summaryrefslogtreecommitdiff
path: root/drivers/char/rtc.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/char/rtc.c')
-rw-r--r--drivers/char/rtc.c1311
1 files changed, 0 insertions, 1311 deletions
diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c
deleted file mode 100644
index 3b91184b77ae..000000000000
--- a/drivers/char/rtc.c
+++ /dev/null
@@ -1,1311 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*
- * Real Time Clock interface for Linux
- *
- * Copyright (C) 1996 Paul Gortmaker
- *
- * This driver allows use of the real time clock (built into
- * nearly all computers) from user space. It exports the /dev/rtc
- * interface supporting various ioctl() and also the
- * /proc/driver/rtc pseudo-file for status information.
- *
- * The ioctls can be used to set the interrupt behaviour and
- * generation rate from the RTC via IRQ 8. Then the /dev/rtc
- * interface can be used to make use of these timer interrupts,
- * be they interval or alarm based.
- *
- * The /dev/rtc interface will block on reads until an interrupt
- * has been received. If a RTC interrupt has already happened,
- * it will output an unsigned long and then block. The output value
- * contains the interrupt status in the low byte and the number of
- * interrupts since the last read in the remaining high bytes. The
- * /dev/rtc interface can also be used with the select(2) call.
- *
- * Based on other minimal char device drivers, like Alan's
- * watchdog, Ted's random, etc. etc.
- *
- * 1.07 Paul Gortmaker.
- * 1.08 Miquel van Smoorenburg: disallow certain things on the
- * DEC Alpha as the CMOS clock is also used for other things.
- * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
- * 1.09a Pete Zaitcev: Sun SPARC
- * 1.09b Jeff Garzik: Modularize, init cleanup
- * 1.09c Jeff Garzik: SMP cleanup
- * 1.10 Paul Barton-Davis: add support for async I/O
- * 1.10a Andrea Arcangeli: Alpha updates
- * 1.10b Andrew Morton: SMP lock fix
- * 1.10c Cesar Barros: SMP locking fixes and cleanup
- * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
- * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
- * 1.11 Takashi Iwai: Kernel access functions
- * rtc_register/rtc_unregister/rtc_control
- * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
- * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
- * CONFIG_HPET_EMULATE_RTC
- * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
- * 1.12ac Alan Cox: Allow read access to the day of week register
- * 1.12b David John: Remove calls to the BKL.
- */
-
-#define RTC_VERSION "1.12b"
-
-/*
- * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
- * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
- * design of the RTC, we don't want two different things trying to
- * get to it at once. (e.g. the periodic 11 min sync from
- * kernel/time/ntp.c vs. this driver.)
- */
-
-#include <linux/interrupt.h>
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/types.h>
-#include <linux/miscdevice.h>
-#include <linux/ioport.h>
-#include <linux/fcntl.h>
-#include <linux/mc146818rtc.h>
-#include <linux/init.h>
-#include <linux/poll.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/spinlock.h>
-#include <linux/sched/signal.h>
-#include <linux/sysctl.h>
-#include <linux/wait.h>
-#include <linux/bcd.h>
-#include <linux/delay.h>
-#include <linux/uaccess.h>
-#include <linux/ratelimit.h>
-
-#include <asm/current.h>
-
-#ifdef CONFIG_X86
-#include <asm/hpet.h>
-#endif
-
-#ifdef CONFIG_SPARC32
-#include <linux/of.h>
-#include <linux/of_device.h>
-#include <asm/io.h>
-
-static unsigned long rtc_port;
-static int rtc_irq;
-#endif
-
-#ifdef CONFIG_HPET_EMULATE_RTC
-#undef RTC_IRQ
-#endif
-
-#ifdef RTC_IRQ
-static int rtc_has_irq = 1;
-#endif
-
-#ifndef CONFIG_HPET_EMULATE_RTC
-#define is_hpet_enabled() 0
-#define hpet_set_alarm_time(hrs, min, sec) 0
-#define hpet_set_periodic_freq(arg) 0
-#define hpet_mask_rtc_irq_bit(arg) 0
-#define hpet_set_rtc_irq_bit(arg) 0
-#define hpet_rtc_timer_init() do { } while (0)
-#define hpet_rtc_dropped_irq() 0
-#define hpet_register_irq_handler(h) ({ 0; })
-#define hpet_unregister_irq_handler(h) ({ 0; })
-#ifdef RTC_IRQ
-static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
-{
- return 0;
-}
-#endif
-#endif
-
-/*
- * We sponge a minor off of the misc major. No need slurping
- * up another valuable major dev number for this. If you add
- * an ioctl, make sure you don't conflict with SPARC's RTC
- * ioctls.
