diff options
Diffstat (limited to 'arch/ia64/kernel/mca.c')
-rw-r--r-- | arch/ia64/kernel/mca.c | 830 |
1 files changed, 505 insertions, 325 deletions
diff --git a/arch/ia64/kernel/mca.c b/arch/ia64/kernel/mca.c index 4ebbf3974381..6dc726ad7137 100644 --- a/arch/ia64/kernel/mca.c +++ b/arch/ia64/kernel/mca.c @@ -48,6 +48,9 @@ * Delete dead variables and functions. * Reorder to remove the need for forward declarations and to consolidate * related code. + * + * 2005-08-12 Keith Owens <kaos@sgi.com> + * Convert MCA/INIT handlers to use per event stacks and SAL/OS state. */ #include <linux/config.h> #include <linux/types.h> @@ -77,6 +80,8 @@ #include <asm/irq.h> #include <asm/hw_irq.h> +#include "entry.h" + #if defined(IA64_MCA_DEBUG_INFO) # define IA64_MCA_DEBUG(fmt...) printk(fmt) #else @@ -84,9 +89,7 @@ #endif /* Used by mca_asm.S */ -ia64_mca_sal_to_os_state_t ia64_sal_to_os_handoff_state; -ia64_mca_os_to_sal_state_t ia64_os_to_sal_handoff_state; -u64 ia64_mca_serialize; +u32 ia64_mca_serialize; DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */ @@ -95,8 +98,10 @@ DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */ unsigned long __per_cpu_mca[NR_CPUS]; /* In mca_asm.S */ -extern void ia64_monarch_init_handler (void); -extern void ia64_slave_init_handler (void); +extern void ia64_os_init_dispatch_monarch (void); +extern void ia64_os_init_dispatch_slave (void); + +static int monarch_cpu = -1; static ia64_mc_info_t ia64_mc_info; @@ -234,7 +239,8 @@ ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) * This function retrieves a specified error record type from SAL * and wakes up any processes waiting for error records. * - * Inputs : sal_info_type (Type of error record MCA/CMC/CPE/INIT) + * Inputs : sal_info_type (Type of error record MCA/CMC/CPE) + * FIXME: remove MCA and irq_safe. */ static void ia64_mca_log_sal_error_record(int sal_info_type) @@ -242,7 +248,7 @@ ia64_mca_log_sal_error_record(int sal_info_type) u8 *buffer; sal_log_record_header_t *rh; u64 size; - int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA && sal_info_type != SAL_INFO_TYPE_INIT; + int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; #ifdef IA64_MCA_DEBUG_INFO static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; #endif @@ -330,191 +336,6 @@ ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs) #endif /* CONFIG_ACPI */ -static void -show_min_state (pal_min_state_area_t *minstate) -{ - u64 iip = minstate->pmsa_iip + ((struct ia64_psr *)(&minstate->pmsa_ipsr))->ri; - u64 xip = minstate->pmsa_xip + ((struct ia64_psr *)(&minstate->pmsa_xpsr))->ri; - - printk("NaT bits\t%016lx\n", minstate->pmsa_nat_bits); - printk("pr\t\t%016lx\n", minstate->pmsa_pr); - printk("b0\t\t%016lx ", minstate->pmsa_br0); print_symbol("%s\n", minstate->pmsa_br0); - printk("ar.rsc\t\t%016lx\n", minstate->pmsa_rsc); - printk("cr.iip\t\t%016lx ", iip); print_symbol("%s\n", iip); - printk("cr.ipsr\t\t%016lx\n", minstate->pmsa_ipsr); - printk("cr.ifs\t\t%016lx\n", minstate->pmsa_ifs); - printk("xip\t\t%016lx ", xip); print_symbol("%s\n", xip); - printk("xpsr\t\t%016lx\n", minstate->pmsa_xpsr); - printk("xfs\t\t%016lx\n", minstate->pmsa_xfs); - printk("b1\t\t%016lx ", minstate->pmsa_br1); - print_symbol("%s\n", minstate->pmsa_br1); - - printk("\nstatic registers r0-r15:\n"); - printk(" r0- 3 %016lx %016lx %016lx %016lx\n", - 0UL, minstate->pmsa_gr[0], minstate->pmsa_gr[1], minstate->pmsa_gr[2]); - printk(" r4- 7 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_gr[3], minstate->pmsa_gr[4], - minstate->pmsa_gr[5], minstate->pmsa_gr[6]); - printk(" r8-11 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_gr[7], minstate->pmsa_gr[8], - minstate->pmsa_gr[9], minstate->pmsa_gr[10]); - printk("r12-15 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_gr[11], minstate->pmsa_gr[12], - minstate->pmsa_gr[13], minstate->pmsa_gr[14]); - - printk("\nbank 0:\n"); - printk("r16-19 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank0_gr[0], minstate->pmsa_bank0_gr[1], - minstate->pmsa_bank0_gr[2], minstate->pmsa_bank0_gr[3]); - printk("r20-23 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank0_gr[4], minstate->pmsa_bank0_gr[5], - minstate->pmsa_bank0_gr[6], minstate->pmsa_bank0_gr[7]); - printk("r24-27 