diff options
Diffstat (limited to 'drivers/accel/habanalabs/common/command_submission.c')
-rw-r--r-- | drivers/accel/habanalabs/common/command_submission.c | 3591 |
1 files changed, 3591 insertions, 0 deletions
diff --git a/drivers/accel/habanalabs/common/command_submission.c b/drivers/accel/habanalabs/common/command_submission.c new file mode 100644 index 000000000000..8270db0a72a2 --- /dev/null +++ b/drivers/accel/habanalabs/common/command_submission.c @@ -0,0 +1,3591 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2021 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include <uapi/drm/habanalabs_accel.h> +#include "habanalabs.h" + +#include <linux/uaccess.h> +#include <linux/slab.h> + +#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ + HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \ + HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND | \ + HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) + + +#define MAX_TS_ITER_NUM 10 + +/** + * enum hl_cs_wait_status - cs wait status + * @CS_WAIT_STATUS_BUSY: cs was not completed yet + * @CS_WAIT_STATUS_COMPLETED: cs completed + * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone + */ +enum hl_cs_wait_status { + CS_WAIT_STATUS_BUSY, + CS_WAIT_STATUS_COMPLETED, + CS_WAIT_STATUS_GONE +}; + +static void job_wq_completion(struct work_struct *work); +static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, + enum hl_cs_wait_status *status, s64 *timestamp); +static void cs_do_release(struct kref *ref); + +static void hl_push_cs_outcome(struct hl_device *hdev, + struct hl_cs_outcome_store *outcome_store, + u64 seq, ktime_t ts, int error) +{ + struct hl_cs_outcome *node; + unsigned long flags; + + /* + * CS outcome store supports the following operations: + * push outcome - store a recent CS outcome in the store + * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store + * It uses 2 lists: used list and free list. + * It has a pre-allocated amount of nodes, each node stores + * a single CS outcome. + * Initially, all the nodes are in the free list. + * On push outcome, a node (any) is taken from the free list, its + * information is filled in, and the node is moved to the used list. + * It is possible, that there are no nodes left in the free list. + * In this case, we will lose some information about old outcomes. We + * will pop the OLDEST node from the used list, and make it free. + * On pop, the node is searched for in the used list (using a search + * index). + * If found, the node is then removed from the used list, and moved + * back to the free list. The outcome data that the node contained is + * returned back to the user. + */ + + spin_lock_irqsave(&outcome_store->db_lock, flags); + + if (list_empty(&outcome_store->free_list)) { + node = list_last_entry(&outcome_store->used_list, + struct hl_cs_outcome, list_link); + hash_del(&node->map_link); + dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq); + } else { + node = list_last_entry(&outcome_store->free_list, + struct hl_cs_outcome, list_link); + } + + list_del_init(&node->list_link); + + node->seq = seq; + node->ts = ts; + node->error = error; + + list_add(&node->list_link, &outcome_store->used_list); + hash_add(outcome_store->outcome_map, &node->map_link, node->seq); + + spin_unlock_irqrestore(&outcome_store->db_lock, flags); +} + +static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store, + u64 seq, ktime_t *ts, int *error) +{ + struct hl_cs_outcome *node; + unsigned long flags; + + spin_lock_irqsave(&outcome_store->db_lock, flags); + + hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq) + if (node->seq == seq) { + *ts = node->ts; + *error = node->error; + + hash_del(&node->map_link); + list_del_init(&node->list_link); + list_add(&node->list_link, &outcome_store->free_list); + + spin_unlock_irqrestore(&outcome_store->db_lock, flags); + + return true; + } + + spin_unlock_irqrestore(&outcome_store->db_lock, flags); + + return false; +} + +static void hl_sob_reset(struct kref *ref) +{ + struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, + kref); + struct hl_device *hdev = hw_sob->hdev; + + dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id); + + hdev->asic_funcs->reset_sob(hdev, hw_sob); + + hw_sob->need_reset = false; +} + +void hl_sob_reset_error(struct kref *ref) +{ + struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob, + kref); + struct hl_device *hdev = hw_sob->hdev; + + dev_crit(hdev->dev, + "SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n", + hw_sob->q_idx, hw_sob->sob_id); +} + +void hw_sob_put(struct hl_hw_sob *hw_sob) +{ + if (hw_sob) + kref_put(&hw_sob->kref, hl_sob_reset); +} + +static void hw_sob_put_err(struct hl_hw_sob *hw_sob) +{ + if (hw_sob) + kref_put(&hw_sob->kref, hl_sob_reset_error); +} + +void hw_sob_get(struct hl_hw_sob *hw_sob) +{ + if (hw_sob) + kref_get(&hw_sob->kref); +} + +/** + * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet + * @sob_base: sob base id + * @sob_mask: sob user mask, each bit represents a sob offset from sob base + * @mask: generated mask + * + * Return: 0 if given parameters are valid + */ +int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask) +{ + int i; + + if (sob_mask == 0) + return -EINVAL; + + if (sob_mask == 0x1) { + *mask = ~(1 << (sob_base & 0x7)); + } else { + /* find msb in order to verify sob range is valid */ + for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--) + if (BIT(i) & sob_mask) + break; + + if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1)) + return -EINVAL; + + *mask = ~sob_mask; + } + + return 0; +} + +static void hl_fence_release(struct kref *kref) +{ + struct hl_fence *fence = + container_of(kref, struct hl_fence, refcount); + struct hl_cs_compl *hl_cs_cmpl = + container_of(fence, struct hl_cs_compl, base_fence); + + kfree(hl_cs_cmpl); +} + +void hl_fence_put(struct hl_fence *fence) +{ + if (IS_ERR_OR_NULL(fence)) + return; + kref_put(&fence->refcount, hl_fence_release); +} + +void hl_fences_put(struct hl_fence **fence, int len) +{ + int i; + + for (i = 0; i < len; i++, fence++) + hl_fence_put(*fence); +} + +void hl_fence_get(struct hl_fence *fence) +{ + if (fence) + kref_get(&fence->refcount); +} + +static void hl_fence_init(struct hl_fence *fence, u64 sequence) +{ + kref_init(&fence->refcount); + fence->cs_sequence = sequence; + fence->error = 0; + fence->timestamp = ktime_set(0, 0); + fence->mcs_handling_done = false; + init_completion(&fence->completion); +} + +void cs_get(struct hl_cs *cs) +{ + kref_get(&cs->refcount); +} + +static int cs_get_unless_zero(struct hl_cs *cs) +{ + return kref_get_unless_zero(&cs->refcount); +} + +static void cs_put(struct hl_cs *cs) +{ + kref_put(&cs->refcount, cs_do_release); +} + +static void cs_job_do_release(struct kref *ref) +{ + struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount); + + kfree(job); +} + +static void hl_cs_job_put(struct hl_cs_job *job) +{ + kref_put(&job->refcount, cs_job_do_release); +} + +bool cs_needs_completion(struct hl_cs *cs) +{ + /* In case this is a staged CS, only the last CS in sequence should + * get a completion, any non staged CS will always get a completion + */ + if (cs->staged_cs && !cs->staged_last) + return false; + + return true; +} + +bool cs_needs_timeout(struct hl_cs *cs) +{ + /* In case this is a staged CS, only the first CS in sequence should + * get a timeout, any non staged CS will always get a timeout + */ + if (cs->staged_cs && !cs->staged_first) + return false; + + return true; +} + +static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job) +{ + /* + * Patched CB is created for external queues jobs, and for H/W queues + * jobs if the user CB was allocated by driver and MMU is disabled. + */ + return (job->queue_type == QUEUE_TYPE_EXT || + (job->queue_type == QUEUE_TYPE_HW && + job->is_kernel_allocated_cb && + !hdev->mmu_enable)); +} + +/* + * cs_parser - parse the user command submission + * + * @hpriv : pointer to the private data of the fd + * @job : pointer to the job that holds the command submission info + * + * The function parses the command submission of the user. It calls the + * ASIC specific parser, which returns a list of memory blocks to send + * to the device as different command buffers + * + */ +static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job) +{ + struct hl_device *hdev = hpriv->hdev; + struct hl_cs_parser parser; + int rc; + + parser.ctx_id = job->cs->ctx->asid; + parser.cs_sequence = job->cs->sequence; + parser.job_id = job->id; + + parser.hw_queue_id = job->hw_queue_id; + parser.job_userptr_list = &job->userptr_list; + parser.patched_cb = NULL; + parser.user_cb = job->user_cb; + parser.user_cb_size = job->user_cb_size; + parser.queue_type = job->queue_type; + parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb; + job->patched_cb = NULL; + parser.completion = cs_needs_completion(job->cs); + + rc = hdev->asic_funcs->cs_parser(hdev, &parser); + + if (is_cb_patched(hdev, job)) { + if (!rc) { + job->patched_cb = parser.patched_cb; + job->job_cb_size = parser.patched_cb_size; + job->contains_dma_pkt = parser.contains_dma_pkt; + atomic_inc(&job->patched_cb->cs_cnt); + } + + /* + * Whether the parsing worked or not, we don't need the + * original CB anymore because it was already parsed and + * won't be accessed again for this CS + */ + atomic_dec(&job->user_cb->cs_cnt); + hl_cb_put(job->user_cb); + job->user_cb = NULL; + } else if (!rc) { + job->job_cb_size = job->user_cb_size; + } + + return rc; +} + +static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job) +{ + struct hl_cs *cs = job->cs; + + if (is_cb_patched(hdev, job)) { + hl_userptr_delete_list(hdev, &job->userptr_list); + + /* + * We might arrive here from rollback and patched CB wasn't + * created, so we need to check it's not NULL + */ + if (job->patched_cb) { + atomic_dec(&job->patched_cb->cs_cnt); + hl_cb_put(job->patched_cb); + } + } + + /* For H/W queue jobs, if a user CB was allocated by driver and MMU is + * enabled, the user CB isn't released in cs_parser() and thus should be + * released here. This is also true for INT queues jobs which were + * allocated by driver. + */ + if ((job->is_kernel_allocated_cb && + ((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) || + job->queue_type == QUEUE_TYPE_INT))) { + atomic_dec(&job->user_cb->cs_cnt); + hl_cb_put(job->user_cb); + } + + /* + * This is the only place where there can be multiple threads + * modifying the list at the same time + */ + spin_lock(&cs->job_lock); + list_del(&job->cs_node); + spin_unlock(&cs->job_lock); + + hl_debugfs_remove_job(hdev, job); + + /* We decrement reference only for a CS that gets completion + * because the reference was incremented only for this kind of CS + * right before it was scheduled. + * + * In staged submission, only the last CS marked as 'staged_last' + * gets completion, hence its release function will be called from here. + * As for all the rest CS's in the staged submission which do not get + * completion, their CS reference will be decremented by the + * 'staged_last' CS during the CS release flow. + * All relevant PQ CI counters will be incremented during the CS release + * flow by calling 'hl_hw_queue_update_ci'. + */ + if (cs_needs_completion(cs) && + (job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW)) { + + /* In CS based completions, the timestamp is already available, + * so no need to extract it from job + */ + if (hdev->asic_prop.completion_mode == HL_COMPLETION_MODE_JOB) + cs->completion_timestamp = job->timestamp; + + cs_put(cs); + } + + hl_cs_job_put(job); +} + +/* + * hl_staged_cs_find_first - locate the first CS in this staged submission + * + * @hdev: pointer to device structure + * @cs_seq: staged submission sequence number + * + * @note: This function must be called under 'hdev->cs_mirror_lock' + * + * Find and return a CS pointer with the given sequence + */ +struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq) +{ + struct hl_cs *cs; + + list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node) + if (cs->staged_cs && cs->staged_first && + cs->sequence == cs_seq) + return cs; + + return NULL; +} + +/* + * is_staged_cs_last_exists - returns true if the last CS in sequence exists + * + * @hdev: pointer to device structure + * @cs: staged submission member + * + */ +bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs) +{ + struct hl_cs *last_entry; + + last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs, + staged_cs_node); + + if (last_entry->staged_last) + return true; + + return false; +} + +/* + * staged_cs_get - get CS reference if this CS is a part of a staged CS + * + * @hdev: pointer to device structure + * @cs: current CS + * @cs_seq: staged submission sequence number + * + * Increment CS reference for every CS in this staged submission except for + * the CS which get completion. + */ +static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs) +{ + /* Only the last CS in this staged submission will get a completion. + * We must increment the reference for all other CS's in this + * staged submission. + * Once we get a completion we will release the whole staged submission. + */ + if (!cs->staged_last) + cs_get(cs); +} + +/* + * staged_cs_put - put a CS in case it is part of staged submission + * + * @hdev: pointer to device structure + * @cs: CS to put + * + * This function decrements a CS reference (for a non completion CS) + */ +static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs) +{ + /* We release all CS's in a staged submission except the last + * CS which we have never incremented its reference. + */ + if (!cs_needs_completion(cs)) + cs_put(cs); +} + +static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs) +{ + struct hl_cs *next = NULL, *iter, *first_cs; + + if (!cs_needs_timeout(cs)) + return; + + spin_lock(&hdev->cs_mirror_lock); + + /* We need to handle tdr only once for the complete staged submission. + * Hence, we choose the CS that reaches this function first which is + * the CS marked as 'staged_last'. + * In case single staged cs was submitted which has both first and last + * indications, then "cs_find_first" below will return NULL, since we + * removed the cs node from the list before getting here, + * in such cases just continue with the cs to cancel it's TDR work. + */ + if (cs->staged_cs && cs->staged_last) { + first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence); + if (first_cs) + cs = first_cs; + } + + spin_unlock(&hdev->cs_mirror_lock); + + /* Don't cancel TDR in case this CS was timedout because we might be + * running from the TDR context + */ + if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT) + return; + + if (cs->tdr_active) + cancel_delayed_work_sync(&cs->work_tdr); + + spin_lock(&hdev->cs_mirror_lock); + + /* queue TDR for next CS */ + list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node) + if (cs_needs_timeout(iter)) { + next = iter; + break; + } + + if (next && !next->tdr_active) { + next->tdr_active = true; + schedule_delayed_work(&next->work_tdr, next->timeout_jiffies); + } + + spin_unlock(&hdev->cs_mirror_lock); +} + +/* + * force_complete_multi_cs - complete all contexts that wait on multi-CS + * + * @hdev: pointer to habanalabs device structure + */ +static void force_complete_multi_cs(struct hl_device *hdev) +{ + int i; + + for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { + struct multi_cs_completion *mcs_compl; + + mcs_compl = &hdev->multi_cs_completion[i]; + + spin_lock(&mcs_compl->lock); + + if (!mcs_compl->used) { + spin_unlock(&mcs_compl->lock); + continue; + } + + /* when calling force complete no context should be waiting on + * multi-cS. + * We are calling the function as a protection for such case + * to free any pending context and print error message + */ + dev_err(hdev->dev, + "multi-CS completion context %d still waiting when calling force completion\n", + i); + complete_all(&mcs_compl->completion); + spin_unlock(&mcs_compl->lock); + } +} + +/* + * complete_multi_cs - complete all waiting entities on multi-CS + * + * @hdev: pointer to habanalabs device structure + * @cs: CS structure + * The function signals a waiting entity that has an overlapping stream masters + * with the completed CS. + * For example: + * - a completed CS worked on stream master QID 4, multi CS completion + * is actively waiting on stream master QIDs 3, 5. don't send signal as no + * common stream master QID + * - a completed CS worked on stream master QID 4, multi CS completion + * is actively waiting on stream master QIDs 3, 4. send signal as stream + * master QID 4 is common + */ +static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs) +{ + struct hl_fence *fence = cs->fence; + int i; + + /* in case of multi CS check for completion only for the first CS */ + if (cs->staged_cs && !cs->staged_first) + return; + + for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { + struct multi_cs_completion *mcs_compl; + + mcs_compl = &hdev->multi_cs_completion[i]; + if (!mcs_compl->used) + continue; + + spin_lock(&mcs_compl->lock); + + /* + * complete if: + * 1. still waiting for completion + * 2. the completed CS has at least one overlapping stream + * master with the stream masters in the completion + */ + if (mcs_compl->used && + (fence->stream_master_qid_map & + mcs_compl->stream_master_qid_map)) { + /* extract the timestamp only of first completed CS */ + if (!mcs_compl->timestamp) + mcs_compl->timestamp = ktime_to_ns(fence->timestamp); + + complete_all(&mcs_compl->completion); + + /* + * Setting mcs_handling_done inside the lock ensures + * at least one fence have mcs_handling_done set to + * true before wait for mcs finish. This ensures at + * least one CS will be set as completed when polling + * mcs fences. + */ + fence->mcs_handling_done = true; + } + + spin_unlock(&mcs_compl->lock); + } + /* In case CS completed without mcs completion initialized */ + fence->mcs_handling_done = true; +} + +static inline void cs_release_sob_reset_handler(struct hl_device *hdev, + struct hl_cs *cs, + struct hl_cs_compl *hl_cs_cmpl) +{ + /* Skip this handler if the cs wasn't submitted, to avoid putting + * the hw_sob twice, since this case already handled at this point, + * also skip if the hw_sob pointer wasn't set. + */ + if (!hl_cs_cmpl->hw_sob || !cs->submitted) + return; + + spin_lock(&hl_cs_cmpl->lock); + + /* + * we get refcount upon reservation of signals or signal/wait cs for the + * hw_sob object, and need to put it when the first staged cs + * (which cotains the encaps signals) or cs signal/wait is completed. + */ + if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) || + (hl_cs_cmpl->type == CS_TYPE_WAIT) || + (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) || + (!!hl_cs_cmpl->encaps_signals)) { + dev_dbg(hdev->dev, + "CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n", + hl_cs_cmpl->cs_seq, + hl_cs_cmpl->type, + hl_cs_cmpl->hw_sob->sob_id, + hl_cs_cmpl->sob_val); + + hw_sob_put(hl_cs_cmpl->hw_sob); + + if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) + hdev->asic_funcs->reset_sob_group(hdev, + hl_cs_cmpl->sob_group); + } + + spin_unlock(&hl_cs_cmpl->lock); +} + +static void cs_do_release(struct kref *ref) +{ + struct hl_cs *cs = container_of(ref, struct hl_cs, refcount); + struct hl_device *hdev = cs->ctx->hdev; + struct hl_cs_job *job, *tmp; + struct hl_cs_compl *hl_cs_cmpl = + container_of(cs->fence, struct hl_cs_compl, base_fence); + + cs->completed = true; + + /* + * Although if we reached here it means that all external jobs have + * finished, because each one of them took refcnt to CS, we still + * need to go over the internal jobs and complete them. Otherwise, we + * will have leaked memory and what's worse, the CS object (and + * potentially the CTX object) could be released, while the JOB + * still holds a pointer to them (but no reference). + */ + list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) + hl_complete_job(hdev, job); + + if (!cs->submitted) { + /* + * In case the wait for signal CS was submitted, the fence put + * occurs in init_signal_wait_cs() or collective_wait_init_cs() + * right before hanging on the PQ. + */ + if (cs->type == CS_TYPE_WAIT || + cs->type == CS_TYPE_COLLECTIVE_WAIT) + hl_fence_put(cs->signal_fence); + + goto out; + } + + /* Need to update CI for all queue jobs that does not get completion */ + hl_hw_queue_update_ci(cs); + + /* remove CS from CS mirror list */ + spin_lock(&hdev->cs_mirror_lock); + list_del_init(&cs->mirror_node); + spin_unlock(&hdev->cs_mirror_lock); + + cs_handle_tdr(hdev, cs); + + if (cs->staged_cs) { + /* the completion CS decrements reference for the entire + * staged submission + */ + if (cs->staged_last) { + struct hl_cs *staged_cs, *tmp_cs; + + list_for_each_entry_safe(staged_cs, tmp_cs, + &cs->staged_cs_node, staged_cs_node) + staged_cs_put(hdev, staged_cs); + } + + /* A staged CS will be a member in the list only after it + * was submitted. We used 'cs_mirror_lock' when inserting + * it to list so we will use it again when removing it + */ + if (cs->submitted) { + spin_lock(&hdev->cs_mirror_lock); + list_del(&cs->staged_cs_node); + spin_unlock(&hdev->cs_mirror_lock); + } + + /* decrement refcount to handle when first staged cs + * with encaps signals is completed. + */ + if (hl_cs_cmpl->encaps_signals) + kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount, + hl_encaps_release_handle_and_put_ctx); + } + + if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) && cs->encaps_signals) + kref_put(&cs->encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); + +out: + /* Must be called before hl_ctx_put because inside we use ctx to get + * the device + */ + hl_debugfs_remove_cs(cs); + + hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL; + + /* We need to mark an error for not submitted because in that case + * the hl fence release flow is different. Mainly, we don't need + * to handle hw_sob for signal/wait + */ + if (cs->timedout) + cs->fence->error = -ETIMEDOUT; + else if (cs->aborted) + cs->fence->error = -EIO; + else if (!cs->submitted) + cs->fence->error = -EBUSY; + + if (unlikely(cs->skip_reset_on_timeout)) { + dev_err(hdev->dev, + "Command submission %llu completed after %llu (s)\n", + cs->sequence, + div_u64(jiffies - cs->submission_time_jiffies, HZ)); + } + + if (cs->timestamp) { + cs->fence->timestamp = cs->completion_timestamp; + hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence, + cs->fence->timestamp, cs->fence->error); + } + + hl_ctx_put(cs->ctx); + + complete_all(&cs->fence->completion); + complete_multi_cs(hdev, cs); + + cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl); + + hl_fence_put(cs->fence); + + kfree(cs->jobs_in_queue_cnt); + kfree(cs); +} + +static void cs_timedout(struct work_struct *work) +{ + struct hl_device *hdev; + u64 event_mask = 0x0; + int rc; + struct hl_cs *cs = container_of(work, struct hl_cs, + work_tdr.work); + bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false; + + rc = cs_get_unless_zero(cs); + if (!rc) + return; + + if ((!cs->submitted) || (cs->completed)) { + cs_put(cs); + return; + } + + hdev = cs->ctx->hdev; + + if (likely(!skip_reset_on_timeout)) { + if (hdev->reset_on_lockup) + device_reset = true; + else + hdev->reset_info.needs_reset = true; + + /* Mark the CS is timed out so we won't try to cancel its TDR */ + cs->timedout = true; + } + + /* Save only the first CS timeout parameters */ + rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0); + if (rc) { + hdev->captured_err_info.cs_timeout.timestamp = ktime_get(); + hdev->captured_err_info.cs_timeout.seq = cs->sequence; + event_mask |= HL_NOTIFIER_EVENT_CS_TIMEOUT; + } + + switch (cs->type) { + case CS_TYPE_SIGNAL: + dev_err(hdev->dev, + "Signal command submission %llu has not finished in time!\n", + cs->sequence); + break; + + case CS_TYPE_WAIT: + dev_err(hdev->dev, + "Wait command submission %llu has not finished in time!\n", + cs->sequence); + break; + + case CS_TYPE_COLLECTIVE_WAIT: + dev_err(hdev->dev, + "Collective Wait command submission %llu has not finished in time!\n", + cs->sequence); + break; + + default: + dev_err(hdev->dev, + "Command submission %llu has not finished in time!