summaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/Kconfig1
-rw-r--r--arch/x86/Kconfig.debug12
-rw-r--r--arch/x86/entry/entry_64.S299
-rw-r--r--arch/x86/include/asm/fpu/types.h72
-rw-r--r--arch/x86/include/asm/processor.h10
-rw-r--r--arch/x86/kernel/fpu/init.c40
-rw-r--r--arch/x86/kernel/nmi.c123
-rw-r--r--arch/x86/kernel/process.c2
8 files changed, 350 insertions, 209 deletions
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 3dbb7e7909ca..b3a1a5d77d92 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -41,6 +41,7 @@ config X86
select ARCH_USE_CMPXCHG_LOCKREF if X86_64
select ARCH_USE_QUEUED_RWLOCKS
select ARCH_USE_QUEUED_SPINLOCKS
+ select ARCH_WANTS_DYNAMIC_TASK_STRUCT
select ARCH_WANT_FRAME_POINTERS
select ARCH_WANT_IPC_PARSE_VERSION if X86_32
select ARCH_WANT_OPTIONAL_GPIOLIB
diff --git a/arch/x86/Kconfig.debug b/arch/x86/Kconfig.debug
index a15893d17c55..d8c0d3266173 100644
--- a/arch/x86/Kconfig.debug
+++ b/arch/x86/Kconfig.debug
@@ -297,6 +297,18 @@ config OPTIMIZE_INLINING
If unsure, say N.
+config DEBUG_ENTRY
+ bool "Debug low-level entry code"
+ depends on DEBUG_KERNEL
+ ---help---
+ This option enables sanity checks in x86's low-level entry code.
+ Some of these sanity checks may slow down kernel entries and
+ exits or otherwise impact performance.
+
+ This is currently used to help test NMI code.
+
+ If unsure, say N.
+
config DEBUG_NMI_SELFTEST
bool "NMI Selftest"
depends on DEBUG_KERNEL && X86_LOCAL_APIC
diff --git a/arch/x86/entry/entry_64.S b/arch/x86/entry/entry_64.S
index 3bb2c4302df1..8cb3e438f21e 100644
--- a/arch/x86/entry/entry_64.S
+++ b/arch/x86/entry/entry_64.S
@@ -1237,11 +1237,12 @@ ENTRY(nmi)
* If the variable is not set and the stack is not the NMI
* stack then:
* o Set the special variable on the stack
- * o Copy the interrupt frame into a "saved" location on the stack
- * o Copy the interrupt frame into a "copy" location on the stack
+ * o Copy the interrupt frame into an "outermost" location on the
+ * stack
+ * o Copy the interrupt frame into an "iret" location on the stack
* o Continue processing the NMI
* If the variable is set or the previous stack is the NMI stack:
- * o Modify the "copy" location to jump to the repeate_nmi
+ * o Modify the "iret" location to jump to the repeat_nmi
* o return back to the first NMI
*
* Now on exit of the first NMI, we first clear the stack variable
@@ -1250,31 +1251,151 @@ ENTRY(nmi)
* a nested NMI that updated the copy interrupt stack frame, a
* jump will be made to the repeat_nmi code that will handle the second
* NMI.
+ *
+ * However, espfix prevents us from directly returning to userspace
+ * with a single IRET instruction. Similarly, IRET to user mode
+ * can fault. We therefore handle NMIs from user space like
+ * other IST entries.
*/
/* Use %rdx as our temp variable throughout */
pushq %rdx
+ testb $3, CS-RIP+8(%rsp)
+ jz .Lnmi_from_kernel
+
+ /*
+ * NMI from user mode. We need to run on the thread stack, but we
+ * can't go through the normal entry paths: NMIs are masked, and
+ * we don't want to enable interrupts, because then we'll end
+ * up in an awkward situation in which IRQs are on but NMIs
+ * are off.