- */
-
-static struct fasync_struct *rtc_async_queue;
-
-static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
-
-#ifdef RTC_IRQ
-static void rtc_dropped_irq(struct timer_list *unused);
-
-static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq);
-#endif
-
-static ssize_t rtc_read(struct file *file, char __user *buf,
- size_t count, loff_t *ppos);
-
-static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
-static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
-
-#ifdef RTC_IRQ
-static __poll_t rtc_poll(struct file *file, poll_table *wait);
-#endif
-
-static void get_rtc_alm_time(struct rtc_time *alm_tm);
-#ifdef RTC_IRQ
-static void set_rtc_irq_bit_locked(unsigned char bit);
-static void mask_rtc_irq_bit_locked(unsigned char bit);
-
-static inline void set_rtc_irq_bit(unsigned char bit)
-{
- spin_lock_irq(&rtc_lock);
- set_rtc_irq_bit_locked(bit);
- spin_unlock_irq(&rtc_lock);
-}
-
-static void mask_rtc_irq_bit(unsigned char bit)
-{
- spin_lock_irq(&rtc_lock);
- mask_rtc_irq_bit_locked(bit);
- spin_unlock_irq(&rtc_lock);
-}
-#endif
-
-#ifdef CONFIG_PROC_FS
-static int rtc_proc_show(struct seq_file *seq, void *v);
-#endif
-
-/*
- * Bits in rtc_status. (6 bits of room for future expansion)
- */
-
-#define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
-#define RTC_TIMER_ON 0x02 /* missed irq timer active */
-
-/*
- * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
- * protected by the spin lock rtc_lock. However, ioctl can still disable the
- * timer in rtc_status and then with del_timer after the interrupt has read
- * rtc_status but before mod_timer is called, which would then reenable the
- * timer (but you would need to have an awful timing before you'd trip on it)
- */
-static unsigned long rtc_status; /* bitmapped status byte. */
-static unsigned long rtc_freq; /* Current periodic IRQ rate */
-static unsigned long rtc_irq_data; /* our output to the world */
-static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
-
-/*
- * If this driver ever becomes modularised, it will be really nice
- * to make the epoch retain its value across module reload...
- */
-
-static unsigned long epoch = 1900; /* year corresponding to 0x00 */
-
-static const unsigned char days_in_mo[] =
-{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
-
-/*
- * Returns true if a clock update is in progress
- */
-static inline unsigned char rtc_is_updating(void)
-{
- unsigned long flags;
- unsigned char uip;
-
- spin_lock_irqsave(&rtc_lock, flags);
- uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
- spin_unlock_irqrestore(&rtc_lock, flags);
- return uip;
-}
-
-#ifdef RTC_IRQ
-/*
- * A very tiny interrupt handler. It runs with interrupts disabled,
- * but there is possibility of conflicting with the set_rtc_mmss()
- * call (the rtc irq and the timer irq can easily run at the same
- * time in two different CPUs). So we need to serialize
- * accesses to the chip with the rtc_lock spinlock that each
- * architecture should implement in the timer code.
- * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
- */
-
-static irqreturn_t rtc_interrupt(int irq, void *dev_id)
-{
- /*
- * Can be an alarm interrupt, update complete interrupt,
- * or a periodic interrupt. We store the status in the
- * low byte and the number of interrupts received since
- * the last read in the remainder of rtc_irq_data.
- */
-
- spin_lock(&rtc_lock);
- rtc_irq_data += 0x100;
- rtc_irq_data &= ~0xff;
- if (is_hpet_enabled()) {
- /*
- * In this case it is HPET RTC interrupt handler
- * calling us, with the interrupt information
- * passed as arg1, instead of irq.
- */
- rtc_irq_data |= (unsigned long)irq & 0xF0;
- } else {
- rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
- }
-
- if (rtc_status & RTC_TIMER_ON)
- mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
-
- spin_unlock(&rtc_lock);
-
- wake_up_interruptible(&rtc_wait);
-
- kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
-
- return IRQ_HANDLED;
-}
-#endif
-
-/*
- * sysctl-tuning infrastructure.
- */
-static struct ctl_table rtc_table[] = {
- {
- .procname = "max-user-freq",
- .data = &rtc_max_user_freq,
- .maxlen = sizeof(int),
- .mode = 0644,
- .proc_handler = proc_dointvec,
- },
- { }
-};
-
-static struct ctl_table rtc_root[] = {
- {
- .procname = "rtc",
- .mode = 0555,
- .child = rtc_table,
- },
- { }
-};
-
-static struct ctl_table dev_root[] = {
- {
- .procname = "dev",
- .mode = 0555,
- .child = rtc_root,
- },
- { }
-};
-
-static struct ctl_table_header *sysctl_header;
-
-static int __init init_sysctl(void)
-{
- sysctl_header = register_sysctl_table(dev_root);
- return 0;
-}
-
-static void __exit cleanup_sysctl(void)
-{
- unregister_sysctl_table(sysctl_header);
-}
-
-/*
- * Now all the various file operations that we export.