\n", + cs->sequence); + break; + } + + rc = hl_state_dump(hdev); + if (rc) + dev_err(hdev->dev, "Error during system state dump %d\n", rc); + + cs_put(cs); + + if (device_reset) { + event_mask |= HL_NOTIFIER_EVENT_DEVICE_RESET; + hl_device_cond_reset(hdev, HL_DRV_RESET_TDR, event_mask); + } else if (event_mask) { + hl_notifier_event_send_all(hdev, event_mask); + } +} + +static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx, + enum hl_cs_type cs_type, u64 user_sequence, + struct hl_cs **cs_new, u32 flags, u32 timeout) +{ + struct hl_cs_counters_atomic *cntr; + struct hl_fence *other = NULL; + struct hl_cs_compl *cs_cmpl; + struct hl_cs *cs; + int rc; + + cntr = &hdev->aggregated_cs_counters; + + cs = kzalloc(sizeof(*cs), GFP_ATOMIC); + if (!cs) + cs = kzalloc(sizeof(*cs), GFP_KERNEL); + + if (!cs) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + return -ENOMEM; + } + + /* increment refcnt for context */ + hl_ctx_get(ctx); + + cs->ctx = ctx; + cs->submitted = false; + cs->completed = false; + cs->type = cs_type; + cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP); + cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); + cs->timeout_jiffies = timeout; + cs->skip_reset_on_timeout = + hdev->reset_info.skip_reset_on_timeout || + !!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT); + cs->submission_time_jiffies = jiffies; + INIT_LIST_HEAD(&cs->job_list); + INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout); + kref_init(&cs->refcount); + spin_lock_init(&cs->job_lock); + + cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC); + if (!cs_cmpl) + cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL); + + if (!cs_cmpl) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + rc = -ENOMEM; + goto free_cs; + } + + cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, + sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC); + if (!cs->jobs_in_queue_cnt) + cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues, + sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL); + + if (!cs->jobs_in_queue_cnt) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + rc = -ENOMEM; + goto free_cs_cmpl; + } + + cs_cmpl->hdev = hdev; + cs_cmpl->type = cs->type; + spin_lock_init(&cs_cmpl->lock); + cs->fence = &cs_cmpl->base_fence; + + spin_lock(&ctx->cs_lock); + + cs_cmpl->cs_seq = ctx->cs_sequence; + other = ctx->cs_pending[cs_cmpl->cs_seq & + (hdev->asic_prop.max_pending_cs - 1)]; + + if (other && !completion_done(&other->completion)) { + /* If the following statement is true, it means we have reached + * a point in which only part of the staged submission was + * submitted and we don't have enough room in the 'cs_pending' + * array for the rest of the submission. + * This causes a deadlock because this CS will never be + * completed as it depends on future CS's for completion. + */ + if (other->cs_sequence == user_sequence) + dev_crit_ratelimited(hdev->dev, + "Staged CS %llu deadlock due to lack of resources", + user_sequence); + + dev_dbg_ratelimited(hdev->dev, + "Rejecting CS because of too many in-flights CS\n"); + atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt); + atomic64_inc(&cntr->max_cs_in_flight_drop_cnt); + rc = -EAGAIN; + goto free_fence; + } + + /* init hl_fence */ + hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq); + + cs->sequence = cs_cmpl->cs_seq; + + ctx->cs_pending[cs_cmpl->cs_seq & + (hdev->asic_prop.max_pending_cs - 1)] = + &cs_cmpl->base_fence; + ctx->cs_sequence++; + + hl_fence_get(&cs_cmpl->base_fence); + + hl_fence_put(other); + + spin_unlock(&ctx->cs_lock); + + *cs_new = cs; + + return 0; + +free_fence: + spin_unlock(&ctx->cs_lock); + kfree(cs->jobs_in_queue_cnt); +free_cs_cmpl: + kfree(cs_cmpl); +free_cs: + kfree(cs); + hl_ctx_put(ctx); + return rc; +} + +static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs) +{ + struct hl_cs_job *job, *tmp; + + staged_cs_put(hdev, cs); + + list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) + hl_complete_job(hdev, job); +} + +/* + * release_reserved_encaps_signals() - release reserved encapsulated signals. + * @hdev: pointer to habanalabs device structure + * + * Release reserved encapsulated signals which weren't un-reserved, or for which a CS with + * encapsulated signals wasn't submitted and thus weren't released as part of CS roll-back. + * For these signals need also to put the refcount of the H/W SOB which was taken at the + * reservation. + */ +static void release_reserved_encaps_signals(struct hl_device *hdev) +{ + struct hl_ctx *ctx = hl_get_compute_ctx(hdev); + struct hl_cs_encaps_sig_handle *handle; + struct hl_encaps_signals_mgr *mgr; + u32 id; + + if (!ctx) + return; + + mgr = &ctx->sig_mgr; + + idr_for_each_entry(&mgr->handles, handle, id) + if (handle->cs_seq == ULLONG_MAX) + kref_put(&handle->refcount, hl_encaps_release_handle_and_put_sob_ctx); + + hl_ctx_put(ctx); +} + +void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush) +{ + int i; + struct hl_cs *cs, *tmp; + + if (!skip_wq_flush) { + flush_workqueue(hdev->ts_free_obj_wq); + + /* flush all completions before iterating over the CS mirror list in + * order to avoid a race with the release functions + */ + for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) + flush_workqueue(hdev->cq_wq[i]); + + flush_workqueue(hdev->cs_cmplt_wq); + } + + /* Make sure we don't have leftovers in the CS mirror list */ + list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) { + cs_get(cs); + cs->aborted = true; + dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n", + cs->ctx->asid, cs->sequence); + cs_rollback(hdev, cs); + cs_put(cs); + } + + force_complete_multi_cs(hdev); + + release_reserved_encaps_signals(hdev); +} + +static void +wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) +{ + struct hl_user_pending_interrupt *pend, *temp; + unsigned long flags; + + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) { + if (pend->ts_reg_info.buf) { + list_del(&pend->wait_list_node); + hl_mmap_mem_buf_put(pend->ts_reg_info.buf); + hl_cb_put(pend->ts_reg_info.cq_cb); + } else { + pend->fence.error = -EIO; + complete_all(&pend->fence.completion); + } + } + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); +} + +void hl_release_pending_user_interrupts(struct hl_device *hdev) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct hl_user_interrupt *interrupt; + int i; + + if (!prop->user_interrupt_count) + return; + + /* We iterate through the user interrupt requests and waking up all + * user threads waiting for interrupt completion. We iterate the + * list under a lock, this is why all user threads, once awake, + * will wait on the same lock and will release the waiting object upon + * unlock. + */ + + for (i = 0 ; i < prop->user_interrupt_count ; i++) { + interrupt = &hdev->user_interrupt[i]; + wake_pending_user_interrupt_threads(interrupt); + } + + interrupt = &hdev->common_user_cq_interrupt; + wake_pending_user_interrupt_threads(interrupt); + + interrupt = &hdev->common_decoder_interrupt; + wake_pending_user_interrupt_threads(interrupt); +} + +static void force_complete_cs(struct hl_device *hdev) +{ + struct hl_cs *cs; + + spin_lock(&hdev->cs_mirror_lock); + + list_for_each_entry(cs, &hdev->cs_mirror_list, mirror_node) { + cs->fence->error = -EIO; + complete_all(&cs->fence->completion); + } + + spin_unlock(&hdev->cs_mirror_lock); +} + +void hl_abort_waitings_for_completion(struct hl_device *hdev) +{ + force_complete_cs(hdev); + force_complete_multi_cs(hdev); + hl_release_pending_user_interrupts(hdev); +} + +static void job_wq_completion(struct work_struct *work) +{ + struct hl_cs_job *job = container_of(work, struct hl_cs_job, + finish_work); + struct hl_cs *cs = job->cs; + struct hl_device *hdev = cs->ctx->hdev; + + /* job is no longer needed */ + hl_complete_job(hdev, job); +} + +static void cs_completion(struct work_struct *work) +{ + struct hl_cs *cs = container_of(work, struct hl_cs, finish_work); + struct hl_device *hdev = cs->ctx->hdev; + struct hl_cs_job *job, *tmp; + + list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node) + hl_complete_job(hdev, job); +} + +static int validate_queue_index(struct hl_device *hdev, + struct hl_cs_chunk *chunk, + enum hl_queue_type *queue_type, + bool *is_kernel_allocated_cb) +{ + struct asic_fixed_properties *asic = &hdev->asic_prop; + struct hw_queue_properties *hw_queue_prop; + + /* This must be checked here to prevent out-of-bounds access to + * hw_queues_props array + */ + if (chunk->queue_index >= asic->max_queues) { + dev_err(hdev->dev, "Queue index %d is invalid\n", + chunk->queue_index); + return -EINVAL; + } + + hw_queue_prop = &asic->hw_queues_props[chunk->queue_index]; + + if (hw_queue_prop->type == QUEUE_TYPE_NA) { + dev_err(hdev->dev, "Queue index %d is not applicable\n", + chunk->queue_index); + return -EINVAL; + } + + if (hw_queue_prop->binned) { + dev_err(hdev->dev, "Queue index %d is binned out\n", + chunk->queue_index); + return -EINVAL; + } + + if (hw_queue_prop->driver_only) { + dev_err(hdev->dev, + "Queue index %d is restricted for the kernel driver\n", + chunk->queue_index); + return -EINVAL; + } + + /* When hw queue type isn't QUEUE_TYPE_HW, + * USER_ALLOC_CB flag shall be referred as "don't care". + */ + if (hw_queue_prop->type == QUEUE_TYPE_HW) { + if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) { + if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) { + dev_err(hdev->dev, + "Queue index %d doesn't support user CB\n", + chunk->queue_index); + return -EINVAL; + } + + *is_kernel_allocated_cb = false; + } else { + if (!(hw_queue_prop->cb_alloc_flags & + CB_ALLOC_KERNEL)) { + dev_err(hdev->dev, + "Queue index %d doesn't support kernel CB\n", + chunk->queue_index); + return -EINVAL; + } + + *is_kernel_allocated_cb = true; + } + } else { + *is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags + & CB_ALLOC_KERNEL); + } + + *queue_type = hw_queue_prop->type; + return 0; +} + +static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev, + struct hl_mem_mgr *mmg, + struct hl_cs_chunk *chunk) +{ + struct hl_cb *cb; + + cb = hl_cb_get(mmg, chunk->cb_handle); + if (!cb) { + dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle); + return NULL; + } + + if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) { + dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size); + goto release_cb; + } + + atomic_inc(&cb->cs_cnt); + + return cb; + +release_cb: + hl_cb_put(cb); + return NULL; +} + +struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev, + enum hl_queue_type queue_type, bool is_kernel_allocated_cb) +{ + struct hl_cs_job *job; + + job = kzalloc(sizeof(*job), GFP_ATOMIC); + if (!job) + job = kzalloc(sizeof(*job), GFP_KERNEL); + + if (!job) + return NULL; + + kref_init(&job->refcount); + job->queue_type = queue_type; + job->is_kernel_allocated_cb = is_kernel_allocated_cb; + + if (is_cb_patched(hdev, job)) + INIT_LIST_HEAD(&job->userptr_list); + + if (job->queue_type == QUEUE_TYPE_EXT) + INIT_WORK(&job->finish_work, job_wq_completion); + + return job; +} + +static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags) +{ + if (cs_type_flags & HL_CS_FLAGS_SIGNAL) + return CS_TYPE_SIGNAL; + else if (cs_type_flags & HL_CS_FLAGS_WAIT) + return CS_TYPE_WAIT; + else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT) + return CS_TYPE_COLLECTIVE_WAIT; + else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY) + return CS_RESERVE_SIGNALS; + else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY) + return CS_UNRESERVE_SIGNALS; + else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND) + return CS_TYPE_ENGINE_CORE; + else if (cs_type_flags & HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES) + return CS_TYPE_FLUSH_PCI_HBW_WRITES; + else + return CS_TYPE_DEFAULT; +} + +static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args) +{ + struct hl_device *hdev = hpriv->hdev; + struct hl_ctx *ctx = hpriv->ctx; + u32 cs_type_flags, num_chunks; + enum hl_device_status status; + enum hl_cs_type cs_type; + bool is_sync_stream; + int i; + + for (i = 0 ; i < sizeof(args->in.pad) ; i++) + if (args->in.pad[i]) { + dev_dbg(hdev->dev, "Padding bytes must be 0\n"); + return -EINVAL; + } + + if (!hl_device_operational(hdev, &status)) { + return -EBUSY; + } + + if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) && + !hdev->supports_staged_submission) { + dev_err(hdev->dev, "staged submission not supported"); + return -EPERM; + } + + cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK; + + if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) { + dev_err(hdev->dev, + "CS type flags are mutually exclusive, context %d\n", + ctx->asid); + return -EINVAL; + } + + cs_type = hl_cs_get_cs_type(cs_type_flags); + num_chunks = args->in.num_chunks_execute; + + is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT || + cs_type == CS_TYPE_COLLECTIVE_WAIT); + + if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) { + dev_err(hdev->dev, "Sync stream CS is not supported\n"); + return -EINVAL; + } + + if (cs_type == CS_TYPE_DEFAULT) { + if (!num_chunks) { + dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid); + return -EINVAL; + } + } else if (is_sync_stream && num_chunks != 1) { + dev_err(hdev->dev, + "Sync stream CS mandates one chunk only, context %d\n", + ctx->asid); + return -EINVAL; + } + + return 0; +} + +static int hl_cs_copy_chunk_array(struct hl_device *hdev, + struct hl_cs_chunk **cs_chunk_array, + void __user *chunks, u32 num_chunks, + struct hl_ctx *ctx) +{ + u32 size_to_copy; + + if (num_chunks > HL_MAX_JOBS_PER_CS) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); + dev_err(hdev->dev, + "Number of chunks can NOT be larger than %d\n", + HL_MAX_JOBS_PER_CS); + return -EINVAL; + } + + *cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array), + GFP_ATOMIC); + if (!