diff options
Diffstat (limited to 'Documentation')
338 files changed, 14147 insertions, 6137 deletions
diff --git a/Documentation/ABI/obsolete/sysfs-firmware-acpi b/Documentation/ABI/obsolete/sysfs-firmware-acpi new file mode 100644 index 000000000000..6715a71bec3d --- /dev/null +++ b/Documentation/ABI/obsolete/sysfs-firmware-acpi @@ -0,0 +1,8 @@ +What: /sys/firmware/acpi/hotplug/force_remove +Date: Mar 2017 +Contact: Rafael J. Wysocki <rafael.j.wysocki@intel.com> +Description: + Since the force_remove is inherently broken and dangerous to + use for some hotplugable resources like memory (because ignoring + the offline failure might lead to memory corruption and crashes) + enabling this knob is not safe and thus unsupported. diff --git a/Documentation/ABI/stable/sysfs-bus-usb b/Documentation/ABI/stable/sysfs-bus-usb index 831f15d9672f..b832eeff9999 100644 --- a/Documentation/ABI/stable/sysfs-bus-usb +++ b/Documentation/ABI/stable/sysfs-bus-usb @@ -9,7 +9,7 @@ Description: hubs this facility is always enabled and their device directories will not contain this file. - For more information, see Documentation/usb/persist.txt. + For more information, see Documentation/driver-api/usb/persist.rst. What: /sys/bus/usb/devices/.../power/autosuspend Date: March 2007 diff --git a/Documentation/ABI/stable/vdso b/Documentation/ABI/stable/vdso index 7cdfc28cc2c6..55406ec8a35a 100644 --- a/Documentation/ABI/stable/vdso +++ b/Documentation/ABI/stable/vdso @@ -16,7 +16,8 @@ The vDSO uses symbol versioning; whenever you request a symbol from the vDSO, specify the version you are expecting. Programs that dynamically link to glibc will use the vDSO automatically. -Otherwise, you can use the reference parser in Documentation/vDSO/parse_vdso.c. +Otherwise, you can use the reference parser in +tools/testing/selftests/vDSO/parse_vdso.c. Unless otherwise noted, the set of symbols with any given version and the ABI of those symbols is considered stable. It may vary across architectures, diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block index 2da04ce6aeef..dea212db9df3 100644 --- a/Documentation/ABI/testing/sysfs-block +++ b/Documentation/ABI/testing/sysfs-block @@ -213,14 +213,8 @@ What: /sys/block/<disk>/queue/discard_zeroes_data Date: May 2011 Contact: Martin K. Petersen <martin.petersen@oracle.com> Description: - Devices that support discard functionality may return - stale or random data when a previously discarded block - is read back. This can cause problems if the filesystem - expects discarded blocks to be explicitly cleared. If a - device reports that it deterministically returns zeroes - when a discarded area is read the discard_zeroes_data - parameter will be set to one. Otherwise it will be 0 and - the result of reading a discarded area is undefined. + Will always return 0. Don't rely on any specific behavior + for discards, and don't read this file. What: /sys/block/<disk>/queue/write_same_max_bytes Date: January 2012 diff --git a/Documentation/ABI/testing/sysfs-bus-pci b/Documentation/ABI/testing/sysfs-bus-pci index 5a1732b78707..e4e90104d7c3 100644 --- a/Documentation/ABI/testing/sysfs-bus-pci +++ b/Documentation/ABI/testing/sysfs-bus-pci @@ -299,5 +299,5 @@ What: /sys/bus/pci/devices/.../revision Date: November 2016 Contact: Emil Velikov <emil.l.velikov@gmail.com> Description: - This file contains the revision field of the the PCI device. + This file contains the revision field of the PCI device. The value comes from device config space. The file is read only. diff --git a/Documentation/ABI/testing/sysfs-class-net-qmi b/Documentation/ABI/testing/sysfs-class-net-qmi index fa5a00bb1143..7122d6264c49 100644 --- a/Documentation/ABI/testing/sysfs-class-net-qmi +++ b/Documentation/ABI/testing/sysfs-class-net-qmi @@ -21,3 +21,30 @@ Description: is responsible for coordination of driver and firmware link framing mode, changing this setting to 'Y' if the firmware is configured for 'raw-ip' mode. + +What: /sys/class/net/<iface>/qmi/add_mux +Date: March 2017 +KernelVersion: 4.11 +Contact: Bjørn Mork <bjorn@mork.no> +Description: + Unsigned integer. + + Write a number ranging from 1 to 127 to add a qmap mux + based network device, supported by recent Qualcomm based + modems. + + The network device will be called qmimux. + + Userspace is in charge of managing the qmux network device + activation and data stream setup on the modem side by + using the proper QMI protocol requests. + +What: /sys/class/net/<iface>/qmi/del_mux +Date: March 2017 +KernelVersion: 4.11 +Contact: Bjørn Mork <bjorn@mork.no> +Description: + Unsigned integer. + + Write a number ranging from 1 to 127 to delete a previously + created qmap mux based network device. diff --git a/Documentation/ABI/testing/sysfs-firmware-acpi b/Documentation/ABI/testing/sysfs-firmware-acpi index c7fc72d4495c..613f42a9d5cd 100644 --- a/Documentation/ABI/testing/sysfs-firmware-acpi +++ b/Documentation/ABI/testing/sysfs-firmware-acpi @@ -44,16 +44,6 @@ Description: or 0 (unset). Attempts to write any other values to it will cause -EINVAL to be returned. -What: /sys/firmware/acpi/hotplug/force_remove -Date: May 2013 -Contact: Rafael J. Wysocki <rafael.j.wysocki@intel.com> -Description: - The number in this file (0 or 1) determines whether (1) or not - (0) the ACPI subsystem will allow devices to be hot-removed even - if they cannot be put offline gracefully (from the kernel's - viewpoint). That number can be changed by writing a boolean - value to this file. - What: /sys/firmware/acpi/interrupts/ Date: February 2008 Contact: Len Brown <lenb@kernel.org> diff --git a/Documentation/ABI/testing/sysfs-kernel-livepatch b/Documentation/ABI/testing/sysfs-kernel-livepatch index da87f43aec58..d5d39748382f 100644 --- a/Documentation/ABI/testing/sysfs-kernel-livepatch +++ b/Documentation/ABI/testing/sysfs-kernel-livepatch @@ -25,6 +25,14 @@ Description: code is currently applied. Writing 0 will disable the patch while writing 1 will re-enable the patch. +What: /sys/kernel/livepatch/<patch>/transition +Date: Feb 2017 +KernelVersion: 4.12.0 +Contact: live-patching@vger.kernel.org +Description: + An attribute which indicates whether the patch is currently in + transition. + What: /sys/kernel/livepatch/<patch>/<object> Date: Nov 2014 KernelVersion: 3.19.0 diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 164c1c76971f..85916f13d330 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -8,12 +8,11 @@ DOCBOOKS := z8530book.xml \ kernel-hacking.xml kernel-locking.xml \ - writing_usb_driver.xml networking.xml \ - kernel-api.xml filesystems.xml lsm.xml kgdb.xml \ - gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ - genericirq.xml s390-drivers.xml scsi.xml \ - sh.xml w1.xml \ - writing_musb_glue_layer.xml + networking.xml \ + filesystems.xml lsm.xml kgdb.xml \ + libata.xml mtdnand.xml librs.xml rapidio.xml \ + s390-drivers.xml scsi.xml \ + sh.xml w1.xml ifeq ($(DOCBOOKS),) @@ -62,11 +61,14 @@ MAN := $(patsubst %.xml, %.9, $(BOOKS)) mandocs: $(MAN) find $(obj)/man -name '*.9' | xargs gzip -nf +# Default location for installed man pages +export INSTALL_MAN_PATH = $(objtree)/usr + installmandocs: mandocs - mkdir -p /usr/local/man/man9/ + mkdir -p $(INSTALL_MAN_PATH)/man/man9/ find $(obj)/man -name '*.9.gz' -printf '%h %f\n' | \ sort -k 2 -k 1 | uniq -f 1 | sed -e 's: :/:' | \ - xargs install -m 644 -t /usr/local/man/man9/ + xargs install -m 644 -t $(INSTALL_MAN_PATH)/man/man9/ # no-op for the DocBook toolchain epubdocs: @@ -238,7 +240,9 @@ dochelp: @echo ' psdocs - Postscript' @echo ' xmldocs - XML DocBook' @echo ' mandocs - man pages' - @echo ' installmandocs - install man pages generated by mandocs' + @echo ' installmandocs - install man pages generated by mandocs to INSTALL_MAN_PATH'; \ + echo ' (default: $(INSTALL_MAN_PATH))'; \ + echo '' @echo ' cleandocs - clean all generated DocBook files' @echo @echo ' make DOCBOOKS="s1.xml s2.xml" [target] Generate only docs s1.xml s2.xml' diff --git a/Documentation/DocBook/gadget.tmpl b/Documentation/DocBook/gadget.tmpl deleted file mode 100644 index 641629221176..000000000000 --- a/Documentation/DocBook/gadget.tmpl +++ /dev/null @@ -1,793 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="USB-Gadget-API"> - <bookinfo> - <title>USB Gadget API for Linux</title> - <date>20 August 2004</date> - <edition>20 August 2004</edition> - - <legalnotice> - <para> - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later - version. - </para> - - <para> - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the source - distribution of Linux. - </para> - </legalnotice> - <copyright> - <year>2003-2004</year> - <holder>David Brownell</holder> - </copyright> - - <author> - <firstname>David</firstname> - <surname>Brownell</surname> - <affiliation> - <address><email>dbrownell@users.sourceforge.net</email></address> - </affiliation> - </author> - </bookinfo> - -<toc></toc> - -<chapter id="intro"><title>Introduction</title> - -<para>This document presents a Linux-USB "Gadget" -kernel mode -API, for use within peripherals and other USB devices -that embed Linux. -It provides an overview of the API structure, -and shows how that fits into a system development project. -This is the first such API released on Linux to address -a number of important problems, including: </para> - -<itemizedlist> - <listitem><para>Supports USB 2.0, for high speed devices which - can stream data at several dozen megabytes per second. - </para></listitem> - <listitem><para>Handles devices with dozens of endpoints just as - well as ones with just two fixed-function ones. Gadget drivers - can be written so they're easy to port to new hardware. - </para></listitem> - <listitem><para>Flexible enough to expose more complex USB device - capabilities such as multiple configurations, multiple interfaces, - composite devices, - and alternate interface settings. - </para></listitem> - <listitem><para>USB "On-The-Go" (OTG) support, in conjunction - with updates to the Linux-USB host side. - </para></listitem> - <listitem><para>Sharing data structures and API models with the - Linux-USB host side API. This helps the OTG support, and - looks forward to more-symmetric frameworks (where the same - I/O model is used by both host and device side drivers). - </para></listitem> - <listitem><para>Minimalist, so it's easier to support new device - controller hardware. I/O processing doesn't imply large - demands for memory or CPU resources. - </para></listitem> -</itemizedlist> - - -<para>Most Linux developers will not be able to use this API, since they -have USB "host" hardware in a PC, workstation, or server. -Linux users with embedded systems are more likely to -have USB peripheral hardware. -To distinguish drivers running inside such hardware from the -more familiar Linux "USB device drivers", -which are host side proxies for the real USB devices, -a different term is used: -the drivers inside the peripherals are "USB gadget drivers". -In USB protocol interactions, the device driver is the master -(or "client driver") -and the gadget driver is the slave (or "function driver"). -</para> - -<para>The gadget API resembles the host side Linux-USB API in that both -use queues of request objects to package I/O buffers, and those requests -may be submitted or canceled. -They share common definitions for the standard USB -<emphasis>Chapter 9</emphasis> messages, structures, and constants. -Also, both APIs bind and unbind drivers to devices. -The APIs differ in detail, since the host side's current -URB framework exposes a number of implementation details -and assumptions that are inappropriate for a gadget API. -While the model for control transfers and configuration -management is necessarily different (one side is a hardware-neutral master, -the other is a hardware-aware slave), the endpoint I/0 API used here -should also be usable for an overhead-reduced host side API. -</para> - -</chapter> - -<chapter id="structure"><title>Structure of Gadget Drivers</title> - -<para>A system running inside a USB peripheral -normally has at least three layers inside the kernel to handle -USB protocol processing, and may have additional layers in -user space code. -The "gadget" API is used by the middle layer to interact -with the lowest level (which directly handles hardware). -</para> - -<para>In Linux, from the bottom up, these layers are: -</para> - -<variablelist> - - <varlistentry> - <term><emphasis>USB Controller Driver</emphasis></term> - - <listitem> - <para>This is the lowest software level. - It is the only layer that talks to hardware, - through registers, fifos, dma, irqs, and the like. - The <filename><linux/usb/gadget.h></filename> API abstracts - the peripheral controller endpoint hardware. - That hardware is exposed through endpoint objects, which accept - streams of IN/OUT buffers, and through callbacks that interact - with gadget drivers. - Since normal USB devices only have one upstream - port, they only have one of these drivers. - The controller driver can support any number of different - gadget drivers, but only one of them can be used at a time. - </para> - - <para>Examples of such controller hardware include - the PCI-based NetChip 2280 USB 2.0 high speed controller, - the SA-11x0 or PXA-25x UDC (found within many PDAs), - and a variety of other products. - </para> - - </listitem></varlistentry> - - <varlistentry> - <term><emphasis>Gadget Driver</emphasis></term> - - <listitem> - <para>The lower boundary of this driver implements hardware-neutral - USB functions, using calls to the controller driver. - Because such hardware varies widely in capabilities and restrictions, - and is used in embedded environments where space is at a premium, - the gadget driver is often configured at compile time - to work with endpoints supported by one particular controller. - Gadget drivers may be portable to several different controllers, - using conditional compilation. - (Recent kernels substantially simplify the work involved in - supporting new hardware, by <emphasis>autoconfiguring</emphasis> - endpoints automatically for many bulk-oriented drivers.) - Gadget driver responsibilities include: - </para> - <itemizedlist> - <listitem><para>handling setup requests (ep0 protocol responses) - possibly including class-specific functionality - </para></listitem> - <listitem><para>returning configuration and string descriptors - </para></listitem> - <listitem><para>(re)setting configurations and interface - altsettings, including enabling and configuring endpoints - </para></listitem> - <listitem><para>handling life cycle events, such as managing - bindings to hardware, - USB suspend/resume, remote wakeup, - and disconnection from the USB host. - </para></listitem> - <listitem><para>managing IN and OUT transfers on all currently - enabled endpoints - </para></listitem> - </itemizedlist> - - <para> - Such drivers may be modules of proprietary code, although - that approach is discouraged in the Linux community. - </para> - </listitem></varlistentry> - - <varlistentry> - <term><emphasis>Upper Level</emphasis></term> - - <listitem> - <para>Most gadget drivers have an upper boundary that connects - to some Linux driver or framework in Linux. - Through that boundary flows the data which the gadget driver - produces and/or consumes through protocol transfers over USB. - Examples include: - </para> - <itemizedlist> - <listitem><para>user mode code, using generic (gadgetfs) - or application specific files in - <filename>/dev</filename> - </para></listitem> - <listitem><para>networking subsystem (for network gadgets, - like the CDC Ethernet Model gadget driver) - </para></listitem> - <listitem><para>data capture drivers, perhaps video4Linux or - a scanner driver; or test and measurement hardware. - </para></listitem> - <listitem><para>input subsystem (for HID gadgets) - </para></listitem> - <listitem><para>sound subsystem (for audio gadgets) - </para></listitem> - <listitem><para>file system (for PTP gadgets) - </para></listitem> - <listitem><para>block i/o subsystem (for usb-storage gadgets) - </para></listitem> - <listitem><para>... and more </para></listitem> - </itemizedlist> - </listitem></varlistentry> - - <varlistentry> - <term><emphasis>Additional Layers</emphasis></term> - - <listitem> - <para>Other layers may exist. - These could include kernel layers, such as network protocol stacks, - as well as user mode applications building on standard POSIX - system call APIs such as - <emphasis>open()</emphasis>, <emphasis>close()</emphasis>, - <emphasis>read()</emphasis> and <emphasis>write()</emphasis>. - On newer systems, POSIX Async I/O calls may be an option. - Such user mode code will not necessarily be subject to - the GNU General Public License (GPL). - </para> - </listitem></varlistentry> - - -</variablelist> - -<para>OTG-capable systems will also need to include a standard Linux-USB -host side stack, -with <emphasis>usbcore</emphasis>, -one or more <emphasis>Host Controller Drivers</emphasis> (HCDs), -<emphasis>USB Device Drivers</emphasis> to support -the OTG "Targeted Peripheral List", -and so forth. -There will also be an <emphasis>OTG Controller Driver</emphasis>, -which is visible to gadget and device driver developers only indirectly. -That helps the host and device side USB controllers implement the -two new OTG protocols (HNP and SRP). -Roles switch (host to peripheral, or vice versa) using HNP -during USB suspend processing, and SRP can be viewed as a -more battery-friendly kind of device wakeup protocol. -</para> - -<para>Over time, reusable utilities are evolving to help make some -gadget driver tasks simpler. -For example, building configuration descriptors from vectors of -descriptors for the configurations interfaces and endpoints is -now automated, and many drivers now use autoconfiguration to -choose hardware endpoints and initialize their descriptors. - -A potential example of particular interest -is code implementing standard USB-IF protocols for -HID, networking, storage, or audio classes. -Some developers are interested in KDB or KGDB hooks, to let -target hardware be remotely debugged. -Most such USB protocol code doesn't need to be hardware-specific, -any more than network protocols like X11, HTTP, or NFS are. -Such gadget-side interface drivers should eventually be combined, -to implement composite devices. -</para> - -</chapter> - - -<chapter id="api"><title>Kernel Mode Gadget API</title> - -<para>Gadget drivers declare themselves through a -<emphasis>struct usb_gadget_driver</emphasis>, which is responsible for -most parts of enumeration for a <emphasis>struct usb_gadget</emphasis>. -The response to a set_configuration usually involves -enabling one or more of the <emphasis>struct usb_ep</emphasis> objects -exposed by the gadget, and submitting one or more -<emphasis>struct usb_request</emphasis> buffers to transfer data. -Understand those four data types, and their operations, and -you will understand how this API works. -</para> - -<note><title>Incomplete Data Type Descriptions</title> - -<para>This documentation was prepared using the standard Linux -kernel <filename>docproc</filename> tool, which turns text -and in-code comments into SGML DocBook and then into usable -formats such as HTML or PDF. -Other than the "Chapter 9" data types, most of the significant -data types and functions are described here. -</para> - -<para>However, docproc does not understand all the C constructs -that are used, so some relevant information is likely omitted from -what you are reading. -One example of such information is endpoint autoconfiguration. -You'll have to read the header file, and use example source -code (such as that for "Gadget Zero"), to fully understand the API. -</para> - -<para>The part of the API implementing some basic -driver capabilities is specific to the version of the -Linux kernel that's in use. -The 2.6 kernel includes a <emphasis>driver model</emphasis> -framework that has no analogue on earlier kernels; -so those parts of the gadget API are not fully portable. -(They are implemented on 2.4 kernels, but in a different way.) -The driver model state is another part of this API that is -ignored by the kerneldoc tools. -</para> -</note> - -<para>The core API does not expose -every possible hardware feature, only the most widely available ones. -There are significant hardware features, such as device-to-device DMA -(without temporary storage in a memory buffer) -that would be added using hardware-specific APIs. -</para> - -<para>This API allows drivers to use conditional compilation to handle -endpoint capabilities of different hardware, but doesn't require that. -Hardware tends to have arbitrary restrictions, relating to -transfer types, addressing, packet sizes, buffering, and availability. -As a rule, such differences only matter for "endpoint zero" logic -that handles device configuration and management. -The API supports limited run-time -detection of capabilities, through naming conventions for endpoints. -Many drivers will be able to at least partially autoconfigure -themselves. -In particular, driver init sections will often have endpoint -autoconfiguration logic that scans the hardware's list of endpoints -to find ones matching the driver requirements -(relying on those conventions), to eliminate some of the most -common reasons for conditional compilation. -</para> - -<para>Like the Linux-USB host side API, this API exposes -the "chunky" nature of USB messages: I/O requests are in terms -of one or more "packets", and packet boundaries are visible to drivers. -Compared to RS-232 serial protocols, USB resembles -synchronous protocols like HDLC -(N bytes per frame, multipoint addressing, host as the primary -station and devices as secondary stations) -more than asynchronous ones -(tty style: 8 data bits per frame, no parity, one stop bit). -So for example the controller drivers won't buffer -two single byte writes into a single two-byte USB IN packet, -although gadget drivers may do so when they implement -protocols where packet boundaries (and "short packets") -are not significant. -</para> - -<sect1 id="lifecycle"><title>Driver Life Cycle</title> - -<para>Gadget drivers make endpoint I/O requests to hardware without -needing to know many details of the hardware, but driver -setup/configuration code needs to handle some differences. -Use the API like this: -</para> - -<orderedlist numeration='arabic'> - -<listitem><para>Register a driver for the particular device side -usb controller hardware, -such as the net2280 on PCI (USB 2.0), -sa11x0 or pxa25x as found in Linux PDAs, -and so on. -At this point the device is logically in the USB ch9 initial state -("attached"), drawing no power and not usable -(since it does not yet support enumeration). -Any host should not see the device, since it's not -activated the data line pullup used by the host to -detect a device, even if VBUS power is available. -</para></listitem> - -<listitem><para>Register a gadget driver that implements some higher level -device function. That will then bind() to a usb_gadget, which -activates the data line pullup sometime after detecting VBUS. -</para></listitem> - -<listitem><para>The hardware driver can now start enumerating. -The steps it handles are to accept USB power and set_address requests. -Other steps are handled by the gadget driver. -If the gadget driver module is unloaded before the host starts to -enumerate, steps before step 7 are skipped. -</para></listitem> - -<listitem><para>The gadget driver's setup() call returns usb descriptors, -based both on what the bus interface hardware provides and on the -functionality being implemented. -That can involve alternate settings or configurations, -unless the hardware prevents such operation. -For OTG devices, each configuration descriptor includes -an OTG descriptor. -</para></listitem> - -<listitem><para>The gadget driver handles the last step of enumeration, -when the USB host issues a set_configuration call. -It enables all endpoints used in that configuration, -with all interfaces in their default settings. -That involves using a list of the hardware's endpoints, enabling each -endpoint according to its descriptor. -It may also involve using <function>usb_gadget_vbus_draw</function> -to let more power be drawn from VBUS, as allowed by that configuration. -For OTG devices, setting a configuration may also involve reporting -HNP capabilities through a user interface. -</para></listitem> - -<listitem><para>Do real work and perform data transfers, possibly involving -changes to interface settings or switching to new configurations, until the -device is disconnect()ed from the host. -Queue any number of transfer requests to each endpoint. -It may be suspended and resumed several times before being disconnected. -On disconnect, the drivers go back to step 3 (above). -</para></listitem> - -<listitem><para>When the gadget driver module is being unloaded, -the driver unbind() callback is issued. That lets the controller -driver be unloaded. -</para></listitem> - -</orderedlist> - -<para>Drivers will normally be arranged so that just loading the -gadget driver module (or statically linking it into a Linux kernel) -allows the peripheral device to be enumerated, but some drivers -will defer enumeration until some higher level component (like -a user mode daemon) enables it. -Note that at this lowest level there are no policies about how -ep0 configuration logic is implemented, -except that it should obey USB specifications. -Such issues are in the domain of gadget drivers, -including knowing about implementation constraints -imposed by some USB controllers -or understanding that composite devices might happen to -be built by integrating reusable components. -</para> - -<para>Note that the lifecycle above can be slightly different -for OTG devices. -Other than providing an additional OTG descriptor in each -configuration, only the HNP-related differences are particularly -visible to driver code. -They involve reporting requirements during the SET_CONFIGURATION -request, and the option to invoke HNP during some suspend callbacks. -Also, SRP changes the semantics of -<function>usb_gadget_wakeup</function> -slightly. -</para> - -</sect1> - -<sect1 id="ch9"><title>USB 2.0 Chapter 9 Types and Constants</title> - -<para>Gadget drivers -rely on common USB structures and constants -defined in the -<filename><linux/usb/ch9.h></filename> -header file, which is standard in Linux 2.6 kernels. -These are the same types and constants used by host -side drivers (and usbcore). -</para> - -!Iinclude/linux/usb/ch9.h -</sect1> - -<sect1 id="core"><title>Core Objects and Methods</title> - -<para>These are declared in -<filename><linux/usb/gadget.h></filename>, -and are used by gadget drivers to interact with -USB peripheral controller drivers. -</para> - - <!