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank0_gr[8], minstate->pmsa_bank0_gr[9], - minstate->pmsa_bank0_gr[10], minstate->pmsa_bank0_gr[11]); - printk("r28-31 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank0_gr[12], minstate->pmsa_bank0_gr[13], - minstate->pmsa_bank0_gr[14], minstate->pmsa_bank0_gr[15]); - - printk("\nbank 1:\n"); - printk("r16-19 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank1_gr[0], minstate->pmsa_bank1_gr[1], - minstate->pmsa_bank1_gr[2], minstate->pmsa_bank1_gr[3]); - printk("r20-23 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank1_gr[4], minstate->pmsa_bank1_gr[5], - minstate->pmsa_bank1_gr[6], minstate->pmsa_bank1_gr[7]); - printk("r24-27 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank1_gr[8], minstate->pmsa_bank1_gr[9], - minstate->pmsa_bank1_gr[10], minstate->pmsa_bank1_gr[11]); - printk("r28-31 %016lx %016lx %016lx %016lx\n", - minstate->pmsa_bank1_gr[12], minstate->pmsa_bank1_gr[13], - minstate->pmsa_bank1_gr[14], minstate->pmsa_bank1_gr[15]); -} - -static void -fetch_min_state (pal_min_state_area_t *ms, struct pt_regs *pt, struct switch_stack *sw) -{ - u64 *dst_banked, *src_banked, bit, shift, nat_bits; - int i; - - /* - * First, update the pt-regs and switch-stack structures with the contents stored - * in the min-state area: - */ - if (((struct ia64_psr *) &ms->pmsa_ipsr)->ic == 0) { - pt->cr_ipsr = ms->pmsa_xpsr; - pt->cr_iip = ms->pmsa_xip; - pt->cr_ifs = ms->pmsa_xfs; - } else { - pt->cr_ipsr = ms->pmsa_ipsr; - pt->cr_iip = ms->pmsa_iip; - pt->cr_ifs = ms->pmsa_ifs; - } - pt->ar_rsc = ms->pmsa_rsc; - pt->pr = ms->pmsa_pr; - pt->r1 = ms->pmsa_gr[0]; - pt->r2 = ms->pmsa_gr[1]; - pt->r3 = ms->pmsa_gr[2]; - sw->r4 = ms->pmsa_gr[3]; - sw->r5 = ms->pmsa_gr[4]; - sw->r6 = ms->pmsa_gr[5]; - sw->r7 = ms->pmsa_gr[6]; - pt->r8 = ms->pmsa_gr[7]; - pt->r9 = ms->pmsa_gr[8]; - pt->r10 = ms->pmsa_gr[9]; - pt->r11 = ms->pmsa_gr[10]; - pt->r12 = ms->pmsa_gr[11]; - pt->r13 = ms->pmsa_gr[12]; - pt->r14 = ms->pmsa_gr[13]; - pt->r15 = ms->pmsa_gr[14]; - dst_banked = &pt->r16; /* r16-r31 are contiguous in struct pt_regs */ - src_banked = ms->pmsa_bank1_gr; - for (i = 0; i < 16; ++i) - dst_banked[i] = src_banked[i]; - pt->b0 = ms->pmsa_br0; - sw->b1 = ms->pmsa_br1; - - /* construct the NaT bits for the pt-regs structure: */ -# define PUT_NAT_BIT(dst, addr) \ - do { \ - bit = nat_bits & 1; nat_bits >>= 1; \ - shift = ((unsigned long) addr >> 3) & 0x3f; \ - dst = ((dst) & ~(1UL << shift)) | (bit << shift); \ - } while (0) - - /* Rotate the saved NaT bits such that bit 0 corresponds to pmsa_gr[0]: */ - shift = ((unsigned long) &ms->pmsa_gr[0] >> 3) & 0x3f; - nat_bits = (ms->pmsa_nat_bits >> shift) | (ms->pmsa_nat_bits << (64 - shift)); - - PUT_NAT_BIT(sw->caller_unat, &pt->r1); - PUT_NAT_BIT(sw->caller_unat, &pt->r2); - PUT_NAT_BIT(sw->caller_unat, &pt->r3); - PUT_NAT_BIT(sw->ar_unat, &sw->r4); - PUT_NAT_BIT(sw->ar_unat, &sw->r5); - PUT_NAT_BIT(sw->ar_unat, &sw->r6); - PUT_NAT_BIT(sw->ar_unat, &sw->r7); - PUT_NAT_BIT(sw->caller_unat, &pt->r8); PUT_NAT_BIT(sw->caller_unat, &pt->r9); - PUT_NAT_BIT(sw->caller_unat, &pt->r10); PUT_NAT_BIT(sw->caller_unat, &pt->r11); - PUT_NAT_BIT(sw->caller_unat, &pt->r12); PUT_NAT_BIT(sw->caller_unat, &pt->r13); - PUT_NAT_BIT(sw->caller_unat, &pt->r14); PUT_NAT_BIT(sw->caller_unat, &pt->r15); - nat_bits >>= 16; /* skip over bank0 NaT bits */ - PUT_NAT_BIT(sw->caller_unat, &pt->r16); PUT_NAT_BIT(sw->caller_unat, &pt->r17); - PUT_NAT_BIT(sw->caller_unat, &pt->r18); PUT_NAT_BIT(sw->caller_unat, &pt->r19); - PUT_NAT_BIT(sw->caller_unat, &pt->r20); PUT_NAT_BIT(sw->caller_unat, &pt->r21); - PUT_NAT_BIT(sw->caller_unat, &pt->r22); PUT_NAT_BIT(sw->caller_unat, &pt->r23); - PUT_NAT_BIT(sw->caller_unat, &pt->r24); PUT_NAT_BIT(sw->caller_unat, &pt->r25); - PUT_NAT_BIT(sw->caller_unat, &pt->r26); PUT_NAT_BIT(sw->caller_unat, &pt->r27); - PUT_NAT_BIT(sw->caller_unat, &pt->r28); PUT_NAT_BIT(sw->caller_unat, &pt->r29); - PUT_NAT_BIT(sw->caller_unat, &pt->r30); PUT_NAT_BIT(sw->caller_unat, &pt->r31); -} - -static void -init_handler_platform (pal_min_state_area_t *ms, - struct pt_regs *pt, struct switch_stack *sw) -{ - struct unw_frame_info info; - - /* if a kernel debugger is available call it here else just dump the registers */ - - /* - * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be - * generated via the BMC's command-line interface, but since the console is on the - * same serial line, the user will need some time to switch out of the BMC before - * the dump begins. - */ - printk("Delaying for 5 seconds...