+ */
+
+ SWAPGS
+ cld
+ movq %rsp, %rdx
+ movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
+ pushq 5*8(%rdx) /* pt_regs->ss */
+ pushq 4*8(%rdx) /* pt_regs->rsp */
+ pushq 3*8(%rdx) /* pt_regs->flags */
+ pushq 2*8(%rdx) /* pt_regs->cs */
+ pushq 1*8(%rdx) /* pt_regs->rip */
+ pushq $-1 /* pt_regs->orig_ax */
+ pushq %rdi /* pt_regs->di */
+ pushq %rsi /* pt_regs->si */
+ pushq (%rdx) /* pt_regs->dx */
+ pushq %rcx /* pt_regs->cx */
+ pushq %rax /* pt_regs->ax */
+ pushq %r8 /* pt_regs->r8 */
+ pushq %r9 /* pt_regs->r9 */
+ pushq %r10 /* pt_regs->r10 */
+ pushq %r11 /* pt_regs->r11 */
+ pushq %rbx /* pt_regs->rbx */
+ pushq %rbp /* pt_regs->rbp */
+ pushq %r12 /* pt_regs->r12 */
+ pushq %r13 /* pt_regs->r13 */
+ pushq %r14 /* pt_regs->r14 */
+ pushq %r15 /* pt_regs->r15 */
+
+ /*
+ * At this point we no longer need to worry about stack damage
+ * due to nesting -- we're on the normal thread stack and we're
+ * done with the NMI stack.
+ */
+
+ movq %rsp, %rdi
+ movq $-1, %rsi
+ call do_nmi
+
+ /*
+ * Return back to user mode. We must *not* do the normal exit
+ * work, because we don't want to enable interrupts. Fortunately,
+ * do_nmi doesn't modify pt_regs.
+ */
+ SWAPGS
+ jmp restore_c_regs_and_iret
+
+.Lnmi_from_kernel:
+ /*
+ * Here's what our stack frame will look like:
+ * +---------------------------------------------------------+
+ * | original SS |
+ * | original Return RSP |
+ * | original RFLAGS |
+ * | original CS |
+ * | original RIP |
+ * +---------------------------------------------------------+
+ * | temp storage for rdx |
+ * +---------------------------------------------------------+
+ * | "NMI executing" variable |
+ * +---------------------------------------------------------+
+ * | iret SS } Copied from "outermost" frame |
+ * | iret Return RSP } on each loop iteration; overwritten |
+ * | iret RFLAGS } by a nested NMI to force another |
+ * | iret CS } iteration if needed. |
+ * | iret RIP } |
+ * +---------------------------------------------------------+
+ * | outermost SS } initialized in first_nmi; |
+ * | outermost Return RSP } will not be changed before |
+ * | outermost RFLAGS } NMI processing is done. |
+ * | outermost CS } Copied to "iret" frame on each |
+ * | outermost RIP } iteration. |
+ * +---------------------------------------------------------+
+ * | pt_regs |
+ * +---------------------------------------------------------+
+ *
+ * The "original" frame is used by hardware. Before re-enabling
+ * NMIs, we need to be done with it, and we need to leave enough
+ * space for the asm code here.
+ *
+ * We return by executing IRET while RSP points to the "iret" frame.
+ * That will either return for real or it will loop back into NMI
+ * processing.
+ *
+ * The "outermost" frame is copied to the "iret" frame on each
+ * iteration of the loop, so each iteration starts with the "iret"
+ * frame pointing to the final return target.
+ */
+
/*
- * If %cs was not the kernel segment, then the NMI triggered in user
- * space, which means it is definitely not nested.
+ * Determine whether we're a nested NMI.
+ *
+ * If we interrupted kernel code between repeat_nmi and
+ * end_repeat_nmi, then we are a nested NMI. We must not
+ * modify the "iret" frame because it's being written by
+ * the outer NMI. That's okay; the outer NMI handler is
+ * about to about to call do_nmi anyway, so we can just
+ * resume the outer NMI.
