registered = true;
-
- dev_dbg(qspi->dev, "read mm:%s cs:%d bus:%d\n",
- flash->read_mode == CCR_FMODE_MM ? "yes" : "no", cs_num, width);
-
- return 0;
-}
-
-static void stm32_qspi_mtd_free(struct stm32_qspi *qspi)
-{
- int i;
-
- for (i = 0; i < STM32_MAX_NORCHIP; i++)
- if (qspi->flash[i].registered)
- mtd_device_unregister(&qspi->flash[i].nor.mtd);
-}
-
-static int stm32_qspi_probe(struct platform_device *pdev)
-{
- struct device *dev = &pdev->dev;
- struct device_node *flash_np;
- struct reset_control *rstc;
- struct stm32_qspi *qspi;
- struct resource *res;
- int ret, irq;
-
- qspi = devm_kzalloc(dev, sizeof(*qspi), GFP_KERNEL);
- if (!qspi)
- return -ENOMEM;
-
- qspi->nor_num = of_get_child_count(dev->of_node);
- if (!qspi->nor_num || qspi->nor_num > STM32_MAX_NORCHIP)
- return -ENODEV;
-
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
- qspi->io_base = devm_ioremap_resource(dev, res);
- if (IS_ERR(qspi->io_base))
- return PTR_ERR(qspi->io_base);
-
- res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
- qspi->mm_base = devm_ioremap_resource(dev, res);
- if (IS_ERR(qspi->mm_base))
- return PTR_ERR(qspi->mm_base);
-
- qspi->mm_size = resource_size(res);
-
- irq = platform_get_irq(pdev, 0);
- ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
- dev_name(dev), qspi);
- if (ret) {
- dev_err(dev, "failed to request irq\n");
- return ret;
- }
-
- init_completion(&qspi->cmd_completion);
-
- qspi->clk = devm_clk_get(dev, NULL);
- if (IS_ERR(qspi->clk))
- return PTR_ERR(qspi->clk);
-
- qspi->clk_rate = clk_get_rate(qspi->clk);
- if (!qspi->clk_rate)
- return -EINVAL;
-
- ret = clk_prepare_enable(qspi->clk);
- if (ret) {
- dev_err(dev, "can not enable the clock\n");
- return ret;
- }
-
- rstc = devm_reset_control_get_exclusive(dev, NULL);
- if (!IS_ERR(rstc)) {
- reset_control_assert(rstc);
- udelay(2);
- reset_control_deassert(rstc);
- }
-
- qspi->dev = dev;
- platform_set_drvdata(pdev, qspi);
- mutex_init(&qspi->lock);
-
- for_each_available_child_of_node(dev->of_node, flash_np) {
- ret = stm32_qspi_flash_setup(qspi, flash_np);
- if (ret) {
- dev_err(dev, "unable to setup flash chip\n");
- goto err_flash;
- }
- }
-
- return 0;
-
-err_flash:
- mutex_destroy(&qspi->lock);
- stm32_qspi_mtd_free(qspi);
-
- clk_disable_unprepare(qspi->clk);
- return ret;
-}
-
-static int stm32_qspi_remove(struct platform_device *pdev)
-{
- struct stm32_qspi *qspi = platform_get_drvdata(pdev);
-
- /* disable qspi */
- writel_relaxed(0, qspi->io_base + QUADSPI_CR);
-
- stm32_qspi_mtd_free(qspi);
- mutex_destroy(&qspi->lock);
-
- clk_disable_unprepare(qspi->clk);
- return 0;
-}
-
-static const struct of_device_id stm32_qspi_match[] = {
- {.compatible = "st,stm32f469-qspi"},
- {}
-};
-MODULE_DEVICE_TABLE(of, stm32_qspi_match);
-
-static struct platform_driver stm32_qspi_driver = {
- .probe = stm32_qspi_probe,
- .remove = stm32_qspi_remove,
- .driver = {
- .name = "stm32-quadspi",
- .of_match_table = stm32_qspi_match,
- },
-};
-module_platform_driver(stm32_qspi_driver);
-
-MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
-MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
-MODULE_LICENSE("GPL v2");
diff --git a/drivers/mtd/ubi/block.c b/drivers/mtd/ubi/block.c
index 6025398955a2..e1a2ae21dfd3 100644
--- a/drivers/mtd/ubi/block.c
+++ b/drivers/mtd/ubi/block.c