\n"); - udelay(5*1000000); - show_min_state(ms); - - printk("Backtrace of current task (pid %d, %s)\n", current->pid, current->comm); - fetch_min_state(ms, pt, sw); - unw_init_from_interruption(&info, current, pt, sw); - ia64_do_show_stack(&info, NULL); - -#ifdef CONFIG_SMP - /* read_trylock() would be handy... */ - if (!tasklist_lock.write_lock) - read_lock(&tasklist_lock); -#endif - { - struct task_struct *g, *t; - do_each_thread (g, t) { - if (t == current) - continue; - - printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); - show_stack(t, NULL); - } while_each_thread (g, t); - } -#ifdef CONFIG_SMP - if (!tasklist_lock.write_lock) - read_unlock(&tasklist_lock); -#endif - - printk("\nINIT dump complete. Please reboot now.\n"); - while (1); /* hang city if no debugger */ -} - #ifdef CONFIG_ACPI /* * ia64_mca_register_cpev @@ -657,42 +478,6 @@ ia64_mca_cmc_vector_enable_keventd(void *unused) } /* - * ia64_mca_wakeup_ipi_wait - * - * Wait for the inter-cpu interrupt to be sent by the - * monarch processor once it is done with handling the - * MCA. - * - * Inputs : None - * Outputs : None - */ -static void -ia64_mca_wakeup_ipi_wait(void) -{ - int irr_num = (IA64_MCA_WAKEUP_VECTOR >> 6); - int irr_bit = (IA64_MCA_WAKEUP_VECTOR & 0x3f); - u64 irr = 0; - - do { - switch(irr_num) { - case 0: - irr = ia64_getreg(_IA64_REG_CR_IRR0); - break; - case 1: - irr = ia64_getreg(_IA64_REG_CR_IRR1); - break; - case 2: - irr = ia64_getreg(_IA64_REG_CR_IRR2); - break; - case 3: - irr = ia64_getreg(_IA64_REG_CR_IRR3); - break; - } - cpu_relax(); - } while (!(irr & (1UL << irr_bit))) ; -} - -/* * ia64_mca_wakeup * * Send an inter-cpu interrupt to wake-up a particular cpu @@ -757,11 +542,9 @@ ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *ptregs) */ ia64_sal_mc_rendez(); - /* Wait for the wakeup IPI from the monarch - * This waiting is done by polling on the wakeup-interrupt - * vector bit in the processor's IRRs - */ - ia64_mca_wakeup_ipi_wait(); + /* Wait for the monarch cpu to exit. */ + while (monarch_cpu != -1) + cpu_relax(); /* spin until monarch leaves */ /* Enable all interrupts */ local_irq_restore(flags); @@ -789,53 +572,13 @@ ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs) return IRQ_HANDLED; } -/* - * ia64_return_to_sal_check - * - * This is function called before going back from the OS_MCA handler - * to the OS_MCA dispatch code which finally takes the control back - * to the SAL. - * The main purpose of this routine is to setup the OS_MCA to SAL - * return state which can be used by the OS_MCA dispatch code - * just before going back to SAL. - * - * Inputs : None - * Outputs : None - */ - -static void -ia64_return_to_sal_check(int recover) -{ - - /* Copy over some relevant stuff from the sal_to_os_mca_handoff - * so that it can be used at the time of os_mca_to_sal_handoff - */ - ia64_os_to_sal_handoff_state.imots_sal_gp = - ia64_sal_to_os_handoff_state.imsto_sal_gp; - - ia64_os_to_sal_handoff_state.imots_sal_check_ra = - ia64_sal_to_os_handoff_state.imsto_sal_check_ra; - - if (recover) - ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_CORRECTED; - else - ia64_os_to_sal_handoff_state.imots_os_status = IA64_MCA_COLD_BOOT; - - /* Default = tell SAL to return to same context */ - ia64_os_to_sal_handoff_state.imots_context = IA64_MCA_SAME_CONTEXT; - - ia64_os_to_sal_handoff_state.imots_new_min_state = - (u64 *)ia64_sal_to_os_handoff_state.pal_min_state; - -} - /* Function pointer for extra MCA recovery */ int (*ia64_mca_ucmc_extension) - (void*,ia64_mca_sal_to_os_state_t*,ia64_mca_os_to_sal_state_t*) + (void*,struct ia64_sal_os_state*) = NULL; int -ia64_reg_MCA_extension(void *fn) +ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) { if (ia64_mca_ucmc_extension) return 1; @@ -854,8 +597,321 @@ ia64_unreg_MCA_extension(void) EXPORT_SYMBOL(ia64_reg_MCA_extension); EXPORT_SYMBOL(ia64_unreg_MCA_extension); + +static inline void +copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat) +{ + u64 fslot, tslot, nat; + *tr = *fr; + fslot = ((unsigned long)fr >> 3) & 63; + tslot = ((unsigned long)tr >> 3) & 63; + *tnat &= ~(1UL << tslot); + nat = (fnat >> fslot) & 1; + *tnat |= (nat << tslot); +} + +/* On entry to this routine, we are running on the per cpu stack, see + * mca_asm.h. The original stack has not been touched by this event. Some of + * the original stack's registers will be in the RBS on this stack. This stack + * also contains a partial pt_regs and switch_stack, the rest of the data is in + * PAL minstate. + * + * The first thing to do is modify the original stack to look like a blocked + * task so we can run backtrace on the original task. Also mark the per cpu + * stack as current to ensure that we use the correct task state, it also means + * that we can do backtrace on the MCA/INIT handler code itself. + */ + +static task_t * +ia64_mca_modify_original_stack(struct pt_regs *regs, + const struct switch_stack *sw, + struct ia64_sal_os_state *sos, + const char *type) +{ + char *p, comm[sizeof(current->comm)]; + ia64_va va; + extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */ + const pal_min_state_area_t *ms = sos->pal_min_state; + task_t *previous_current; + struct pt_regs *old_regs; + struct switch_stack *old_sw; + unsigned size = sizeof(struct pt_regs) + + sizeof(struct switch_stack) + 16; + u64 *old_bspstore, *old_bsp; + u64 *new_bspstore, *new_bsp; + u64 old_unat, old_rnat, new_rnat, nat; + u64 slots, loadrs = regs->loadrs; + u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; + u64 ar_bspstore = regs->ar_bspstore; + u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); + const u64 *bank; + const char *msg; + int cpu = smp_processor_id(); + + previous_current = curr_task(cpu); + set_curr_task(cpu, current); + if ((p = strchr(current->comm, ' '))) + *p = '\0'; + + /* Best effort attempt to cope with MCA/INIT delivered while in + * physical mode. + */ + regs->cr_ipsr = ms->pmsa_ipsr; + if (ia64_psr(regs)->dt == 0) { + va.l = r12; + if (va.f.reg == 0) { + va.f.reg = 7; + r12 = va.l; + } + va.l = r13; + if (va.f.reg == 0) { + va.f.reg = 7; + r13 = va.l; + } + } + if (ia64_psr(regs)->rt == 0) { + va.l = ar_bspstore; + if (va.f.reg == 0) { + va.f.reg = 7; + ar_bspstore = va.l; + } + va.l = ar_bsp; + if (va.f.reg == 0) { + va.f.reg = 7; + ar_bsp = va.l; + } + } + + /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers + * have been copied to the old stack, the old stack may fail the + * validation tests below. So ia64_old_stack() must restore the dirty + * registers from the new stack. The old and new bspstore probably + * have different alignments, so loadrs calculated on the old bsp + * cannot be used to restore from the new bsp. Calculate a suitable + * loadrs for the new stack and save it in the new pt_regs, where + * ia64_old_stack() can get it. + */ + old_bspstore = (u64 *)ar_bspstore; + old_bsp = (u64 *)ar_bsp; + slots = ia64_rse_num_regs(old_bspstore, old_bsp); + new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET); + new_bsp = ia64_rse_skip_regs(new_bspstore, slots); + regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; + + /* Verify the previous stack state before we change it */ + if (user_mode(regs)) { + msg = "occurred in user space"; + goto no_mod; + } + if (r13 != sos->prev_IA64_KR_CURRENT) { + msg = "inconsistent previous current and r13"; + goto no_mod; + } + if ((r12 - r13) >= KERNEL_STACK_SIZE) { + msg = "inconsistent r12 and r13"; + goto no_mod; + } + if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { + msg = "inconsistent ar.bspstore and r13"; + goto no_mod; + } + va.p = old_bspstore; + if (va.f.reg < 5) { + msg = "old_bspstore is in the wrong region"; + goto no_mod; + } + if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { + msg = "inconsistent ar.bsp and r13"; + goto no_mod; + } + size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; + if (ar_bspstore + size > r12) { + msg = "no room for blocked state"; + goto no_mod; + } + + /* Change the comm field on the MCA/INT task to include the pid that + * was interrupted, it makes for easier debugging. If that pid was 0 + * (swapper or nested MCA/INIT) then use the start of the previous comm + * field suffixed with its cpu. + */ + if (previous_current->pid) + snprintf(comm, sizeof(comm), "%s %d", + current->comm, previous_current->pid); + else { + int l; + if ((p = strchr(previous_current->comm, ' '))) + l = p - previous_current->comm; + else + l = strlen(previous_current->comm); + snprintf(comm, sizeof(comm), "%s %*s %d", + current->comm, l, previous_current->comm, + previous_current->thread_info->cpu); + } + memcpy(current->comm, comm, sizeof(current->comm)); + + /* Make the original task look blocked. First stack a struct pt_regs, + * describing the state at the time of interrupt. mca_asm.S built a + * partial pt_regs, copy it and fill in the blanks using minstate. + */ + p = (char *)r12 - sizeof(*regs); + old_regs = (struct pt_regs *)p; + memcpy(old_regs, regs, sizeof(*regs)); + /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use + * pmsa_{xip,xpsr,xfs} + */ + if (ia64_psr(regs)->ic) { + old_regs->cr_iip = ms->pmsa_iip; + old_regs->cr_ipsr = ms->pmsa_ipsr; + old_regs->cr_ifs = ms->pmsa_ifs; + } else { + old_regs->cr_iip = ms->pmsa_xip; + old_regs->cr_ipsr = ms->pmsa_xpsr; + old_regs->cr_ifs = ms->pmsa_xfs; + } + old_regs->pr = ms->pmsa_pr; + old_regs->b0 = ms->pmsa_br0; + old_regs->loadrs = loadrs; + old_regs->ar_rsc = ms->pmsa_rsc; + old_unat = old_regs->ar_unat; + copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat); + copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat); + copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat); + copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat); + copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat); + copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat); + copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat); + copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat); + copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat); + copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat); + copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat); + if (ia64_psr(old_regs)->bn) + bank = ms->pmsa_bank1_gr; + else + bank = ms->pmsa_bank0_gr; + copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat); + copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat); + copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat); + copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat); + copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat); + copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat); + copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat); + copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat); + copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat); + copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat); + copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat); + copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat); + copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat); + copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat); + copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat); + copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat); + + /* Next stack a struct switch_stack. mca_asm.S built a partial + * switch_stack, copy it and fill in the blanks using pt_regs and + * minstate. + * + * In the synthesized switch_stack, b0 points to ia64_leave_kernel, + * ar.pfs is set to 0. + * + * unwind.c::unw_unwind() does special processing for interrupt frames. + * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate + * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not + * that this is documented, of course. Set PRED_NON_SYSCALL in the + * switch_stack on the original stack so it will unwind correctly when + * unwind.c reads pt_regs. + * + * thread.ksp is updated to point to the synthesized switch_stack. + */ + p -= sizeof(struct switch_stack); + old_sw = (struct switch_stack *)p; + memcpy(old_sw, sw, sizeof(*sw)); + old_sw->caller_unat = old_unat; + old_sw->ar_fpsr = old_regs->ar_fpsr; + copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); + copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); + copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); + copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); + old_sw->b0 = (u64)ia64_leave_kernel; + old_sw->b1 = ms->pmsa_br1; + old_sw->ar_pfs = 0; + old_sw->ar_unat = old_unat; + old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); + previous_current->thread.ksp = (u64)p - 16; + + /* Finally copy the original