*cs_chunk_array) + *cs_chunk_array = kmalloc_array(num_chunks, + sizeof(**cs_chunk_array), GFP_KERNEL); + if (!*cs_chunk_array) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); + return -ENOMEM; + } + + size_to_copy = num_chunks * sizeof(struct hl_cs_chunk); + if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); + dev_err(hdev->dev, "Failed to copy cs chunk array from user\n"); + kfree(*cs_chunk_array); + return -EFAULT; + } + + return 0; +} + +static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs, + u64 sequence, u32 flags, + u32 encaps_signal_handle) +{ + if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION)) + return 0; + + cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST); + cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST); + + if (cs->staged_first) { + /* Staged CS sequence is the first CS sequence */ + INIT_LIST_HEAD(&cs->staged_cs_node); + cs->staged_sequence = cs->sequence; + + if (cs->encaps_signals) + cs->encaps_sig_hdl_id = encaps_signal_handle; + } else { + /* User sequence will be validated in 'hl_hw_queue_schedule_cs' + * under the cs_mirror_lock + */ + cs->staged_sequence = sequence; + } + + /* Increment CS reference if needed */ + staged_cs_get(hdev, cs); + + cs->staged_cs = true; + + return 0; +} + +static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid) +{ + int i; + + for (i = 0; i < hdev->stream_master_qid_arr_size; i++) + if (qid == hdev->stream_master_qid_arr[i]) + return BIT(i); + + return 0; +} + +static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks, + u32 num_chunks, u64 *cs_seq, u32 flags, + u32 encaps_signals_handle, u32 timeout, + u16 *signal_initial_sob_count) +{ + bool staged_mid, int_queues_only = true, using_hw_queues = false; + struct hl_device *hdev = hpriv->hdev; + struct hl_cs_chunk *cs_chunk_array; + struct hl_cs_counters_atomic *cntr; + struct hl_ctx *ctx = hpriv->ctx; + struct hl_cs_job *job; + struct hl_cs *cs; + struct hl_cb *cb; + u64 user_sequence; + u8 stream_master_qid_map = 0; + int rc, i; + + cntr = &hdev->aggregated_cs_counters; + user_sequence = *cs_seq; + *cs_seq = ULLONG_MAX; + + rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, + hpriv->ctx); + if (rc) + goto out; + + if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && + !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) + staged_mid = true; + else + staged_mid = false; + + rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, + staged_mid ? user_sequence : ULLONG_MAX, &cs, flags, + timeout); + if (rc) + goto free_cs_chunk_array; + + *cs_seq = cs->sequence; + + hl_debugfs_add_cs(cs); + + rc = cs_staged_submission(hdev, cs, user_sequence, flags, + encaps_signals_handle); + if (rc) + goto free_cs_object; + + /* If this is a staged submission we must return the staged sequence + * rather than the internal CS sequence + */ + if (cs->staged_cs) + *cs_seq = cs->staged_sequence; + + /* Validate ALL the CS chunks before submitting the CS */ + for (i = 0 ; i < num_chunks ; i++) { + struct hl_cs_chunk *chunk = &cs_chunk_array[i]; + enum hl_queue_type queue_type; + bool is_kernel_allocated_cb; + + rc = validate_queue_index(hdev, chunk, &queue_type, + &is_kernel_allocated_cb); + if (rc) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + goto free_cs_object; + } + + if (is_kernel_allocated_cb) { + cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk); + if (!cb) { + atomic64_inc( + &ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + rc = -EINVAL; + goto free_cs_object; + } + } else { + cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle; + } + + if (queue_type == QUEUE_TYPE_EXT || + queue_type == QUEUE_TYPE_HW) { + int_queues_only = false; + + /* + * store which stream are being used for external/HW + * queues of this CS + */ + if (hdev->supports_wait_for_multi_cs) + stream_master_qid_map |= + get_stream_master_qid_mask(hdev, + chunk->queue_index); + } + + if (queue_type == QUEUE_TYPE_HW) + using_hw_queues = true; + + job = hl_cs_allocate_job(hdev, queue_type, + is_kernel_allocated_cb); + if (!job) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + dev_err(hdev->dev, "Failed to allocate a new job\n"); + rc = -ENOMEM; + if (is_kernel_allocated_cb) + goto release_cb; + + goto free_cs_object; + } + + job->id = i + 1; + job->cs = cs; + job->user_cb = cb; + job->user_cb_size = chunk->cb_size; + job->hw_queue_id = chunk->queue_index; + + cs->jobs_in_queue_cnt[job->hw_queue_id]++; + cs->jobs_cnt++; + + list_add_tail(&job->cs_node, &cs->job_list); + + /* + * Increment CS reference. When CS reference is 0, CS is + * done and can be signaled to user and free all its resources + * Only increment for JOB on external or H/W queues, because + * only for those JOBs we get completion + */ + if (cs_needs_completion(cs) && + (job->queue_type == QUEUE_TYPE_EXT || + job->queue_type == QUEUE_TYPE_HW)) + cs_get(cs); + + hl_debugfs_add_job(hdev, job); + + rc = cs_parser(hpriv, job); + if (rc) { + atomic64_inc(&ctx->cs_counters.parsing_drop_cnt); + atomic64_inc(&cntr->parsing_drop_cnt); + dev_err(hdev->dev, + "Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n", + cs->ctx->asid, cs->sequence, job->id, rc); + goto free_cs_object; + } + } + + /* We allow a CS with any queue type combination as long as it does + * not get a completion + */ + if (int_queues_only && cs_needs_completion(cs)) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n", + cs->ctx->asid, cs->sequence); + rc = -EINVAL; + goto free_cs_object; + } + + if (using_hw_queues) + INIT_WORK(&cs->finish_work, cs_completion); + + /* + * store the (external/HW queues) streams used by the CS in the + * fence object for multi-CS completion + */ + if (hdev->supports_wait_for_multi_cs) + cs->fence->stream_master_qid_map = stream_master_qid_map; + + rc = hl_hw_queue_schedule_cs(cs); + if (rc) { + if (rc != -EAGAIN) + dev_err(hdev->dev, + "Failed to submit CS %d.%llu to H/W queues, error %d\n", + cs->ctx->asid, cs->sequence, rc); + goto free_cs_object; + } + + *signal_initial_sob_count = cs->initial_sob_count; + + rc = HL_CS_STATUS_SUCCESS; + goto put_cs; + +release_cb: + atomic_dec(&cb->cs_cnt); + hl_cb_put(cb); +free_cs_object: + cs_rollback(hdev, cs); + *cs_seq = ULLONG_MAX; + /* The path below is both for good and erroneous exits */ +put_cs: + /* We finished with the CS in this function, so put the ref */ + cs_put(cs); +free_cs_chunk_array: + kfree(cs_chunk_array); +out: + return rc; +} + +static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args, + u64 *cs_seq) +{ + struct hl_device *hdev = hpriv->hdev; + struct hl_ctx *ctx = hpriv->ctx; + bool need_soft_reset = false; + int rc = 0, do_ctx_switch = 0; + void __user *chunks; + u32 num_chunks, tmp; + u16 sob_count; + int ret; + + if (hdev->supports_ctx_switch) + do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0); + + if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) { + mutex_lock(&hpriv->restore_phase_mutex); + + if (do_ctx_switch) { + rc = hdev->asic_funcs->context_switch(hdev, ctx->asid); + if (rc) { + dev_err_ratelimited(hdev->dev, + "Failed to switch to context %d, rejecting CS! %d\n", + ctx->asid, rc); + /* + * If we timedout, or if the device is not IDLE + * while we want to do context-switch (-EBUSY), + * we need to soft-reset because QMAN is + * probably stuck. However, we can't call to + * reset here directly because of deadlock, so + * need to do it at the very end of this + * function + */ + if ((rc == -ETIMEDOUT) || (rc == -EBUSY)) + need_soft_reset = true; + mutex_unlock(&hpriv->restore_phase_mutex); + goto out; + } + } + + hdev->asic_funcs->restore_phase_topology(hdev); + + chunks = (void __user *) (uintptr_t) args->in.chunks_restore; + num_chunks = args->in.num_chunks_restore; + + if (!num_chunks) { + dev_dbg(hdev->dev, + "Need to run restore phase but restore CS is empty\n"); + rc = 0; + } else { + rc = cs_ioctl_default(hpriv, chunks, num_chunks, + cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count); + } + + mutex_unlock(&hpriv->restore_phase_mutex); + + if (rc) { + dev_err(hdev->dev, + "Failed to submit restore CS for context %d (%d)\n", + ctx->asid, rc); + goto out; + } + + /* Need to wait for restore completion before execution phase */ + if (num_chunks) { + enum hl_cs_wait_status status; +wait_again: + ret = _hl_cs_wait_ioctl(hdev, ctx, + jiffies_to_usecs(hdev->timeout_jiffies), + *cs_seq, &status, NULL); + if (ret) { + if (ret == -ERESTARTSYS) { + usleep_range(100, 200); + goto wait_again; + } + + dev_err(hdev->dev, + "Restore CS for context %d failed to complete %d\n", + ctx->asid, ret); + rc = -ENOEXEC; + goto out; + } + } + + if (hdev->supports_ctx_switch) + ctx->thread_ctx_switch_wait_token = 1; + + } else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) { + rc = hl_poll_timeout_memory(hdev, + &ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1), + 100, jiffies_to_usecs(hdev->timeout_jiffies), false); + + if (rc == -ETIMEDOUT) { + dev_err(hdev->dev, + "context switch phase timeout (%d)\n", tmp); + goto out; + } + } + +out: + if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset)) + hl_device_reset(hdev, 0); + + return rc; +} + +/* + * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case. + * if the SOB value reaches the max value move to the other SOB reserved + * to the queue. + * @hdev: pointer to device structure + * @q_idx: stream queue index + * @hw_sob: the H/W SOB used in this signal CS. + * @count: signals count + * @encaps_sig: tells whether it's reservation for encaps signals or not. + * + * Note that this function must be called while hw_queues_lock is taken. + */ +int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx, + struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig) + +{ + struct hl_sync_stream_properties *prop; + struct hl_hw_sob *sob = *hw_sob, *other_sob; + u8 other_sob_offset; + + prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + + hw_sob_get(sob); + + /* check for wraparound */ + if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) { + /* + * Decrement as we reached the max value. + * The release function won't be called here as we've + * just incremented the refcount right before calling this + * function. + */ + hw_sob_put_err(sob); + + /* + * check the other sob value, if it still in use then fail + * otherwise make the switch + */ + other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS; + other_sob = &prop->hw_sob[other_sob_offset]; + + if (kref_read(&other_sob->kref) != 1) { + dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n", + q_idx); + return -EINVAL; + } + + /* + * next_sob_val always points to the next available signal + * in the sob, so in encaps signals it will be the next one + * after reserving the required amount. + */ + if (encaps_sig) + prop->next_sob_val = count + 1; + else + prop->next_sob_val = count; + + /* only two SOBs are currently in use */ + prop->curr_sob_offset = other_sob_offset; + *hw_sob = other_sob; + + /* + * check if other_sob needs reset, then do it before using it + * for the reservation or the next signal cs. + * we do it here, and for both encaps and regular signal