- */
-
-static ssize_t rtc_read(struct file *file, char __user *buf,
- size_t count, loff_t *ppos)
-{
-#ifndef RTC_IRQ
- return -EIO;
-#else
- DECLARE_WAITQUEUE(wait, current);
- unsigned long data;
- ssize_t retval;
-
- if (rtc_has_irq == 0)
- return -EIO;
-
- /*
- * Historically this function used to assume that sizeof(unsigned long)
- * is the same in userspace and kernelspace. This lead to problems
- * for configurations with multiple ABIs such a the MIPS o32 and 64
- * ABIs supported on the same kernel. So now we support read of both
- * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
- * userspace ABI.
- */
- if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
- return -EINVAL;
-
- add_wait_queue(&rtc_wait, &wait);
-
- do {
- /* First make it right. Then make it fast. Putting this whole
- * block within the parentheses of a while would be too
- * confusing. And no, xchg() is not the answer. */
-
- __set_current_state(TASK_INTERRUPTIBLE);
-
- spin_lock_irq(&rtc_lock);
- data = rtc_irq_data;
- rtc_irq_data = 0;
- spin_unlock_irq(&rtc_lock);
-
- if (data != 0)
- break;
-
- if (file->f_flags & O_NONBLOCK) {
- retval = -EAGAIN;
- goto out;
- }
- if (signal_pending(current)) {
- retval = -ERESTARTSYS;
- goto out;
- }
- schedule();
- } while (1);
-
- if (count == sizeof(unsigned int)) {
- retval = put_user(data,
- (unsigned int __user *)buf) ?: sizeof(int);
- } else {
- retval = put_user(data,
- (unsigned long __user *)buf) ?: sizeof(long);
- }
- if (!retval)
- retval = count;
- out:
- __set_current_state(TASK_RUNNING);
- remove_wait_queue(&rtc_wait, &wait);
-
- return retval;
-#endif
-}
-
-static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
-{
- struct rtc_time wtime;
-
-#ifdef RTC_IRQ
- if (rtc_has_irq == 0) {
- switch (cmd) {
- case RTC_AIE_OFF:
- case RTC_AIE_ON:
- case RTC_PIE_OFF:
- case RTC_PIE_ON:
- case RTC_UIE_OFF:
- case RTC_UIE_ON:
- case RTC_IRQP_READ:
- case RTC_IRQP_SET:
- return -EINVAL;
- }
- }
-#endif
-
- switch (cmd) {
-#ifdef RTC_IRQ
- case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
- {
- mask_rtc_irq_bit(RTC_AIE);
- return 0;
- }
- case RTC_AIE_ON: /* Allow alarm interrupts. */
- {
- set_rtc_irq_bit(RTC_AIE);
- return 0;
- }
- case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
- {
- /* can be called from isr via rtc_control() */
- unsigned long flags;
-
- spin_lock_irqsave(&rtc_lock, flags);
- mask_rtc_irq_bit_locked(RTC_PIE);
- if (rtc_status & RTC_TIMER_ON) {
- rtc_status &= ~RTC_TIMER_ON;
- del_timer(&rtc_irq_timer);
- }
- spin_unlock_irqrestore(&rtc_lock, flags);
-
- return 0;
- }
- case RTC_PIE_ON: /* Allow periodic ints */
- {
- /* can be called from isr via rtc_control() */
- unsigned long flags;
-
- /*
- * We don't really want Joe User enabling more
- * than 64Hz of interrupts on a multi-user machine.
- */
- if (!kernel && (rtc_freq > rtc_max_user_freq) &&
- (!capable(CAP_SYS_RESOURCE)))
- return -EACCES;
-
- spin_lock_irqsave(&rtc_lock, flags);
- if (!(rtc_status & RTC_TIMER_ON)) {
- mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
- 2*HZ/100);
- rtc_status |= RTC_TIMER_ON;
- }
- set_rtc_irq_bit_locked(RTC_PIE);
- spin_unlock_irqrestore(&rtc_lock, flags);
-
- return 0;
- }
- case RTC_UIE_OFF: /* Mask ints from RTC updates. */
- {
- mask_rtc_irq_bit(RTC_UIE);
- return 0;
- }
- case RTC_UIE_ON: /* Allow ints for RTC updates. */
- {
- set_rtc_irq_bit(RTC_UIE);
- return 0;
- }
-#endif
- case RTC_ALM_READ: /* Read the present alarm time */
- {
- /*
- * This returns a struct rtc_time. Reading >= 0xc0
- * means "don't care" or "match all". Only the tm_hour,
- * tm_min, and tm_sec values are filled in.