stack's registers back to its RBS. + * Registers from ar.bspstore through ar.bsp at the time of the event + * are in the current RBS, copy them back to the original stack. The + * copy must be done register by register because the original bspstore + * and the current one have different alignments, so the saved RNAT + * data occurs at different places. + * + * mca_asm does cover, so the old_bsp already includes all registers at + * the time of MCA/INIT. It also does flushrs, so all registers before + * this function have been written to backing store on the MCA/INIT + * stack. + */ + new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); + old_rnat = regs->ar_rnat; + while (slots--) { + if (ia64_rse_is_rnat_slot(new_bspstore)) { + new_rnat = ia64_get_rnat(new_bspstore++); + } + if (ia64_rse_is_rnat_slot(old_bspstore)) { + *old_bspstore++ = old_rnat; + old_rnat = 0; + } + nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; + old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); + old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); + *old_bspstore++ = *new_bspstore++; + } + old_sw->ar_bspstore = (unsigned long)old_bspstore; + old_sw->ar_rnat = old_rnat; + + sos->prev_task = previous_current; + return previous_current; + +no_mod: + printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", + smp_processor_id(), type, msg); + return previous_current; +} + +/* The monarch/slave interaction is based on monarch_cpu and requires that all + * slaves have entered rendezvous before the monarch leaves. If any cpu has + * not entered rendezvous yet then wait a bit. The assumption is that any + * slave that has not rendezvoused after a reasonable time is never going to do + * so. In this context, slave includes cpus that respond to the MCA rendezvous + * interrupt, as well as cpus that receive the INIT slave event. + */ + +static void +ia64_wait_for_slaves(int monarch) +{ + int c, wait = 0; + for_each_online_cpu(c) { + if (c == monarch) + continue; + if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { + udelay(1000); /* short wait first */ + wait = 1; + break; + } + } + if (!wait) + return; + for_each_online_cpu(c) { + if (c == monarch) + continue; + if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { + udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */ + break; + } + } +} + /* - * ia64_mca_ucmc_handler + * ia64_mca_handler * * This is uncorrectable machine check handler called from OS_MCA * dispatch code which is in turn called from SAL_CHECK(). @@ -866,16 +922,28 @@ EXPORT_SYMBOL(ia64_unreg_MCA_extension); * further MCA logging is enabled by clearing logs. * Monarch also has the duty of sending wakeup-IPIs to pull the * slave processors out of rendezvous spinloop. - * - * Inputs : None - * Outputs : None */ void -ia64_mca_ucmc_handler(void) +ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, + struct ia64_sal_os_state *sos) { pal_processor_state_info_t *psp = (pal_processor_state_info_t *) - &ia64_sal_to_os_handoff_state.proc_state_param; - int recover; + &sos->proc_state_param; + int recover, cpu = smp_processor_id(); + task_t *previous_current; + + oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ + previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); + monarch_cpu = cpu; + ia64_wait_for_slaves(cpu); + + /* Wakeup all the processors which are spinning in the rendezvous loop. + * They will leave SAL, then spin in the OS with interrupts disabled + * until this monarch cpu leaves the MCA handler. That gets control + * back to the OS so we can backtrace the other cpus, backtrace when + * spinning in SAL does not work. + */ + ia64_mca_wakeup_all(); /* Get the MCA error record and log it */ ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); @@ -883,25 +951,20 @@ ia64_mca_ucmc_handler(void) /* TLB error is only exist in this SAL error record */ recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc)) /* other error recovery */ - || (ia64_mca_ucmc_extension + || (ia64_mca_ucmc_extension && ia64_mca_ucmc_extension( IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), - &ia64_sal_to_os_handoff_state, - &ia64_os_to_sal_handoff_state)); + sos)); if (recover) { sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); rh->severity = sal_log_severity_corrected; ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); + sos->os_status = IA64_MCA_CORRECTED; } - /* - * Wakeup all the processors which are spinning in the rendezvous - * loop. - */ - ia64_mca_wakeup_all(); - /* Return to SAL */ - ia64_return_to_sal_check(recover); + set_curr_task(cpu, previous_current); + monarch_cpu = -1; } static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL); @@ -1125,34 +1188,114 @@ ia64_mca_cpe_poll (unsigned long dummy) /* * C portion of the OS INIT handler * - * Called from ia64_monarch_init_handler - * - * Inputs: pointer to pt_regs where processor info was saved. + * Called from ia64_os_init_dispatch * - * Returns: - * 0 if SAL must warm boot the System - * 1 if SAL must return to interrupted context using PAL_MC_RESUME + * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for + * this event. This code is used for both monarch and slave INIT events, see + * sos->monarch. * + * All INIT events switch to the INIT stack and change the previous process to + * blocked status. If one of the INIT events is the monarch then we are + * probably processing the nmi button/command. Use the monarch cpu to dump all + * the processes. The slave INIT events all spin until the monarch cpu + * returns. We can also get INIT slave events for MCA, in which case the MCA + * process is the monarch. */ + void -ia64_init_handler (struct pt_regs *pt, struct switch_stack *sw) +ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, + struct ia64_sal_os_state *sos) { - pal_min_state_area_t *ms; + static atomic_t slaves; + static atomic_t monarchs; + task_t *previous_current; + int cpu = smp_processor_id(), c; + struct task_struct *g, *t; - oops_in_progress = 1; /* avoid deadlock in printk, but it makes recovery dodgy */ + oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */ console_loglevel = 15; /* make sure printks make it to console */ - printk(KERN_INFO "Entered OS INIT handler. PSP=%lx\n", - ia64_sal_to_os_handoff_state.proc_state_param); + printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", + sos->proc_state_param, cpu, sos->monarch); + salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); - /* - * Address of minstate area provided by PAL is physical, - * uncacheable (bit 63 set). Convert to Linux virtual - * address in region 6. + previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); + sos->os_status = IA64_INIT_RESUME; + + /* FIXME: Workaround for broken proms that drive all INIT events as + * slaves. The last slave that enters is promoted to be a monarch. + * Remove this code in September 2006, that gives platforms a year to + * fix their proms and get their customers updated. */ - ms = (pal_min_state_area_t *)(ia64_sal_to_os_handoff_state.pal_min_state | (6ul<<61)); + if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { + printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", + __FUNCTION__, cpu); + atomic_dec(&slaves); + sos->monarch = 1; + } + + /* FIXME: Workaround for broken proms that drive all INIT events as + * monarchs. Second and subsequent monarchs are demoted to slaves. + * Remove this code in September 2006, that gives platforms a year to + * fix their proms and get their customers updated. + */ + if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { + printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", + __FUNCTION__, cpu); + atomic_dec(&monarchs); + sos->monarch = 0; + } - init_handler_platform(ms, pt, sw); /* call platform specific routines */ + if (!sos->monarch) { + ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; + while (monarch_cpu == -1) + cpu_relax(); /* spin until monarch enters */ + while (monarch_cpu != -1) + cpu_relax(); /* spin until monarch leaves */ + printk("Slave on cpu %d returning to normal service.\n", cpu); + set_curr_task(cpu, previous_current); + ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; + atomic_dec(&slaves); + return; + } + + monarch_cpu = cpu; + + /* + * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be + * generated via the BMC's command-line interface, but since the console is on the + * same serial line, the user will need some time to switch out of the BMC before + * the dump begins. + */ + printk("Delaying for 5 seconds...