-- yeech, this is ugly in nsgmls PDF output. - - the PDF bookmark and refentry output nesting is wrong, - and the member/argument documentation indents ugly. - - plus something (docproc?) adds whitespace before the - descriptive paragraph text, so it can't line up right - unless the explanations are trivial. - --> - -!Iinclude/linux/usb/gadget.h -</sect1> - -<sect1 id="utils"><title>Optional Utilities</title> - -<para>The core API is sufficient for writing a USB Gadget Driver, -but some optional utilities are provided to simplify common tasks. -These utilities include endpoint autoconfiguration. -</para> - -!Edrivers/usb/gadget/usbstring.c -!Edrivers/usb/gadget/config.c -<!-- !Edrivers/usb/gadget/epautoconf.c --> -</sect1> - -<sect1 id="composite"><title>Composite Device Framework</title> - -<para>The core API is sufficient for writing drivers for composite -USB devices (with more than one function in a given configuration), -and also multi-configuration devices (also more than one function, -but not necessarily sharing a given configuration). -There is however an optional framework which makes it easier to -reuse and combine functions. -</para> - -<para>Devices using this framework provide a <emphasis>struct -usb_composite_driver</emphasis>, which in turn provides one or -more <emphasis>struct usb_configuration</emphasis> instances. -Each such configuration includes at least one -<emphasis>struct usb_function</emphasis>, which packages a user -visible role such as "network link" or "mass storage device". -Management functions may also exist, such as "Device Firmware -Upgrade". -</para> - -!Iinclude/linux/usb/composite.h -!Edrivers/usb/gadget/composite.c - -</sect1> - -<sect1 id="functions"><title>Composite Device Functions</title> - -<para>At this writing, a few of the current gadget drivers have -been converted to this framework. -Near-term plans include converting all of them, except for "gadgetfs". -</para> - -!Edrivers/usb/gadget/function/f_acm.c -!Edrivers/usb/gadget/function/f_ecm.c -!Edrivers/usb/gadget/function/f_subset.c -!Edrivers/usb/gadget/function/f_obex.c -!Edrivers/usb/gadget/function/f_serial.c - -</sect1> - - -</chapter> - -<chapter id="controllers"><title>Peripheral Controller Drivers</title> - -<para>The first hardware supporting this API was the NetChip 2280 -controller, which supports USB 2.0 high speed and is based on PCI. -This is the <filename>net2280</filename> driver module. -The driver supports Linux kernel versions 2.4 and 2.6; -contact NetChip Technologies for development boards and product -information. -</para> - -<para>Other hardware working in the "gadget" framework includes: -Intel's PXA 25x and IXP42x series processors -(<filename>pxa2xx_udc</filename>), -Toshiba TC86c001 "Goku-S" (<filename>goku_udc</filename>), -Renesas SH7705/7727 (<filename>sh_udc</filename>), -MediaQ 11xx (<filename>mq11xx_udc</filename>), -Hynix HMS30C7202 (<filename>h7202_udc</filename>), -National 9303/4 (<filename>n9604_udc</filename>), -Texas Instruments OMAP (<filename>omap_udc</filename>), -Sharp LH7A40x (<filename>lh7a40x_udc</filename>), -and more. -Most of those are full speed controllers. -</para> - -<para>At this writing, there are people at work on drivers in -this framework for several other USB device controllers, -with plans to make many of them be widely available. -</para> - -<!-- !Edrivers/usb/gadget/net2280.c --> - -<para>A partial USB simulator, -the <filename>dummy_hcd</filename> driver, is available. -It can act like a net2280, a pxa25x, or an sa11x0 in terms -of available endpoints and device speeds; and it simulates -control, bulk, and to some extent interrupt transfers. -That lets you develop some parts of a gadget driver on a normal PC, -without any special hardware, and perhaps with the assistance -of tools such as GDB running with User Mode Linux. -At least one person has expressed interest in adapting that -approach, hooking it up to a simulator for a microcontroller. -Such simulators can help debug subsystems where the runtime hardware -is unfriendly to software development, or is not yet available. -</para> - -<para>Support for other controllers is expected to be developed -and contributed -over time, as this driver framework evolves. -</para> - -</chapter> - -<chapter id="gadget"><title>Gadget Drivers</title> - -<para>In addition to <emphasis>Gadget Zero</emphasis> -(used primarily for testing and development with drivers -for usb controller hardware), other gadget drivers exist. -</para> - -<para>There's an <emphasis>ethernet</emphasis> gadget -driver, which implements one of the most useful -<emphasis>Communications Device Class</emphasis> (CDC) models. -One of the standards for cable modem interoperability even -specifies the use of this ethernet model as one of two -mandatory options. -Gadgets using this code look to a USB host as if they're -an Ethernet adapter. -It provides access to a network where the gadget's CPU is one host, -which could easily be bridging, routing, or firewalling -access to other networks. -Since some hardware can't fully implement the CDC Ethernet -requirements, this driver also implements a "good parts only" -subset of CDC Ethernet. -(That subset doesn't advertise itself as CDC Ethernet, -to avoid creating problems.) -</para> - -<para>Support for Microsoft's <emphasis>RNDIS</emphasis> -protocol has been contributed by Pengutronix and Auerswald GmbH. -This is like CDC Ethernet, but it runs on more slightly USB hardware -(but less than the CDC subset). -However, its main claim to fame is being able to connect directly to -recent versions of Windows, using drivers that Microsoft bundles -and supports, making it much simpler to network with Windows. -</para> - -<para>There is also support for user mode gadget drivers, -using <emphasis>gadgetfs</emphasis>. -This provides a <emphasis>User Mode API</emphasis> that presents -each endpoint as a single file descriptor. I/O is done using -normal <emphasis>read()</emphasis> and <emphasis>read()</emphasis> calls. -Familiar tools like GDB and pthreads can be used to -develop and debug user mode drivers, so that once a robust -controller driver is available many applications for it -won't require new kernel mode software. -Linux 2.6 <emphasis>Async I/O (AIO)</emphasis> -support is available, so that user mode software -can stream data with only slightly more overhead -than a kernel driver. -</para> - -<para>There's a USB Mass Storage class driver, which provides -a different solution for interoperability with systems such -as MS-Windows and MacOS. -That <emphasis>Mass Storage</emphasis> driver uses a -file or block device as backing store for a drive, -like the <filename>loop</filename> driver. -The USB host uses the BBB, CB, or CBI versions of the mass -storage class specification, using transparent SCSI commands -to access the data from the backing store. -</para> - -<para>There's a "serial line" driver, useful for TTY style -operation over USB. -The latest version of that driver supports CDC ACM style -operation, like a USB modem, and so on most hardware it can -interoperate easily with MS-Windows. -One interesting use of that driver is in boot firmware (like a BIOS), -which can sometimes use that model with very small systems without -real serial lines. -</para> - -<para>Support for other kinds of gadget is expected to -be developed and contributed -over time, as this driver framework evolves. -</para> - -</chapter> - -<chapter id="otg"><title>USB On-The-GO (OTG)</title> - -<para>USB OTG support on Linux 2.6 was initially developed -by Texas Instruments for -<ulink url="http://www.omap.com">OMAP</ulink> 16xx and 17xx -series processors. -Other OTG systems should work in similar ways, but the -hardware level details could be very different. -</para> - -<para>Systems need specialized hardware support to implement OTG, -notably including a special <emphasis>Mini-AB</emphasis> jack -and associated transceiver to support <emphasis>Dual-Role</emphasis> -operation: -they can act either as a host, using the standard -Linux-USB host side driver stack, -or as a peripheral, using this "gadget" framework. -To do that, the system software relies on small additions -to those programming interfaces, -and on a new internal component (here called an "OTG Controller") -affecting which driver stack connects to the OTG port. -In each role, the system can re-use the existing pool of -hardware-neutral drivers, layered on top of the controller -driver interfaces (<emphasis>usb_bus</emphasis> or -<emphasis>usb_gadget</emphasis>). -Such drivers need at most minor changes, and most of the calls -added to support OTG can also benefit non-OTG products. -</para> - -<itemizedlist> - <listitem><para>Gadget drivers test the <emphasis>is_otg</emphasis> - flag, and use it to determine whether or not to include - an OTG descriptor in each of their configurations. - </para></listitem> - <listitem><para>Gadget drivers may need changes to support the - two new OTG protocols, exposed in new gadget attributes - such as <emphasis>b_hnp_enable</emphasis> flag. - HNP support should be reported through a user interface - (two LEDs could suffice), and is triggered in some cases - when the host suspends the peripheral. - SRP support can be user-initiated just like remote wakeup, - probably by pressing the same button. - </para></listitem> - <listitem><para>On the host side, USB device drivers need - to be taught to trigger HNP at appropriate moments, using - <function>usb_suspend_device()</function>. - That also conserves battery power, which is useful even - for non-OTG configurations. - </para></listitem> - <listitem><para>Also on the host side, a driver must support the - OTG "Targeted Peripheral List". That's just a whitelist, - used to reject peripherals not supported with a given - Linux OTG host. - <emphasis>This whitelist is product-specific; - each product must modify <filename>otg_whitelist.h</filename> - to match its interoperability specification. - </emphasis> - </para> - <para>Non-OTG Linux hosts, like PCs and workstations, - normally have some solution for adding drivers, so that - peripherals that aren't recognized can eventually be supported. - That approach is unreasonable for consumer products that may - never have their firmware upgraded, and where it's usually - unrealistic to expect traditional PC/workstation/server kinds - of support model to work. - For example, it's often impractical to change device firmware - once the product has been distributed, so driver bugs can't - normally be fixed if they're found after shipment. - </para></listitem> -</itemizedlist> - -<para> -Additional changes are needed below those hardware-neutral -<emphasis>usb_bus</emphasis> and <emphasis>usb_gadget</emphasis> -driver interfaces; those aren't discussed here in any detail. -Those affect the hardware-specific code for each USB Host or Peripheral -controller, and how the HCD initializes (since OTG can be active only -on a single port). -They also involve what may be called an <emphasis>OTG Controller -Driver</emphasis>, managing the OTG transceiver and the OTG state -machine logic as well as much of the root hub behavior for the -OTG port. -The OTG controller driver needs to activate and deactivate USB -controllers depending on the relevant device role. -Some related changes were needed inside usbcore, so that it -can identify OTG-capable devices and respond appropriately -to HNP or SRP protocols. -</para> - -</chapter> - -</book> -<!-- - vim:syntax=sgml:sw=4 ---> diff --git a/Documentation/DocBook/genericirq.tmpl b/Documentation/DocBook/genericirq.tmpl deleted file mode 100644 index 59fb5c077541..000000000000 --- a/Documentation/DocBook/genericirq.tmpl +++ /dev/null @@ -1,520 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="Generic-IRQ-Guide"> - <bookinfo> - <title>Linux generic IRQ handling</title> - - <authorgroup> - <author> - <firstname>Thomas</firstname> - <surname>Gleixner</surname> - <affiliation> - <address> - <email>tglx@linutronix.de</email> - </address> - </affiliation> - </author> - <author> - <firstname>Ingo</firstname> - <surname>Molnar</surname> - <affiliation> - <address> - <email>mingo@elte.hu</email> - </address> - </affiliation> - </author> - </authorgroup> - - <copyright> - <year>2005-2010</year> - <holder>Thomas Gleixner</holder> - </copyright> - <copyright> - <year>2005-2006</year> - <holder>Ingo Molnar</holder> - </copyright> - - <legalnotice> - <para> - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License version 2 as published by the Free Software Foundation. - </para> - - <para> - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the source - distribution of Linux. - </para> - </legalnotice> - </bookinfo> - -<toc></toc> - - <chapter id="intro"> - <title>Introduction</title> - <para> - The generic interrupt handling layer is designed to provide a - complete abstraction of interrupt handling for device drivers. - It is able to handle all the different types of interrupt controller - hardware. Device drivers use generic API functions to request, enable, - disable and free interrupts. The drivers do not have to know anything - about interrupt hardware details, so they can be used on different - platforms without code changes. - </para> - <para> - This documentation is provided to developers who want to implement - an interrupt subsystem based for their architecture, with the help - of the generic IRQ handling layer. - </para> - </chapter> - - <chapter id="rationale"> - <title>Rationale</title> - <para> - The original implementation of interrupt handling in Linux uses - the __do_IRQ() super-handler, which is able to deal with every - type of interrupt logic. - </para> - <para> - Originally, Russell King identified different types of handlers to - build a quite universal set for the ARM interrupt handler - implementation in Linux 2.5/2.6. He distinguished between: - <itemizedlist> - <listitem><para>Level type</para></listitem> - <listitem><para>Edge type</para></listitem> - <listitem><para>Simple type</para></listitem> - </itemizedlist> - During the implementation we identified another type: - <itemizedlist> - <listitem><para>Fast EOI type</para></listitem> - </itemizedlist> - In the SMP world of the __do_IRQ() super-handler another type - was identified: - <itemizedlist> - <listitem><para>Per CPU type</para></listitem> - </itemizedlist> - </para> - <para> - This split implementation of high-level IRQ handlers allows us to - optimize the flow of the interrupt handling for each specific - interrupt type. This reduces complexity in that particular code path - and allows the optimized handling of a given type. - </para> - <para> - The original general IRQ implementation used hw_interrupt_type - structures and their ->ack(), ->end() [etc.] callbacks to - differentiate the flow control in the super-handler. This leads to - a mix of flow logic and low-level hardware logic, and it also leads - to unnecessary code duplication: for example in i386, there is an - ioapic_level_irq and an ioapic_edge_irq IRQ-type which share many - of the low-level details but have different flow handling. - </para> - <para> - A more natural abstraction is the clean separation of the - 'irq flow' and the 'chip details'. - </para> - <para> - Analysing a couple of architecture's IRQ subsystem implementations - reveals that most of them can use a generic set of 'irq flow' - methods and only need to add the chip-level specific code. - The separation is also valuable for (sub)architectures - which need specific quirks in the IRQ flow itself but not in the - chip details - and thus provides a more transparent IRQ subsystem - design. - </para> - <para> - Each interrupt descriptor is assigned its own high-level flow - handler, which is normally one of the generic - implementations. (This high-level flow handler implementation also - makes it simple to provide demultiplexing handlers which can be - found in embedded platforms on various architectures.) - </para> - <para> - The separation makes the generic interrupt handling layer more - flexible and extensible. For example, an (sub)architecture can - use a generic IRQ-flow implementation for 'level type' interrupts - and add a (sub)architecture specific 'edge type' implementation. - </para> - <para> - To make the transition to the new model easier and prevent the - breakage of existing implementations, the __do_IRQ() super-handler - is still available. This leads to a kind of duality for the time - being. Over time the new model should be used in more and more - architectures, as it enables smaller and cleaner IRQ subsystems. - It's deprecated for three years now and about to be removed. - </para> - </chapter> - <chapter id="bugs"> - <title>Known Bugs And Assumptions</title> - <para> - None (knock on wood). - </para> - </chapter> - - <chapter id="Abstraction"> - <title>Abstraction layers</title> - <para> - There are three main levels of abstraction in the interrupt code: - <orderedlist> - <listitem><para>High-level driver API</para></listitem> - <listitem><para>High-level IRQ flow handlers</para></listitem> - <listitem><para>Chip-level hardware encapsulation</para></listitem> - </orderedlist> - </para> - <sect1 id="Interrupt_control_flow"> - <title>Interrupt control flow</title> - <para> - Each interrupt is described by an interrupt descriptor structure - irq_desc. The interrupt is referenced by an 'unsigned int' numeric - value which selects the corresponding interrupt description structure - in the descriptor structures array. - The descriptor structure contains status information and pointers - to the interrupt flow method and the interrupt chip structure - which are assigned to this interrupt. - </para> - <para> - Whenever an interrupt triggers, the low-level architecture code calls - into the generic interrupt code by calling desc->handle_irq(). - This high-level IRQ handling function only uses desc->irq_data.chip - primitives referenced by the assigned chip descriptor structure. - </para> - </sect1> - <sect1 id="Highlevel_Driver_API"> - <title>High-level Driver API</title> - <para> - The high-level Driver API consists of following functions: - <itemizedlist> - <listitem><para>request_irq()</para></listitem> - <listitem><para>free_irq()</para></listitem> - <listitem><para>disable_irq()</para></listitem> - <listitem><para>enable_irq()</para></listitem> - <listitem><para>disable_irq_nosync() (SMP only)</para></listitem> - <listitem><para>synchronize_irq() (SMP only)</para></listitem> - <listitem><para>irq_set_irq_type()</para></listitem> - <listitem><para>irq_set_irq_wake()</para></listitem> - <listitem><para>irq_set_handler_data()</para></listitem> - <listitem><para>irq_set_chip()</para></listitem> - <listitem><para>irq_set_chip_data()</para></listitem> - </itemizedlist> - See the autogenerated function documentation for details. - </para> - </sect1> - <sect1 id="Highlevel_IRQ_flow_handlers"> - <title>High-level IRQ flow handlers</title> - <para> - The generic layer provides a set of pre-defined irq-flow methods: - <itemizedlist> - <listitem><para>handle_level_irq</para></listitem> - <listitem><para>handle_edge_irq</para></listitem> - <listitem><para>handle_fasteoi_irq</para></listitem> - <listitem><para>handle_simple_irq</para></listitem> - <listitem><para>handle_percpu_irq</para></listitem> - <listitem><para>handle_edge_eoi_irq</para></listitem> - <listitem><para>handle_bad_irq</para></listitem> - </itemizedlist> - The interrupt flow handlers (either pre-defined or architecture - specific) are assigned to specific interrupts by the architecture - either during bootup or during device initialization. - </para> - <sect2 id="Default_flow_implementations"> - <title>Default flow implementations</title> - <sect3 id="Helper_functions"> - <title>Helper functions</title> - <para> - The helper functions call the chip primitives and - are used by the default flow implementations. - The following helper functions are implemented (simplified excerpt): - <programlisting> -default_enable(struct irq_data *data) -{ - desc->irq_data.chip->irq_unmask(data); -} - -default_disable(struct irq_data *data) -{ - if (!delay_disable(data)) - desc->irq_data.chip->irq_mask(data); -} - -default_ack(struct irq_data *data) -{ - chip->irq_ack(data); -} - -default_mask_ack(struct irq_data *data) -{ - if (chip->irq_mask_ack) { - chip->irq_mask_ack(data); - } else { - chip->irq_mask(data); - chip->irq_ack(data); - } -} - -noop(struct irq_data *data)) -{ -} - - </programlisting> - </para> - </sect3> - </sect2> - <sect2 id="Default_flow_handler_implementations"> - <title>Default flow handler implementations</title> - <sect3 id="Default_Level_IRQ_flow_handler"> - <title>Default Level IRQ flow handler</title> - <para> - handle_level_irq provides a generic implementation - for level-triggered interrupts. - </para> - <para> - The following control flow is implemented (simplified excerpt): - <programlisting> -desc->irq_data.chip->irq_mask_ack(); -handle_irq_event(desc->action); -desc->irq_data.chip->irq_unmask(); - </programlisting> - </para> - </sect3> - <sect3 id="Default_FASTEOI_IRQ_flow_handler"> - <title>Default Fast EOI IRQ flow handler</title> - <para> - handle_fasteoi_irq provides a generic implementation - for interrupts, which only need an EOI at the end of - the handler. - </para> - <para> - The following control flow is implemented (simplified excerpt): - <programlisting> -handle_irq_event(desc->action); -desc->irq_data.chip->irq_eoi(); - </programlisting> - </para> - </sect3> - <sect3 id="Default_Edge_IRQ_flow_handler"> - <title>Default Edge IRQ flow handler</title> - <para> - handle_edge_irq provides a generic implementation - for edge-triggered interrupts. - </para> - <para> - The following control flow is implemented (simplified excerpt): - <programlisting> -if (desc->status & running) { - desc->irq_data.chip->irq_mask_ack(); - desc->status |= pending | masked; - return; -} -desc->irq_data.chip->irq_ack(); -desc->status |= running; -do { - if (desc->status & masked) - desc->irq_data.chip->irq_unmask(); - desc->status &= ~pending; - handle_irq_event(desc->action); -} while (status & pending); -desc->status &= ~running; - </programlisting> - </para> - </sect3> - <sect3 id="Default_simple_IRQ_flow_handler"> - <title>Default simple IRQ flow handler</title> - <para> - handle_simple_irq provides a generic implementation - for simple interrupts. - </para> - <para> - Note: The simple flow handler does not call any - handler/chip primitives. - </para> - <para> - The following control flow is implemented (simplified excerpt): - <programlisting> -handle_irq_event(desc->action); - </programlisting> - </para> - </sect3> - <sect3 id="Default_per_CPU_flow_handler"> - <title>Default per CPU flow handler</title> - <para> - handle_percpu_irq provides a generic implementation - for per CPU interrupts. - </para> - <para> - Per CPU interrupts are only available on SMP and - the handler provides a simplified version without - locking. - </para> - <para> - The following control flow is implemented (simplified excerpt): - <programlisting> -if (desc->irq_data.chip->irq_ack) - desc->irq_data.chip->irq_ack(); -handle_irq_event(desc->action); -if (desc->irq_data.chip->irq_eoi) - desc->irq_data.chip->irq_eoi(); - </programlisting> - </para> - </sect3> - <sect3 id="EOI_Edge_IRQ_flow_handler"> - <title>EOI Edge IRQ flow handler</title> - <para> - handle_edge_eoi_irq provides an abnomination of the edge - handler which is solely used to tame a badly wreckaged - irq controller on powerpc/cell. - </para> - </sect3> - <sect3 id="BAD_IRQ_flow_handler"> - <title>Bad IRQ flow handler</title> - <para> - handle_bad_irq is used for spurious interrupts which - have no real handler assigned.. - </para> - </sect3> - </sect2> - <sect2 id="Quirks_and_optimizations"> - <title>Quirks and optimizations</title> - <para> - The generic functions are intended for 'clean' architectures and chips, - which have no platform-specific IRQ handling quirks. If an architecture - needs to implement quirks on the 'flow' level then it can do so by - overriding the high-level irq-flow handler. - </para> - </sect2> - <sect2 id="Delayed_interrupt_disable"> - <title>Delayed interrupt disable</title> - <para> - This per interrupt selectable feature, which was introduced by Russell - King in the ARM interrupt implementation, does not mask an interrupt - at the hardware level when disable_irq() is called. The interrupt is - kept enabled and is masked in the flow handler when an interrupt event - happens. This prevents losing edge interrupts on hardware which does - not store an edge interrupt event while the interrupt is disabled at - the hardware level. When an interrupt arrives while the IRQ_DISABLED - flag is set, then the interrupt is masked at the hardware level and - the IRQ_PENDING bit is set. When the interrupt is re-enabled by - enable_irq() the pending bit is checked and if it is set, the - interrupt is resent either via hardware or by a software resend - mechanism. (It's necessary to enable CONFIG_HARDIRQS_SW_RESEND when - you want to use the delayed interrupt disable feature and your - hardware is not capable of retriggering an interrupt.) - The delayed interrupt disable is not configurable. - </para> - </sect2> - </sect1> - <sect1 id="Chiplevel_hardware_encapsulation"> - <title>Chip-level hardware encapsulation</title> - <para> - The chip-level hardware descriptor structure irq_chip - contains all the direct chip relevant functions, which - can be utilized by the irq flow implementations. - <itemizedlist> - <listitem><para>irq_ack()</para></listitem> - <listitem><para>irq_mask_ack() - Optional, recommended for performance</para></listitem> - <listitem><para>irq_mask()</para></listitem> - <listitem><para>irq_unmask()</para></listitem> - <listitem><para>irq_eoi() - Optional, required for EOI flow handlers</para></listitem> - <listitem><para>irq_retrigger() - Optional</para></listitem> - <listitem><para>irq_set_type() - Optional</para></listitem> - <listitem><para>irq_set_wake() - Optional</para></listitem> - </itemizedlist> - These primitives are strictly intended to mean what they say: ack means - ACK, masking means masking of an IRQ line, etc. It is up to the flow - handler(s) to use these basic units of low-level functionality. - </para> - </sect1> - </chapter> - - <chapter id="doirq"> - <title>__do_IRQ entry point</title> - <para> - The original implementation __do_IRQ() was an alternative entry - point for all types of interrupts. It no longer exists. - </para> - <para> - This handler turned out to be not suitable for all - interrupt hardware and was therefore reimplemented with split - functionality for edge/level/simple/percpu interrupts. This is not - only a functional optimization. It also shortens code paths for - interrupts. - </para> - </chapter> - - <chapter id="locking"> - <title>Locking on SMP</title> - <para> - The locking of chip registers is up to the architecture that - defines the chip primitives. The per-irq structure is - protected via desc->lock, by the generic layer. - </para> - </chapter> - - <chapter id="genericchip"> - <title>Generic interrupt chip</title> - <para> - To avoid copies of identical implementations of IRQ chips the - core provides a configurable generic interrupt chip - implementation. Developers should check carefully whether the - generic chip fits their needs before implementing the same - functionality slightly differently themselves. - </para> -!Ekernel/irq/generic-chip.c - </chapter> - - <chapter id="structs"> - <title>Structures</title> - <para> - This chapter contains the autogenerated documentation of the structures which are - used in the generic IRQ layer. - </para> -!Iinclude/linux/irq.h -!Iinclude/linux/interrupt.h - </chapter> - - <chapter id="pubfunctions"> - <title>Public Functions Provided</title> - <para> - This chapter contains the autogenerated documentation of the kernel API functions - which are exported. - </para> -!Ekernel/irq/manage.c -!Ekernel/irq/chip.c - </chapter> - - <chapter id="intfunctions"> - <title>Internal Functions Provided</title> - <para> - This chapter contains the autogenerated documentation of the internal functions. - </para> -!Ikernel/irq/irqdesc.c -!Ikernel/irq/handle.c -!Ikernel/irq/chip.c - </chapter> - - <chapter id="credits"> - <title>Credits</title> - <para> - The following people have contributed to this document: - <orderedlist> - <listitem><para>Thomas Gleixner<email>tglx@linutronix.de</email></para></listitem> - <listitem><para>Ingo Molnar<email>mingo@elte.hu</email></para></listitem> - </orderedlist> - </para> - </chapter> -</book> diff --git a/Documentation/DocBook/kernel-api.tmpl b/Documentation/DocBook/kernel-api.tmpl deleted file mode 100644 index ecfd0ea40661..000000000000 --- a/Documentation/DocBook/kernel-api.tmpl +++ /dev/null @@ -1,331 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="LinuxKernelAPI"> - <bookinfo> - <title>The Linux Kernel API</title> - - <legalnotice> - <para> - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later - version. - </para> - - <para> - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the source - distribution of Linux. - </para> - </legalnotice> - </bookinfo> - -<toc></toc> - - <chapter id="adt"> - <title>Data Types</title> - <sect1><title>Doubly Linked Lists</title> -!Iinclude/linux/list.h - </sect1> - </chapter> - - <chapter id="libc"> - <title>Basic C Library Functions</title> - - <para> - When writing drivers, you cannot in general use routines which are - from the C Library. Some of the functions have been found generally - useful and they are listed below. The behaviour of these functions - may vary slightly from those defined by ANSI, and these deviations - are noted in the text. - </para> - - <sect1><title>String Conversions</title> -!Elib/vsprintf.c -!Finclude/linux/kernel.h kstrtol -!Finclude/linux/kernel.h kstrtoul -!Elib/kstrtox.c - </sect1> - <sect1><title>String Manipulation</title> -<!-- All functions are exported at now -X!Ilib/string.c - --> -!Elib/string.c - </sect1> - <sect1><title>Bit Operations</title> -!Iarch/x86/include/asm/bitops.h - </sect1> - </chapter> - - <chapter id="kernel-lib"> - <title>Basic Kernel Library Functions</title> - - <para> - The Linux kernel provides more basic utility functions. - </para> - - <sect1><title>Bitmap Operations</title> -!Elib/bitmap.c -!Ilib/bitmap.c - </sect1> - - <sect1><title>Command-line Parsing</title> -!Elib/cmdline.c - </sect1> - - <sect1 id="crc"><title>CRC Functions</title> -!Elib/crc7.c -!Elib/crc16.c -!Elib/crc-itu-t.c -!Elib/crc32.c -!Elib/crc-ccitt.c - </sect1> - - <sect1 id="idr"><title>idr/ida Functions</title> -!Pinclude/linux/idr.h idr sync -!Plib/idr.c IDA description -!Elib/idr.c - </sect1> - </chapter> - - <chapter id="mm"> - <title>Memory Management in Linux</title> - <sect1><title>The Slab Cache</title> -!Iinclude/linux/slab.h -!Emm/slab.c -!Emm/util.c - </sect1> - <sect1><title>User Space Memory Access</title> -!Iarch/x86/include/asm/uaccess_32.h -!Earch/x86/lib/usercopy_32.c - </sect1> - <sect1><title>More Memory Management Functions</title> -!Emm/readahead.c -!Emm/filemap.c -!Emm/memory.c -!Emm/vmalloc.c -!Imm/page_alloc.c -!Emm/mempool.c -!Emm/dmapool.c -!Emm/page-writeback.c -!Emm/truncate.c - </sect1> - </chapter> - - - <chapter id="ipc"> - <title>Kernel IPC facilities</title> - - <sect1><title>IPC utilities</title> -!Iipc/util.c - </sect1> - </chapter> - - <chapter id="kfifo"> - <title>FIFO Buffer</title> - <sect1><title>kfifo interface</title> -!Iinclude/linux/kfifo.h - </sect1> - </chapter> - - <chapter id="relayfs"> - <title>relay interface support</title> - - <para> - Relay interface support - is designed to provide an efficient mechanism for tools and - facilities to relay large amounts of data from kernel space to - user space. - </para> - - <sect1><title>relay interface</title> -!Ekernel/relay.c -!Ikernel/relay.c - </sect1> - </chapter> - - <chapter id="modload"> - <title>Module Support</title> - <sect1><title>Module Loading</title> -!Ekernel/kmod.c - </sect1> - <sect1><title>Inter Module support</title> - <para> - Refer to the file kernel/module.c for more information. - </para> -<!-- FIXME: Removed for now since no structured comments in source -X!Ekernel/module.c ---> - </sect1> - </chapter> - - <chapter id="hardware"> - <title>Hardware Interfaces</title> - <sect1><title>Interrupt Handling</title> -!Ekernel/irq/manage.c - </sect1> - - <sect1><title>DMA Channels</title> -!Ekernel/dma.c - </sect1> - - <sect1><title>Resources Management</title> -!Ikernel/resource.c -!Ekernel/resource.c - </sect1> - - <sect1><title>MTRR Handling</title> -!Earch/x86/kernel/cpu/mtrr/main.c - </sect1> - - <sect1><title>PCI Support Library</title> -!Edrivers/pci/pci.c -!Edrivers/pci/pci-driver.c -!Edrivers/pci/remove.c -!Edrivers/pci/search.c -!Edrivers/pci/msi.c -!Edrivers/pci/bus.c -!Edrivers/pci/access.c -!Edrivers/pci/irq.c -!Edrivers/pci/htirq.c -<!-- FIXME: Removed for now since no structured comments in source -X!Edrivers/pci/hotplug.c ---> -!Edrivers/pci/probe.c -!Edrivers/pci/slot.c -!Edrivers/pci/rom.c -!Edrivers/pci/iov.c -!Idrivers/pci/pci-sysfs.c - </sect1> - <sect1><title>PCI Hotplug Support Library</title> -!Edrivers/pci/hotplug/pci_hotplug_core.c - </sect1> - </chapter> - - <chapter id="firmware"> - <title>Firmware Interfaces</title> - <sect1><title>DMI Interfaces</title> -!Edrivers/firmware/dmi_scan.c - </sect1> - <sect1><title>EDD Interfaces</title> -!Idrivers/firmware/edd.c - </sect1> - </chapter> - - <chapter id="security"> - <title>Security Framework</title> -!Isecurity/security.c -!Esecurity/inode.c - </chapter> - - <chapter id="audit"> - <title>Audit Interfaces</title> -!Ekernel/audit.c -!Ikernel/auditsc.c -!Ikernel/auditfilter.c - </chapter> - - <chapter id="accounting"> - <title>Accounting Framework</title> -!Ikernel/acct.c - </chapter> - - <chapter id="blkdev"> - <title>Block Devices</title> -!Eblock/blk-core.c -!Iblock/blk-core.c -!Eblock/blk-map.c -!Iblock/blk-sysfs.c -!Eblock/blk-settings.c -!Eblock/blk-exec.c -!Eblock/blk-flush.c -!Eblock/blk-lib.c -!Eblock/blk-tag.c -!Iblock/blk-tag.c -!Eblock/blk-integrity.c -!Ikernel/trace/blktrace.c -!Iblock/genhd.c -!Eblock/genhd.c - </chapter> - - <chapter id="chrdev"> - <title>Char devices</title> -!Efs/char_dev.c - </chapter> - - <chapter id="miscdev"> - <title>Miscellaneous Devices</title> -!Edrivers/char/misc.c - </chapter> - - <chapter id="clk"> - <title>Clock Framework</title> - - <para> - The clock framework defines programming interfaces to support - software management of the system clock tree. - This framework is widely used with System-On-Chip (SOC) platforms - to support power management and various devices which may need - custom clock rates. - Note that these "clocks" don't relate to timekeeping or real - time clocks (RTCs), each of which have separate frameworks. - These <structname>struct clk</structname> instances may be used - to manage for example a 96 MHz signal that is used to shift bits - into and out of peripherals or busses, or otherwise trigger - synchronous state machine transitions in system hardware. - </para> - - <para> - Power management is supported by explicit software clock gating: - unused clocks are disabled, so the system doesn't waste power - changing the state of transistors that aren't in active use. - On some systems this may be backed by hardware clock gating, - where clocks are gated without being disabled in software. - Sections of chips that are powered but not clocked may be able - to retain their last state. - This low power state is often called a <emphasis>retention - mode</emphasis>. - This mode still incurs leakage currents, especially with finer - circuit geometries, but for CMOS circuits power is mostly used - by clocked state changes. - </para> - - <para> - Power-aware drivers only enable their clocks when the device - they manage is in active use. Also, system sleep states often - differ according to which clock domains are active: while a - "standby" state may allow wakeup from several active domains, a - "mem" (suspend-to-RAM) state may require a more wholesale shutdown - of clocks derived from higher speed PLLs and oscillators, limiting - the number of possible wakeup event sources. A driver's suspend - method may need to be aware of system-specific clock constraints - on the target sleep state. - </para> - - <para> - Some platforms support programmable clock generators. These - can be used by external chips of various kinds, such as other - CPUs, multimedia codecs, and devices with strict requirements - for interface clocking. - </para> - -!Iinclude/linux/clk.h - </chapter> - -</book> diff --git a/Documentation/DocBook/writing_musb_glue_layer.tmpl b/Documentation/DocBook/writing_musb_glue_layer.tmpl deleted file mode 100644 index 837eca77f274..000000000000 --- a/Documentation/DocBook/writing_musb_glue_layer.tmpl +++ /dev/null @@ -1,873 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="Writing-MUSB-Glue-Layer"> - <bookinfo> - <title>Writing an MUSB Glue Layer</title> - - <authorgroup> - <author> - <firstname>Apelete</firstname> - <surname>Seketeli</surname> - <affiliation> - <address> - <email>apelete at seketeli.net</email> - </address> - </affiliation> - </author> - </authorgroup> - - <copyright> - <year>2014</year> - <holder>Apelete Seketeli</holder> - </copyright> - - <legalnotice> - <para> - This documentation is free software; you can redistribute it - and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later version. - </para> - - <para> - This documentation is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public License - along with this documentation; if not, write to the Free Software - Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA - 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the Linux kernel source - tree. - </para> - </legalnotice> - </bookinfo> - -<toc></toc> - - <chapter id="introduction"> - <title>Introduction</title> - <para> - The Linux MUSB subsystem is part of the larger Linux USB - subsystem. It provides support for embedded USB Device Controllers - (UDC) that do not use Universal Host Controller Interface (UHCI) - or Open Host Controller Interface (OHCI). - </para> - <para> - Instead, these embedded UDC rely on the USB On-the-Go (OTG) - specification which they implement at least partially. The silicon - reference design used in most cases is the Multipoint USB - Highspeed Dual-Role Controller (MUSB HDRC) found in the Mentor - Graphics Inventra™ design. - </para> - <para> - As a self-taught exercise I have written an MUSB glue layer for - the Ingenic JZ4740 SoC, modelled after the many MUSB glue layers - in the kernel source tree. This layer can be found at - drivers/usb/musb/jz4740.c. In this documentation I will walk - through the basics of the jz4740.c glue layer, explaining the - different pieces and what needs to be done in order to write your - own device glue layer. - </para> - </chapter> - - <chapter id="linux-musb-basics"> - <title>Linux MUSB Basics</title> - <para> - To get started on the topic, please read USB On-the-Go Basics (see - Resources) which provides an introduction of USB OTG operation at - the hardware level. A couple of wiki pages by Texas Instruments - and Analog Devices also provide an overview of the Linux kernel - MUSB configuration, albeit focused on some specific devices - provided by these companies. Finally, getting acquainted with the - USB specification at USB home page may come in handy, with - practical instance provided through the Writing USB Device Drivers - documentation (again, see Resources). - </para> - <para> - Linux USB stack is a layered architecture in which the MUSB - controller hardware sits at the lowest. The MUSB controller driver - abstract the MUSB controller hardware to the Linux USB stack. - </para> - <programlisting> - ------------------------ - | | <------- drivers/usb/gadget - | Linux USB Core Stack | <------- drivers/usb/host - | | <------- drivers/usb/core - ------------------------ - ⬍ - -------------------------- - | | <------ drivers/usb/musb/musb_gadget.c - | MUSB Controller driver | <------ drivers/usb/musb/musb_host.c - | | <------ drivers/usb/musb/musb_core.c - -------------------------- - ⬍ - --------------------------------- - | MUSB Platform Specific Driver | - | | <-- drivers/usb/musb/jz4740.c - | aka "Glue Layer" | - --------------------------------- - ⬍ - --------------------------------- - | MUSB Controller Hardware | - --------------------------------- - </programlisting> - <para> - As outlined above, the glue layer is actually the platform - specific code sitting in between the controller driver and the - controller hardware. - </para> - <para> - Just like a Linux USB driver needs to register itself with the - Linux USB subsystem, the MUSB glue layer needs first to register - itself with the MUSB controller driver. This will allow the - controller driver to know about which device the glue layer - supports and which functions to call when a supported device is - detected or released; remember we are talking about an embedded - controller chip here, so no insertion or removal at run-time. - </para> - <para> - All of this information is passed to the MUSB controller driver - through a platform_driver structure defined in the glue layer as: - </para> - <programlisting linenumbering="numbered"> -static struct platform_driver jz4740_driver = { - .probe = jz4740_probe, - .remove = jz4740_remove, - .driver = { - .name = "musb-jz4740", - }, -}; - </programlisting> - <para> - The probe and remove function pointers are called when a matching - device is detected and, respectively, released. The name string - describes the device supported by this glue layer. In the current - case it matches a platform_device structure declared in - arch/mips/jz4740/platform.c. Note that we are not using device - tree bindings here. - </para> - <para> - In order to register itself to the controller driver, the glue - layer goes through a few steps, basically allocating the - controller hardware resources and initialising a couple of - circuits. To do so, it needs to keep track of the information used - throughout these steps. This is done by defining a private - jz4740_glue structure: - </para> - <programlisting linenumbering="numbered"> -struct jz4740_glue { - struct device *dev; - struct platform_device *musb; - struct clk *clk; -}; - </programlisting> - <para> - The dev and musb members are both device structure variables. The - first one holds generic information about the device, since it's - the basic device structure, and the latter holds information more - closely related to the subsystem the device is registered to. The - clk variable keeps information related to the device clock - operation. - </para> - <para> - Let's go through the steps of the probe function that leads the - glue layer to register itself to the controller driver. - </para> - <para> - N.B.: For the sake of readability each function will be split in - logical parts, each part being shown as if it was independent from - the others. - </para> - <programlisting linenumbering="numbered"> -static int jz4740_probe(struct platform_device *pdev) -{ - struct platform_device *musb; - struct jz4740_glue *glue; - struct clk *clk; - int ret; - - glue = devm_kzalloc(&pdev->dev, sizeof(*glue), GFP_KERNEL); - if (!glue) - return -ENOMEM; - - musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO); - if (!musb) { - dev_err(&pdev->dev, "failed to allocate musb device\n"); - return -ENOMEM; - } - - clk = devm_clk_get(&pdev->dev, "udc"); - if (IS_ERR(clk)) { - dev_err(&pdev->dev, "failed to get clock\n"); - ret = PTR_ERR(clk); - goto err_platform_device_put; - } - - ret = clk_prepare_enable(clk); - if (ret) { - dev_err(&pdev->dev, "failed to enable clock\n"); - goto err_platform_device_put; - } - - musb->dev.parent = &pdev->dev; - - glue->dev = &pdev->dev; - glue->musb = musb; - glue->clk = clk; - - return 0; - -err_platform_device_put: - platform_device_put(musb); - return ret; -} - </programlisting> - <para> - The first few lines of the probe function allocate and assign the - glue, musb and clk variables. The GFP_KERNEL flag (line 8) allows - the allocation process to sleep and wait for memory, thus being - usable in a blocking situation. The PLATFORM_DEVID_AUTO flag (line - 12) allows automatic allocation and management of device IDs in - order to avoid device namespace collisions with explicit IDs. With - devm_clk_get() (line 18) the glue layer allocates the clock -- the - <literal>devm_</literal> prefix indicates that clk_get() is - managed: it automatically frees the allocated clock resource data - when the device is released -- and enable it. - </para> - <para> - Then comes the registration steps: - </para> - <programlisting linenumbering="numbered"> -static int jz4740_probe(struct platform_device *pdev) -{ - struct musb_hdrc_platform_data *pdata = &jz4740_musb_platform_data; - - pdata->platform_ops = &jz4740_musb_ops; - - platform_set_drvdata(pdev, glue); - - ret = platform_device_add_resources(musb, pdev->resource, - pdev->num_resources); - if (ret) { - dev_err(&pdev->dev, "failed to add resources\n"); - goto err_clk_disable; - } - - ret = platform_device_add_data(musb, pdata, sizeof(*pdata)); - if (ret) { - dev_err(&pdev->dev, "failed to add platform_data\n"); - goto err_clk_disable; - } - - return 0; - -err_clk_disable: - clk_disable_unprepare(clk); -err_platform_device_put: - platform_device_put(musb); - return ret; -} - </programlisting> - <para> - The first step is to pass the device data privately held by the - glue layer on to the controller driver through - platform_set_drvdata() (line 7). Next is passing on the device - resources information, also privately held at that point, through - platform_device_add_resources() (line 9). - </para> - <para> - Finally comes passing on the platform specific data to the - controller driver (line 16). Platform data will be discussed in - <link linkend="device-platform-data">Chapter 4</link>, but here - we are looking at the platform_ops function pointer (line 5) in - musb_hdrc_platform_data structure (line 3). This function - pointer allows the MUSB controller driver to know which function - to call for device