*/
- cmpl $__KERNEL_CS, 16(%rsp)
- jne first_nmi
+
+ movq $repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja 1f
+ movq $end_repeat_nmi, %rdx
+ cmpq 8(%rsp), %rdx
+ ja nested_nmi_out
+1:
/*
- * Check the special variable on the stack to see if NMIs are
- * executing.
+ * Now check "NMI executing". If it's set, then we're nested.
+ * This will not detect if we interrupted an outer NMI just
+ * before IRET.
*/
cmpl $1, -8(%rsp)
je nested_nmi
/*
- * Now test if the previous stack was an NMI stack.
- * We need the double check. We check the NMI stack to satisfy the
- * race when the first NMI clears the variable before returning.
- * We check the variable because the first NMI could be in a
- * breakpoint routine using a breakpoint stack.
+ * Now test if the previous stack was an NMI stack. This covers
+ * the case where we interrupt an outer NMI after it clears
+ * "NMI executing" but before IRET. We need to be careful, though:
+ * there is one case in which RSP could point to the NMI stack
+ * despite there being no NMI active: naughty userspace controls
+ * RSP at the very beginning of the SYSCALL targets. We can
+ * pull a fast one on naughty userspace, though: we program
+ * SYSCALL to mask DF, so userspace cannot cause DF to be set
+ * if it controls the kernel's RSP. We set DF before we clear
+ * "NMI executing".
*/
lea 6*8(%rsp), %rdx
/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
@@ -1286,25 +1407,20 @@ ENTRY(nmi)
cmpq %rdx, 4*8(%rsp)
/* If it is below the NMI stack, it is a normal NMI */
jb first_nmi
- /* Ah, it is within the NMI stack, treat it as nested */
+
+ /* Ah, it is within the NMI stack. */
+
+ testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
+ jz first_nmi /* RSP was user controlled. */
+
+ /* This is a nested NMI. */
nested_nmi:
/*
- * Do nothing if we interrupted the fixup in repeat_nmi.
- * It's about to repeat the NMI handler, so we are fine
- * with ignoring this one.
+ * Modify the "iret" frame to point to repeat_nmi, forcing another
+ * iteration of NMI handling.
*/
- movq $repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja 1f
- movq $end_repeat_nmi, %rdx
- cmpq 8(%rsp), %rdx
- ja nested_nmi_out
-
-1:
- /* Set up the interrupted NMIs stack to jump to repeat_nmi */
- leaq -1*8(%rsp), %rdx
- movq %rdx, %rsp
+ subq $8, %rsp
leaq -10*8(%rsp), %rdx
pushq $__KERNEL_DS
pushq %rdx
@@ -1318,61 +1434,42 @@ nested_nmi:
nested_nmi_out:
popq %rdx
- /* No need to check faults here */
+ /* We are returning to kernel mode, so this cannot result in a fault. */
INTERRUPT_RETURN
first_nmi:
- /*
- * Because nested NMIs will use the pushed location that we
- * stored in rdx, we must keep that space available.
- * Here's what our stack frame will look like:
- * +-------------------------+
- * | original SS |
- * | original Return RSP |
- * | original RFLAGS |
- * | original CS |
- * | original RIP |
- * +-------------------------+
- * | temp storage for rdx |
- * +-------------------------+
- * | NMI executing variable |
- * +-------------------------+
- * | copied SS |
- * | copied Return RSP |
- * | copied RFLAGS |
- * | copied CS |
- * | copied RIP |
- * +-------------------------+
- * | Saved SS |
- * | Saved Return RSP |
- * | Saved RFLAGS |
- * | Saved CS |
- * | Saved RIP |
- * +-------------------------+
- * | pt_regs |
- * +-------------------------+
- *
- * The saved stack frame is used to fix up the copied stack frame
- * that a nested NMI may change to make the interrupted NMI iret jump
- * to the repeat_nmi. The original stack frame and the temp storage
- * is also used by nested NMIs and can not be trusted on exit.