cs + * cases in order to avoid possible races of two kref_put + * of the sob which can occur at the same time if we move the + * sob reset(kref_put) to cs_do_release function. + * in addition, if we have combination of cs signal and + * encaps, and at the point we need to reset the sob there was + * no more reservations and only signal cs keep coming, + * in such case we need signal_cs to put the refcount and + * reset the sob. + */ + if (other_sob->need_reset) + hw_sob_put(other_sob); + + if (encaps_sig) { + /* set reset indication for the sob */ + sob->need_reset = true; + hw_sob_get(other_sob); + } + + dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n", + prop->curr_sob_offset, q_idx); + } else { + prop->next_sob_val += count; + } + + return 0; +} + +static int cs_ioctl_extract_signal_seq(struct hl_device *hdev, + struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx, + bool encaps_signals) +{ + u64 *signal_seq_arr = NULL; + u32 size_to_copy, signal_seq_arr_len; + int rc = 0; + + if (encaps_signals) { + *signal_seq = chunk->encaps_signal_seq; + return 0; + } + + signal_seq_arr_len = chunk->num_signal_seq_arr; + + /* currently only one signal seq is supported */ + if (signal_seq_arr_len != 1) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); + dev_err(hdev->dev, + "Wait for signal CS supports only one signal CS seq\n"); + return -EINVAL; + } + + signal_seq_arr = kmalloc_array(signal_seq_arr_len, + sizeof(*signal_seq_arr), + GFP_ATOMIC); + if (!signal_seq_arr) + signal_seq_arr = kmalloc_array(signal_seq_arr_len, + sizeof(*signal_seq_arr), + GFP_KERNEL); + if (!signal_seq_arr) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt); + return -ENOMEM; + } + + size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr); + if (copy_from_user(signal_seq_arr, + u64_to_user_ptr(chunk->signal_seq_arr), + size_to_copy)) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt); + dev_err(hdev->dev, + "Failed to copy signal seq array from user\n"); + rc = -EFAULT; + goto out; + } + + /* currently it is guaranteed to have only one signal seq */ + *signal_seq = signal_seq_arr[0]; + +out: + kfree(signal_seq_arr); + + return rc; +} + +static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev, + struct hl_ctx *ctx, struct hl_cs *cs, + enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset) +{ + struct hl_cs_counters_atomic *cntr; + struct hl_cs_job *job; + struct hl_cb *cb; + u32 cb_size; + + cntr = &hdev->aggregated_cs_counters; + + job = hl_cs_allocate_job(hdev, q_type, true); + if (!job) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + dev_err(hdev->dev, "Failed to allocate a new job\n"); + return -ENOMEM; + } + + if (cs->type == CS_TYPE_WAIT) + cb_size = hdev->asic_funcs->get_wait_cb_size(hdev); + else + cb_size = hdev->asic_funcs->get_signal_cb_size(hdev); + + cb = hl_cb_kernel_create(hdev, cb_size, + q_type == QUEUE_TYPE_HW && hdev->mmu_enable); + if (!cb) { + atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt); + atomic64_inc(&cntr->out_of_mem_drop_cnt); + kfree(job); + return -EFAULT; + } + + job->id = 0; + job->cs = cs; + job->user_cb = cb; + atomic_inc(&job->user_cb->cs_cnt); + job->user_cb_size = cb_size; + job->hw_queue_id = q_idx; + + if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT) + && cs->encaps_signals) + job->encaps_sig_wait_offset = encaps_signal_offset; + /* + * No need in parsing, user CB is the patched CB. + * We call hl_cb_destroy() out of two reasons - we don't need the CB in + * the CB idr anymore and to decrement its refcount as it was + * incremented inside hl_cb_kernel_create(). + */ + job->patched_cb = job->user_cb; + job->job_cb_size = job->user_cb_size; + hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle); + + /* increment refcount as for external queues we get completion */ + cs_get(cs); + + cs->jobs_in_queue_cnt[job->hw_queue_id]++; + cs->jobs_cnt++; + + list_add_tail(&job->cs_node, &cs->job_list); + + hl_debugfs_add_job(hdev, job); + + return 0; +} + +static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv, + u32 q_idx, u32 count, + u32 *handle_id, u32 *sob_addr, + u32 *signals_count) +{ + struct hw_queue_properties *hw_queue_prop; + struct hl_sync_stream_properties *prop; + struct hl_device *hdev = hpriv->hdev; + struct hl_cs_encaps_sig_handle *handle; + struct hl_encaps_signals_mgr *mgr; + struct hl_hw_sob *hw_sob; + int hdl_id; + int rc = 0; + + if (count >= HL_MAX_SOB_VAL) { + dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n", + count); + rc = -EINVAL; + goto out; + } + + if (q_idx >= hdev->asic_prop.max_queues) { + dev_err(hdev->dev, "Queue index %d is invalid\n", + q_idx); + rc = -EINVAL; + goto out; + } + + hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; + + if (!hw_queue_prop->supports_sync_stream) { + dev_err(hdev->dev, + "Queue index %d does not support sync stream operations\n", + q_idx); + rc = -EINVAL; + goto out; + } + + prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + + handle = kzalloc(sizeof(*handle), GFP_KERNEL); + if (!handle) { + rc = -ENOMEM; + goto out; + } + + handle->count = count; + + hl_ctx_get(hpriv->ctx); + handle->ctx = hpriv->ctx; + mgr = &hpriv->ctx->sig_mgr; + + spin_lock(&mgr->lock); + hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC); + spin_unlock(&mgr->lock); + + if (hdl_id < 0) { + dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n"); + rc = -EINVAL; + goto put_ctx; + } + + handle->id = hdl_id; + handle->q_idx = q_idx; + handle->hdev = hdev; + kref_init(&handle->refcount); + + hdev->asic_funcs->hw_queues_lock(hdev); + + hw_sob = &prop->hw_sob[prop->curr_sob_offset]; + + /* + * Increment the SOB value by count by user request + * to reserve those signals + * check if the signals amount to reserve is not exceeding the max sob + * value, if yes then switch sob. + */ + rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count, + true); + if (rc) { + dev_err(hdev->dev, "Failed to switch SOB\n"); + hdev->asic_funcs->hw_queues_unlock(hdev); + rc = -EINVAL; + goto remove_idr; + } + /* set the hw_sob to the handle after calling the sob wraparound handler + * since sob could have changed. + */ + handle->hw_sob = hw_sob; + + /* store the current sob value for unreserve validity check, and + * signal offset support + */ + handle->pre_sob_val = prop->next_sob_val - handle->count; + + handle->cs_seq = ULLONG_MAX; + + *signals_count = prop->next_sob_val; + hdev->asic_funcs->hw_queues_unlock(hdev); + + *sob_addr = handle->hw_sob->sob_addr; + *handle_id = hdl_id; + + dev_dbg(hdev->dev, + "Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n", + hw_sob->sob_id, handle->hw_sob->sob_addr, + prop->next_sob_val - 1, q_idx, hdl_id); + goto out; + +remove_idr: + spin_lock(&mgr->lock); + idr_remove(&mgr->handles, hdl_id); + spin_unlock(&mgr->lock); + +put_ctx: + hl_ctx_put(handle->ctx); + kfree(handle); + +out: + return rc; +} + +static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id) +{ + struct hl_cs_encaps_sig_handle *encaps_sig_hdl; + struct hl_sync_stream_properties *prop; + struct hl_device *hdev = hpriv->hdev; + struct hl_encaps_signals_mgr *mgr; + struct hl_hw_sob *hw_sob; + u32 q_idx, sob_addr; + int rc = 0; + + mgr = &hpriv->ctx->sig_mgr; + + spin_lock(&mgr->lock); + encaps_sig_hdl = idr_find(&mgr->handles, handle_id); + if (encaps_sig_hdl) { + dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n", + handle_id, encaps_sig_hdl->hw_sob->sob_addr, + encaps_sig_hdl->count); + + hdev->asic_funcs->hw_queues_lock(hdev); + + q_idx = encaps_sig_hdl->q_idx; + prop = &hdev->kernel_queues[q_idx].sync_stream_prop; + hw_sob = &prop->hw_sob[prop->curr_sob_offset]; + sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id); + + /* Check if sob_val got out of sync due to other + * signal submission requests which were handled + * between the reserve-unreserve calls or SOB switch + * upon reaching SOB max value. + */ + if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count + != prop->next_sob_val || + sob_addr != encaps_sig_hdl->hw_sob->sob_addr) { + dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n", + encaps_sig_hdl->pre_sob_val, + (prop->next_sob_val - encaps_sig_hdl->count)); + + hdev->asic_funcs->hw_queues_unlock(hdev); + rc = -EINVAL; + goto out; + } + + /* + * Decrement the SOB value by count by user request + * to unreserve those signals + */ + prop->next_sob_val -= encaps_sig_hdl->count; + + hdev->asic_funcs->hw_queues_unlock(hdev); + + hw_sob_put(hw_sob); + + /* Release the id and free allocated memory of the handle */ + idr_remove(&mgr->handles, handle_id); + hl_ctx_put(encaps_sig_hdl->ctx); + kfree(encaps_sig_hdl); + } else { + rc = -EINVAL; + dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n"); + } +out: + spin_unlock(&mgr->lock); + + return rc; +} + +static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type, + void __user *chunks, u32 num_chunks, + u64 *cs_seq, u32 flags, u32 timeout, + u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count) +{ + struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL; + bool handle_found = false, is_wait_cs = false, + wait_cs_submitted = false, + cs_encaps_signals = false; + struct hl_cs_chunk *cs_chunk_array, *chunk; + bool staged_cs_with_encaps_signals = false; + struct hw_queue_properties *hw_queue_prop; + struct hl_device *hdev = hpriv->hdev; + struct hl_cs_compl *sig_waitcs_cmpl; + u32 q_idx, collective_engine_id = 0; + struct hl_cs_counters_atomic *cntr; + struct hl_fence *sig_fence = NULL; + struct hl_ctx *ctx = hpriv->ctx; + enum hl_queue_type q_type; + struct hl_cs *cs; + u64 signal_seq; + int rc; + + cntr = &hdev->aggregated_cs_counters; + *cs_seq = ULLONG_MAX; + + rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks, + ctx); + if (rc) + goto out; + + /* currently it is guaranteed to have only one chunk */ + chunk = &cs_chunk_array[0]; + + if (chunk->queue_index >= hdev->asic_prop.max_queues) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, "Queue index %d is invalid\n", + chunk->queue_index); + rc = -EINVAL; + goto free_cs_chunk_array; + } + + q_idx = chunk->queue_index; + hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx]; + q_type = hw_queue_prop->type; + + if (!hw_queue_prop->supports_sync_stream) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "Queue index %d does not support sync stream operations\n", + q_idx); + rc = -EINVAL; + goto free_cs_chunk_array; + } + + if (cs_type == CS_TYPE_COLLECTIVE_WAIT) { + if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "Queue index %d is invalid\n", q_idx); + rc = -EINVAL; + goto free_cs_chunk_array; + } + + if (!hdev->nic_ports_mask) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "Collective operations not supported when NIC ports are disabled"); + rc = -EINVAL; + goto free_cs_chunk_array; + } + + collective_engine_id = chunk->collective_engine_id; + } + + is_wait_cs = !!