operation: - </para> - <programlisting linenumbering="numbered"> -static const struct musb_platform_ops jz4740_musb_ops = { - .init = jz4740_musb_init, - .exit = jz4740_musb_exit, -}; - </programlisting> - <para> - Here we have the minimal case where only init and exit functions - are called by the controller driver when needed. Fact is the - JZ4740 MUSB controller is a basic controller, lacking some - features found in other controllers, otherwise we may also have - pointers to a few other functions like a power management function - or a function to switch between OTG and non-OTG modes, for - instance. - </para> - <para> - At that point of the registration process, the controller driver - actually calls the init function: - </para> - <programlisting linenumbering="numbered"> -static int jz4740_musb_init(struct musb *musb) -{ - musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); - if (!musb->xceiv) { - pr_err("HS UDC: no transceiver configured\n"); - return -ENODEV; - } - - /* Silicon does not implement ConfigData register. - * Set dyn_fifo to avoid reading EP config from hardware. - */ - musb->dyn_fifo = true; - - musb->isr = jz4740_musb_interrupt; - - return 0; -} - </programlisting> - <para> - The goal of jz4740_musb_init() is to get hold of the transceiver - driver data of the MUSB controller hardware and pass it on to the - MUSB controller driver, as usual. The transceiver is the circuitry - inside the controller hardware responsible for sending/receiving - the USB data. Since it is an implementation of the physical layer - of the OSI model, the transceiver is also referred to as PHY. - </para> - <para> - Getting hold of the MUSB PHY driver data is done with - usb_get_phy() which returns a pointer to the structure - containing the driver instance data. The next couple of - instructions (line 12 and 14) are used as a quirk and to setup - IRQ handling respectively. Quirks and IRQ handling will be - discussed later in <link linkend="device-quirks">Chapter - 5</link> and <link linkend="handling-irqs">Chapter 3</link>. - </para> - <programlisting linenumbering="numbered"> -static int jz4740_musb_exit(struct musb *musb) -{ - usb_put_phy(musb->xceiv); - - return 0; -} - </programlisting> - <para> - Acting as the counterpart of init, the exit function releases the - MUSB PHY driver when the controller hardware itself is about to be - released. - </para> - <para> - Again, note that init and exit are fairly simple in this case due - to the basic set of features of the JZ4740 controller hardware. - When writing an musb glue layer for a more complex controller - hardware, you might need to take care of more processing in those - two functions. - </para> - <para> - Returning from the init function, the MUSB controller driver jumps - back into the probe function: - </para> - <programlisting linenumbering="numbered"> -static int jz4740_probe(struct platform_device *pdev) -{ - ret = platform_device_add(musb); - if (ret) { - dev_err(&pdev->dev, "failed to register musb device\n"); - goto err_clk_disable; - } - - return 0; - -err_clk_disable: - clk_disable_unprepare(clk); -err_platform_device_put: - platform_device_put(musb); - return ret; -} - </programlisting> - <para> - This is the last part of the device registration process where the - glue layer adds the controller hardware device to Linux kernel - device hierarchy: at this stage, all known information about the - device is passed on to the Linux USB core stack. - </para> - <programlisting linenumbering="numbered"> -static int jz4740_remove(struct platform_device *pdev) -{ - struct jz4740_glue *glue = platform_get_drvdata(pdev); - - platform_device_unregister(glue->musb); - clk_disable_unprepare(glue->clk); - - return 0; -} - </programlisting> - <para> - Acting as the counterpart of probe, the remove function unregister - the MUSB controller hardware (line 5) and disable the clock (line - 6), allowing it to be gated. - </para> - </chapter> - - <chapter id="handling-irqs"> - <title>Handling IRQs</title> - <para> - Additionally to the MUSB controller hardware basic setup and - registration, the glue layer is also responsible for handling the - IRQs: - </para> - <programlisting linenumbering="numbered"> -static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) -{ - unsigned long flags; - irqreturn_t retval = IRQ_NONE; - struct musb *musb = __hci; - - spin_lock_irqsave(&musb->lock, flags); - - musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); - musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); - musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); - - /* - * The controller is gadget only, the state of the host mode IRQ bits is - * undefined. Mask them to make sure that the musb driver core will - * never see them set - */ - musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | - MUSB_INTR_RESET | MUSB_INTR_SOF; - - if (musb->int_usb || musb->int_tx || musb->int_rx) - retval = musb_interrupt(musb); - - spin_unlock_irqrestore(&musb->lock, flags); - - return retval; -} - </programlisting> - <para> - Here the glue layer mostly has to read the relevant hardware - registers and pass their values on to the controller driver which - will handle the actual event that triggered the IRQ. - </para> - <para> - The interrupt handler critical section is protected by the - spin_lock_irqsave() and counterpart spin_unlock_irqrestore() - functions (line 7 and 24 respectively), which prevent the - interrupt handler code to be run by two different threads at the - same time. - </para> - <para> - Then the relevant interrupt registers are read (line 9 to 11): - </para> - <itemizedlist> - <listitem> - <para> - MUSB_INTRUSB: indicates which USB interrupts are currently - active, - </para> - </listitem> - <listitem> - <para> - MUSB_INTRTX: indicates which of the interrupts for TX - endpoints are currently active, - </para> - </listitem> - <listitem> - <para> - MUSB_INTRRX: indicates which of the interrupts for TX - endpoints are currently active. - </para> - </listitem> - </itemizedlist> - <para> - Note that musb_readb() is used to read 8-bit registers at most, - while musb_readw() allows us to read at most 16-bit registers. - There are other functions that can be used depending on the size - of your device registers. See musb_io.h for more information. - </para> - <para> - Instruction on line 18 is another quirk specific to the JZ4740 - USB device controller, which will be discussed later in <link - linkend="device-quirks">Chapter 5</link>. - </para> - <para> - The glue layer still needs to register the IRQ handler though. - Remember the instruction on line 14 of the init function: - </para> - <programlisting linenumbering="numbered"> -static int jz4740_musb_init(struct musb *musb) -{ - musb->isr = jz4740_musb_interrupt; - - return 0; -} - </programlisting> - <para> - This instruction sets a pointer to the glue layer IRQ handler - function, in order for the controller hardware to call the handler - back when an IRQ comes from the controller hardware. The interrupt - handler is now implemented and registered. - </para> - </chapter> - - <chapter id="device-platform-data"> - <title>Device Platform Data</title> - <para> - In order to write an MUSB glue layer, you need to have some data - describing the hardware capabilities of your controller hardware, - which is called the platform data. - </para> - <para> - Platform data is specific to your hardware, though it may cover a - broad range of devices, and is generally found somewhere in the - arch/ directory, depending on your device architecture. - </para> - <para> - For instance, platform data for the JZ4740 SoC is found in - arch/mips/jz4740/platform.c. In the platform.c file each device of - the JZ4740 SoC is described through a set of structures. - </para> - <para> - Here is the part of arch/mips/jz4740/platform.c that covers the - USB Device Controller (UDC): - </para> - <programlisting linenumbering="numbered"> -/* USB Device Controller */ -struct platform_device jz4740_udc_xceiv_device = { - .name = "usb_phy_gen_xceiv", - .id = 0, -}; - -static struct resource jz4740_udc_resources[] = { - [0] = { - .start = JZ4740_UDC_BASE_ADDR, - .end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1, - .flags = IORESOURCE_MEM, - }, - [1] = { - .start = JZ4740_IRQ_UDC, - .end = JZ4740_IRQ_UDC, - .flags = IORESOURCE_IRQ, - .name = "mc", - }, -}; - -struct platform_device jz4740_udc_device = { - .name = "musb-jz4740", - .id = -1, - .dev = { - .dma_mask = &jz4740_udc_device.dev.coherent_dma_mask, - .coherent_dma_mask = DMA_BIT_MASK(32), - }, - .num_resources = ARRAY_SIZE(jz4740_udc_resources), - .resource = jz4740_udc_resources, -}; - </programlisting> - <para> - The jz4740_udc_xceiv_device platform device structure (line 2) - describes the UDC transceiver with a name and id number. - </para> - <para> - At the time of this writing, note that - "usb_phy_gen_xceiv" is the specific name to be used for - all transceivers that are either built-in with reference USB IP or - autonomous and doesn't require any PHY programming. You will need - to set CONFIG_NOP_USB_XCEIV=y in the kernel configuration to make - use of the corresponding transceiver driver. The id field could be - set to -1 (equivalent to PLATFORM_DEVID_NONE), -2 (equivalent to - PLATFORM_DEVID_AUTO) or start with 0 for the first device of this - kind if we want a specific id number. - </para> - <para> - The jz4740_udc_resources resource structure (line 7) defines the - UDC registers base addresses. - </para> - <para> - The first array (line 9 to 11) defines the UDC registers base - memory addresses: start points to the first register memory - address, end points to the last register memory address and the - flags member defines the type of resource we are dealing with. So - IORESOURCE_MEM is used to define the registers memory addresses. - The second array (line 14 to 17) defines the UDC IRQ registers - addresses. Since there is only one IRQ register available for the - JZ4740 UDC, start and end point at the same address. The - IORESOURCE_IRQ flag tells that we are dealing with IRQ resources, - and the name "mc" is in fact hard-coded in the MUSB core - in order for the controller driver to retrieve this IRQ resource - by querying it by its name. - </para> - <para> - Finally, the jz4740_udc_device platform device structure (line 21) - describes the UDC itself. - </para> - <para> - The "musb-jz4740" name (line 22) defines the MUSB - driver that is used for this device; remember this is in fact - the name that we used in the jz4740_driver platform driver - structure in <link linkend="linux-musb-basics">Chapter - 2</link>. The id field (line 23) is set to -1 (equivalent to - PLATFORM_DEVID_NONE) since we do not need an id for the device: - the MUSB controller driver was already set to allocate an - automatic id in <link linkend="linux-musb-basics">Chapter - 2</link>. In the dev field we care for DMA related information - here. The dma_mask field (line 25) defines the width of the DMA - mask that is going to be used, and coherent_dma_mask (line 26) - has the same purpose but for the alloc_coherent DMA mappings: in - both cases we are using a 32 bits mask. Then the resource field - (line 29) is simply a pointer to the resource structure defined - before, while the num_resources field (line 28) keeps track of - the number of arrays defined in the resource structure (in this - case there were two resource arrays defined before). - </para> - <para> - With this quick overview of the UDC platform data at the arch/ - level now done, let's get back to the MUSB glue layer specific - platform data in drivers/usb/musb/jz4740.c: - </para> - <programlisting linenumbering="numbered"> -static struct musb_hdrc_config jz4740_musb_config = { - /* Silicon does not implement USB OTG. */ - .multipoint = 0, - /* Max EPs scanned, driver will decide which EP can be used. */ - .num_eps = 4, - /* RAMbits needed to configure EPs from table */ - .ram_bits = 9, - .fifo_cfg = jz4740_musb_fifo_cfg, - .fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg), -}; - -static struct musb_hdrc_platform_data jz4740_musb_platform_data = { - .mode = MUSB_PERIPHERAL, - .config = &jz4740_musb_config, -}; - </programlisting> - <para> - First the glue layer configures some aspects of the controller - driver operation related to the controller hardware specifics. - This is done through the jz4740_musb_config musb_hdrc_config - structure. - </para> - <para> - Defining the OTG capability of the controller hardware, the - multipoint member (line 3) is set to 0 (equivalent to false) - since the JZ4740 UDC is not OTG compatible. Then num_eps (line - 5) defines the number of USB endpoints of the controller - hardware, including endpoint 0: here we have 3 endpoints + - endpoint 0. Next is ram_bits (line 7) which is the width of the - RAM address bus for the MUSB controller hardware. This - information is needed when the controller driver cannot - automatically configure endpoints by reading the relevant - controller hardware registers. This issue will be discussed when - we get to device quirks in <link linkend="device-quirks">Chapter - 5</link>. Last two fields (line 8 and 9) are also about device - quirks: fifo_cfg points to the USB endpoints configuration table - and fifo_cfg_size keeps track of the size of the number of - entries in that configuration table. More on that later in <link - linkend="device-quirks">Chapter 5</link>. - </para> - <para> - Then this configuration is embedded inside - jz4740_musb_platform_data musb_hdrc_platform_data structure (line - 11): config is a pointer to the configuration structure itself, - and mode tells the controller driver if the controller hardware - may be used as MUSB_HOST only, MUSB_PERIPHERAL only or MUSB_OTG - which is a dual mode. - </para> - <para> - Remember that jz4740_musb_platform_data is then used to convey - platform data information as we have seen in the probe function - in <link linkend="linux-musb-basics">Chapter 2</link> - </para> - </chapter> - - <chapter id="device-quirks"> - <title>Device Quirks</title> - <para> - Completing the platform data specific to your device, you may also - need to write some code in the glue layer to work around some - device specific limitations. These quirks may be due to some - hardware bugs, or simply be the result of an incomplete - implementation of the USB On-the-Go specification. - </para> - <para> - The JZ4740 UDC exhibits such quirks, some of which we will discuss - here for the sake of insight even though these might not be found - in the controller hardware you are working on. - </para> - <para> - Let's get back to the init function first: - </para> - <programlisting linenumbering="numbered"> -static int jz4740_musb_init(struct musb *musb) -{ - musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); - if (!musb->xceiv) { - pr_err("HS UDC: no transceiver configured\n"); - return -ENODEV; - } - - /* Silicon does not implement ConfigData register. - * Set dyn_fifo to avoid reading EP config from hardware. - */ - musb->dyn_fifo = true; - - musb->isr = jz4740_musb_interrupt; - - return 0; -} - </programlisting> - <para> - Instruction on line 12 helps the MUSB controller driver to work - around the fact that the controller hardware is missing registers - that are used for USB endpoints configuration. - </para> - <para> - Without these registers, the controller driver is unable to read - the endpoints configuration from the hardware, so we use line 12 - instruction to bypass reading the configuration from silicon, and - rely on a hard-coded table that describes the endpoints - configuration instead: - </para> - <programlisting linenumbering="numbered"> -static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = { -{ .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, }, -{ .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, }, -{ .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, }, -}; - </programlisting> - <para> - Looking at the configuration table above, we see that each - endpoints is described by three fields: hw_ep_num is the endpoint - number, style is its direction (either FIFO_TX for the controller - driver to send packets in the controller hardware, or FIFO_RX to - receive packets from hardware), and maxpacket defines the maximum - size of each data packet that can be transmitted over that - endpoint. Reading from the table, the controller driver knows that - endpoint 1 can be used to send and receive USB data packets of 512 - bytes at once (this is in fact a bulk in/out endpoint), and - endpoint 2 can be used to send data packets of 64 bytes at once - (this is in fact an interrupt endpoint). - </para> - <para> - Note that there is no information about endpoint 0 here: that one - is implemented by default in every silicon design, with a - predefined configuration according to the USB specification. For - more examples of endpoint configuration tables, see musb_core.c. - </para> - <para> - Let's now get back to the interrupt handler function: - </para> - <programlisting linenumbering="numbered"> -static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) -{ - unsigned long flags; - irqreturn_t retval = IRQ_NONE; - struct musb *musb = __hci; - - spin_lock_irqsave(&musb->lock, flags); - - musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); - musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); - musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); - - /* - * The controller is gadget only, the state of the host mode IRQ bits is - * undefined. Mask them to make sure that the musb driver core will - * never see them set - */ - musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | - MUSB_INTR_RESET | MUSB_INTR_SOF; - - if (musb->int_usb || musb->int_tx || musb->int_rx) - retval = musb_interrupt(musb); - - spin_unlock_irqrestore(&musb->lock, flags); - - return retval; -} - </programlisting> - <para> - Instruction on line 18 above is a way for the controller driver to - work around the fact that some interrupt bits used for USB host - mode operation are missing in the MUSB_INTRUSB register, thus left - in an undefined hardware state, since this MUSB controller - hardware is used in peripheral mode only. As a consequence, the - glue layer masks these missing bits out to avoid parasite - interrupts by doing a logical AND operation between the value read - from MUSB_INTRUSB and the bits that are actually implemented in - the register. - </para> - <para> - These are only a couple of the quirks found in the JZ4740 USB - device controller. Some others were directly addressed in the MUSB - core since the fixes were generic enough to provide a better - handling of the issues for others controller hardware eventually. - </para> - </chapter> - - <chapter id="conclusion"> - <title>Conclusion</title> - <para> - Writing a Linux MUSB glue layer should be a more accessible task, - as this documentation tries to show the ins and outs of this - exercise. - </para> - <para> - The JZ4740 USB device controller being fairly simple, I hope its - glue layer serves as a good example for the curious mind. Used - with the current MUSB glue layers, this documentation should - provide enough guidance to get started; should anything gets out - of hand, the linux-usb mailing list archive is another helpful - resource to browse through. - </para> - </chapter> - - <chapter id="acknowledgements"> - <title>Acknowledgements</title> - <para> - Many thanks to Lars-Peter Clausen and Maarten ter Huurne for - answering my questions while I was writing the JZ4740 glue layer - and for helping me out getting the code in good shape. - </para> - <para> - I would also like to thank the Qi-Hardware community at large for - its cheerful guidance and support. - </para> - </chapter> - - <chapter id="resources"> - <title>Resources</title> - <para> - USB Home Page: - <ulink url="http://www.usb.org">http://www.usb.org</ulink> - </para> - <para> - linux-usb Mailing List Archives: - <ulink url="http://marc.info/?l=linux-usb">http://marc.info/?l=linux-usb</ulink> - </para> - <para> - USB On-the-Go Basics: - <ulink url="http://www.maximintegrated.com/app-notes/index.mvp/id/1822">http://www.maximintegrated.com/app-notes/index.mvp/id/1822</ulink> - </para> - <para> - Writing USB Device Drivers: - <ulink url="https://www.kernel.org/doc/htmldocs/writing_usb_driver/index.html">https://www.kernel.org/doc/htmldocs/writing_usb_driver/index.html</ulink> - </para> - <para> - Texas Instruments USB Configuration Wiki Page: - <ulink url="http://processors.wiki.ti.com/index.php/Usbgeneralpage">http://processors.wiki.ti.com/index.php/Usbgeneralpage</ulink> - </para> - <para> - Analog Devices Blackfin MUSB Configuration: - <ulink url="http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb">http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb</ulink> - </para> - </chapter> - -</book> diff --git a/Documentation/DocBook/writing_usb_driver.tmpl b/Documentation/DocBook/writing_usb_driver.tmpl deleted file mode 100644 index 3210dcf741c9..000000000000 --- a/Documentation/DocBook/writing_usb_driver.tmpl +++ /dev/null @@ -1,412 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="USBDeviceDriver"> - <bookinfo> - <title>Writing USB Device Drivers</title> - - <authorgroup> - <author> - <firstname>Greg</firstname> - <surname>Kroah-Hartman</surname> - <affiliation> - <address> - <email>greg@kroah.com</email> - </address> - </affiliation> - </author> - </authorgroup> - - <copyright> - <year>2001-2002</year> - <holder>Greg Kroah-Hartman</holder> - </copyright> - - <legalnotice> - <para> - This documentation is free software; you can redistribute - it and/or modify it under the terms of the GNU General Public - License as published by the Free Software Foundation; either - version 2 of the License, or (at your option) any later - version. - </para> - - <para> - This program is distributed in the hope that it will be - useful, but WITHOUT ANY WARRANTY; without even the implied - warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. - See the GNU General Public License for more details. - </para> - - <para> - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - </para> - - <para> - For more details see the file COPYING in the source - distribution of Linux. - </para> - - <para> - This documentation is based on an article published in - Linux Journal Magazine, October 2001, Issue 90. - </para> - </legalnotice> - </bookinfo> - -<toc></toc> - - <chapter id="intro"> - <title>Introduction</title> - <para> - The Linux USB subsystem has grown from supporting only two different - types of devices in the 2.2.7 kernel (mice and keyboards), to over 20 - different types of devices in the 2.4 kernel. Linux currently supports - almost all USB class devices (standard types of devices like keyboards, - mice, modems, printers and speakers) and an ever-growing number of - vendor-specific devices (such as USB to serial converters, digital - cameras, Ethernet devices and MP3 players). For a full list of the - different USB devices currently supported, see Resources. - </para> - <para> - The remaining kinds of USB devices that do not have support on Linux are - almost all vendor-specific devices. Each vendor decides to implement a - custom protocol to talk to their device, so a custom driver usually needs - to be created. Some vendors are open with their USB protocols and help - with the creation of Linux drivers, while others do not publish them, and - developers are forced to reverse-engineer. See Resources for some links - to handy reverse-engineering tools. - </para> - <para> - Because each different protocol causes a new driver to be created, I have - written a generic USB driver skeleton, modelled after the pci-skeleton.c - file in the kernel source tree upon which many PCI network drivers have - been based. This USB skeleton can be found at drivers/usb/usb-skeleton.c - in the kernel source tree. In this article I will walk through the basics - of the skeleton driver, explaining the different pieces and what needs to - be done to customize it to your specific device. - </para> - </chapter> - - <chapter id="basics"> - <title>Linux USB Basics</title> - <para> - If you are going to write a Linux USB driver, please become familiar with - the USB protocol specification. It can be found, along with many other - useful documents, at