- */
- /* Do not pop rdx, nested NMIs will corrupt that part of the stack */
+ /* Restore rdx. */
movq (%rsp), %rdx
- /* Set the NMI executing variable on the stack. */
- pushq $1
+ /* Make room for "NMI executing". */
+ pushq $0
- /* Leave room for the "copied" frame */
+ /* Leave room for the "iret" frame */
subq $(5*8), %rsp
- /* Copy the stack frame to the Saved frame */
+ /* Copy the "original" frame to the "outermost" frame */
.rept 5
pushq 11*8(%rsp)
.endr
/* Everything up to here is safe from nested NMIs */
+#ifdef CONFIG_DEBUG_ENTRY
+ /*
+ * For ease of testing, unmask NMIs right away. Disabled by
+ * default because IRET is very expensive.
+ */
+ pushq $0 /* SS */
+ pushq %rsp /* RSP (minus 8 because of the previous push) */
+ addq $8, (%rsp) /* Fix up RSP */
+ pushfq /* RFLAGS */
+ pushq $__KERNEL_CS /* CS */
+ pushq $1f /* RIP */
+ INTERRUPT_RETURN /* continues at repeat_nmi below */
+1:
+#endif
+
+repeat_nmi:
/*
* If there was a nested NMI, the first NMI's iret will return
* here. But NMIs are still enabled and we can take another
@@ -1381,16 +1478,20 @@ first_nmi:
* it will just return, as we are about to repeat an NMI anyway.
* This makes it safe to copy to the stack frame that a nested
* NMI will update.
+ *
+ * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
+ * we're repeating an NMI, gsbase has the same value that it had on
+ * the first iteration. paranoid_entry will load the kernel
+ * gsbase if needed before we call do_nmi. "NMI executing"
+ * is zero.
*/
-repeat_nmi:
+ movq $1, 10*8(%rsp) /* Set "NMI executing". */
+
/*
- * Update the stack variable to say we are still in NMI (the update
- * is benign for the non-repeat case, where 1 was pushed just above
- * to this very stack slot).
+ * Copy the "outermost" frame to the "iret" frame. NMIs that nest
+ * here must not modify the "iret" frame while we're writing to
+ * it or it will end up containing garbage.
*/
- movq $1, 10*8(%rsp)
-
- /* Make another copy, this one may be modified by nested NMIs */
addq $(10*8), %rsp
.rept 5
pushq -6*8(%rsp)
@@ -1399,9 +1500,9 @@ repeat_nmi:
end_repeat_nmi:
/*
- * Everything below this point can be preempted by a nested
- * NMI if the first NMI took an exception and reset our iret stack
- * so that we repeat another NMI.
+ * Everything below this point can be preempted by a nested NMI.
+ * If this happens, then the inner NMI will change the "iret"
+ * frame to point back to repeat_nmi.
*/
pushq $-1 /* ORIG_RAX: no syscall to restart */
ALLOC_PT_GPREGS_ON_STACK
@@ -1415,28 +1516,11 @@ end_repeat_nmi:
*/
call paranoid_entry
- /*
- * Save off the CR2 register. If we take a page fault in the NMI then
- * it could corrupt the CR2 value. If the NMI preempts a page fault
- * handler before it was able to read the CR2 register, and then the
- * NMI itself takes a page fault, the page fault that was preempted
- * will read the information from the NMI page fault and not the
- * origin fault. Save it off and restore it if it changes.
- * Use the r12 callee-saved register.