@@ -345,15 +345,36 @@ static const struct blk_mq_ops ubiblock_mq_ops = {
.init_request = ubiblock_init_request,
};
+static int calc_disk_capacity(struct ubi_volume_info *vi, u64 *disk_capacity)
+{
+ u64 size = vi->used_bytes >> 9;
+
+ if (vi->used_bytes % 512) {
+ pr_warn("UBI: block: volume size is not a multiple of 512, "
+ "last %llu bytes are ignored!\n",
+ vi->used_bytes - (size << 9));
+ }
+
+ if ((sector_t)size != size)
+ return -EFBIG;
+
+ *disk_capacity = size;
+
+ return 0;
+}
+
int ubiblock_create(struct ubi_volume_info *vi)
{
struct ubiblock *dev;
struct gendisk *gd;
- u64 disk_capacity = vi->used_bytes >> 9;
+ u64 disk_capacity;
int ret;
- if ((sector_t)disk_capacity != disk_capacity)
- return -EFBIG;
+ ret = calc_disk_capacity(vi, &disk_capacity);
+ if (ret) {
+ return ret;
+ }
+
/* Check that the volume isn't already handled */
mutex_lock(&devices_mutex);
if (find_dev_nolock(vi->ubi_num, vi->vol_id)) {
@@ -507,7 +528,8 @@ out_unlock:
static int ubiblock_resize(struct ubi_volume_info *vi)
{
struct ubiblock *dev;
- u64 disk_capacity = vi->used_bytes >> 9;
+ u64 disk_capacity;
+ int ret;
/*
* Need to lock the device list until we stop using the device,
@@ -520,11 +542,16 @@ static int ubiblock_resize(struct ubi_volume_info *vi)
mutex_unlock(&devices_mutex);
return -ENODEV;
}
- if ((sector_t)disk_capacity != disk_capacity) {
+
+ ret = calc_disk_capacity(vi, &disk_capacity);
+ if (ret) {
mutex_unlock(&devices_mutex);
- dev_warn(disk_to_dev(dev->gd), "the volume is too big (%d LEBs), cannot resize",
- vi->size);
- return -EFBIG;
+ if (ret == -EFBIG) {
+ dev_warn(disk_to_dev(dev->gd),
+ "the volume is too big (%d LEBs), cannot resize",
+ vi->size);
+ }
+ return ret;
}
mutex_lock(&dev->dev_mutex);
diff --git a/drivers/mtd/ubi/debug.c b/drivers/mtd/ubi/debug.c
index a1dff92ceedf..0f847d510950 100644
--- a/drivers/mtd/ubi/debug.c
+++ b/drivers/mtd/ubi/debug.c
@@ -509,11 +509,9 @@ static const struct file_operations eraseblk_count_fops = {
*/
int ubi_debugfs_init_dev(struct ubi_device *ubi)
{
- int err, n;
unsigned long ubi_num = ubi->ubi_num;
- const char *fname;
- struct dentry *dent;
struct ubi_debug_info *d = &ubi->dbg;
+ int n;
if (!IS_ENABLED(CONFIG_DEBUG_FS))
return 0;
@@ -522,95 +520,52 @@ int ubi_debugfs_init_dev(struct ubi_device *ubi)
ubi->ubi_num);
if (n == UBI_DFS_DIR_LEN) {
/* The array size is too small */
- fname = UBI_DFS_DIR_NAME;
- dent = ERR_PTR(-EINVAL);
- goto out;
+ return -EINVAL;
}
- fname = d->dfs_dir_name;
- dent = debugfs_create_dir(fname, dfs_rootdir);
- if (IS_ERR_OR_NULL(dent))
- goto out;
- d->dfs_dir = dent;
-
- fname = "chk_gen";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_gen = dent;
-
- fname = "chk_io";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_io = dent;
-
- fname = "chk_fastmap";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_chk_fastmap = dent;
-
- fname = "tst_disable_bgt";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_disable_bgt = dent;
-
- fname = "tst_emulate_bitflips";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_emulate_bitflips = dent;
-
- fname = "tst_emulate_io_failures";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_emulate_io_failures = dent;
-
- fname = "tst_emulate_power_cut";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_emulate_power_cut = dent;