the USB home page (see Resources). An excellent - introduction to the Linux USB subsystem can be found at the USB Working - Devices List (see Resources). It explains how the Linux USB subsystem is - structured and introduces the reader to the concept of USB urbs - (USB Request Blocks), which are essential to USB drivers. - </para> - <para> - The first thing a Linux USB driver needs to do is register itself with - the Linux USB subsystem, giving it some information about which devices - the driver supports and which functions to call when a device supported - by the driver is inserted or removed from the system. All of this - information is passed to the USB subsystem in the usb_driver structure. - The skeleton driver declares a usb_driver as: - </para> - <programlisting> -static struct usb_driver skel_driver = { - .name = "skeleton", - .probe = skel_probe, - .disconnect = skel_disconnect, - .fops = &skel_fops, - .minor = USB_SKEL_MINOR_BASE, - .id_table = skel_table, -}; - </programlisting> - <para> - The variable name is a string that describes the driver. It is used in - informational messages printed to the system log. The probe and - disconnect function pointers are called when a device that matches the - information provided in the id_table variable is either seen or removed. - </para> - <para> - The fops and minor variables are optional. Most USB drivers hook into - another kernel subsystem, such as the SCSI, network or TTY subsystem. - These types of drivers register themselves with the other kernel - subsystem, and any user-space interactions are provided through that - interface. But for drivers that do not have a matching kernel subsystem, - such as MP3 players or scanners, a method of interacting with user space - is needed. The USB subsystem provides a way to register a minor device - number and a set of file_operations function pointers that enable this - user-space interaction. The skeleton driver needs this kind of interface, - so it provides a minor starting number and a pointer to its - file_operations functions. - </para> - <para> - The USB driver is then registered with a call to usb_register, usually in - the driver's init function, as shown here: - </para> - <programlisting> -static int __init usb_skel_init(void) -{ - int result; - - /* register this driver with the USB subsystem */ - result = usb_register(&skel_driver); - if (result < 0) { - err("usb_register failed for the "__FILE__ "driver." - "Error number %d", result); - return -1; - } - - return 0; -} -module_init(usb_skel_init); - </programlisting> - <para> - When the driver is unloaded from the system, it needs to deregister - itself with the USB subsystem. This is done with the usb_deregister - function: - </para> - <programlisting> -static void __exit usb_skel_exit(void) -{ - /* deregister this driver with the USB subsystem */ - usb_deregister(&skel_driver); -} -module_exit(usb_skel_exit); - </programlisting> - <para> - To enable the linux-hotplug system to load the driver automatically when - the device is plugged in, you need to create a MODULE_DEVICE_TABLE. The - following code tells the hotplug scripts that this module supports a - single device with a specific vendor and product ID: - </para> - <programlisting> -/* table of devices that work with this driver */ -static struct usb_device_id skel_table [] = { - { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) }, - { } /* Terminating entry */ -}; -MODULE_DEVICE_TABLE (usb, skel_table); - </programlisting> - <para> - There are other macros that can be used in describing a usb_device_id for - drivers that support a whole class of USB drivers. See usb.h for more - information on this. - </para> - </chapter> - - <chapter id="device"> - <title>Device operation</title> - <para> - When a device is plugged into the USB bus that matches the device ID - pattern that your driver registered with the USB core, the probe function - is called. The usb_device structure, interface number and the interface ID - are passed to the function: - </para> - <programlisting> -static int skel_probe(struct usb_interface *interface, - const struct usb_device_id *id) - </programlisting> - <para> - The driver now needs to verify that this device is actually one that it - can accept. If so, it returns 0. - If not, or if any error occurs during initialization, an errorcode - (such as <literal>-ENOMEM</literal> or <literal>-ENODEV</literal>) - is returned from the probe function. - </para> - <para> - In the skeleton driver, we determine what end points are marked as bulk-in - and bulk-out. We create buffers to hold the data that will be sent and - received from the device, and a USB urb to write data to the device is - initialized. - </para> - <para> - Conversely, when the device is removed from the USB bus, the disconnect - function is called with the device pointer. The driver needs to clean any - private data that has been allocated at this time and to shut down any - pending urbs that are in the USB system. - </para> - <para> - Now that the device is plugged into the system and the driver is bound to - the device, any of the functions in the file_operations structure that - were passed to the USB subsystem will be called from a user program trying - to talk to the device. The first function called will be open, as the - program tries to open the device for I/O. We increment our private usage - count and save a pointer to our internal structure in the file - structure. This is done so that future calls to file operations will - enable the driver to determine which device the user is addressing. All - of this is done with the following code: - </para> - <programlisting> -/* increment our usage count for the module */ -++skel->open_count; - -/* save our object in the file's private structure */ -file->private_data = dev; - </programlisting> - <para> - After the open function is called, the read and write functions are called - to receive and send data to the device. In the skel_write function, we - receive a pointer to some data that the user wants to send to the device - and the size of the data. The function determines how much data it can - send to the device based on the size of the write urb it has created (this - size depends on the size of the bulk out end point that the device has). - Then it copies the data from user space to kernel space, points the urb to - the data and submits the urb to the USB subsystem. This can be seen in - the following code: - </para> - <programlisting> -/* we can only write as much as 1 urb will hold */ -bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size : count; - -/* copy the data from user space into our urb */ -copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written); - -/* set up our urb */ -usb_fill_bulk_urb(skel->write_urb, - skel->dev, - usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr), - skel->write_urb->transfer_buffer, - bytes_written, - skel_write_bulk_callback, - skel); - -/* send the data out the bulk port */ -result = usb_submit_urb(skel->write_urb); -if (result) { - err("Failed submitting write urb, error %d", result); -} - </programlisting> - <para> - When the write urb is filled up with the proper information using the - usb_fill_bulk_urb function, we point the urb's completion callback to call our - own skel_write_bulk_callback function. This function is called when the - urb is finished by the USB subsystem. The callback function is called in - interrupt context, so caution must be taken not to do very much processing - at that time. Our implementation of skel_write_bulk_callback merely - reports if the urb was completed successfully or not and then returns. - </para> - <para> - The read function works a bit differently from the write function in that - we do not use an urb to transfer data from the device to the driver. - Instead we call the usb_bulk_msg function, which can be used to send or - receive data from a device without having to create urbs and handle - urb completion callback functions. We call the usb_bulk_msg function, - giving it a buffer into which to place any data received from the device - and a timeout value. If the timeout period expires without receiving any - data from the device, the function will fail and return an error message. - This can be shown with the following code: - </para> - <programlisting> -/* do an immediate bulk read to get data from the device */ -retval = usb_bulk_msg (skel->dev, - usb_rcvbulkpipe (skel->dev, - skel->bulk_in_endpointAddr), - skel->bulk_in_buffer, - skel->bulk_in_size, - &count, HZ*10); -/* if the read was successful, copy the data to user space */ -if (!retval) { - if (copy_to_user (buffer, skel->bulk_in_buffer, count)) - retval = -EFAULT; - else - retval = count; -} - </programlisting> - <para> - The usb_bulk_msg function can be very useful for doing single reads or - writes to a device; however, if you need to read or write constantly to a - device, it is recommended to set up your own urbs and submit them to the - USB subsystem. - </para> - <para> - When the user program releases the file handle that it has been using to - talk to the device, the release function in the driver is called. In this - function we decrement our private usage count and wait for possible - pending writes: - </para> - <programlisting> -/* decrement our usage count for the device */ ---skel->open_count; - </programlisting> - <para> - One of the more difficult problems that USB drivers must be able to handle - smoothly is the fact that the USB device may be removed from the system at - any point in time, even if a program is currently talking to it. It needs - to be able to shut down any current reads and writes and notify the - user-space programs that the device is no longer there. The following - code (function <function>skel_delete</function>) - is an example of how to do this: </para> - <programlisting> -static inline void skel_delete (struct usb_skel *dev) -{ - kfree (dev->bulk_in_buffer); - if (dev->bulk_out_buffer != NULL) - usb_free_coherent (dev->udev, dev->bulk_out_size, - dev->bulk_out_buffer, - dev->write_urb->transfer_dma); - usb_free_urb (dev->write_urb); - kfree (dev); -} - </programlisting> - <para> - If a program currently has an open handle to the device, we reset the flag - <literal>device_present</literal>. For - every read, write, release and other functions that expect a device to be - present, the driver first checks this flag to see if the device is - still present. If not, it releases that the device has disappeared, and a - -ENODEV error is returned to the user-space program. When the release - function is eventually called, it determines if there is no device - and if not, it does the cleanup that the skel_disconnect - function normally does if there are no open files on the device (see - Listing 5). - </para> - </chapter> - - <chapter id="iso"> - <title>Isochronous Data</title> - <para> - This usb-skeleton driver does not have any examples of interrupt or - isochronous data being sent to or from the device. Interrupt data is sent - almost exactly as bulk data is, with a few minor exceptions. Isochronous - data works differently with continuous streams of data being sent to or - from the device. The audio and video camera drivers are very good examples - of drivers that handle isochronous data and will be useful if you also - need to do this. - </para> - </chapter> - - <chapter id="Conclusion"> - <title>Conclusion</title> - <para> - Writing Linux USB device drivers is not a difficult task as the - usb-skeleton driver shows. This driver, combined with the other current - USB drivers, should provide enough examples to help a beginning author - create a working driver in a minimal amount of time. The linux-usb-devel - mailing list archives also contain a lot of helpful information. - </para> - </chapter> - - <chapter id="resources"> - <title>Resources</title> - <para> - The Linux USB Project: <ulink url="http://www.linux-usb.org">http://www.linux-usb.org/</ulink> - </para> - <para> - Linux Hotplug Project: <ulink url="http://linux-hotplug.sourceforge.net">http://linux-hotplug.sourceforge.net/</ulink> - </para> - <para> - Linux USB Working Devices List: <ulink url="http://www.qbik.ch/usb/devices">http://www.qbik.ch/usb/devices/</ulink> - </para> - <para> - linux-usb-devel Mailing List Archives: <ulink url="http://marc.theaimsgroup.com/?l=linux-usb-devel">http://marc.theaimsgroup.com/?l=linux-usb-devel</ulink> - </para> - <para> - Programming Guide for Linux USB Device Drivers: <ulink url="http://usb.cs.tum.edu/usbdoc">http://usb.cs.tum.edu/usbdoc</ulink> - </para> - <para> - USB Home Page: <ulink url="http://www.usb.org">http://www.usb.org</ulink> - </para> - </chapter> - -</book> diff --git a/Documentation/EDID/edid.S b/Documentation/EDID/edid.S index 7ac03276d7a2..ef082dcc6084 100644 --- a/Documentation/EDID/edid.S +++ b/Documentation/EDID/edid.S @@ -59,9 +59,9 @@ /* Fixed header pattern */ header: .byte 0x00,0xff,0xff,0xff,0xff,0xff,0xff,0x00 -mfg_id: .word swap16(mfgname2id(MFG_LNX1, MFG_LNX2, MFG_LNX3)) +mfg_id: .hword swap16(mfgname2id(MFG_LNX1, MFG_LNX2, MFG_LNX3)) -prod_code: .word 0 +prod_code: .hword 0 /* Serial number. 32 bits, little endian. */ serial_number: .long SERIAL @@ -177,7 +177,7 @@ std_vres: .byte (XY_RATIO<<6)+VFREQ-60 descriptor1: /* Pixel clock in 10 kHz units. (0.-655.35 MHz, little-endian) */ -clock: .word CLOCK/10 +clock: .hword CLOCK/10 /* Horizontal active pixels 8 lsbits (0-4095) */ x_act_lsb: .byte XPIX&0xff diff --git a/Documentation/PCI/pci-error-recovery.txt b/Documentation/PCI/pci-error-recovery.txt index da3b2176d5da..0b6bb3ef449e 100644 --- a/Documentation/PCI/pci-error-recovery.txt +++ b/Documentation/PCI/pci-error-recovery.txt @@ -11,7 +11,7 @@ Many PCI bus controllers are able to detect a variety of hardware PCI errors on the bus, such as parity errors on the data and address -busses, as well as SERR and PERR errors. Some of the more advanced +buses, as well as SERR and PERR errors. Some of the more advanced chipsets are able to deal with these errors; these include PCI-E chipsets, and the PCI-host bridges found on IBM Power4, Power5 and Power6-based pSeries boxes. A typical action taken is to disconnect the affected device, @@ -173,7 +173,7 @@ is STEP 6 (Permanent Failure). >>> a value of 0xff on read, and writes will be dropped. If more than >>> EEH_MAX_FAILS I/O's are attempted to a frozen adapter, EEH >>> assumes that the device driver has gone into an infinite loop ->>> and prints an error to syslog. A reboot is then required to +>>> and prints an error to syslog. A reboot is then required to >>> get the device working again. STEP 2: MMIO Enabled @@ -231,14 +231,14 @@ proceeds to STEP 4 (Slot Reset) STEP 3: Link Reset ------------------ The platform resets the link. This is a PCI-Express specific step -and is done whenever a non-fatal error has been detected that can be +and is done whenever a fatal error has been detected that can be "solved" by resetting the link. STEP 4: Slot Reset ------------------ In response to a return value of PCI_ERS_RESULT_NEED_RESET, the -the platform will perform a slot reset on the requesting PCI device(s). +the platform will perform a slot reset on the requesting PCI device(s). The actual steps taken by a platform to perform a slot reset will be platform-dependent. Upon completion of slot reset, the platform will call the device slot_reset() callback. @@ -258,7 +258,7 @@ configuration registers to initialize to their default conditions. For most PCI devices, a soft reset will be sufficient for recovery. Optional fundamental reset is provided to support a limited number -of PCI Express PCI devices for which a soft reset is not sufficient +of PCI Express devices for which a soft reset is not sufficient for recovery. If the platform supports PCI hotplug, then the reset might be @@ -303,7 +303,7 @@ driver performs device init only from PCI function 0: Same as above. Drivers for PCI Express cards that require a fundamental reset must -set the needs_freset bit in the pci_dev structure in their probe function. +set the needs_freset bit in the pci_dev structure in their probe function. For example, the QLogic qla2xxx driver sets the needs_freset bit for certain PCI card types: diff --git a/Documentation/acpi/aml-debugger.txt b/Documentation/acpi/aml-debugger.txt index 5f62aa4a493b..e851cc5de63f 100644 --- a/Documentation/acpi/aml-debugger.txt +++ b/Documentation/acpi/aml-debugger.txt @@ -15,7 +15,7 @@ kernel. CONFIG_ACPI_DEBUGGER=y CONFIG_ACPI_DEBUGGER_USER=m - The userspace utlities can be built from the kernel source tree using + The userspace utilities can be built from the kernel source tree using the following commands: $ cd tools diff --git a/Documentation/acpi/dsd/graph.txt b/Documentation/acpi/dsd/graph.txt new file mode 100644 index 000000000000..ac09e3138b79 --- /dev/null +++ b/Documentation/acpi/dsd/graph.txt @@ -0,0 +1,162 @@ +Graphs + + +_DSD +---- + +_DSD (Device Specific Data) [7] is a predefined ACPI device +configuration object that can be used to convey information on +hardware features which are not specifically covered by the ACPI +specification [1][6]. There are two _DSD extensions that are relevant +for graphs: property [4] and hierarchical data extensions [5]. The +property extension provides generic key-value pairs whereas the +hierarchical data extension supports nodes with references to other +nodes, forming a tree. The nodes in the tree may contain properties as +defined by the property extension. The two extensions together provide +a tree-like structure with zero or more properties (key-value pairs) +in each node of the tree. + +The data structure may be accessed at runtime by using the device_* +and fwnode_* functions defined in include/linux/fwnode.h . + +Fwnode represents a generic firmware node object. It is independent on +the firmware type. In ACPI, fwnodes are _DSD hierarchical data +extensions objects. A device's _DSD object is represented by an +fwnode. + +The data structure may be referenced to elsewhere in the ACPI tables +by using a hard reference to the device itself and an index to the +hierarchical data extension array on each depth. + + +Ports and endpoints +------------------- + +The port and endpoint concepts are very similar to those in Devicetree +[3]. A port represents an interface in a device, and an endpoint +represents a connection to that interface. + +All port nodes are located under the device's "_DSD" node in the +hierarchical data extension tree. The property extension related to +each port node must contain the key "port" and an integer value which +is the number of the port. The object it refers to should be called "PRTX", +where "X" is the number of the port. + +Further on, endpoints are located under the individual port nodes. The +first hierarchical data extension package list entry of the endpoint +nodes must begin with "endpoint" and must be followed by the number +of the endpoint. The object it refers to should be called "EPXY", where +"X" is the number of the port and "Y" is the number of the endpoint. + +Each port node contains a property extension key "port", the value of +which is the number of the port node. The each endpoint is similarly numbered +with a property extension key "endpoint". Port numbers must be unique within a +device and endpoint numbers must be unique within a port. + +The endpoint reference uses property extension with "remote-endpoint" property +name followed by a reference in the same package. Such references consist of the +the remote device reference, number of the port in the device and finally the +number of the endpoint in that port. Individual references thus appear as: + + Package() { device, port_number, endpoint_number } + +The references to endpoints must be always done both ways, to the +remote endpoint and back from the referred remote endpoint node. + +A simple example of this is show below: + + Scope (\_SB.PCI0.I2C2) + { + Device (CAM0) + { + Name (_DSD, Package () { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "compatible", Package () { "nokia,smia" } }, + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "port0", "PRT0" }, + } + }) + Name (PRT0, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "port", 0 }, + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "endpoint0", "EP00" }, + } + }) + Name (EP00, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "endpoint", 0 }, + Package () { "remote-endpoint", Package() { \_SB.PCI0.ISP, 4, 0 } }, + } + }) + } + } + + Scope (\_SB.PCI0) + { + Device (ISP) + { + Name (_DSD, Package () { + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "port4", "PRT4" }, + } + }) + + Name (PRT4, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "port", 4 }, /* CSI-2 port number */ + }, + ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"), + Package () { + Package () { "endpoint0", "EP40" }, + } + }) + + Name (EP40, Package() { + ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"), + Package () { + Package () { "endpoint", 0 }, + Package () { "remote-endpoint", Package () { \_SB.PCI0.I2C2.CAM0, 0, 0 } }, + } + }) + } + } + +Here, the port 0 of the "CAM0" device is connected to the port 4 of +the "ISP" device and vice versa. + + +References +---------- + +[1] _DSD (Device Specific Data) Implementation Guide. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-implementation-guide-toplevel-1_1.htm>, + referenced 2016-10-03. + +[2] Devicetree. <URL:http://www.devicetree.org>, referenced 2016-10-03. + +[3] Documentation/devicetree/bindings/graph.txt + +[4] Device Properties UUID For _DSD. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-device-properties-UUID.pdf>, + referenced 2016-10-04. + +[5] Hierarchical Data Extension UUID For _DSD. + <URL:http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf>, + referenced 2016-10-04. + +[6] Advanced Configuration and Power Interface Specification. + <URL:http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf>, + referenced 2016-10-04. + +[7] _DSD Device Properties Usage Rules. + Documentation/acpi/DSD-properties-rules.txt diff --git a/Documentation/acpi/enumeration.txt b/Documentation/acpi/enumeration.txt index 209a5eba6b87..7bcf9c3d9fbe 100644 --- a/Documentation/acpi/enumeration.txt +++ b/Documentation/acpi/enumeration.txt @@ -367,10 +367,10 @@ resulting child platform device. Device Tree namespace link device ID ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -The Device Tree protocol uses device indentification based on the "compatible" +The Device Tree protocol uses device identification based on the "compatible" property whose value is a string or an array of strings recognized as device identifiers by drivers and the driver core. The set of all those strings may be -regarded as a device indentification namespace analogous to the ACPI/PNP device +regarded as a device identification namespace analogous to the ACPI/PNP device ID namespace. Consequently, in principle it should not be necessary to allocate a new (and arguably redundant) ACPI/PNP device ID for a devices with an existing identification string in the Device Tree (DT) namespace, especially if that ID @@ -381,7 +381,7 @@ In ACPI, the device identification object called _CID (Compatible ID) is used to list the IDs of devices the given one is compatible with, but those IDs must belong to one of the namespaces prescribed by the ACPI specification (see Section 6.1.2 of ACPI 6.0 for details) and the DT namespace is not one of them. -Moreover, the specification mandates that either a _HID or an _ADR identificaion +Moreover, the specification mandates that either a _HID or an _ADR identification object be present for all ACPI objects representing devices (Section 6.1 of ACPI 6.0). For non-enumerable bus types that object must be _HID and its value must be a device ID from one of the namespaces prescribed by the specification too. diff --git a/Documentation/acpi/linuxized-acpica.txt b/Documentation/acpi/linuxized-acpica.txt index defe2eec5331..3ad7b0dfb083 100644 --- a/Documentation/acpi/linuxized-acpica.txt +++ b/Documentation/acpi/linuxized-acpica.txt @@ -24,7 +24,7 @@ upstream. The homepage of ACPICA project is: www.acpica.org, it is maintained and supported by Intel Corporation. - The following figure depicts the Linux ACPI subystem where the ACPICA + The following figure depicts the Linux ACPI subsystem where the ACPICA adaptation is included: +---------------------------------------------------------+ @@ -110,7 +110,7 @@ upstream. Linux patches. The patches generated by this process are referred to as "linuxized ACPICA patches". The release process is carried out on a local copy the ACPICA git repository. Each commit in the monthly release is - converted into a linuxized ACPICA patch. Together, they form the montly + converted into a linuxized ACPICA patch. Together, they form the monthly ACPICA release patchset for the Linux ACPI community. This process is illustrated in the following figure: @@ -165,7 +165,7 @@ upstream. <http://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git>. Before the linuxized ACPICA patches are sent to the Linux ACPI community - for review, there is a quality ensurance build test process to reduce + for review, there is a quality assurance build test process to reduce porting issues. Currently this build process only takes care of the following kernel configuration options: CONFIG_ACPI/CONFIG_ACPI_DEBUG/CONFIG_ACPI_DEBUGGER @@ -195,12 +195,12 @@ upstream. release utilities (please refer to Section 4 below for the details). 