- */
- movq %cr2, %r12
-
/* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
movq %rsp, %rdi
movq $-1, %rsi
call do_nmi
- /* Did the NMI take a page fault? Restore cr2 if it did */
- movq %cr2, %rcx
- cmpq %rcx, %r12
- je 1f
- movq %r12, %cr2
-1:
testl %ebx, %ebx /* swapgs needed? */
jnz nmi_restore
nmi_swapgs:
@@ -1444,11 +1528,26 @@ nmi_swapgs:
nmi_restore:
RESTORE_EXTRA_REGS
RESTORE_C_REGS
- /* Pop the extra iret frame at once */
+
+ /* Point RSP at the "iret" frame. */
REMOVE_PT_GPREGS_FROM_STACK 6*8
- /* Clear the NMI executing stack variable */
- movq $0, 5*8(%rsp)
+ /*
+ * Clear "NMI executing". Set DF first so that we can easily
+ * distinguish the remaining code between here and IRET from
+ * the SYSCALL entry and exit paths. On a native kernel, we
+ * could just inspect RIP, but, on paravirt kernels,
+ * INTERRUPT_RETURN can translate into a jump into a
+ * hypercall page.
+ */
+ std
+ movq $0, 5*8(%rsp) /* clear "NMI executing" */
+
+ /*
+ * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
+ * stack in a single instruction. We are returning to kernel
+ * mode, so this cannot result in a fault.
+ */
INTERRUPT_RETURN
END(nmi)
diff --git a/arch/x86/include/asm/fpu/types.h b/arch/x86/include/asm/fpu/types.h
index 0637826292de..c49c5173158e 100644
--- a/arch/x86/include/asm/fpu/types.h
+++ b/arch/x86/include/asm/fpu/types.h
@@ -189,6 +189,7 @@ union fpregs_state {
struct fxregs_state fxsave;
struct swregs_state soft;
struct xregs_state xsave;
+ u8 __padding[PAGE_SIZE];
};
/*
@@ -198,40 +199,6 @@ union fpregs_state {
*/
struct fpu {
/*
- * @state:
- *
- * In-memory copy of all FPU registers that we save/restore
- * over context switches. If the task is using the FPU then
- * the registers in the FPU are more recent than this state
- * copy. If the task context-switches away then they get
- * saved here and represent the FPU state.
- *
- * After context switches there may be a (short) time period
- * during which the in-FPU hardware registers are unchanged
- * and still perfectly match this state, if the tasks
- * scheduled afterwards are not using the FPU.
- *
- * This is the 'lazy restore' window of optimization, which
- * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
- *
- * We detect whether a subsequent task uses the FPU via setting
- * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
- *
- * During this window, if the task gets scheduled again, we
- * might be able to skip having to do a restore from this
- * memory buffer to the hardware registers - at the cost of
- * incurring the overhead of #NM fault traps.
- *
- * Note that on modern CPUs that support the XSAVEOPT (or other
- * optimized XSAVE instructions), we don't use #NM traps anymore,
- * as the hardware can track whether FPU registers need saving
- * or not. On such CPUs we activate the non-lazy ('eagerfpu')
- * logic, which unconditionally saves/restores all FPU state
- * across context switches. (if FPU state exists.)
- */
- union fpregs_state state;
-
- /*
* @last_cpu:
*
* Records the last CPU on which this context was loaded into
@@ -288,6 +255,43 @@ struct fpu {
* deal with bursty apps that only use the FPU for a short time:
*/
unsigned char counter;
+ /*
+ * @state:
+ *
+ * In-memory copy of all FPU registers that we save/restore
+ * over context switches. If the task is using the FPU then
+ * the registers in the FPU are more recent than this state
+ * copy. If the task context-switches away then they get
+ * saved here and represent the FPU state.
+ *
+ * After context switches there may be a (short) time period
+ * during which the in-FPU hardware registers are unchanged
+ * and still perfectly match this state, if the tasks
+ * scheduled afterwards are not using the FPU.
+ *
+ * This is the 'lazy restore' window of optimization, which
+ * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
+ *
+ * We detect whether a subsequent task uses the FPU via setting
+ * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
+ *
+ * During this window, if the task gets scheduled again, we
+ * might be able to skip having to do a restore from this
+ * memory buffer to the hardware registers - at the cost of
+ * incurring the overhead of #NM fault traps.