(cs_type == CS_TYPE_WAIT || + cs_type == CS_TYPE_COLLECTIVE_WAIT); + + cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS); + + if (is_wait_cs) { + rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq, + ctx, cs_encaps_signals); + if (rc) + goto free_cs_chunk_array; + + if (cs_encaps_signals) { + /* check if cs sequence has encapsulated + * signals handle + */ + struct idr *idp; + u32 id; + + spin_lock(&ctx->sig_mgr.lock); + idp = &ctx->sig_mgr.handles; + idr_for_each_entry(idp, encaps_sig_hdl, id) { + if (encaps_sig_hdl->cs_seq == signal_seq) { + /* get refcount to protect removing this handle from idr, + * needed when multiple wait cs are used with offset + * to wait on reserved encaps signals. + * Since kref_put of this handle is executed outside the + * current lock, it is possible that the handle refcount + * is 0 but it yet to be removed from the list. In this + * case need to consider the handle as not valid. + */ + if (kref_get_unless_zero(&encaps_sig_hdl->refcount)) + handle_found = true; + break; + } + } + spin_unlock(&ctx->sig_mgr.lock); + + if (!handle_found) { + /* treat as signal CS already finished */ + dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n", + signal_seq); + rc = 0; + goto free_cs_chunk_array; + } + + /* validate also the signal offset value */ + if (chunk->encaps_signal_offset > + encaps_sig_hdl->count) { + dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n", + chunk->encaps_signal_offset, + encaps_sig_hdl->count); + rc = -EINVAL; + goto free_cs_chunk_array; + } + } + + sig_fence = hl_ctx_get_fence(ctx, signal_seq); + if (IS_ERR(sig_fence)) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "Failed to get signal CS with seq 0x%llx\n", + signal_seq); + rc = PTR_ERR(sig_fence); + goto free_cs_chunk_array; + } + + if (!sig_fence) { + /* signal CS already finished */ + rc = 0; + goto free_cs_chunk_array; + } + + sig_waitcs_cmpl = + container_of(sig_fence, struct hl_cs_compl, base_fence); + + staged_cs_with_encaps_signals = !! + (sig_waitcs_cmpl->type == CS_TYPE_DEFAULT && + (flags & HL_CS_FLAGS_ENCAP_SIGNALS)); + + if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL && + !staged_cs_with_encaps_signals) { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + dev_err(hdev->dev, + "CS seq 0x%llx is not of a signal/encaps-signal CS\n", + signal_seq); + hl_fence_put(sig_fence); + rc = -EINVAL; + goto free_cs_chunk_array; + } + + if (completion_done(&sig_fence->completion)) { + /* signal CS already finished */ + hl_fence_put(sig_fence); + rc = 0; + goto free_cs_chunk_array; + } + } + + rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout); + if (rc) { + if (is_wait_cs) + hl_fence_put(sig_fence); + + goto free_cs_chunk_array; + } + + /* + * Save the signal CS fence for later initialization right before + * hanging the wait CS on the queue. + * for encaps signals case, we save the cs sequence and handle pointer + * for later initialization. + */ + if (is_wait_cs) { + cs->signal_fence = sig_fence; + /* store the handle pointer, so we don't have to + * look for it again, later on the flow + * when we need to set SOB info in hw_queue. + */ + if (cs->encaps_signals) + cs->encaps_sig_hdl = encaps_sig_hdl; + } + + hl_debugfs_add_cs(cs); + + *cs_seq = cs->sequence; + + if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL) + rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type, + q_idx, chunk->encaps_signal_offset); + else if (cs_type == CS_TYPE_COLLECTIVE_WAIT) + rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx, + cs, q_idx, collective_engine_id, + chunk->encaps_signal_offset); + else { + atomic64_inc(&ctx->cs_counters.validation_drop_cnt); + atomic64_inc(&cntr->validation_drop_cnt); + rc = -EINVAL; + } + + if (rc) + goto free_cs_object; + + if (q_type == QUEUE_TYPE_HW) + INIT_WORK(&cs->finish_work, cs_completion); + + rc = hl_hw_queue_schedule_cs(cs); + if (rc) { + /* In case wait cs failed here, it means the signal cs + * already completed. we want to free all it's related objects + * but we don't want to fail the ioctl. + */ + if (is_wait_cs) + rc = 0; + else if (rc != -EAGAIN) + dev_err(hdev->dev, + "Failed to submit CS %d.%llu to H/W queues, error %d\n", + ctx->asid, cs->sequence, rc); + goto free_cs_object; + } + + *signal_sob_addr_offset = cs->sob_addr_offset; + *signal_initial_sob_count = cs->initial_sob_count; + + rc = HL_CS_STATUS_SUCCESS; + if (is_wait_cs) + wait_cs_submitted = true; + goto put_cs; + +free_cs_object: + cs_rollback(hdev, cs); + *cs_seq = ULLONG_MAX; + /* The path below is both for good and erroneous exits */ +put_cs: + /* We finished with the CS in this function, so put the ref */ + cs_put(cs); +free_cs_chunk_array: + if (!wait_cs_submitted && cs_encaps_signals && handle_found && is_wait_cs) + kref_put(&encaps_sig_hdl->refcount, hl_encaps_release_handle_and_put_ctx); + kfree(cs_chunk_array); +out: + return rc; +} + +static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores, + u32 num_engine_cores, u32 core_command) +{ + int rc; + struct hl_device *hdev = hpriv->hdev; + void __user *engine_cores_arr; + u32 *cores; + + if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) { + dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores); + return -EINVAL; + } + + if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) { + dev_err(hdev->dev, "Engine core command is invalid\n"); + return -EINVAL; + } + + engine_cores_arr = (void __user *) (uintptr_t) engine_cores; + cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL); + if (!cores) + return -ENOMEM; + + if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) { + dev_err(hdev->dev, "Failed to copy core-ids array from user\n"); + kfree(cores); + return -EFAULT; + } + + rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command); + kfree(cores); + + return rc; +} + +static int cs_ioctl_flush_pci_hbw_writes(struct hl_fpriv *hpriv) +{ + struct hl_device *hdev = hpriv->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + + if (!prop->hbw_flush_reg) { + dev_dbg(hdev->dev, "HBW flush is not supported\n"); + return -EOPNOTSUPP; + } + + RREG32(prop->hbw_flush_reg); + + return 0; +} + +int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data) +{ + union hl_cs_args *args = data; + enum hl_cs_type cs_type = 0; + u64 cs_seq = ULONG_MAX; + void __user *chunks; + u32 num_chunks, flags, timeout, + signals_count = 0, sob_addr = 0, handle_id = 0; + u16 sob_initial_count = 0; + int rc; + + rc = hl_cs_sanity_checks(hpriv, args); + if (rc) + goto out; + + rc = hl_cs_ctx_switch(hpriv, args, &cs_seq); + if (rc) + goto out; + + cs_type = hl_cs_get_cs_type(args->in.cs_flags & + ~HL_CS_FLAGS_FORCE_RESTORE); + chunks = (void __user *) (uintptr_t) args->in.chunks_execute; + num_chunks = args->in.num_chunks_execute; + flags = args->in.cs_flags; + + /* In case this is a staged CS, user should supply the CS sequence */ + if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) && + !(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST)) + cs_seq = args->in.seq; + + timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT + ? msecs_to_jiffies(args->in.timeout * 1000) + : hpriv->hdev->timeout_jiffies; + + switch (cs_type) { + case CS_TYPE_SIGNAL: + case CS_TYPE_WAIT: + case CS_TYPE_COLLECTIVE_WAIT: + rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks, + &cs_seq, args->in.cs_flags, timeout, + &sob_addr, &sob_initial_count); + break; + case CS_RESERVE_SIGNALS: + rc = cs_ioctl_reserve_signals(hpriv, + args->in.encaps_signals_q_idx, + args->in.encaps_signals_count, + &handle_id, &sob_addr, &signals_count); + break; + case CS_UNRESERVE_SIGNALS: + rc = cs_ioctl_unreserve_signals(hpriv, + args->in.encaps_sig_handle_id); + break; + case CS_TYPE_ENGINE_CORE: + rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores, + args->in.num_engine_cores, args->in.core_command); + break; + case CS_TYPE_FLUSH_PCI_HBW_WRITES: + rc = cs_ioctl_flush_pci_hbw_writes(hpriv); + break; + default: + rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq, + args->in.cs_flags, + args->in.encaps_sig_handle_id, + timeout, &sob_initial_count); + break; + } +out: + if (rc != -EAGAIN) { + memset(args, 0, sizeof(*args)); + + switch (cs_type) { + case CS_RESERVE_SIGNALS: + args->out.handle_id = handle_id; + args->out.sob_base_addr_offset = sob_addr; + args->out.count = signals_count; + break; + case CS_TYPE_SIGNAL: + args->out.sob_base_addr_offset = sob_addr; + args->out.sob_count_before_submission = sob_initial_count; + args->out.seq = cs_seq; + break; + case CS_TYPE_DEFAULT: + args->out.sob_count_before_submission = sob_initial_count; + args->out.seq = cs_seq; + break; + default: + args->out.seq = cs_seq; + break; + } + + args->out.status = rc; + } + + return rc; +} + +static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence, + enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp) +{ + struct hl_device *hdev = ctx->hdev; + ktime_t timestamp_kt; + long completion_rc; + int rc = 0, error; + + if (IS_ERR(fence)) { + rc = PTR_ERR(fence); + if (rc == -EINVAL) + dev_notice_ratelimited(hdev->dev, + "Can't wait on CS %llu because current CS is at seq %llu\n", + seq, ctx->cs_sequence); + return rc; + } + + if (!fence) { + if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, ×tamp_kt, &error)) { + dev_dbg(hdev->dev, + "Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n", + seq, ctx->cs_sequence); + *status = CS_WAIT_STATUS_GONE; + return 0; + } + + completion_rc = 1; + goto report_results; + } + + if (!timeout_us) { + completion_rc = completion_done(&fence->completion); + } else { + unsigned long timeout; + + timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ? + timeout_us : usecs_to_jiffies(timeout_us); + completion_rc = + wait_for_completion_interruptible_timeout( + &fence->completion, timeout); + } + + error = fence->error; + timestamp_kt = fence->timestamp; + +report_results: + if (completion_rc > 0) { + *status = CS_WAIT_STATUS_COMPLETED; + if (timestamp) + *timestamp = ktime_to_ns(timestamp_kt); + } else { + *status = CS_WAIT_STATUS_BUSY; + } + + if (completion_rc == -ERESTARTSYS) + rc = completion_rc; + else if (error == -ETIMEDOUT || error == -EIO) + rc = error; + + return rc; +} + +/* + * hl_cs_poll_fences - iterate CS fences to check for CS completion + * + * @mcs_data: multi-CS internal data + * @mcs_compl: multi-CS completion structure + * + * @return 0 on success, otherwise non 0 error code + * + * The function iterates on all CS sequence in the list and set bit in + * completion_bitmap for each completed CS. + * While iterating, the function sets the stream map of each fence in the fence + * array in the completion QID stream map to be used by CSs to perform + * completion to the multi-CS context. + * This function shall be called after taking context ref + */ +static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl) +{ + struct hl_fence **fence_ptr = mcs_data->fence_arr; + struct hl_device *hdev = mcs_data->ctx->hdev; + int i, rc, arr_len = mcs_data->arr_len; + u64 *seq_arr = mcs_data->seq_arr; + ktime_t max_ktime, first_cs_time; + enum hl_cs_wait_status status; + + memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *)); + + /* get all fences under the same lock */ + rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len); + if (rc) + return rc; + + /* + * re-initialize the completion here to handle 2 possible cases: + * 1. CS will complete the multi-CS prior clearing the completion. in which + * case the fence iteration is guaranteed to catch the CS completion. + * 2. the completion will occur after re-init of the completion. + * in which case we will wake up immediately in wait_for_completion. + */ + reinit_completion(&mcs_compl->completion); + + /* + * set to maximum time to verify timestamp is valid: if at the end + * this value is maintained- no timestamp was updated + */ + max_ktime = ktime_set(KTIME_SEC_MAX, 0); + first_cs_time = max_ktime; + + for (i = 0; i < arr_len; i++, fence_ptr++) { + struct hl_fence *fence = *fence_ptr; + + /* + * In order to prevent case where we wait until timeout even though a CS associated + * with the multi-CS actually completed we do things in the below order: + * 1. for each fence set it's QID map in the multi-CS completion QID map. This way + * any CS can, potentially, complete the multi CS for the specific QID (note + * that once completion is initialized, calling complete* and then wait on the + * completion will cause it to return at once) + * 2. only after allowing multi-CS completion for the specific QID we check whether + * the specific CS already completed (and thus the wait for completion part will + * be skipped). if the CS not completed it is guaranteed that completing CS will + * wake up the completion. + */ + if (fence) + mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map; + + /* + * function won't sleep as it is called with timeout 0 (i.e. + * poll the fence) + */ + rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL); + if (rc) { + dev_err(hdev->dev, + "wait_for_fence error :%d for CS seq %llu\n", + rc, seq_arr[i]); + break; + } + + switch (status) { + case CS_WAIT_STATUS_BUSY: + /* CS did not finished, QID to wait on already stored */ + break; + case CS_WAIT_STATUS_COMPLETED: + /* + * Using mcs_handling_done to avoid possibility of mcs_data + * returns to user indicating CS completed before it finished + * all of its mcs handling, to avoid race the next time the + * user waits for mcs. + * note: when reaching this case fence is definitely not NULL + * but NULL check was added to overcome static analysis + */ + if (fence && !fence->mcs_handling_done) { + /* + * in case multi CS is completed but MCS handling not done + * we "complete" the multi CS to