3. Linux specific features - Sometimes it's impossible to use the current ACPICA APIs to implement features required by the Linux kernel, - so Linux developers occasionaly have to change ACPICA code directly. + so Linux developers occasionally have to change ACPICA code directly. Those changes may not be acceptable by ACPICA upstream and in such cases they are left as committed ACPICA divergences unless the ACPICA side can implement new mechanisms as replacements for them. 4. ACPICA release fixups - ACPICA only tests commits using a set of the - user space simulation utilies, thus the linuxized ACPICA patches may + user space simulation utilities, thus the linuxized ACPICA patches may break the Linux kernel, leaving us build/boot failures. In order to avoid breaking Linux bisection, fixes are applied directly to the linuxized ACPICA patches during the release process. When the release diff --git a/Documentation/admin-guide/README.rst b/Documentation/admin-guide/README.rst index 697a00ccec25..02f639aab06e 100644 --- a/Documentation/admin-guide/README.rst +++ b/Documentation/admin-guide/README.rst @@ -27,7 +27,7 @@ On what hardware does it run? today Linux also runs on (at least) the Compaq Alpha AXP, Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH, Cell, IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, - Xtensa, Tilera TILE, AVR32, ARC and Renesas M32R architectures. + Xtensa, Tilera TILE, ARC and Renesas M32R architectures. Linux is easily portable to most general-purpose 32- or 64-bit architectures as long as they have a paged memory management unit (PMMU) and a port of the diff --git a/Documentation/admin-guide/index.rst b/Documentation/admin-guide/index.rst index 8ddae4e4299a..8c60a8a32a1a 100644 --- a/Documentation/admin-guide/index.rst +++ b/Documentation/admin-guide/index.rst @@ -60,6 +60,7 @@ configure specific aspects of kernel behavior to your liking. mono java ras + pm/index .. only:: subproject and html diff --git a/Documentation/admin-guide/kernel-parameters.rst b/Documentation/admin-guide/kernel-parameters.rst index b516164999a8..d76ab3907e2b 100644 --- a/Documentation/admin-guide/kernel-parameters.rst +++ b/Documentation/admin-guide/kernel-parameters.rst @@ -1,3 +1,5 @@ +.. _kernelparameters: + The kernel's command-line parameters ==================================== @@ -86,7 +88,6 @@ parameter is applicable:: APIC APIC support is enabled. APM Advanced Power Management support is enabled. ARM ARM architecture is enabled. - AVR32 AVR32 architecture is enabled. AX25 Appropriate AX.25 support is enabled. BLACKFIN Blackfin architecture is enabled. CLK Common clock infrastructure is enabled. @@ -197,7 +198,7 @@ and is between 256 and 4096 characters. It is defined in the file Finally, the [KMG] suffix is commonly described after a number of kernel parameter values. These 'K', 'M', and 'G' letters represent the _binary_ -multipliers 'Kilo', 'Mega', and 'Giga', equalling 2^10, 2^20, and 2^30 +multipliers 'Kilo', 'Mega', and 'Giga', equaling 2^10, 2^20, and 2^30 bytes respectively. Such letter suffixes can also be entirely omitted: .. include:: kernel-parameters.txt diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index 986e44387dad..e4c9e0e46b95 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -531,7 +531,6 @@ [ACPI] acpi_pm [ARM] imx_timer1,OSTS,netx_timer,mpu_timer2, pxa_timer,timer3,32k_counter,timer0_1 - [AVR32] avr32 [X86-32] pit,hpet,tsc; scx200_hrt on Geode; cyclone on IBM x440 [MIPS] MIPS @@ -653,6 +652,9 @@ cpuidle.off=1 [CPU_IDLE] disable the cpuidle sub-system + cpufreq.off=1 [CPU_FREQ] + disable the cpufreq sub-system + cpu_init_udelay=N [X86] Delay for N microsec between assert and de-assert of APIC INIT to start processors. This delay occurs @@ -986,6 +988,7 @@ earlyprintk=ttySn[,baudrate] earlyprintk=dbgp[debugController#] earlyprintk=pciserial,bus:device.function[,baudrate] + earlyprintk=xdbc[xhciController#] earlyprintk is useful when the kernel crashes before the normal console is initialized. It is not enabled by @@ -1183,6 +1186,12 @@ functions that can be changed at run time by the set_graph_notrace file in the debugfs tracing directory. + ftrace_graph_max_depth=<uint> + [FTRACE] Used with the function graph tracer. This is + the max depth it will trace into a function. This value + can be changed at run time by the max_graph_depth file + in the tracefs tracing directory. default: 0 (no limit) + gamecon.map[2|3]= [HW,JOY] Multisystem joystick and NES/SNES/PSX pad support via parallel port (up to 5 devices per port) @@ -1716,6 +1725,12 @@ kernel and module base offset ASLR (Address Space Layout Randomization). + kasan_multi_shot + [KNL] Enforce KASAN (Kernel Address Sanitizer) to print + report on every invalid memory access. Without this + parameter KASAN will print report only for the first + invalid access. + keepinitrd [HW,ARM] kernelcore= [KNL,X86,IA-64,PPC] @@ -2410,7 +2425,7 @@ osd-targets. Please see: Documentation/filesystems/pnfs.txt for more explanations - nmi_debug= [KNL,AVR32,SH] Specify one or more actions to take + nmi_debug= [KNL,SH] Specify one or more actions to take when a NMI is triggered. Format: [state][,regs][,debounce][,die] @@ -3163,6 +3178,12 @@ ramdisk_size= [RAM] Sizes of RAM disks in kilobytes See Documentation/blockdev/ramdisk.txt. + ras=option[,option,...] [KNL] RAS-specific options + + cec_disable [X86] + Disable the Correctable Errors Collector, + see CONFIG_RAS_CEC help text. + rcu_nocbs= [KNL] The argument is a cpu list, as described above. @@ -4106,6 +4127,9 @@ usbhid.mousepoll= [USBHID] The interval which mice are to be polled at. + usbhid.jspoll= + [USBHID] The interval which joysticks are to be polled at. + usb-storage.delay_use= [UMS] The delay in seconds before a new device is scanned for Logical Units (default 1). diff --git a/Documentation/admin-guide/md.rst b/Documentation/admin-guide/md.rst index 1e61bf50595c..84de718f24a4 100644 --- a/Documentation/admin-guide/md.rst +++ b/Documentation/admin-guide/md.rst @@ -276,14 +276,14 @@ All md devices contain: array creation it will default to 0, though starting the array as ``clean`` will set it much larger. - new_dev + new_dev This file can be written but not read. The value written should be a block device number as major:minor. e.g. 8:0 This will cause that device to be attached to the array, if it is available. It will then appear at md/dev-XXX (depending on the name of the device) and further configuration is then possible. - safe_mode_delay + safe_mode_delay When an md array has seen no write requests for a certain period of time, it will be marked as ``clean``. When another write request arrives, the array is marked as ``dirty`` before the write @@ -292,7 +292,7 @@ All md devices contain: period as a number of seconds. The default is 200msec (0.200). Writing a value of 0 disables safemode. - array_state + array_state This file contains a single word which describes the current state of the array. In many cases, the state can be set by writing the word for the desired state, however some states @@ -401,7 +401,30 @@ All md devices contain: once the array becomes non-degraded, and this fact has been recorded in the metadata. + consistency_policy + This indicates how the array maintains consistency in case of unexpected + shutdown. It can be: + none + Array has no redundancy information, e.g. raid0, linear. + + resync + Full resync is performed and all redundancy is regenerated when the + array is started after unclean shutdown. + + bitmap + Resync assisted by a write-intent bitmap. + + journal + For raid4/5/6, journal device is used to log transactions and replay + after unclean shutdown. + + ppl + For raid5 only, Partial Parity Log is used to close the write hole and + eliminate resync. + + The accepted values when writing to this file are ``ppl`` and ``resync``, + used to enable and disable PPL. As component devices are added to an md array, they appear in the ``md`` @@ -563,6 +586,9 @@ Each directory contains: adds bad blocks without acknowledging them. This is largely for testing. + ppl_sector, ppl_size + Location and size (in sectors) of the space used for Partial Parity Log + on this device. An active md device will also contain an entry for each active device diff --git a/Documentation/admin-guide/pm/cpufreq.rst b/Documentation/admin-guide/pm/cpufreq.rst new file mode 100644 index 000000000000..289c80f7760e --- /dev/null +++ b/Documentation/admin-guide/pm/cpufreq.rst @@ -0,0 +1,700 @@ +.. |struct cpufreq_policy| replace:: :c:type:`struct cpufreq_policy <cpufreq_policy>` + +======================= +CPU Performance Scaling +======================= + +:: + + Copyright (c) 2017 Intel Corp., Rafael J. Wysocki <rafael.j.wysocki@intel.com> + +The Concept of CPU Performance Scaling +====================================== + +The majority of modern processors are capable of operating in a number of +different clock frequency and voltage configurations, often referred to as +Operating Performance Points or P-states (in ACPI terminology). As a rule, +the higher the clock frequency and the higher the voltage, the more instructions +can be retired by the CPU over a unit of time, but also the higher the clock +frequency and the higher the voltage, the more energy is consumed over a unit of +time (or the more power is drawn) by the CPU in the given P-state. Therefore +there is a natural tradeoff between the CPU capacity (the number of instructions +that can be executed over a unit of time) and the power drawn by the CPU. + +In some situations it is desirable or even necessary to run the program as fast +as possible and then there is no reason to use any P-states different from the +highest one (i.e. the highest-performance frequency/voltage configuration +available). In some other cases, however, it may not be necessary to execute +instructions so quickly and maintaining the highest available CPU capacity for a +relatively long time without utilizing it entirely may be regarded as wasteful. +It also may not be physically possible to maintain maximum CPU capacity for too +long for thermal or power supply capacity reasons or similar. To cover those +cases, there are hardware interfaces allowing CPUs to be switched between +different frequency/voltage configurations or (in the ACPI terminology) to be +put into different P-states. + +Typically, they are used along with algorithms to estimate the required CPU +capacity, so as to decide which P-states to put the CPUs into. Of course, since +the utilization of the system generally changes over time, that has to be done +repeatedly on a regular basis. The activity by which this happens is referred +to as CPU performance scaling or CPU frequency scaling (because it involves +adjusting the CPU clock frequency). + + +CPU Performance Scaling in Linux +================================ + +The Linux kernel supports CPU performance scaling by means of the ``CPUFreq`` +(CPU Frequency scaling) subsystem that consists of three layers of code: the +core, scaling governors and scaling drivers. + +The ``CPUFreq`` core provides the common code infrastructure and user space +interfaces for all platforms that support CPU performance scaling. It defines +the basic framework in which the other components operate. + +Scaling governors implement algorithms to estimate the required CPU capacity. +As a rule, each governor implements one, possibly parametrized, scaling +algorithm. + +Scaling drivers talk to the hardware. They provide scaling governors with +information on the available P-states (or P-state ranges in some cases) and +access platform-specific hardware interfaces to change CPU P-states as requested +by scaling governors. + +In principle, all available scaling governors can be used with every scaling +driver. That design is based on the observation that the information used by +performance scaling algorithms for P-state selection can be represented in a +platform-independent form in the majority of cases, so it should be possible +to use the same performance scaling algorithm implemented in exactly the same +way regardless of which scaling driver is used. Consequently, the same set of +scaling governors should be suitable for every supported platform. + +However, that observation may not hold for performance scaling algorithms +based on information provided by the hardware itself, for example through +feedback registers, as that information is typically specific to the hardware +interface it comes from and may not be easily represented in an abstract, +platform-independent way. For this reason, ``CPUFreq`` allows scaling drivers +to bypass the governor layer and implement their own performance scaling +algorithms. That is done by the ``intel_pstate`` scaling driver. + + +``CPUFreq`` Policy Objects +========================== + +In some cases the hardware interface for P-state control is shared by multiple +CPUs. That is, for example, the same register (or set of registers) is used to +control the P-state of multiple CPUs at the same time and writing to it affects +all of those CPUs simultaneously. + +Sets of CPUs sharing hardware P-state control interfaces are represented by +``CPUFreq`` as |struct cpufreq_policy| objects. For consistency, +|struct cpufreq_policy| is also used when there is only one CPU in the given +set. + +The ``CPUFreq`` core maintains a pointer to a |struct cpufreq_policy| object for +every CPU in the system, including CPUs that are currently offline. If multiple +CPUs share the same hardware P-state control interface, all of the pointers +corresponding to them point to the same |struct cpufreq_policy| object. + +``CPUFreq`` uses |struct cpufreq_policy| as its basic data type and the design +of its user space interface is based on the policy concept. + + +CPU Initialization +================== + +First of all, a scaling driver has to be registered for ``CPUFreq`` to work. +It is only possible to register one scaling driver at a time, so the scaling +driver is expected to be able to handle all CPUs in the system. + +The scaling driver may be registered before or after CPU registration. If +CPUs are registered earlier, the driver core invokes the ``CPUFreq`` core to +take a note of all of the already registered CPUs during the registration of the +scaling driver. In turn, if any CPUs are registered after the registration of +the scaling driver, the ``CPUFreq`` core will be invoked to take note of them +at their registration time. + +In any case, the ``CPUFreq`` core is invoked to take note of any logical CPU it +has not seen so far as soon as it is ready to handle that CPU. [Note that the +logical CPU may be a physical single-core processor, or a single core in a +multicore processor, or a hardware thread in a physical processor or processor +core. In what follows "CPU" always means "logical CPU" unless explicitly stated +otherwise and the word "processor" is used to refer to the physical part +possibly including multiple logical CPUs.] + +Once invoked, the ``CPUFreq`` core checks if the policy pointer is already set +for the given CPU and if so, it skips the policy object creation. Otherwise, +a new policy object is created and initialized, which involves the creation of +a new policy directory in ``sysfs``, and the policy pointer corresponding to +the given CPU is set to the new policy object's address in memory. + +Next, the scaling driver's ``->init()`` callback is invoked with the policy +pointer of the new CPU passed to it as the argument. That callback is expected +to initialize the performance scaling hardware interface for the given CPU (or, +more precisely, for the set of CPUs sharing the hardware interface it belongs +to, represented by its policy object) and, if the policy object it has been +called for is new, to set parameters of the policy, like the minimum and maximum +frequencies supported by the hardware, the table of available frequencies (if +the set of supported P-states is not a continuous range), and the mask of CPUs +that belong to the same policy (including both online and offline CPUs). That +mask is then used by the core to populate the policy pointers for all of the +CPUs in it. + +The next major initialization step for a new policy object is to attach a +scaling governor to it (to begin with, that is the default scaling governor +determined by the kernel configuration, but it may be changed later +via ``sysfs``). First, a pointer to the new policy object is passed to the +governor's ``->init()`` callback which is expected to initialize all of the +data structures necessary to handle the given policy and, possibly, to add +a governor ``sysfs`` interface to it. Next, the governor is started by +invoking its ``->start()`` callback. + +That callback it expected to register per-CPU utilization update callbacks for +all of the online CPUs belonging to the given policy with the CPU scheduler. +The utilization update callbacks will be invoked by the CPU scheduler on +important events, like task enqueue and dequeue, on every iteration of the +scheduler tick or generally whenever the CPU utilization may change (from the +scheduler's perspective). They are expected to carry out computations needed +to determine the P-state to use for the given policy going forward and to +invoke the scaling driver to make changes to the hardware in accordance with +the P-state selection. The scaling driver may be invoked directly from +scheduler context or asynchronously, via a kernel thread or workqueue, depending +on the configuration and capabilities of the scaling driver and the governor. + +Similar steps are taken for policy objects that are not new, but were "inactive" +previously, meaning that all of the CPUs belonging to them were offline. The +only practical difference in that case is that the ``CPUFreq`` core will attempt +to use the scaling governor previously used with the policy that became +"inactive" (and is re-initialized now) instead of the default governor. + +In turn, if a previously offline CPU is being brought back online, but some +other CPUs sharing the policy object with it are online already, there is no +need to re-initialize the policy object at all. In that case, it only is +necessary to restart the scaling governor so that it can take the new online CPU +into account. That is achieved by invoking the governor's ``->stop`` and +``->start()`` callbacks, in this order, for the entire policy. + +As mentioned before, the ``intel_pstate`` scaling driver bypasses the scaling +governor layer of ``CPUFreq`` and provides its own P-state selection algorithms. +Consequently, if ``intel_pstate`` is used, scaling governors are not attached to +new policy objects. Instead, the driver's ``->setpolicy()`` callback is invoked +to register per-CPU utilization update callbacks for each policy. These +callbacks are invoked by the CPU scheduler in the same way as for scaling +governors, but in the ``intel_pstate`` case they both determine the P-state to +use and change the hardware configuration accordingly in one go from scheduler +context. + +The policy objects created during CPU initialization and other data structures +associated with them are torn down when the scaling driver is unregistered +(which happens when the kernel module containing it is unloaded, for example) or +when the last CPU belonging to the given policy in unregistered. + + +Policy Interface in ``sysfs`` +============================= + +During the initialization of the kernel, the ``CPUFreq`` core creates a +``sysfs`` directory (kobject) called ``cpufreq`` under +:file:`/sys/devices/system/cpu/`. + +That directory contains a ``policyX`` subdirectory (where ``X`` represents an +integer number) for every policy object maintained by the ``CPUFreq`` core. +Each ``policyX`` directory is pointed to by ``cpufreq`` symbolic links +under :file:`/sys/devices/system/cpu/cpuY/` (where ``Y`` represents an integer +that may be different from the one represented by ``X``) for all of the CPUs +associated with (or belonging to) the given policy. The ``policyX`` directories +in :file:`/sys/devices/system/cpu/cpufreq` each contain policy-specific +attributes (files) to control ``CPUFreq`` behavior for the corresponding policy +objects (that is, for all of the CPUs associated with them). + +Some of those attributes are generic. They are created by the ``CPUFreq`` core +and their behavior generally does not depend on what scaling driver is in use +and what scaling governor is attached to the given policy. Some scaling drivers +also add driver-specific attributes to the policy directories in ``sysfs`` to +control policy-specific aspects of driver behavior. + +The generic attributes under :file:`/sys/devices/system/cpu/cpufreq/policyX/` +are the following: + +``affected_cpus`` + List of online CPUs belonging to this policy (i.e. sharing the hardware + performance scaling interface represented by the ``policyX`` policy + object). + +``bios_limit`` + If the platform firmware (BIOS) tells the OS to apply an upper limit to + CPU frequencies, that limit will be reported through this attribute (if + present). + + The existence of the limit may be a result of some (often unintentional) + BIOS settings, restrictions coming from a service processor or another + BIOS/HW-based mechanisms. + + This does not cover ACPI thermal limitations which can be discovered + through a generic thermal driver. + + This attribute is not present if the scaling driver in use does not + support it. + +``cpuinfo_max_freq`` + Maximum possible operating frequency the CPUs belonging to this policy + can run at (in kHz). + +``cpuinfo_min_freq`` + Minimum possible operating frequency the CPUs belonging to this policy + can run at (in kHz). + +``cpuinfo_transition_latency`` + The time it takes to switch the CPUs belonging to this policy from one + P-state to another, in nanoseconds. + + If unknown or if known to be so high that the scaling driver does not + work with the `ondemand`_ governor, -1 (:c:macro:`CPUFREQ_ETERNAL`) + will be returned by reads from this attribute. + +``related_cpus`` + List of all (online and offline) CPUs belonging to this policy. + +``scaling_available_governors`` + List of ``CPUFreq`` scaling governors present in the kernel that can + be attached to this policy or (if the ``intel_pstate`` scaling driver is + in use) list of scaling algorithms provided by the driver that can be + applied to this policy. + + [Note that some governors are modular and it may be necessary to load a + kernel module for the governor held by it to become available and be + listed by this attribute.] + +``scaling_cur_freq`` + Current frequency of all of the CPUs belonging to this policy (in kHz). + + For the majority of scaling drivers, this is the frequency of the last + P-state requested by the driver from the hardware using the scaling + interface provided by it, which may or may not reflect the frequency + the CPU is actually running at (due to hardware design and other + limitations). + + Some scaling drivers (e.g. ``intel_pstate``) attempt to provide + information more precisely reflecting the current CPU frequency through + this attribute, but that still may not be