- */
- memset(&wtime, 0, sizeof(struct rtc_time));
- get_rtc_alm_time(&wtime);
- break;
- }
- case RTC_ALM_SET: /* Store a time into the alarm */
- {
- /*
- * This expects a struct rtc_time. Writing 0xff means
- * "don't care" or "match all". Only the tm_hour,
- * tm_min and tm_sec are used.
- */
- unsigned char hrs, min, sec;
- struct rtc_time alm_tm;
-
- if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
- sizeof(struct rtc_time)))
- return -EFAULT;
-
- hrs = alm_tm.tm_hour;
- min = alm_tm.tm_min;
- sec = alm_tm.tm_sec;
-
- spin_lock_irq(&rtc_lock);
- if (hpet_set_alarm_time(hrs, min, sec)) {
- /*
- * Fallthru and set alarm time in CMOS too,
- * so that we will get proper value in RTC_ALM_READ
- */
- }
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
- RTC_ALWAYS_BCD) {
- if (sec < 60)
- sec = bin2bcd(sec);
- else
- sec = 0xff;
-
- if (min < 60)
- min = bin2bcd(min);
- else
- min = 0xff;
-
- if (hrs < 24)
- hrs = bin2bcd(hrs);
- else
- hrs = 0xff;
- }
- CMOS_WRITE(hrs, RTC_HOURS_ALARM);
- CMOS_WRITE(min, RTC_MINUTES_ALARM);
- CMOS_WRITE(sec, RTC_SECONDS_ALARM);
- spin_unlock_irq(&rtc_lock);
-
- return 0;
- }
- case RTC_RD_TIME: /* Read the time/date from RTC */
- {
- memset(&wtime, 0, sizeof(struct rtc_time));
- rtc_get_rtc_time(&wtime);
- break;
- }
- case RTC_SET_TIME: /* Set the RTC */
- {
- struct rtc_time rtc_tm;
- unsigned char mon, day, hrs, min, sec, leap_yr;
- unsigned char save_control, save_freq_select;
- unsigned int yrs;
-#ifdef CONFIG_MACH_DECSTATION
- unsigned int real_yrs;
-#endif
-
- if (!capable(CAP_SYS_TIME))
- return -EACCES;
-
- if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
- sizeof(struct rtc_time)))
- return -EFAULT;
-
- yrs = rtc_tm.tm_year + 1900;
- mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
- day = rtc_tm.tm_mday;
- hrs = rtc_tm.tm_hour;
- min = rtc_tm.tm_min;
- sec = rtc_tm.tm_sec;
-
- if (yrs < 1970)
- return -EINVAL;
-
- leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
-
- if ((mon > 12) || (day == 0))
- return -EINVAL;
-
- if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
- return -EINVAL;
-
- if ((hrs >= 24) || (min >= 60) || (sec >= 60))
- return -EINVAL;
-
- yrs -= epoch;
- if (yrs > 255) /* They are unsigned */
- return -EINVAL;
-
- spin_lock_irq(&rtc_lock);
-#ifdef CONFIG_MACH_DECSTATION
- real_yrs = yrs;
- yrs = 72;
-
- /*
- * We want to keep the year set to 73 until March
- * for non-leap years, so that Feb, 29th is handled
- * correctly.
- */
- if (!leap_yr && mon < 3) {
- real_yrs--;
- yrs = 73;
- }
-#endif
- /* These limits and adjustments are independent of
- * whether the chip is in binary mode or not.
- */
- if (yrs > 169) {
- spin_unlock_irq(&rtc_lock);
- return -EINVAL;
- }
- if (yrs >= 100)
- yrs -= 100;
-
- if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
- || RTC_ALWAYS_BCD) {
- sec = bin2bcd(sec);
- min = bin2bcd(min);
- hrs = bin2bcd(hrs);
- day = bin2bcd(day);
- mon = bin2bcd(mon);
- yrs = bin2bcd(yrs);
- }
-
- save_control = CMOS_READ(RTC_CONTROL);
- CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
- save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
- CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
-
-#ifdef CONFIG_MACH_DECSTATION
- CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
-#endif
- CMOS_WRITE(yrs, RTC_YEAR);
- CMOS_WRITE(mon, RTC_MONTH);
- CMOS_WRITE(day, RTC_DAY_OF_MONTH);
- CMOS_WRITE(hrs, RTC_HOURS);
- CMOS_WRITE(min, RTC_MINUTES);
- CMOS_WRITE(sec, RTC_SECONDS);
-
- CMOS_WRITE(save_control, RTC_CONTROL);
- CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
-
- spin_unlock_irq(&rtc_lock);
- return 0;
- }
-#ifdef RTC_IRQ
- case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
- {
- return put_user(rtc_freq, (unsigned long __user *)arg);
- }
- case RTC_IRQP_SET: /* Set periodic IRQ rate. */
- {
- int tmp = 0;
- unsigned char val;
- /* can be called from isr via rtc_control() */
- unsigned long flags;
-
- /*
- * The max we can do is 8192Hz.