+ *
+ * Note that on modern CPUs that support the XSAVEOPT (or other
+ * optimized XSAVE instructions), we don't use #NM traps anymore,
+ * as the hardware can track whether FPU registers need saving
+ * or not. On such CPUs we activate the non-lazy ('eagerfpu')
+ * logic, which unconditionally saves/restores all FPU state
+ * across context switches. (if FPU state exists.)
+ */
+ union fpregs_state state;
+ /*
+ * WARNING: 'state' is dynamically-sized. Do not put
+ * anything after it here.
+ */
};
#endif /* _ASM_X86_FPU_H */
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h
index 43e6519df0d5..944f1785ed0d 100644
--- a/arch/x86/include/asm/processor.h
+++ b/arch/x86/include/asm/processor.h
@@ -390,9 +390,6 @@ struct thread_struct {
#endif
unsigned long gs;
- /* Floating point and extended processor state */
- struct fpu fpu;
-
/* Save middle states of ptrace breakpoints */
struct perf_event *ptrace_bps[HBP_NUM];
/* Debug status used for traps, single steps, etc... */
@@ -418,6 +415,13 @@ struct thread_struct {
unsigned long iopl;
/* Max allowed port in the bitmap, in bytes: */
unsigned io_bitmap_max;
+
+ /* Floating point and extended processor state */
+ struct fpu fpu;
+ /*
+ * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
+ * the end.
+ */
};
/*
diff --git a/arch/x86/kernel/fpu/init.c b/arch/x86/kernel/fpu/init.c
index 32826791e675..0b39173dd971 100644
--- a/arch/x86/kernel/fpu/init.c
+++ b/arch/x86/kernel/fpu/init.c
@@ -4,6 +4,8 @@
#include <asm/fpu/internal.h>
#include <asm/tlbflush.h>
+#include <linux/sched.h>
+
/*
* Initialize the TS bit in CR0 according to the style of context-switches
* we are using:
@@ -136,6 +138,43 @@ static void __init fpu__init_system_generic(void)
unsigned int xstate_size;
EXPORT_SYMBOL_GPL(xstate_size);
+/* Enforce that 'MEMBER' is the last field of 'TYPE': */
+#define CHECK_MEMBER_AT_END_OF(TYPE, MEMBER) \
+ BUILD_BUG_ON(sizeof(TYPE) != offsetofend(TYPE, MEMBER))
+
+/*
+ * We append the 'struct fpu' to the task_struct:
+ */
+static void __init fpu__init_task_struct_size(void)
+{
+ int task_size = sizeof(struct task_struct);
+
+ /*
+ * Subtract off the static size of the register state.
+ * It potentially has a bunch of padding.
+ */
+ task_size -= sizeof(((struct task_struct *)0)->thread.fpu.state);
+
+ /*
+ * Add back the dynamically-calculated register state
+ * size.
+ */
+ task_size += xstate_size;
+
+ /*
+ * We dynamically size 'struct fpu', so we require that
+ * it be at the end of 'thread_struct' and that
+ * 'thread_struct' be at the end of 'task_struct'. If
+ * you hit a compile error here, check the structure to
+ * see if something got added to the end.
+ */
+ CHECK_MEMBER_AT_END_OF(struct fpu, state);
+ CHECK_MEMBER_AT_END_OF(struct thread_struct, fpu);
+ CHECK_MEMBER_AT_END_OF(struct task_struct, thread);
+
+ arch_task_struct_size = task_size;
+}
+
/*
* Set up the xstate_size based on the legacy FPU context size.