prevent it from waiting + * until time-out and the "multi-CS handling done" will have + * another chance at the next iteration + */ + complete_all(&mcs_compl->completion); + break; + } + + mcs_data->completion_bitmap |= BIT(i); + /* + * For all completed CSs we take the earliest timestamp. + * For this we have to validate that the timestamp is + * earliest of all timestamps so far. + */ + if (fence && mcs_data->update_ts && + (ktime_compare(fence->timestamp, first_cs_time) < 0)) + first_cs_time = fence->timestamp; + break; + case CS_WAIT_STATUS_GONE: + mcs_data->update_ts = false; + mcs_data->gone_cs = true; + /* + * It is possible to get an old sequence numbers from user + * which related to already completed CSs and their fences + * already gone. In this case, CS set as completed but + * no need to consider its QID for mcs completion. + */ + mcs_data->completion_bitmap |= BIT(i); + break; + default: + dev_err(hdev->dev, "Invalid fence status\n"); + rc = -EINVAL; + break; + } + + } + + hl_fences_put(mcs_data->fence_arr, arr_len); + + if (mcs_data->update_ts && + (ktime_compare(first_cs_time, max_ktime) != 0)) + mcs_data->timestamp = ktime_to_ns(first_cs_time); + + return rc; +} + +static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq, + enum hl_cs_wait_status *status, s64 *timestamp) +{ + struct hl_fence *fence; + int rc = 0; + + if (timestamp) + *timestamp = 0; + + hl_ctx_get(ctx); + + fence = hl_ctx_get_fence(ctx, seq); + + rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp); + hl_fence_put(fence); + hl_ctx_put(ctx); + + return rc; +} + +static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs) +{ + if (usecs <= U32_MAX) + return usecs_to_jiffies(usecs); + + /* + * If the value in nanoseconds is larger than 64 bit, use the largest + * 64 bit value. + */ + if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC))) + return nsecs_to_jiffies(U64_MAX); + + return nsecs_to_jiffies(usecs * NSEC_PER_USEC); +} + +/* + * hl_wait_multi_cs_completion_init - init completion structure + * + * @hdev: pointer to habanalabs device structure + * @stream_master_bitmap: stream master QIDs map, set bit indicates stream + * master QID to wait on + * + * @return valid completion struct pointer on success, otherwise error pointer + * + * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver. + * the function gets the first available completion (by marking it "used") + * and initialize its values. + */ +static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev) +{ + struct multi_cs_completion *mcs_compl; + int i; + + /* find free multi_cs completion structure */ + for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { + mcs_compl = &hdev->multi_cs_completion[i]; + spin_lock(&mcs_compl->lock); + if (!mcs_compl->used) { + mcs_compl->used = 1; + mcs_compl->timestamp = 0; + /* + * init QID map to 0 to avoid completion by CSs. the actual QID map + * to multi-CS CSs will be set incrementally at a later stage + */ + mcs_compl->stream_master_qid_map = 0; + spin_unlock(&mcs_compl->lock); + break; + } + spin_unlock(&mcs_compl->lock); + } + + if (i == MULTI_CS_MAX_USER_CTX) { + dev_err(hdev->dev, "no available multi-CS completion structure\n"); + return ERR_PTR(-ENOMEM); + } + return mcs_compl; +} + +/* + * hl_wait_multi_cs_completion_fini - return completion structure and set as + * unused + * + * @mcs_compl: pointer to the completion structure + */ +static void hl_wait_multi_cs_completion_fini( + struct multi_cs_completion *mcs_compl) +{ + /* + * free completion structure, do it under lock to be in-sync with the + * thread that signals completion + */ + spin_lock(&mcs_compl->lock); + mcs_compl->used = 0; + spin_unlock(&mcs_compl->lock); +} + +/* + * hl_wait_multi_cs_completion - wait for first CS to complete + * + * @mcs_data: multi-CS internal data + * + * @return 0 on success, otherwise non 0 error code + */ +static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data, + struct multi_cs_completion *mcs_compl) +{ + long completion_rc; + + completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion, + mcs_data->timeout_jiffies); + + /* update timestamp */ + if (completion_rc > 0) + mcs_data->timestamp = mcs_compl->timestamp; + + if (completion_rc == -ERESTARTSYS) + return completion_rc; + + mcs_data->wait_status = completion_rc; + + return 0; +} + +/* + * hl_multi_cs_completion_init - init array of multi-CS completion structures + * + * @hdev: pointer to habanalabs device structure + */ +void hl_multi_cs_completion_init(struct hl_device *hdev) +{ + struct multi_cs_completion *mcs_cmpl; + int i; + + for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) { + mcs_cmpl = &hdev->multi_cs_completion[i]; + mcs_cmpl->used = 0; + spin_lock_init(&mcs_cmpl->lock); + init_completion(&mcs_cmpl->completion); + } +} + +/* + * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl + * + * @hpriv: pointer to the private data of the fd + * @data: pointer to multi-CS wait ioctl in/out args + * + */ +static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) +{ + struct multi_cs_completion *mcs_compl; + struct hl_device *hdev = hpriv->hdev; + struct multi_cs_data mcs_data = {}; + union hl_wait_cs_args *args = data; + struct hl_ctx *ctx = hpriv->ctx; + struct hl_fence **fence_arr; + void __user *seq_arr; + u32 size_to_copy; + u64 *cs_seq_arr; + u8 seq_arr_len; + int rc, i; + + for (i = 0 ; i < sizeof(args->in.pad) ; i++) + if (args->in.pad[i]) { + dev_dbg(hdev->dev, "Padding bytes must be 0\n"); + return -EINVAL; + } + + if (!hdev->supports_wait_for_multi_cs) { + dev_err(hdev->dev, "Wait for multi CS is not supported\n"); + return -EPERM; + } + + seq_arr_len = args->in.seq_arr_len; + + if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) { + dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n", + HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len); + return -EINVAL; + } + + /* allocate memory for sequence array */ + cs_seq_arr = + kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL); + if (!cs_seq_arr) + return -ENOMEM; + + /* copy CS sequence array from user */ + seq_arr = (void __user *) (uintptr_t) args->in.seq; + size_to_copy = seq_arr_len * sizeof(*cs_seq_arr); + if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) { + dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n"); + rc = -EFAULT; + goto free_seq_arr; + } + + /* allocate array for the fences */ + fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL); + if (!fence_arr) { + rc = -ENOMEM; + goto free_seq_arr; + } + + /* initialize the multi-CS internal data */ + mcs_data.ctx = ctx; + mcs_data.seq_arr = cs_seq_arr; + mcs_data.fence_arr = fence_arr; + mcs_data.arr_len = seq_arr_len; + + hl_ctx_get(ctx); + + /* wait (with timeout) for the first CS to be completed */ + mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us); + mcs_compl = hl_wait_multi_cs_completion_init(hdev); + if (IS_ERR(mcs_compl)) { + rc = PTR_ERR(mcs_compl); + goto put_ctx; + } + + /* poll all CS fences, extract timestamp */ + mcs_data.update_ts = true; + rc = hl_cs_poll_fences(&mcs_data, mcs_compl); + /* + * skip wait for CS completion when one of the below is true: + * - an error on the poll function + * - one or more CS in the list completed + * - the user called ioctl with timeout 0 + */ + if (rc || mcs_data.completion_bitmap || !args->in.timeout_us) + goto completion_fini; + + while (true) { + rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl); + if (rc || (mcs_data.wait_status == 0)) + break; + + /* + * poll fences once again to update the CS map. + * no timestamp should be updated this time. + */ + mcs_data.update_ts = false; + rc = hl_cs_poll_fences(&mcs_data, mcs_compl); + + if (rc || mcs_data.completion_bitmap) + break; + + /* + * if hl_wait_multi_cs_completion returned before timeout (i.e. + * it got a completion) it either got completed by CS in the multi CS list + * (in which case the indication will be non empty completion_bitmap) or it + * got completed by CS submitted to one of the shared stream master but + * not in the multi CS list (in which case we should wait again but modify + * the timeout and set timestamp as zero to let a CS related to the current + * multi-CS set a new, relevant, timestamp) + */ + mcs_data.timeout_jiffies = mcs_data.wait_status; + mcs_compl->timestamp = 0; + } + +completion_fini: + hl_wait_multi_cs_completion_fini(mcs_compl); + +put_ctx: + hl_ctx_put(ctx); + kfree(fence_arr); + +free_seq_arr: + kfree(cs_seq_arr); + + if (rc == -ERESTARTSYS) { + dev_err_ratelimited(hdev->dev, + "user process got signal while waiting for Multi-CS\n"); + rc = -EINTR; + } + + if (rc) + return rc; + + /* update output args */ + memset(args, 0, sizeof(*args)); + + if (mcs_data.completion_bitmap) { + args->out.status = HL_WAIT_CS_STATUS_COMPLETED; + args->out.cs_completion_map = mcs_data.completion_bitmap; + + /* if timestamp not 0- it's valid */ + if (mcs_data.timestamp) { + args->out.timestamp_nsec = mcs_data.timestamp; + args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; + } + + /* update if some CS was gone */ + if (!mcs_data.timestamp) + args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; + } else { + args->out.status = HL_WAIT_CS_STATUS_BUSY; + } + + return 0; +} + +static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) +{ + struct hl_device *hdev = hpriv->hdev; + union hl_wait_cs_args *args = data; + enum hl_cs_wait_status status; + u64 seq = args->in.seq; + s64 timestamp; + int rc; + + rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, ×tamp); + + if (rc == -ERESTARTSYS) { + dev_err_ratelimited(hdev->dev, + "user process got signal while waiting for CS handle %llu\n", + seq); + return -EINTR; + } + + memset(args, 0, sizeof(*args)); + + if (rc) { + if (rc == -ETIMEDOUT) { + dev_err_ratelimited(hdev->dev, + "CS %llu has timed-out while user process is waiting for it\n", + seq); + args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT; + } else if (rc == -EIO) { + dev_err_ratelimited(hdev->dev, + "CS %llu has been aborted while user process is waiting for it\n", + seq); + args->out.status = HL_WAIT_CS_STATUS_ABORTED; + } + return rc; + } + + if (timestamp) { + args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; + args->out.timestamp_nsec = timestamp; + } + + switch (status) { + case CS_WAIT_STATUS_GONE: + args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE; + fallthrough; + case CS_WAIT_STATUS_COMPLETED: + args->out.status = HL_WAIT_CS_STATUS_COMPLETED; + break; + case CS_WAIT_STATUS_BUSY: + default: + args->out.status = HL_WAIT_CS_STATUS_BUSY; + break; + } + + return 0; +} + +static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf, + struct hl_cb *cq_cb, + u64 ts_offset, u64 cq_offset, u64 target_value, + spinlock_t *wait_list_lock, + struct hl_user_pending_interrupt **pend) +{ + struct hl_ts_buff *ts_buff = buf->private; + struct hl_user_pending_interrupt *requested_offset_record = + (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + + ts_offset; + struct hl_user_pending_interrupt *cb_last = + (struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address + + (ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt)); + unsigned long flags, iter_counter = 0; + u64 current_cq_counter; + + /* Validate ts_offset not exceeding last max */ + if (requested_offset_record >= cb_last) { + dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n", + (u64)(uintptr_t)cb_last); + return -EINVAL; + } + +start_over: + spin_lock_irqsave(wait_list_lock, flags); + + /* Unregister only if we didn't reach the target value + * since in this case there will be no handling in irq context + * and then it's safe to delete the node out of the interrupt list + * then re-use it on other interrupt + */ + if (requested_offset_record->ts_reg_info.in_use) { + current_cq_counter = *requested_offset_record->cq_kernel_addr; + if (current_cq_counter < requested_offset_record->cq_target_value) { + list_del(&requested_offset_record->wait_list_node); + spin_unlock_irqrestore(wait_list_lock, flags); + + hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf); + hl_cb_put(requested_offset_record->ts_reg_info.cq_cb); + + dev_dbg(buf->mmg->dev, + "ts node removed from interrupt list now can re-use\n"); + } else { + dev_dbg(buf->mmg->dev, + "ts node in middle of irq handling\n"); + + /* irq handling in the middle give it time to finish */ + spin_unlock_irqrestore(wait_list_lock, flags); + usleep_range(1, 10); + if (++iter_counter == MAX_TS_ITER_NUM) { + dev_err(buf->mmg->dev, + "handling registration interrupt took too long!!