- */
- if ((arg < 2) || (arg > 8192))
- return -EINVAL;
- /*
- * We don't really want Joe User generating more
- * than 64Hz of interrupts on a multi-user machine.
- */
- if (!kernel && (arg > rtc_max_user_freq) &&
- !capable(CAP_SYS_RESOURCE))
- return -EACCES;
-
- while (arg > (1<<tmp))
- tmp++;
-
- /*
- * Check that the input was really a power of 2.
- */
- if (arg != (1<<tmp))
- return -EINVAL;
-
- rtc_freq = arg;
-
- spin_lock_irqsave(&rtc_lock, flags);
- if (hpet_set_periodic_freq(arg)) {
- spin_unlock_irqrestore(&rtc_lock, flags);
- return 0;
- }
-
- val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
- val |= (16 - tmp);
- CMOS_WRITE(val, RTC_FREQ_SELECT);
- spin_unlock_irqrestore(&rtc_lock, flags);
- return 0;
- }
-#endif
- case RTC_EPOCH_READ: /* Read the epoch. */
- {
- return put_user(epoch, (unsigned long __user *)arg);
- }
- case RTC_EPOCH_SET: /* Set the epoch. */
- {
- /*
- * There were no RTC clocks before 1900.
- */
- if (arg < 1900)
- return -EINVAL;
-
- if (!capable(CAP_SYS_TIME))
- return -EACCES;
-
- epoch = arg;
- return 0;
- }
- default:
- return -ENOTTY;
- }
- return copy_to_user((void __user *)arg,
- &wtime, sizeof wtime) ? -EFAULT : 0;
-}
-
-static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
-{
- long ret;
- ret = rtc_do_ioctl(cmd, arg, 0);
- return ret;
-}
-
-/*
- * We enforce only one user at a time here with the open/close.
- * Also clear the previous interrupt data on an open, and clean
- * up things on a close.
- */
-static int rtc_open(struct inode *inode, struct file *file)
-{
- spin_lock_irq(&rtc_lock);
-
- if (rtc_status & RTC_IS_OPEN)
- goto out_busy;
-
- rtc_status |= RTC_IS_OPEN;
-
- rtc_irq_data = 0;
- spin_unlock_irq(&rtc_lock);
- return 0;
-
-out_busy:
- spin_unlock_irq(&rtc_lock);
- return -EBUSY;
-}
-
-static int rtc_fasync(int fd, struct file *filp, int on)
-{
- return fasync_helper(fd, filp, on, &rtc_async_queue);
-}
-
-static int rtc_release(struct inode *inode, struct file *file)
-{
-#ifdef RTC_IRQ
- unsigned char tmp;
-
- if (rtc_has_irq == 0)
- goto no_irq;
-
- /*
- * Turn off all interrupts once the device is no longer
- * in use, and clear the data.
- */
-
- spin_lock_irq(&rtc_lock);
- if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
- tmp = CMOS_READ(RTC_CONTROL);
- tmp &= ~RTC_PIE;
- tmp &= ~RTC_AIE;
- tmp &= ~RTC_UIE;
- CMOS_WRITE(tmp, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
- }
- if (rtc_status & RTC_TIMER_ON) {
- rtc_status &= ~RTC_TIMER_ON;
- del_timer(&rtc_irq_timer);
- }
- spin_unlock_irq(&rtc_lock);
-
-no_irq:
-#endif
-
- spin_lock_irq(&rtc_lock);
- rtc_irq_data = 0;
- rtc_status &= ~RTC_IS_OPEN;
- spin_unlock_irq(&rtc_lock);
-
- return 0;
-}
-
-#ifdef RTC_IRQ
-static __poll_t rtc_poll(struct file *file, poll_table *wait)
-{
- unsigned long l;
-
- if (rtc_has_irq == 0)
- return 0;
-
- poll_wait(file, &rtc_wait, wait);
-
- spin_lock_irq(&rtc_lock);
- l = rtc_irq_data;
- spin_unlock_irq(&rtc_lock);
-
- if (l != 0)
- return EPOLLIN | EPOLLRDNORM;
- return 0;
-}
-#endif
-
-/*
- * The various file operations we support.