*
@@ -287,6 +326,7 @@ void __init fpu__init_system(struct cpuinfo_x86 *c)
fpu__init_system_generic();
fpu__init_system_xstate_size_legacy();
fpu__init_system_xstate();
+ fpu__init_task_struct_size();
fpu__init_system_ctx_switch();
}
diff --git a/arch/x86/kernel/nmi.c b/arch/x86/kernel/nmi.c
index c3e985d1751c..d05bd2e2ee91 100644
--- a/arch/x86/kernel/nmi.c
+++ b/arch/x86/kernel/nmi.c
@@ -408,15 +408,15 @@ static void default_do_nmi(struct pt_regs *regs)
NOKPROBE_SYMBOL(default_do_nmi);
/*
- * NMIs can hit breakpoints which will cause it to lose its
- * NMI context with the CPU when the breakpoint does an iret.
- */
-#ifdef CONFIG_X86_32
-/*
- * For i386, NMIs use the same stack as the kernel, and we can
- * add a workaround to the iret problem in C (preventing nested
- * NMIs if an NMI takes a trap). Simply have 3 states the NMI
- * can be in:
+ * NMIs can page fault or hit breakpoints which will cause it to lose
+ * its NMI context with the CPU when the breakpoint or page fault does an IRET.
+ *
+ * As a result, NMIs can nest if NMIs get unmasked due an IRET during
+ * NMI processing. On x86_64, the asm glue protects us from nested NMIs
+ * if the outer NMI came from kernel mode, but we can still nest if the
+ * outer NMI came from user mode.
+ *
+ * To handle these nested NMIs, we have three states:
*
* 1) not running
* 2) executing
@@ -430,15 +430,14 @@ NOKPROBE_SYMBOL(default_do_nmi);
* (Note, the latch is binary, thus multiple NMIs triggering,
* when one is running, are ignored. Only one NMI is restarted.)
*
- * If an NMI hits a breakpoint that executes an iret, another
- * NMI can preempt it. We do not want to allow this new NMI
- * to run, but we want to execute it when the first one finishes.
- * We set the state to "latched", and the exit of the first NMI will
- * perform a dec_return, if the result is zero (NOT_RUNNING), then
- * it will simply exit the NMI handler. If not, the dec_return
- * would have set the state to NMI_EXECUTING (what we want it to
- * be when we are running). In this case, we simply jump back
- * to rerun the NMI handler again, and restart the 'latched' NMI.
+ * If an NMI executes an iret, another NMI can preempt it. We do not
+ * want to allow this new NMI to run, but we want to execute it when the
+ * first one finishes. We set the state to "latched", and the exit of
+ * the first NMI will perform a dec_return, if the result is zero
+ * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
+ * dec_return would have set the state to NMI_EXECUTING (what we want it
+ * to be when we are running). In this case, we simply jump back to
+ * rerun the NMI handler again, and restart the 'latched' NMI.
*
* No trap (breakpoint or page fault) should be hit before nmi_restart,
* thus there is no race between the first check of state for NOT_RUNNING
@@ -461,49 +460,36 @@ enum nmi_states {
static DEFINE_PER_CPU(enum nmi_states, nmi_state);
static DEFINE_PER_CPU(unsigned long, nmi_cr2);
-#define nmi_nesting_preprocess(regs) \
- do { \
- if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
- this_cpu_write(nmi_state, NMI_LATCHED); \
- return; \
- } \
- this_cpu_write(nmi_state, NMI_EXECUTING); \
- this_cpu_write(nmi_cr2, read_cr2()); \
- } while (0); \
- nmi_restart:
-
-#define nmi_nesting_postprocess() \
- do { \
- if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
- write_cr2(this_cpu_read(nmi_cr2)); \
- if (this_cpu_dec_return(nmi_state)) \
- goto nmi_restart; \
- } while (0)
-#else /* x86_64 */
+#ifdef CONFIG_X86_64
/*
- * In x86_64 things are a bit more difficult. This has the same problem
- * where an NMI hitting a breakpoint that calls iret will remove the
- * NMI context, allowing a nested NMI to enter. What makes this more
- * difficult is that both NMIs and breakpoints have their own stack.