\n"); + return -EINVAL; + } + + goto start_over; + } + } else { + /* Fill up the new registration node info */ + requested_offset_record->ts_reg_info.buf = buf; + requested_offset_record->ts_reg_info.cq_cb = cq_cb; + requested_offset_record->ts_reg_info.timestamp_kernel_addr = + (u64 *) ts_buff->user_buff_address + ts_offset; + requested_offset_record->cq_kernel_addr = + (u64 *) cq_cb->kernel_address + cq_offset; + requested_offset_record->cq_target_value = target_value; + + spin_unlock_irqrestore(wait_list_lock, flags); + } + + *pend = requested_offset_record; + + dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n", + requested_offset_record); + return 0; +} + +static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, + struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg, + u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset, + u64 target_value, struct hl_user_interrupt *interrupt, + bool register_ts_record, u64 ts_handle, u64 ts_offset, + u32 *status, u64 *timestamp) +{ + struct hl_user_pending_interrupt *pend; + struct hl_mmap_mem_buf *buf; + struct hl_cb *cq_cb; + unsigned long timeout, flags; + long completion_rc; + int rc = 0; + + timeout = hl_usecs64_to_jiffies(timeout_us); + + hl_ctx_get(ctx); + + cq_cb = hl_cb_get(cb_mmg, cq_counters_handle); + if (!cq_cb) { + rc = -EINVAL; + goto put_ctx; + } + + /* Validate the cq offset */ + if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >= + ((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) { + rc = -EINVAL; + goto put_cq_cb; + } + + if (register_ts_record) { + dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n", + interrupt->interrupt_id, ts_offset, cq_counters_offset); + buf = hl_mmap_mem_buf_get(mmg, ts_handle); + if (!buf) { + rc = -EINVAL; + goto put_cq_cb; + } + + /* get ts buffer record */ + rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset, + cq_counters_offset, target_value, + &interrupt->wait_list_lock, &pend); + if (rc) + goto put_ts_buff; + } else { + pend = kzalloc(sizeof(*pend), GFP_KERNEL); + if (!pend) { + rc = -ENOMEM; + goto put_cq_cb; + } + hl_fence_init(&pend->fence, ULONG_MAX); + pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset; + pend->cq_target_value = target_value; + } + + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + + /* We check for completion value as interrupt could have been received + * before we added the node to the wait list + */ + if (*pend->cq_kernel_addr >= target_value) { + if (register_ts_record) + pend->ts_reg_info.in_use = 0; + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + + *status = HL_WAIT_CS_STATUS_COMPLETED; + + if (register_ts_record) { + *pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns(); + goto put_ts_buff; + } else { + pend->fence.timestamp = ktime_get(); + goto set_timestamp; + } + } else if (!timeout_us) { + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + *status = HL_WAIT_CS_STATUS_BUSY; + pend->fence.timestamp = ktime_get(); + goto set_timestamp; + } + + /* Add pending user interrupt to relevant list for the interrupt + * handler to monitor. + * Note that we cannot have sorted list by target value, + * in order to shorten the list pass loop, since + * same list could have nodes for different cq counter handle. + * Note: + * Mark ts buff offset as in use here in the spinlock protection area + * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record + * before adding the node to the list. this scenario might happen when + * multiple threads are racing on same offset and one thread could + * set the ts buff in ts_buff_get_kernel_ts_record then the other thread + * takes over and get to ts_buff_get_kernel_ts_record and then we will try + * to re-use the same ts buff offset, and will try to delete a non existing + * node from the list. + */ + if (register_ts_record) + pend->ts_reg_info.in_use = 1; + + list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + + if (register_ts_record) { + rc = *status = HL_WAIT_CS_STATUS_COMPLETED; + goto ts_registration_exit; + } + + /* Wait for interrupt handler to signal completion */ + completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, + timeout); + if (completion_rc > 0) { + *status = HL_WAIT_CS_STATUS_COMPLETED; + } else { + if (completion_rc == -ERESTARTSYS) { + dev_err_ratelimited(hdev->dev, + "user process got signal while waiting for interrupt ID %d\n", + interrupt->interrupt_id); + rc = -EINTR; + *status = HL_WAIT_CS_STATUS_ABORTED; + } else { + if (pend->fence.error == -EIO) { + dev_err_ratelimited(hdev->dev, + "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", + pend->fence.error); + rc = -EIO; + *status = HL_WAIT_CS_STATUS_ABORTED; + } else { + /* The wait has timed-out. We don't know anything beyond that + * because the workload wasn't submitted through the driver. + * Therefore, from driver's perspective, the workload is still + * executing. + */ + rc = 0; + *status = HL_WAIT_CS_STATUS_BUSY; + } + } + } + + /* + * We keep removing the node from list here, and not at the irq handler + * for completion timeout case. and if it's a registration + * for ts record, the node will be deleted in the irq handler after + * we reach the target value. + */ + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + list_del(&pend->wait_list_node); + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + +set_timestamp: + *timestamp = ktime_to_ns(pend->fence.timestamp); + kfree(pend); + hl_cb_put(cq_cb); +ts_registration_exit: + hl_ctx_put(ctx); + + return rc; + +put_ts_buff: + hl_mmap_mem_buf_put(buf); +put_cq_cb: + hl_cb_put(cq_cb); +put_ctx: + hl_ctx_put(ctx); + + return rc; +} + +static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx, + u64 timeout_us, u64 user_address, + u64 target_value, struct hl_user_interrupt *interrupt, + u32 *status, + u64 *timestamp) +{ + struct hl_user_pending_interrupt *pend; + unsigned long timeout, flags; + u64 completion_value; + long completion_rc; + int rc = 0; + + timeout = hl_usecs64_to_jiffies(timeout_us); + + hl_ctx_get(ctx); + + pend = kzalloc(sizeof(*pend), GFP_KERNEL); + if (!pend) { + hl_ctx_put(ctx); + return -ENOMEM; + } + + hl_fence_init(&pend->fence, ULONG_MAX); + + /* Add pending user interrupt to relevant list for the interrupt + * handler to monitor + */ + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + + /* We check for completion value as interrupt could have been received + * before we added the node to the wait list + */ + if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { + dev_err(hdev->dev, "Failed to copy completion value from user\n"); + rc = -EFAULT; + goto remove_pending_user_interrupt; + } + + if (completion_value >= target_value) { + *status = HL_WAIT_CS_STATUS_COMPLETED; + /* There was no interrupt, we assume the completion is now. */ + pend->fence.timestamp = ktime_get(); + } else { + *status = HL_WAIT_CS_STATUS_BUSY; + } + + if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED)) + goto remove_pending_user_interrupt; + +wait_again: + /* Wait for interrupt handler to signal completion */ + completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, + timeout); + + /* If timeout did not expire we need to perform the comparison. + * If comparison fails, keep waiting until timeout expires + */ + if (completion_rc > 0) { + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + /* reinit_completion must be called before we check for user + * completion value, otherwise, if interrupt is received after + * the comparison and before the next wait_for_completion, + * we will reach timeout and fail + */ + reinit_completion(&pend->fence.completion); + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + + if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) { + dev_err(hdev->dev, "Failed to copy completion value from user\n"); + rc = -EFAULT; + + goto remove_pending_user_interrupt; + } + + if (completion_value >= target_value) { + *status = HL_WAIT_CS_STATUS_COMPLETED; + } else if (pend->fence.error) { + dev_err_ratelimited(hdev->dev, + "interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n", + pend->fence.error); + /* set the command completion status as ABORTED */ + *status = HL_WAIT_CS_STATUS_ABORTED; + } else { + timeout = completion_rc; + goto wait_again; + } + } else if (completion_rc == -ERESTARTSYS) { + dev_err_ratelimited(hdev->dev, + "user process got signal while waiting for interrupt ID %d\n", + interrupt->interrupt_id); + rc = -EINTR; + } else { + /* The wait has timed-out. We don't know anything beyond that + * because the workload wasn't submitted through the driver. + * Therefore, from driver's perspective, the workload is still + * executing. + */ + rc = 0; + *status = HL_WAIT_CS_STATUS_BUSY; + } + +remove_pending_user_interrupt: + spin_lock_irqsave(&interrupt->wait_list_lock, flags); + list_del(&pend->wait_list_node); + spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); + + *timestamp = ktime_to_ns(pend->fence.timestamp); + + kfree(pend); + hl_ctx_put(ctx); + + return rc; +} + +static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) +{ + u16 interrupt_id, first_interrupt, last_interrupt; + struct hl_device *hdev = hpriv->hdev; + struct asic_fixed_properties *prop; + struct hl_user_interrupt *interrupt; + union hl_wait_cs_args *args = data; + u32 status = HL_WAIT_CS_STATUS_BUSY; + u64 timestamp = 0; + int rc, int_idx; + + prop = &hdev->asic_prop; + + if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) { + dev_err(hdev->dev, "no user interrupts allowed"); + return -EPERM; + } + + interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags); + + first_interrupt = prop->first_available_user_interrupt; + last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1; + + if (interrupt_id < prop->user_dec_intr_count) { + + /* Check if the requested core is enabled */ + if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) { + dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed", + interrupt_id); + return -EINVAL; + } + + interrupt = &hdev->user_interrupt[interrupt_id]; + + } else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) { + + int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count; + interrupt = &hdev->user_interrupt[int_idx]; + + } else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) { + interrupt = &hdev->common_user_cq_interrupt; + } else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) { + interrupt = &hdev->common_decoder_interrupt; + } else { + dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id); + return -EINVAL; + } + + if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) + rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr, + args->in.interrupt_timeout_us, args->in.cq_counters_handle, + args->in.cq_counters_offset, + args->in.target, interrupt, + !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT), + args->in.timestamp_handle, args->in.timestamp_offset, + &status, ×tamp); + else + rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, + args->in.interrupt_timeout_us, args->in.addr, + args->in.target, interrupt, &status, + ×tamp); + if (rc) + return rc; + + memset(args, 0, sizeof(*args)); + args->out.status = status; + + if (timestamp) { + args->out.timestamp_nsec = timestamp; + args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD; + } + + return 0; +} + +int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data) +{ + struct hl_device *hdev = hpriv->hdev; + union hl_wait_cs_args *args = data; + u32 flags = args->in.flags; + int rc; + + /* If the device is not operational, or if an error has happened and user should release the + * device, there is no point in waiting for any command submission or user interrupt. + */ + if (!hl_device_operational(hpriv->hdev, NULL) || hdev->reset_info.watchdog_active) + return -EBUSY; + + if (flags & HL_WAIT_CS_FLAGS_INTERRUPT) + rc = hl_interrupt_wait_ioctl(hpriv, data); + else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS) + rc = hl_multi_cs_wait_ioctl(hpriv, data); + else + rc = hl_cs_wait_ioctl(hpriv, data); + + return rc; +} |