- */
-
-static const struct file_operations rtc_fops = {
- .owner = THIS_MODULE,
- .llseek = no_llseek,
- .read = rtc_read,
-#ifdef RTC_IRQ
- .poll = rtc_poll,
-#endif
- .unlocked_ioctl = rtc_ioctl,
- .open = rtc_open,
- .release = rtc_release,
- .fasync = rtc_fasync,
-};
-
-static struct miscdevice rtc_dev = {
- .minor = RTC_MINOR,
- .name = "rtc",
- .fops = &rtc_fops,
-};
-
-static resource_size_t rtc_size;
-
-static struct resource * __init rtc_request_region(resource_size_t size)
-{
- struct resource *r;
-
- if (RTC_IOMAPPED)
- r = request_region(RTC_PORT(0), size, "rtc");
- else
- r = request_mem_region(RTC_PORT(0), size, "rtc");
-
- if (r)
- rtc_size = size;
-
- return r;
-}
-
-static void rtc_release_region(void)
-{
- if (RTC_IOMAPPED)
- release_region(RTC_PORT(0), rtc_size);
- else
- release_mem_region(RTC_PORT(0), rtc_size);
-}
-
-static int __init rtc_init(void)
-{
-#ifdef CONFIG_PROC_FS
- struct proc_dir_entry *ent;
-#endif
-#if defined(__alpha__) || defined(__mips__)
- unsigned int year, ctrl;
- char *guess = NULL;
-#endif
-#ifdef CONFIG_SPARC32
- struct device_node *ebus_dp;
- struct platform_device *op;
-#else
- void *r;
-#ifdef RTC_IRQ
- irq_handler_t rtc_int_handler_ptr;
-#endif
-#endif
-
-#ifdef CONFIG_SPARC32
- for_each_node_by_name(ebus_dp, "ebus") {
- struct device_node *dp;
- for_each_child_of_node(ebus_dp, dp) {
- if (of_node_name_eq(dp, "rtc")) {
- op = of_find_device_by_node(dp);
- if (op) {
- rtc_port = op->resource[0].start;
- rtc_irq = op->irqs[0];
- goto found;
- }
- }
- }
- }
- rtc_has_irq = 0;
- printk(KERN_ERR "rtc_init: no PC rtc found\n");
- return -EIO;
-
-found:
- if (!rtc_irq) {
- rtc_has_irq = 0;
- goto no_irq;
- }
-
- /*
- * XXX Interrupt pin #7 in Espresso is shared between RTC and
- * PCI Slot 2 INTA# (and some INTx# in Slot 1).
- */
- if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
- (void *)&rtc_port)) {
- rtc_has_irq = 0;
- printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
- return -EIO;
- }
-no_irq:
-#else
- r = rtc_request_region(RTC_IO_EXTENT);
-
- /*
- * If we've already requested a smaller range (for example, because
- * PNPBIOS or ACPI told us how the device is configured), the request
- * above might fail because it's too big.
- *
- * If so, request just the range we actually use.
- */
- if (!r)
- r = rtc_request_region(RTC_IO_EXTENT_USED);
- if (!r) {
-#ifdef RTC_IRQ
- rtc_has_irq = 0;
-#endif
- printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
- (long)(RTC_PORT(0)));
- return -EIO;
- }
-
-#ifdef RTC_IRQ
- if (is_hpet_enabled()) {
- int err;
-
- rtc_int_handler_ptr = hpet_rtc_interrupt;
- err = hpet_register_irq_handler(rtc_interrupt);
- if (err != 0) {
- printk(KERN_WARNING "hpet_register_irq_handler failed "
- "in rtc_init().");
- return err;
- }
- } else {
- rtc_int_handler_ptr = rtc_interrupt;
- }
-
- if (request_irq(RTC_IRQ, rtc_int_handler_ptr, 0, "rtc", NULL)) {
- /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
- rtc_has_irq = 0;
- printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
- rtc_release_region();
-
- return -EIO;
- }
- hpet_rtc_timer_init();
-
-#endif
-
-#endif /* CONFIG_SPARC32 vs. others */
-
- if (misc_register(&rtc_dev)) {
-#ifdef RTC_IRQ
- free_irq(RTC_IRQ, NULL);
- hpet_unregister_irq_handler(rtc_interrupt);
- rtc_has_irq = 0;
-#endif
- rtc_release_region();
- return -ENODEV;
- }
-
-#ifdef CONFIG_PROC_FS
- ent = proc_create_single("driver/rtc", 0, NULL, rtc_proc_show);
- if (!ent)
- printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
-#endif
-
-#if defined(__alpha__) || defined(__mips__)
- rtc_freq = HZ;
-
- /* Each operating system on an Alpha uses its own epoch.