- * When a new NMI or breakpoint is executed, the stack is set to a fixed
- * point. If an NMI is nested, it will have its stack set at that same
- * fixed address that the first NMI had, and will start corrupting the
- * stack. This is handled in entry_64.S, but the same problem exists with
- * the breakpoint stack.
+ * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without
+ * some care, the inner breakpoint will clobber the outer breakpoint's
+ * stack.
*
- * If a breakpoint is being processed, and the debug stack is being used,
- * if an NMI comes in and also hits a breakpoint, the stack pointer
- * will be set to the same fixed address as the breakpoint that was
- * interrupted, causing that stack to be corrupted. To handle this case,
- * check if the stack that was interrupted is the debug stack, and if
- * so, change the IDT so that new breakpoints will use the current stack
- * and not switch to the fixed address. On return of the NMI, switch back
- * to the original IDT.
+ * If a breakpoint is being processed, and the debug stack is being
+ * used, if an NMI comes in and also hits a breakpoint, the stack
+ * pointer will be set to the same fixed address as the breakpoint that
+ * was interrupted, causing that stack to be corrupted. To handle this
+ * case, check if the stack that was interrupted is the debug stack, and
+ * if so, change the IDT so that new breakpoints will use the current
+ * stack and not switch to the fixed address. On return of the NMI,
+ * switch back to the original IDT.
*/
static DEFINE_PER_CPU(int, update_debug_stack);
+#endif
-static inline void nmi_nesting_preprocess(struct pt_regs *regs)
+dotraplinkage notrace void
+do_nmi(struct pt_regs *regs, long error_code)
{
+ if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
+ this_cpu_write(nmi_state, NMI_LATCHED);
+ return;
+ }
+ this_cpu_write(nmi_state, NMI_EXECUTING);
+ this_cpu_write(nmi_cr2, read_cr2());
+nmi_restart:
+
+#ifdef CONFIG_X86_64
/*
* If we interrupted a breakpoint, it is possible that
* the nmi handler will have breakpoints too. We need to
@@ -514,22 +500,8 @@ static inline void nmi_nesting_preprocess(struct pt_regs *regs)
debug_stack_set_zero();
this_cpu_write(update_debug_stack, 1);
}
-}
-
-static inline void nmi_nesting_postprocess(void)
-{
- if (unlikely(this_cpu_read(update_debug_stack))) {
- debug_stack_reset();
- this_cpu_write(update_debug_stack, 0);
- }
-}
#endif
-dotraplinkage notrace void
-do_nmi(struct pt_regs *regs, long error_code)
-{
- nmi_nesting_preprocess(regs);
-
nmi_enter();
inc_irq_stat(__nmi_count);
@@ -539,8 +511,17 @@ do_nmi(struct pt_regs *regs, long error_code)
nmi_exit();
- /* On i386, may loop back to preprocess */
- nmi_nesting_postprocess();
+#ifdef CONFIG_X86_64
+ if (unlikely(this_cpu_read(update_debug_stack))) {
+ debug_stack_reset();
+ this_cpu_write(update_debug_stack, 0);
+ }
+#endif
+
+ if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
+ write_cr2(this_cpu_read(nmi_cr2));
+ if (this_cpu_dec_return(nmi_state))
+ goto nmi_restart;
}
NOKPROBE_SYMBOL(do_nmi);
diff --git a/arch/x86/kernel/process.c b/arch/x86/kernel/process.c
index 9cad694ed7c4..397688beed4b 100644
--- a/arch/x86/kernel/process.c
+++ b/arch/x86/kernel/process.c
@@ -81,7 +81,7 @@ EXPORT_SYMBOL_GPL(idle_notifier_unregister);
*/
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
- *dst = *src;
+ memcpy(dst, src, arch_task_struct_size);
return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
}