-
- fname = "tst_emulate_power_cut_min";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_power_cut_min = dent;
-
- fname = "tst_emulate_power_cut_max";
- dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, (void *)ubi_num,
- &dfs_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
- d->dfs_power_cut_max = dent;
-
- fname = "detailed_erase_block_info";
- dent = debugfs_create_file(fname, S_IRUSR, d->dfs_dir, (void *)ubi_num,
- &eraseblk_count_fops);
- if (IS_ERR_OR_NULL(dent))
- goto out_remove;
+ d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
- return 0;
+ d->dfs_chk_gen = debugfs_create_file("chk_gen", S_IWUSR, d->dfs_dir,
+ (void *)ubi_num, &dfs_fops);
-out_remove:
- debugfs_remove_recursive(d->dfs_dir);
-out:
- err = dent ? PTR_ERR(dent) : -ENODEV;
- ubi_err(ubi, "cannot create \"%s\" debugfs file or directory, error %d\n",
- fname, err);
- return err;
+ d->dfs_chk_io = debugfs_create_file("chk_io", S_IWUSR, d->dfs_dir,
+ (void *)ubi_num, &dfs_fops);
+
+ d->dfs_chk_fastmap = debugfs_create_file("chk_fastmap", S_IWUSR,
+ d->dfs_dir, (void *)ubi_num,
+ &dfs_fops);
+
+ d->dfs_disable_bgt = debugfs_create_file("tst_disable_bgt", S_IWUSR,
+ d->dfs_dir, (void *)ubi_num,
+ &dfs_fops);
+
+ d->dfs_emulate_bitflips = debugfs_create_file("tst_emulate_bitflips",
+ S_IWUSR, d->dfs_dir,
+ (void *)ubi_num,
+ &dfs_fops);
+
+ d->dfs_emulate_io_failures = debugfs_create_file("tst_emulate_io_failures",
+ S_IWUSR, d->dfs_dir,
+ (void *)ubi_num,
+ &dfs_fops);
+
+ d->dfs_emulate_power_cut = debugfs_create_file("tst_emulate_power_cut",
+ S_IWUSR, d->dfs_dir,
+ (void *)ubi_num,
+ &dfs_fops);
+
+ d->dfs_power_cut_min = debugfs_create_file("tst_emulate_power_cut_min",
+ S_IWUSR, d->dfs_dir,
+ (void *)ubi_num, &dfs_fops);
+
+ d->dfs_power_cut_max = debugfs_create_file("tst_emulate_power_cut_max",
+ S_IWUSR, d->dfs_dir,
+ (void *)ubi_num, &dfs_fops);
+
+ debugfs_create_file("detailed_erase_block_info", S_IRUSR, d->dfs_dir,
+ (void *)ubi_num, &eraseblk_count_fops);
+
+ return 0;
}
/**
diff --git a/drivers/mtd/ubi/fastmap-wl.c b/drivers/mtd/ubi/fastmap-wl.c
index d9e2e3a6e105..c44c8470247e 100644
--- a/drivers/mtd/ubi/fastmap-wl.c
+++ b/drivers/mtd/ubi/fastmap-wl.c
@@ -196,7 +196,7 @@ static int produce_free_peb(struct ubi_device *ubi)
*/
int ubi_wl_get_peb(struct ubi_device *ubi)
{
- int ret, retried = 0;
+ int ret, attempts = 0;
struct ubi_fm_pool *pool = &ubi->fm_pool;
struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
@@ -221,12 +221,12 @@ again:
if (pool->used == pool->size) {
spin_unlock(&ubi->wl_lock);
- if (retried) {
+ attempts++;
+ if (attempts == 10) {
ubi_err(ubi, "Unable to get a free PEB from user WL pool");
ret = -ENOSPC;
goto out;
}
- retried = 1;
up_read(&ubi->fm_eba_sem);
ret = produce_free_peb(ubi);
if (ret < 0) {
diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c
index 949700a9bb4b..3fcdefe2714d 100644
--- a/drivers/mtd/ubi/wl.c
+++ b/drivers/mtd/ubi/wl.c
@@ -710,6 +710,12 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
if (!e2)
goto out_cancel;
+ /*
+ * Anchor move within the anchor area is useless.
+ */
+ if (e2->pnum < UBI_FM_MAX_START)
+ goto out_cancel;
+
self_check_in_wl_tree(ubi, e1, &ubi->used);
rb_erase(&e1->u.rb, &ubi->used);
dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);