- Let's try to guess which one we are using now. */
-
- if (rtc_is_updating() != 0)
- msleep(20);
-
- spin_lock_irq(&rtc_lock);
- year = CMOS_READ(RTC_YEAR);
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irq(&rtc_lock);
-
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
- year = bcd2bin(year); /* This should never happen... */
-
- if (year < 20) {
- epoch = 2000;
- guess = "SRM (post-2000)";
- } else if (year >= 20 && year < 48) {
- epoch = 1980;
- guess = "ARC console";
- } else if (year >= 48 && year < 72) {
- epoch = 1952;
- guess = "Digital UNIX";
-#if defined(__mips__)
- } else if (year >= 72 && year < 74) {
- epoch = 2000;
- guess = "Digital DECstation";
-#else
- } else if (year >= 70) {
- epoch = 1900;
- guess = "Standard PC (1900)";
-#endif
- }
- if (guess)
- printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
- guess, epoch);
-#endif
-#ifdef RTC_IRQ
- if (rtc_has_irq == 0)
- goto no_irq2;
-
- spin_lock_irq(&rtc_lock);
- rtc_freq = 1024;
- if (!hpet_set_periodic_freq(rtc_freq)) {
- /*
- * Initialize periodic frequency to CMOS reset default,
- * which is 1024Hz
- */
- CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
- RTC_FREQ_SELECT);
- }
- spin_unlock_irq(&rtc_lock);
-no_irq2:
-#endif
-
- (void) init_sysctl();
-
- printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
-
- return 0;
-}
-
-static void __exit rtc_exit(void)
-{
- cleanup_sysctl();
- remove_proc_entry("driver/rtc", NULL);
- misc_deregister(&rtc_dev);
-
-#ifdef CONFIG_SPARC32
- if (rtc_has_irq)
- free_irq(rtc_irq, &rtc_port);
-#else
- rtc_release_region();
-#ifdef RTC_IRQ
- if (rtc_has_irq) {
- free_irq(RTC_IRQ, NULL);
- hpet_unregister_irq_handler(hpet_rtc_interrupt);
- }
-#endif
-#endif /* CONFIG_SPARC32 */
-}
-
-module_init(rtc_init);
-module_exit(rtc_exit);
-
-#ifdef RTC_IRQ
-/*
- * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
- * (usually during an IDE disk interrupt, with IRQ unmasking off)
- * Since the interrupt handler doesn't get called, the IRQ status
- * byte doesn't get read, and the RTC stops generating interrupts.
- * A timer is set, and will call this function if/when that happens.
- * To get it out of this stalled state, we just read the status.
- * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
- * (You *really* shouldn't be trying to use a non-realtime system
- * for something that requires a steady > 1KHz signal anyways.)
- */
-
-static void rtc_dropped_irq(struct timer_list *unused)
-{
- unsigned long freq;
-
- spin_lock_irq(&rtc_lock);
-
- if (hpet_rtc_dropped_irq()) {
- spin_unlock_irq(&rtc_lock);
- return;
- }
-
- /* Just in case someone disabled the timer from behind our back... */
- if (rtc_status & RTC_TIMER_ON)
- mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
-
- rtc_irq_data += ((rtc_freq/HZ)<<8);
- rtc_irq_data &= ~0xff;
- rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
-
- freq = rtc_freq;
-
- spin_unlock_irq(&rtc_lock);
-
- printk_ratelimited(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
- freq);
-
- /* Now we have new data */
- wake_up_interruptible(&rtc_wait);
-
- kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
-}
-#endif
-
-#ifdef CONFIG_PROC_FS
-/*
- * Info exported via "/proc/driver/rtc".
- */
-
-static int rtc_proc_show(struct seq_file *seq, void *v)
-{
-#define YN(bit) ((ctrl & bit) ? "yes" : "no")
-#define NY(bit) ((ctrl & bit) ? "no" : "yes")
- struct rtc_time tm;
- unsigned char batt, ctrl;
- unsigned long freq;
-
- spin_lock_irq(&rtc_lock);
- batt = CMOS_READ(RTC_VALID) & RTC_VRT;
- ctrl = CMOS_READ(RTC_CONTROL);
- freq = rtc_freq;
- spin_unlock_irq(&rtc_lock);
-
-
- rtc_get_rtc_time(&tm);
-
- /*
- * There is no way to tell if the luser has the RTC set for local
- * time or for Universal Standard Time (GMT). Probably local though.
- */
- seq_printf(seq,
- "rtc_time\t: %ptRt\n"
- "rtc_date\t: %ptRd\n"
- "rtc_epoch\t: %04lu\n",
- &tm, &tm, epoch);
-
- get_rtc_alm_time(&tm);
-
- /*
- * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
- * match any value for that particular field. Values that are
- * greater than a valid time, but less than 0xc0 shouldn't appear.
