summaryrefslogtreecommitdiff
path: root/drivers/mtd/ubi/io.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/ubi/io.c')
-rw-r--r--drivers/mtd/ubi/io.c33
1 files changed, 19 insertions, 14 deletions
diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c
index 332f992f13d9..05774da4abca 100644
--- a/drivers/mtd/ubi/io.c
+++ b/drivers/mtd/ubi/io.c
@@ -517,7 +517,7 @@ static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
* In this case we probably anyway have garbage in this PEB.
*/
err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
- if (err1 == UBI_IO_BAD_HDR_READ || err1 == UBI_IO_BAD_HDR)
+ if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
/*
* The VID header is corrupted, so we can safely erase this
* PEB and not afraid that it will be treated as a valid PEB in
@@ -712,6 +712,8 @@ bad:
* and corrected by the flash driver; this is harmless but may indicate that
* this eraseblock may become bad soon (but may be not);
* o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
+ * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
+ * a data integrity error (uncorrectable ECC error in case of NAND);
* o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
* o a negative error code in case of failure.
*/
@@ -731,15 +733,15 @@ int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
/*
* We read all the data, but either a correctable bit-flip
- * occurred, or MTD reported about some data integrity error,
- * like an ECC error in case of NAND. The former is harmless,
- * the later may mean that the read data is corrupted. But we
- * have a CRC check-sum and we will detect this. If the EC
- * header is still OK, we just report this as there was a
- * bit-flip.
+ * occurred, or MTD reported a data integrity error
+ * (uncorrectable ECC error in case of NAND). The former is
+ * harmless, the later may mean that the read data is
+ * corrupted. But we have a CRC check-sum and we will detect
+ * this. If the EC header is still OK, we just report this as
+ * there was a bit-flip, to force scrubbing.
*/
if (err == -EBADMSG)
- read_err = UBI_IO_BAD_HDR_READ;
+ read_err = UBI_IO_BAD_HDR_EBADMSG;
}
magic = be32_to_cpu(ec_hdr->magic);
@@ -983,6 +985,8 @@ bad:
* this eraseblock may become bad soon;
* o %UBI_IO_BAD_HDR if the volume identifier header is corrupted (a CRC
* error detected);
+ * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
+ * a data integrity error (uncorrectable ECC error in case of NAND);
* o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
* header there);
* o a negative error code in case of failure.
@@ -1006,14 +1010,15 @@ int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
/*
* We read all the data, but either a correctable bit-flip
- * occurred, or MTD reported about some data integrity error,
- * like an ECC error in case of NAND. The former is harmless,
- * the later may mean the read data is corrupted. But we have a
- * CRC check-sum and we will identify this. If the VID header is
- * still OK, we just report this as there was a bit-flip.
+ * occurred, or MTD reported a data integrity error
+ * (uncorrectable ECC error in case of NAND). The former is
+ * harmless, the later may mean that the read data is
+ * corrupted. But we have a CRC check-sum and we will detect
+ * this. If the VID header is still OK, we just report this as
+ * there was a bit-flip, to force scrubbing.
*/
if (err == -EBADMSG)
- read_err = UBI_IO_BAD_HDR_READ;
+ read_err = UBI_IO_BAD_HDR_EBADMSG;
}
magic = be32_to_cpu(vid_hdr->magic);