\n"); + udelay(5*1000000); + ia64_wait_for_slaves(cpu); + printk(KERN_ERR "Processes interrupted by INIT -"); + for_each_online_cpu(c) { + struct ia64_sal_os_state *s; + t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); + s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); + g = s->prev_task; + if (g) { + if (g->pid) + printk(" %d", g->pid); + else + printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); + } + } + printk("\n\n"); + if (read_trylock(&tasklist_lock)) { + do_each_thread (g, t) { + printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); + show_stack(t, NULL); + } while_each_thread (g, t); + read_unlock(&tasklist_lock); + } + printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu); + atomic_dec(&monarchs); + set_curr_task(cpu, previous_current); + monarch_cpu = -1; + return; } static int __init @@ -1202,6 +1345,34 @@ static struct irqaction mca_cpep_irqaction = { }; #endif /* CONFIG_ACPI */ +/* Minimal format of the MCA/INIT stacks. The pseudo processes that run on + * these stacks can never sleep, they cannot return from the kernel to user + * space, they do not appear in a normal ps listing. So there is no need to + * format most of the fields. + */ + +static void +format_mca_init_stack(void *mca_data, unsigned long offset, + const char *type, int cpu) +{ + struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); + struct thread_info *ti; + memset(p, 0, KERNEL_STACK_SIZE); + ti = (struct thread_info *)((char *)p + IA64_TASK_SIZE); + ti->flags = _TIF_MCA_INIT; + ti->preempt_count = 1; + ti->task = p; + ti->cpu = cpu; + p->thread_info = ti; + p->state = TASK_UNINTERRUPTIBLE; + __set_bit(cpu, &p->cpus_allowed); + INIT_LIST_HEAD(&p->tasks); + p->parent = p->real_parent = p->group_leader = p; + INIT_LIST_HEAD(&p->children); + INIT_LIST_HEAD(&p->sibling); + strncpy(p->comm, type, sizeof(p->comm)-1); +} + /* Do per-CPU MCA-related initialization. */ void __devinit @@ -1214,19 +1385,28 @@ ia64_mca_cpu_init(void *cpu_data) int cpu; mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu) - * NR_CPUS); + * NR_CPUS + KERNEL_STACK_SIZE); + mca_data = (void *)(((unsigned long)mca_data + + KERNEL_STACK_SIZE - 1) & + (-KERNEL_STACK_SIZE)); for (cpu = 0; cpu < NR_CPUS; cpu++) { + format_mca_init_stack(mca_data, + offsetof(struct ia64_mca_cpu, mca_stack), + "MCA", cpu); + format_mca_init_stack(mca_data, + offsetof(struct ia64_mca_cpu, init_stack), + "INIT", cpu); __per_cpu_mca[cpu] = __pa(mca_data); mca_data += sizeof(struct ia64_mca_cpu); } } - /* - * The MCA info structure was allocated earlier and its - * physical address saved in __per_cpu_mca[cpu]. Copy that - * address * to ia64_mca_data so we can access it as a per-CPU - * variable. - */ + /* + * The MCA info structure was allocated earlier and its + * physical address saved in __per_cpu_mca[cpu]. Copy that + * address * to ia64_mca_data so we can access it as a per-CPU + * variable. + */ __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()]; /* @@ -1236,11 +1416,11 @@ ia64_mca_cpu_init(void *cpu_data) __get_cpu_var(ia64_mca_per_cpu_pte) = pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); - /* - * Also, stash away a copy of the PAL address and the PTE - * needed to map it. - */ - pal_vaddr = efi_get_pal_addr(); + /* + * Also, stash away a copy of the PAL address and the PTE + * needed to map it. + */ + pal_vaddr = efi_get_pal_addr(); if (!pal_vaddr) return; __get_cpu_var(ia64_mca_pal_base) = @@ -1272,8 +1452,8 @@ ia64_mca_cpu_init(void *cpu_data) void __init ia64_mca_init(void) { - ia64_fptr_t *mon_init_ptr = (ia64_fptr_t *)ia64_monarch_init_handler; - ia64_fptr_t *slave_init_ptr = (ia64_fptr_t *)ia64_slave_init_handler; + ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; + ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; int i; s64 rc; @@ -1351,9 +1531,9 @@ ia64_mca_init(void) * XXX - disable SAL checksum by setting size to 0, should be * size of the actual init handler in mca_asm.S. */ - ia64_mc_info.imi_monarch_init_handler = ia64_tpa(mon_init_ptr->fp); + ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp); ia64_mc_info.imi_monarch_init_handler_size = 0; - ia64_mc_info.imi_slave_init_handler = ia64_tpa(slave_init_ptr->fp); + ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp); ia64_mc_info.imi_slave_init_handler_size = 0; IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__, |