- */
- seq_puts(seq, "alarm\t\t: ");
- if (tm.tm_hour <= 24)
- seq_printf(seq, "%02d:", tm.tm_hour);
- else
- seq_puts(seq, "**:");
-
- if (tm.tm_min <= 59)
- seq_printf(seq, "%02d:", tm.tm_min);
- else
- seq_puts(seq, "**:");
-
- if (tm.tm_sec <= 59)
- seq_printf(seq, "%02d\n", tm.tm_sec);
- else
- seq_puts(seq, "**\n");
-
- seq_printf(seq,
- "DST_enable\t: %s\n"
- "BCD\t\t: %s\n"
- "24hr\t\t: %s\n"
- "square_wave\t: %s\n"
- "alarm_IRQ\t: %s\n"
- "update_IRQ\t: %s\n"
- "periodic_IRQ\t: %s\n"
- "periodic_freq\t: %ld\n"
- "batt_status\t: %s\n",
- YN(RTC_DST_EN),
- NY(RTC_DM_BINARY),
- YN(RTC_24H),
- YN(RTC_SQWE),
- YN(RTC_AIE),
- YN(RTC_UIE),
- YN(RTC_PIE),
- freq,
- batt ? "okay" : "dead");
-
- return 0;
-#undef YN
-#undef NY
-}
-#endif
-
-static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
-{
- unsigned long uip_watchdog = jiffies, flags;
- unsigned char ctrl;
-#ifdef CONFIG_MACH_DECSTATION
- unsigned int real_year;
-#endif
-
- /*
- * read RTC once any update in progress is done. The update
- * can take just over 2ms. We wait 20ms. There is no need to
- * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
- * If you need to know *exactly* when a second has started, enable
- * periodic update complete interrupts, (via ioctl) and then
- * immediately read /dev/rtc which will block until you get the IRQ.
- * Once the read clears, read the RTC time (again via ioctl). Easy.
- */
-
- while (rtc_is_updating() != 0 &&
- time_before(jiffies, uip_watchdog + 2*HZ/100))
- cpu_relax();
-
- /*
- * Only the values that we read from the RTC are set. We leave
- * tm_wday, tm_yday and tm_isdst untouched. Note that while the
- * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
- * only updated by the RTC when initially set to a non-zero value.
- */
- spin_lock_irqsave(&rtc_lock, flags);
- rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
- rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
- rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
- rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
- rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
- rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
- /* Only set from 2.6.16 onwards */
- rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
-
-#ifdef CONFIG_MACH_DECSTATION
- real_year = CMOS_READ(RTC_DEC_YEAR);
-#endif
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irqrestore(&rtc_lock, flags);
-
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
- rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
- rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
- rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
- rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
- rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
- rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
- rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
- }
-
-#ifdef CONFIG_MACH_DECSTATION
- rtc_tm->tm_year += real_year - 72;
-#endif
-
- /*
- * Account for differences between how the RTC uses the values
- * and how they are defined in a struct rtc_time;
- */
- rtc_tm->tm_year += epoch - 1900;
- if (rtc_tm->tm_year <= 69)
- rtc_tm->tm_year += 100;
-
- rtc_tm->tm_mon--;
-}
-
-static void get_rtc_alm_time(struct rtc_time *alm_tm)
-{
- unsigned char ctrl;
-
- /*
- * Only the values that we read from the RTC are set. That
- * means only tm_hour, tm_min, and tm_sec.
- */
- spin_lock_irq(&rtc_lock);
- alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
- alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
- alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
- ctrl = CMOS_READ(RTC_CONTROL);
- spin_unlock_irq(&rtc_lock);
-
- if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
- alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
- alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
- alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
- }
-}
-
-#ifdef RTC_IRQ
-/*
- * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
- * Rumour has it that if you frob the interrupt enable/disable
- * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
- * ensure you actually start getting interrupts. Probably for
- * compatibility with older/broken chipset RTC implementations.
- * We also clear out any old irq data after an ioctl() that
- * meddles with the interrupt enable/disable bits.
- */
-
-static void mask_rtc_irq_bit_locked(unsigned char bit)
-{
- unsigned char val;
-
- if (hpet_mask_rtc_irq_bit(bit))
- return;
- val = CMOS_READ(RTC_CONTROL);
- val &= ~bit;
- CMOS_WRITE(val, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
-
- rtc_irq_data = 0;
-}
-
-static void set_rtc_irq_bit_locked(unsigned char bit)
-{
- unsigned char val;
-
- if (hpet_set_rtc_irq_bit(bit))
- return;
- val = CMOS_READ(RTC_CONTROL);
- val |= bit;
- CMOS_WRITE(val, RTC_CONTROL);
- CMOS_READ(RTC_INTR_FLAGS);
-
- rtc_irq_data = 0;
-}
-#endif
-
-MODULE_AUTHOR("Paul Gortmaker");
-MODULE_LICENSE("GPL");
-MODULE_ALIAS_MISCDEV(RTC_MINOR);