the exact current CPU + frequency as seen by the hardware at the moment. + +``scaling_driver`` + The scaling driver currently in use. + +``scaling_governor`` + The scaling governor currently attached to this policy or (if the + ``intel_pstate`` scaling driver is in use) the scaling algorithm + provided by the driver that is currently applied to this policy. + + This attribute is read-write and writing to it will cause a new scaling + governor to be attached to this policy or a new scaling algorithm + provided by the scaling driver to be applied to it (in the + ``intel_pstate`` case), as indicated by the string written to this + attribute (which must be one of the names listed by the + ``scaling_available_governors`` attribute described above). + +``scaling_max_freq`` + Maximum frequency the CPUs belonging to this policy are allowed to be + running at (in kHz). + + This attribute is read-write and writing a string representing an + integer to it will cause a new limit to be set (it must not be lower + than the value of the ``scaling_min_freq`` attribute). + +``scaling_min_freq`` + Minimum frequency the CPUs belonging to this policy are allowed to be + running at (in kHz). + + This attribute is read-write and writing a string representing a + non-negative integer to it will cause a new limit to be set (it must not + be higher than the value of the ``scaling_max_freq`` attribute). + +``scaling_setspeed`` + This attribute is functional only if the `userspace`_ scaling governor + is attached to the given policy. + + It returns the last frequency requested by the governor (in kHz) or can + be written to in order to set a new frequency for the policy. + + +Generic Scaling Governors +========================= + +``CPUFreq`` provides generic scaling governors that can be used with all +scaling drivers. As stated before, each of them implements a single, possibly +parametrized, performance scaling algorithm. + +Scaling governors are attached to policy objects and different policy objects +can be handled by different scaling governors at the same time (although that +may lead to suboptimal results in some cases). + +The scaling governor for a given policy object can be changed at any time with +the help of the ``scaling_governor`` policy attribute in ``sysfs``. + +Some governors expose ``sysfs`` attributes to control or fine-tune the scaling +algorithms implemented by them. Those attributes, referred to as governor +tunables, can be either global (system-wide) or per-policy, depending on the +scaling driver in use. If the driver requires governor tunables to be +per-policy, they are located in a subdirectory of each policy directory. +Otherwise, they are located in a subdirectory under +:file:`/sys/devices/system/cpu/cpufreq/`. In either case the name of the +subdirectory containing the governor tunables is the name of the governor +providing them. + +``performance`` +--------------- + +When attached to a policy object, this governor causes the highest frequency, +within the ``scaling_max_freq`` policy limit, to be requested for that policy. + +The request is made once at that time the governor for the policy is set to +``performance`` and whenever the ``scaling_max_freq`` or ``scaling_min_freq`` +policy limits change after that. + +``powersave`` +------------- + +When attached to a policy object, this governor causes the lowest frequency, +within the ``scaling_min_freq`` policy limit, to be requested for that policy. + +The request is made once at that time the governor for the policy is set to +``powersave`` and whenever the ``scaling_max_freq`` or ``scaling_min_freq`` +policy limits change after that. + +``userspace`` +------------- + +This governor does not do anything by itself. Instead, it allows user space +to set the CPU frequency for the policy it is attached to by writing to the +``scaling_setspeed`` attribute of that policy. + +``schedutil`` +------------- + +This governor uses CPU utilization data available from the CPU scheduler. It +generally is regarded as a part of the CPU scheduler, so it can access the +scheduler's internal data structures directly. + +It runs entirely in scheduler context, although in some cases it may need to +invoke the scaling driver asynchronously when it decides that the CPU frequency +should be changed for a given policy (that depends on whether or not the driver +is capable of changing the CPU frequency from scheduler context). + +The actions of this governor for a particular CPU depend on the scheduling class +invoking its utilization update callback for that CPU. If it is invoked by the +RT or deadline scheduling classes, the governor will increase the frequency to +the allowed maximum (that is, the ``scaling_max_freq`` policy limit). In turn, +if it is invoked by the CFS scheduling class, the governor will use the +Per-Entity Load Tracking (PELT) metric for the root control group of the +given CPU as the CPU utilization estimate (see the `Per-entity load tracking`_ +LWN.net article for a description of the PELT mechanism). Then, the new +CPU frequency to apply is computed in accordance with the formula + + f = 1.25 * ``f_0`` * ``util`` / ``max`` + +where ``util`` is the PELT number, ``max`` is the theoretical maximum of +``util``, and ``f_0`` is either the maximum possible CPU frequency for the given +policy (if the PELT number is frequency-invariant), or the current CPU frequency +(otherwise). + +This governor also employs a mechanism allowing it to temporarily bump up the +CPU frequency for tasks that have been waiting on I/O most recently, called +"IO-wait boosting". That happens when the :c:macro:`SCHED_CPUFREQ_IOWAIT` flag +is passed by the scheduler to the governor callback which causes the frequency +to go up to the allowed maximum immediately and then draw back to the value +returned by the above formula over time. + +This governor exposes only one tunable: + +``rate_limit_us`` + Minimum time (in microseconds) that has to pass between two consecutive + runs of governor computations (default: 1000 times the scaling driver's + transition latency). + + The purpose of this tunable is to reduce the scheduler context overhead + of the governor which might be excessive without it. + +This governor generally is regarded as a replacement for the older `ondemand`_ +and `conservative`_ governors (described below), as it is simpler and more +tightly integrated with the CPU scheduler, its overhead in terms of CPU context +switches and similar is less significant, and it uses the scheduler's own CPU +utilization metric, so in principle its decisions should not contradict the +decisions made by the other parts of the scheduler. + +``ondemand`` +------------ + +This governor uses CPU load as a CPU frequency selection metric. + +In order to estimate the current CPU load, it measures the time elapsed between +consecutive invocations of its worker routine and computes the fraction of that +time in which the given CPU was not idle. The ratio of the non-idle (active) +time to the total CPU time is taken as an estimate of the load. + +If this governor is attached to a policy shared by multiple CPUs, the load is +estimated for all of them and the greatest result is taken as the load estimate +for the entire policy. + +The worker routine of this governor has to run in process context, so it is +invoked asynchronously (via a workqueue) and CPU P-states are updated from +there if necessary. As a result, the scheduler context overhead from this +governor is minimum, but it causes additional CPU context switches to happen +relatively often and the CPU P-state updates triggered by it can be relatively +irregular. Also, it affects its own CPU load metric by running code that +reduces the CPU idle time (even though the CPU idle time is only reduced very +slightly by it). + +It generally selects CPU frequencies proportional to the estimated load, so that +the value of the ``cpuinfo_max_freq`` policy attribute corresponds to the load of +1 (or 100%), and the value of the ``cpuinfo_min_freq`` policy attribute +corresponds to the load of 0, unless when the load exceeds a (configurable) +speedup threshold, in which case it will go straight for the highest frequency +it is allowed to use (the ``scaling_max_freq`` policy limit). + +This governor exposes the following tunables: + +``sampling_rate`` + This is how often the governor's worker routine should run, in + microseconds. + + Typically, it is set to values of the order of 10000 (10 ms). Its + default value is equal to the value of ``cpuinfo_transition_latency`` + for each policy this governor is attached to (but since the unit here + is greater by 1000, this means that the time represented by + ``sampling_rate`` is 1000 times greater than the transition latency by + default). + + If this tunable is per-policy, the following shell command sets the time + represented by it to be 750 times as high as the transition latency:: + + # echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate + + +``min_sampling_rate`` + The minimum value of ``sampling_rate``. + + Equal to 10000 (10 ms) if :c:macro:`CONFIG_NO_HZ_COMMON` and + :c:data:`tick_nohz_active` are both set or to 20 times the value of + :c:data:`jiffies` in microseconds otherwise. + +``up_threshold`` + If the estimated CPU load is above this value (in percent), the governor + will set the frequency to the maximum value allowed for the policy. + Otherwise, the selected frequency will be proportional to the estimated + CPU load. + +``ignore_nice_load`` + If set to 1 (default 0), it will cause the CPU load estimation code to + treat the CPU time spent on executing tasks with "nice" levels greater + than 0 as CPU idle time. + + This may be useful if there are tasks in the system that should not be + taken into account when deciding what frequency to run the CPUs at. + Then, to make that happen it is sufficient to increase the "nice" level + of those tasks above 0 and set this attribute to 1. + +``sampling_down_factor`` + Temporary multiplier, between 1 (default) and 100 inclusive, to apply to + the ``sampling_rate`` value if the CPU load goes above ``up_threshold``. + + This causes the next execution of the governor's worker routine (after + setting the frequency to the allowed maximum) to be delayed, so the + frequency stays at the maximum level for a longer time. + + Frequency fluctuations in some bursty workloads may be avoided this way + at the cost of additional energy spent on maintaining the maximum CPU + capacity. + +``powersave_bias`` + Reduction factor to apply to the original frequency target of the + governor (including the maximum value used when the ``up_threshold`` + value is exceeded by the estimated CPU load) or sensitivity threshold + for the AMD frequency sensitivity powersave bias driver + (:file:`drivers/cpufreq/amd_freq_sensitivity.c`), between 0 and 1000 + inclusive. + + If the AMD frequency sensitivity powersave bias driver is not loaded, + the effective frequency to apply is given by + + f * (1 - ``powersave_bias`` / 1000) + + where f is the governor's original frequency target. The default value + of this attribute is 0 in that case. + + If the AMD frequency sensitivity powersave bias driver is loaded, the + value of this attribute is 400 by default and it is used in a different + way. + + On Family 16h (and later) AMD processors there is a mechanism to get a + measured workload sensitivity, between 0 and 100% inclusive, from the + hardware. That value can be used to estimate how the performance of the + workload running on a CPU will change in response to frequency changes. + + The performance of a workload with the sensitivity of 0 (memory-bound or + IO-bound) is not expected to increase at all as a result of increasing + the CPU frequency, whereas workloads with the sensitivity of 100% + (CPU-bound) are expected to perform much better if the CPU frequency is + increased. + + If the workload sensitivity is less than the threshold represented by + the ``powersave_bias`` value, the sensitivity powersave bias driver + will cause the governor to select a frequency lower than its original + target, so as to avoid over-provisioning workloads that will not benefit + from running at higher CPU frequencies. + +``conservative`` +---------------- + +This governor uses CPU load as a CPU frequency selection metric. + +It estimates the CPU load in the same way as the `ondemand`_ governor described +above, but the CPU frequency selection algorithm implemented by it is different. + +Namely, it avoids changing the frequency significantly over short time intervals +which may not be suitable for systems with limited power supply capacity (e.g. +battery-powered). To achieve that, it changes the frequency in relatively +small steps, one step at a time, up or down - depending on whether or not a +(configurable) threshold has been exceeded by the estimated CPU load. + +This governor exposes the following tunables: + +``freq_step`` + Frequency step in percent of the maximum frequency the governor is + allowed to set (the ``scaling_max_freq`` policy limit), between 0 and + 100 (5 by default). + + This is how much the frequency is allowed to change in one go. Setting + it to 0 will cause the default frequency step (5 percent) to be used + and setting it to 100 effectively causes the governor to periodically + switch the frequency between the ``scaling_min_freq`` and + ``scaling_max_freq`` policy limits. + +``down_threshold`` + Threshold value (in percent, 20 by default) used to determine the + frequency change direction. + + If the estimated CPU load is greater than this value, the frequency will + go up (by ``freq_step``). If the load is less than this value (and the + ``sampling_down_factor`` mechanism is not in effect), the frequency will + go down. Otherwise, the frequency will not be changed. + +``sampling_down_factor`` + Frequency decrease deferral factor, between 1 (default) and 10 + inclusive. + + It effectively causes the frequency to go down ``sampling_down_factor`` + times slower than it ramps up. + + +Frequency Boost Support +======================= + +Background +---------- + +Some processors support a mechanism to raise the operating frequency of some +cores in a multicore package temporarily (and above the sustainable frequency +threshold for the whole package) under certain conditions, for example if the +whole chip is not fully utilized and below its intended thermal or power budget. + +Different names are used by different vendors to refer to this functionality. +For Intel processors it is referred to as "Turbo Boost", AMD calls it +"Turbo-Core" or (in technical documentation) "Core Performance Boost" and so on. +As a rule, it also is implemented differently by different vendors. The simple +term "frequency boost" is used here for brevity to refer to all of those +implementations. + +The frequency boost mechanism may be either hardware-based or software-based. +If it is hardware-based (e.g. on x86), the decision to trigger the boosting is +made by the hardware (although in general it requires the hardware to be put +into a special state in which it can control the CPU frequency within certain +limits). If it is software-based (e.g. on ARM), the scaling driver decides +whether or not to trigger boosting and when to do that. + +The ``boost`` File in ``sysfs`` +------------------------------- + +This file is located under :file:`/sys/devices/system/cpu/cpufreq/` and controls +the "boost" setting for the whole system. It is not present if the underlying +scaling driver does not support the frequency boost mechanism (or supports it, +but provides a driver-specific interface for controlling it, like +``intel_pstate``). + +If the value in this file is 1, the frequency boost mechanism is enabled. This +means that either the hardware can be put into states in which it is able to +trigger boosting (in the hardware-based case), or the software is allowed to +trigger boosting (in the software-based case). It does not mean that boosting +is actually in use at the moment on any CPUs in the system. It only means a +permission to use the frequency boost mechanism (which still may never be used +for other reasons). + +If the value in this file is 0, the frequency boost mechanism is disabled and +cannot be used at all. + +The only values that can be written to this file are 0 and 1. + +Rationale for Boost Control Knob +-------------------------------- + +The frequency boost mechanism is generally intended to help to achieve optimum +CPU performance on time scales below software resolution (e.g. below the +scheduler tick interval) and it is demonstrably suitable for many workloads, but +it may lead to problems in certain situations. + +For this reason, many systems make it possible to disable the frequency boost +mechanism in the platform firmware (BIOS) setup, but that requires the system to +be restarted for the setting to be adjusted as desired, which may not be +practical at least in some cases. For example: + + 1. Boosting means overclocking the processor, although under controlled + conditions. Generally, the processor's energy consumption increases + as a result of increasing its frequency and voltage, even temporarily. + That may not be desirable on systems that switch to power sources of + limited capacity, such as batteries, so the ability to disable the boost + mechanism while the system is running may help there (but that depends on + the workload too). + + 2. In some situations deterministic behavior is more important than + performance or energy consumption (or both) and the ability to disable + boosting while the system is running may be useful then. + + 3. To examine the impact of the frequency boost mechanism itself, it is useful + to be able to run tests with and without boosting, preferably without + restarting the system in the meantime. + + 4. Reproducible results are important when running benchmarks. Since + the boosting functionality depends on the load of the whole package, + single-thread performance may vary because of it which may lead to + unreproducible results sometimes. That can be avoided by disabling the + frequency boost mechanism before running benchmarks sensitive to that + issue. + +Legacy AMD ``cpb`` Knob +----------------------- + +The AMD powernow-k8 scaling driver supports a ``sysfs`` knob very similar to +the global ``boost`` one. It is used for disabling/enabling the "Core +Performance Boost" feature of some AMD processors. + +If present, that knob is located in every ``CPUFreq`` policy directory in +``sysfs`` (:file:`/sys/devices/system/cpu/cpufreq/policyX/`) and is called +``cpb``, which indicates a more fine grained control interface. The actual +implementation, however, works on the system-wide basis and setting that knob +for one policy causes the same value of it to be set for all of the other +policies at the same time. + +That knob is still supported on AMD processors that support its underlying +hardware feature, but it may be configured out of the kernel (via the +:c:macro:`CONFIG_X86_ACPI_CPUFREQ_CPB` configuration option) and the global +``boost`` knob is present regardless. Thus it is always possible use the +``boost`` knob instead of the ``cpb`` one which is highly recommended, as that +is more consistent with what all of the other systems do (and the ``cpb`` knob +may not be supported any more in the future). + +The ``cpb`` knob is never present for any processors without the underlying +hardware feature (e.g. all Intel ones), even if the +:c:macro:`CONFIG_X86_ACPI_CPUFREQ_CPB` configuration option is set. + + +.. _Per-entity load tracking: https://lwn.net/Articles/531853/ diff --git a/Documentation/admin-guide/pm/index.rst b/Documentation/admin-guide/pm/index.rst new file mode 100644 index 000000000000..c80f087321fc --- /dev/null +++ b/Documentation/admin-guide/pm/index.rst @@ -0,0 +1,15 @@ +================ +Power Management +================ + +.. toctree:: + :maxdepth: 2 + + cpufreq + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/admin-guide/ras.rst b/Documentation/admin-guide/ras.rst index 1b90c6f00a92..8c7bbf2c88d2 100644 --- a/Documentation/admin-guide/ras.rst +++ b/Documentation/admin-guide/ras.rst @@ -8,7 +8,7 @@ RAS concepts ************ Reliability, Availability and Serviceability (RAS) is a concept used on -servers meant to measure their robusteness. +servers meant to measure their robustness. Reliability is the probability that a system will produce correct outputs. @@ -42,13 +42,13 @@ Among the monitoring measures, the most usual ones include: * CPU – detect errors at instruction execution and at L1/L2/L3 caches; * Memory – add error correction logic (ECC) to detect and correct errors; -* I/O – add CRC checksums for tranfered data; +* I/O – add CRC checksums for transferred data; * Storage – RAID, journal file systems, checksums, Self-Monitoring, Analysis and Reporting Technology (SMART). By monitoring the number of occurrences of error detections, it is possible to identify if the probability of hardware errors is increasing, and, on such -case, do a preventive maintainance to replace a degrated component while +case, do a preventive maintenance to replace a degraded component while those errors are correctable. Types of errors @@ -121,7 +121,7 @@ using the ``dmidecode`` tool. For example, on a desktop machine, it shows:: On the above example, a DDR4 SO-DIMM memory module is located at the system's memory labeled as "BANK 0", as given by the *bank locator* field. Please notice that, on such system, the *total width* is equal to the -*data witdh*. It means that such memory module doesn't have error +*data width*. It means that such memory module doesn't have error detection/correction mechanisms. Unfortunately, not all systems use the same field to specify the memory @@ -145,7 +145,7 @@ bank. On this example, from an older server, ``dmidecode`` shows:: There, the DDR3 RDIMM memory module is located at the system's memory labeled as "DIMM_A1", as given by the *locator* field. Please notice that this -memory module has 64 bits of *data witdh* and 72 bits of *total width*. So, +memory module has 64 bits of *data width* and 72 bits of *total width*. So, it has 8 extra bits to be used by error detection and correction mechanisms. Such kind of memory is called Error-correcting code memory (ECC memory). @@ -186,7 +186,7 @@ Architecture (MCA)\ [#f3]_. .. [#f1] Please notice that several memory controllers allow operation on a mode called "Lock-Step", where it groups two memory modules together, doing 128-bit reads/writes. That gives 16 bits for error correction, with - significatively improves the error correction mechanism, at the expense + significantly improves the error correction mechanism, at the expense that, when an error happens, there's no way to know what memory module is to blame. So, it has to blame both memory modules. diff --git a/Documentation/admin-guide/security-bugs.rst b/Documentation/admin-guide/security-bugs.rst index 4f7414cad586..47574b382d75 100644 --- a/Documentation/admin-guide/security-bugs.rst +++ b/Documentation/admin-guide/security-bugs.rst @@ -14,14 +14,17 @@ Contact The Linux kernel security team can be contacted by email at <security@kernel.org>. This is a private list of security officers who will help verify the bug report and develop and release a fix. -It is possible that the security team will bring in extra help from -area maintainers to understand and fix the security vulnerability. +If you already have a fix, please include it with your report, as +that can speed up the process considerably. It is possible that the +security team will bring in extra help from area maintainers to +understand and fix the security vulnerability. As it is with any bug, the more information provided the easier it will be to diagnose and fix. Please review the procedure outlined in -admin-guide/reporting-bugs.rst if you are unclear about what information is helpful. -Any exploit code is very helpful and will not be released without -consent from the reporter unless it has already been made public. +admin-guide/reporting-bugs.rst if you are unclear about what +information is helpful. Any exploit code is very helpful and will not +be released without consent from the reporter unless it has already been +made public. Disclosure ---------- @@ -39,6 +42,32 @@ disclosure is from immediate (esp. if it's already publicly known) to a few weeks. As a basic default policy, we expect report date to disclosure date to be on the order of 7 days. +Coordination +------------ + +Fixes for sensitive bugs, such as those that might lead to privilege +escalations, may need to be coordinated with the private +<linux-distros@vs.openwall.org> mailing list so that distribution vendors +are well prepared to issue a fixed kernel upon public disclosure of the +upstream fix. Distros will need some time to test the proposed patch and +will generally request at least a few days of embargo, and vendor update +publication prefers to happen Tuesday through Thursday. When appropriate, +the security team can assist with this coordination, or the reporter can +include linux-distros from the start. In this case, remember to prefix +the email Subject line with "[vs]" as described in the linux-distros wiki: +<http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists> + +CVE assignment +-------------- + +The security team does not normally assign CVEs, nor do we require them +for reports or fixes, as this can needlessly complicate the process and +may delay the bug handling. If a reporter wishes to have a CVE identifier +assigned ahead of public disclosure, they will need to contact the private +linux-distros list, described above. When such a CVE identifier is known +before a patch is provided, it is desirable to mention it in the commit +message, though. + Non-disclosure agreements ------------------------- diff --git a/Documentation/admin-guide/sysrq.rst b/Documentation/admin-guide/sysrq.rst index d1712ea2d314..7b9035c01a2e 100644 --- a/Documentation/admin-guide/sysrq.rst +++ b/Documentation/admin-guide/sysrq.rst @@ -212,7 +212,8 @@ I hit SysRq, but nothing seems to happen, what's wrong? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are some keyboards that produce a different keycode for SysRq than the -pre-defined value of 99 (see ``KEY_SYSRQ`` in ``include/linux/input.h``), or +pre-defined value of 99 +(see ``KEY_SYSRQ`` in ``include/uapi/linux/input-event-codes.h``), or which don't have a SysRq key at all. In these cases, run ``showkey -s`` to find an appropriate scancode sequence, and use ``setkeycodes <sequence> 99`` to map this sequence to the usual SysRq code (e.g., ``setkeycodes e05b 99``). It's diff --git a/Documentation/arm/mem_alignment b/Documentation/arm/mem_alignment index c7c7a114c78c..6335fcacbba9 100644 --- a/Documentation/arm/mem_alignment +++ b/Documentation/arm/mem_alignment @@ -48,7 +48,7 @@ Note that not all combinations are supported - only values 0 through 5. For example, the following will turn on the warnings, but without fixing up or sending SIGBUS signals: - echo 1 > /proc/sys/debug/alignment + echo 1 > /proc/cpu/alignment You can also read the content of the same file to get statistical information on unaligned access occurrences plus the current mode of diff --git a/Documentation/arm64/silicon-errata.txt b/Documentation/arm64/silicon-errata.txt index a71b8095dbd8..10f2dddbf449 100644 --- a/Documentation/arm64/silicon-errata.txt +++ b/Documentation/arm64/silicon-errata.txt @@ -54,6 +54,7 @@ stable kernels. | ARM | Cortex-A57 | #852523 | N/A | | ARM | Cortex-A57 | #834220 | ARM64_ERRATUM_834220 | | ARM | Cortex-A72 | #853709 | N/A | +| ARM | Cortex-A73 | #858921 | ARM64_ERRATUM_858921 | | ARM | MMU-500 | #841119,#826419 | N/A | | | | | | | Cavium | ThunderX ITS | #22375, #24313 | CAVIUM_ERRATUM_22375 | @@ -68,3 +69,4 @@ stable kernels. | | | | | | Qualcomm Tech. | Falkor v1 | E1003 | QCOM_FALKOR_ERRATUM_1003 | | Qualcomm Tech. | Falkor v1 | E1009 | QCOM_FALKOR_ERRATUM_1009 | +| Qualcomm Tech. | QDF2400 ITS | E0065 | QCOM_QDF2400_ERRATUM_0065 | diff --git a/Documentation/block/00-INDEX b/Documentation/block/00-INDEX index e55103ace382..8d55b4bbb5e2 100644 --- a/Documentation/block/00-INDEX +++ b/Documentation/block/00-INDEX @@ -1,5 +1,7 @@ 00-INDEX - This file +bfq-iosched.txt + - BFQ IO scheduler and its tunables biodoc.txt - Notes on the Generic Block Layer Rewrite in Linux 2.5 biovecs.txt diff --git a/Documentation/block/bfq-iosched.txt b/Documentation/block/bfq-iosched.txt new file mode 100644 index 000000000000..1b87df6cd476 --- /dev/null +++ b/Documentation/block/bfq-iosched.txt @@ -0,0 +1,531 @@ +BFQ (Budget Fair Queueing) +========================== + +BFQ is a proportional-share I/O scheduler, with some extra +low-latency capabilities. In addition to cgroups support (blkio or io +controllers), BFQ's main features are: +- BFQ guarantees a high system and application responsiveness, and a + low latency for time-sensitive applications, such as audio or video + players; +- BFQ distributes bandwidth, and not just time, among processes or + groups (switching back to time distribution when needed to keep + throughput high). + +On average CPUs, the current version of BFQ can handle devices +performing at most ~30K IOPS; at most ~50 KIOPS on faster CPUs. As a +reference, 30-50 KIOPS correspond to very high bandwidths with +sequential I/O (e.g., 8-12 GB/s if I/O requests are 256 KB large), and +to 120-200 MB/s with 4KB random I/O. BFQ has not yet been tested on +multi-queue devices. + +The table of contents follow. Impatients can just jump to Section 3. + +CONTENTS + +1. When may BFQ be useful? + 1-1 Personal systems + 1-2 Server systems +2. How does BFQ work? +3. What are BFQ's tunable? +4. BFQ group scheduling + 4-1 Service guarantees provided + 4-2 Interface + +1. When may BFQ be useful? +========================== + +BFQ provides the following benefits on personal and server systems. + +1-1 Personal systems +-------------------- + +Low latency for interactive applications + +Regardless of the actual background workload, BFQ guarantees that, for +interactive tasks, the storage device is virtually as responsive as if +it was idle. For example, even if one or more of the following +background workloads are being executed: +- one or more large files are being read, written or copied, +- a tree of source files is being compiled, +- one or more virtual machines are performing I/O, +- a software update is in progress, +- indexing daemons are scanning filesystems and updating their + databases, +starting an application or loading a file from within an application +takes about the same time as if the storage device was idle. As a +comparison, with CFQ, NOOP or DEADLINE, and in the same conditions, +applications experience high latencies, or even become unresponsive +until the background workload terminates (also on SSDs). + +Low latency for soft real-time applications + +Also soft real-time applications, such as audio and video +players/streamers, enjoy a low latency and a low drop rate, regardless +of the background I/O workload. As a consequence, these applications +do not suffer from almost any glitch due to the background workload. + +Higher speed for code-development tasks + +If some additional workload happens to be executed in parallel, then +BFQ executes the I/O-related components of typical code-development +tasks (compilation, checkout, merge, ...) much more quickly than CFQ, +NOOP or DEADLINE. + +High throughput + +On hard disks, BFQ achieves up to 30% higher throughput than CFQ, and +up to 150% higher throughput than DEADLINE and NOOP, with all the +sequential workloads considered in our tests. With random workloads, +and with all the workloads on flash-based devices, BFQ achieves, +instead, about the same throughput as the other schedulers. + +Strong fairness, bandwidth and delay guarantees + +BFQ distributes the device throughput, and not just the device time, +among I/O-bound applications in proportion their weights, with any +workload and regardless of the device parameters. From these bandwidth +guarantees, it is possible to compute tight per-I/O-request delay +guarantees by a simple formula. If not configured for strict service +guarantees, BFQ switches to time-based resource sharing (only) for +applications that would otherwise cause a throughput loss. + +1-2 Server systems +------------------ + +Most benefits for server systems follow from the same service +properties as above. In particular, regardless of whether additional, +possibly heavy workloads are being served, BFQ guarantees: + +. audio and video-streaming with zero or very low jitter and drop + rate; + +. fast retrieval of WEB pages and embedded objects; + +. real-time recording of data in live-dumping applications (e.g., + packet logging); + +. responsiveness in local and remote access to a server. + + +2. How does BFQ work? +===================== + +BFQ is a proportional-share I/O scheduler, whose general structure, +plus a lot of code, are borrowed from CFQ. + +- Each process doing I/O on a device is associated with a weight and a + (bfq_)queue. + +- BFQ grants exclusive access to the device, for a while, to one queue + (process) at a time, and implements this service model by + associating every queue with a budget, measured in number of + sectors. + + - After a queue is granted access to the device, the budget of the + queue is decremented, on each request dispatch, by the size of the + request. + + - The in-service queue is expired, i.e., its service is suspended, + only if one of the following events occurs: 1) the queue finishes + its budget, 2) the queue empties, 3) a "budget timeout" fires. + + - The budget timeout prevents processes doing random I/O from + holding the device for too long and dramatically reducing + throughput. + + - Actually, as in CFQ, a queue associated with a process issuing + sync requests may not be expired immediately when it empties. In + contrast, BFQ may idle the device for a short time interval, + giving the process the chance to go on being served if it issues + a new request in time. Device idling typically boosts the + throughput on rotational devices, if processes do synchronous + and sequential I/O. In addition, under BFQ, device idling is + also instrumental in guaranteeing the desired throughput + fraction to processes issuing sync requests (see the description + of the slice_idle tunable in this document, or [1, 2], for more + details). + + - With respect to idling for service guarantees, if several + processes are competing for the device at the same time, but + all processes (and groups, after the following commit) have + the same weight, then BFQ guarantees the expected throughput + distribution without ever idling the device. Throughput is + thus as high as possible in this common scenario. + + - If low-latency mode is enabled (default configuration), BFQ + executes some special heuristics to detect interactive and soft + real-time applications (e.g., video or audio players/streamers), + and to reduce their latency. The most important action taken to + achieve this goal is to give to the queues associated with these + applications more than their fair share of the device + throughput. For brevity, we call just "weight-raising" the whole + sets of actions taken by BFQ to privilege these queues. In + particular, BFQ provides a milder form of weight-raising for + interactive applications, and a stronger form for soft real-time + applications. + + - BFQ automatically deactivates idling for queues born in a burst of + queue creations. In fact, these queues are usually associated with + the processes of applications and services that benefit mostly + from a high throughput. Examples are systemd during boot, or git + grep. + + - As CFQ, BFQ merges queues performing interleaved I/O, i.e., + performing random I/O that becomes mostly sequential if + merged. Differently from CFQ, BFQ achieves this goal with a more + reactive mechanism, called Early Queue Merge (EQM). EQM is so + responsive in detecting interleaved I/O (cooperating processes), + that it enables BFQ to achieve a high throughput, by queue + merging, even for queues for which CFQ needs a different + mechanism, preemption, to get a high throughput. As such EQM is a + unified mechanism to achieve a high throughput with interleaved + I/O. + + - Queues are scheduled according to a variant of WF2Q+, named + B-WF2Q+, and implemented using an augmented rb-tree to preserve an + O(log N) overall complexity. See [2] for more details. B-WF2Q+ is + also ready for hierarchical scheduling. However, for a cleaner + logical breakdown, the code that enables and completes + hierarchical support is provided in the next commit, which focuses + exactly on this feature. + + - B-WF2Q+ guarantees a tight deviation with respect to an ideal, + perfectly fair, and smooth service. In particular, B-WF2Q+ + guarantees that each queue receives a fraction of the device + throughput proportional to its weight, even if the throughput + fluctuates, and regardless of: the device parameters, the current + workload and the budgets assigned to the queue. + + - The last, budget-independence, property (although probably + counterintuitive in the first place) is definitely beneficial, for + the following reasons: + + - First, with any proportional-share scheduler, the maximum + deviation with respect to an ideal service is proportional to + the maximum budget (slice) assigned to queues. As a consequence, + BFQ can keep this deviation tight not only because of the + accurate service of B-WF2Q+, but also because BFQ *does not* + need to assign a larger budget to a queue to let the queue + receive a higher fraction of the device throughput. + + - Second, BFQ is free to choose, for every process (queue), the + budget that best fits the needs of the process, or best + leverages the I/O pattern of the process. In particular, BFQ + updates queue budgets with a simple feedback-loop algorithm that + allows a high throughput to be achieved, while still providing + tight latency guarantees to time-sensitive applications. When + the in-service queue expires, this algorithm computes the next + budget of the queue so as to: + + - Let large budgets be eventually assigned to the queues + associated with I/O-bound applications performing sequential + I/O: in fact, the longer these applications are served once + got access to the device, the higher the throughput is. + + - Let small budgets be eventually assigned to the queues + associated with time-sensitive applications (which typically + perform sporadic and short I/O), because, the smaller the + budget assigned to a queue waiting for service is, the sooner + B-WF2Q+ will serve that queue (Subsec 3.3 in [2]). + +- If several processes are competing for the device at the same time, + but all processes and groups have the same weight, then BFQ + guarantees the expected throughput distribution without ever idling + the device. It uses preemption instead. Throughput is then much + higher in this common scenario. + +- ioprio classes are served in strict priority order, i.e., + lower-priority queues are not served as long as there are + higher-priority queues. Among queues in the same class, the + bandwidth is distributed in proportion to the weight of each + queue. A very thin extra bandwidth is however guaranteed to + the Idle class, to prevent it from starving. + + +3. What are BFQ's tunable? +========================== + +The tunables back_seek-max, back_seek_penalty, fifo_expire_async and +fifo_expire_sync below are the same as in CFQ. Their description is +just copied from that for CFQ. Some considerations in the description +of slice_idle are copied from CFQ too. + +per-process ioprio and weight +----------------------------- + +Unless the cgroups interface is used (see "4. BFQ group scheduling"), +weights can be assigned to processes only indirectly, through I/O +priorities, and according to the relation: +weight = (IOPRIO_BE_NR - ioprio) * 10. + +Beware that, if low-latency is set, then BFQ automatically raises the +weight of the queues associated with interactive and soft real-time +applications. Unset this tunable if you need/want to control weights. + +slice_idle +---------- + +This parameter specifies how long BFQ should idle for next I/O +request, when certain sync BFQ queues become empty. By default +slice_idle is a non-zero value. Idling has a double purpose: boosting +throughput and making sure that the desired throughput distribution is +respected (see the description of how BFQ works, and, if needed, the +papers referred there). + +As for throughput, idling can be very helpful on highly seeky media +like single spindle SATA/SAS disks where we can cut down on overall +number of seeks and see improved throughput. + +Setting slice_idle to 0 will remove all the idling on queues and one +should see an overall improved throughput on faster storage devices +like multiple SATA/SAS disks in hardware RAID configuration. + +So depending on storage and workload, it might be useful to set +slice_idle=0. In general for SATA/SAS disks and software RAID of +SATA/SAS disks keeping slice_idle enabled should be useful. For any +configurations where there are multiple spindles behind single LUN +(Host based hardware RAID controller or for storage arrays), setting +slice_idle=0 might end up in better throughput and acceptable +latencies. + +Idling is however necessary to have service guarantees enforced in +case of differentiated weights or differentiated I/O-request lengths. +To see why, suppose that a given BFQ queue A must get several I/O +requests served for each request served for another queue B. Idling +ensures that, if A makes a new I/O request slightly after becoming +empty, then no request of B is dispatched in the middle, and thus A +does not lose the possibility to get more than one request dispatched +before the next request of B is dispatched. Note that idling +guarantees the desired differentiated treatment of queues only in +terms of I/O-request dispatches. To guarantee that the actual service +order then corresponds to the dispatch order, the strict_guarantees +tunable must be set too. + +There is an important flipside for idling: apart from the above cases +where it is beneficial also for throughput, idling can severely impact +throughput. One important case is random workload. Because of this +issue, BFQ tends to avoid idling as much as possible, when it is not +beneficial also for throughput. As a consequence of this behavior, and +of further issues described for the strict_guarantees tunable, +short-term service guarantees may be occasionally violated. And, in +some cases, these guarantees may be more important than guaranteeing +maximum throughput. For example, in video playing/streaming, a very +low drop rate may be more important than maximum throughput. In these +cases, consider setting the strict_guarantees parameter. + +strict_guarantees +----------------- + +If this parameter is set (default: unset), then BFQ + +- always performs idling when the in-service queue becomes empty; + +- forces the device to serve one I/O request at a time, by dispatching a + new request only if there is no outstanding request. + +In the presence of differentiated weights or I/O-request sizes, both +the above conditions are needed to guarantee that every BFQ queue +receives its allotted share of the bandwidth. The first condition is +needed for the reasons explained in the description of the slice_idle +tunable. The second condition is needed because all modern storage +devices reorder internally-queued requests, which may trivially break +the service guarantees enforced by the I/O scheduler. + +Setting strict_guarantees may evidently affect throughput. + +back_seek_max +------------- + +This specifies, given in Kbytes, the maximum "distance" for backward seeking. +The distance is the amount of space from the current head location to the +sectors that are backward in terms of distance. + +This parameter allows the scheduler to anticipate requests in the "backward" +direction and consider them as being the "next" if they are within this +distance from the current head location. + +back_seek_penalty +----------------- + +This parameter is used to compute the cost of backward seeking. If the +backward distance of request is just 1/back_seek_penalty from a "front" +request, then the seeking cost of two requests is considered equivalent. + +So scheduler will not bias toward one or the other request (otherwise scheduler +will bias toward front request). Default value of back_seek_penalty is 2. + +fifo_expire_async +----------------- + +This parameter is used to set the timeout of asynchronous requests. Default +value of this is 248ms. + +fifo_expire_sync +---------------- + +This parameter is used to set the timeout of synchronous requests. Default +value of this is 124ms. In case to favor synchronous requests over asynchronous +one, this value should be decreased relative to fifo_expire_async. + +low_latency +----------- + +This parameter is used to enable/disable BFQ's low latency mode. By +default, low latency mode is enabled. If enabled, interactive and soft +real-time applications are privileged and experience a lower latency, +as explained in more detail in the description of how BFQ works. + +DO NOT enable this mode if you need full control on bandwidth +distribution. In fact, if it is enabled, then BFQ automatically +increases the bandwidth share of privileged applications, as the main +means to guarantee a lower latency to them. + +timeout_sync +------------ + +Maximum amount of device time that can be given to a task (queue) once +it has been selected for service. On devices with costly seeks, +increasing this time usually increases maximum throughput. On the +opposite end, increasing this time coarsens the granularity of the +short-term bandwidth and latency guarantees, especially if the +following parameter is set to zero. + +max_budget +---------- + +Maximum amount of service, measured in sectors, that can be provided +to a BFQ queue once it is set in service (of course within the limits +of the above timeout). According to what said in the description of +the algorithm, larger values increase the throughput in proportion to +the percentage of sequential I/O requests issued. The price of larger +values is that they coarsen the granularity of short-term bandwidth +and latency guarantees. + +The default value is 0, which enables auto-tuning: BFQ sets max_budget +to the maximum number of sectors that can be served during +timeout_sync, according to the estimated peak rate. + +weights +------- + +Read-only parameter, used to show the weights of the currently active +BFQ queues. + + +wr_ tunables +------------ + +BFQ exports a few parameters to control/tune the behavior of +low-latency heuristics. + +wr_coeff + +Factor by which the weight of a weight-raised queue is multiplied. If +the queue is deemed soft real-time, then the weight is further +multiplied by an additional, constant factor. + +wr_max_time + +Maximum duration of a weight-raising period for an interactive task +(ms). If set to zero (default value), then this value is computed +automatically, as a function of the peak rate of the device. In any +case, when the value of this parameter is read, it always reports the +current duration, regardless of whether it has been set manually or +computed automatically. + +wr_max_softrt_rate + +Maximum service rate below which a queue is deemed to be associated +with a soft real-time application, and is then weight-raised +accordingly (sectors/sec). + +wr_min_idle_time + +Minimum idle period after which interactive weight-raising may be +reactivated for a queue (in ms). + +wr_rt_max_time + +Maximum weight-raising duration for soft real-time queues (in ms). The +start time from which this duration is considered is automatically +moved forward if the queue is detected to be still soft real-time +before the current soft real-time weight-raising period finishes. + +wr_min_inter_arr_async + +Minimum period between I/O request arrivals after which weight-raising +may be reactivated for an already busy async queue (in ms). + + +4. Group scheduling with BFQ +============================ + +BFQ supports both cgroups-v1 and cgroups-v2 io controllers, namely +blkio and io. In particular, BFQ supports weight-based proportional +share. To activate cgroups support, set BFQ_GROUP_IOSCHED. + +4-1 Service guarantees provided +------------------------------- + +With BFQ, proportional share means true proportional share of the +device bandwidth, according to group weights. For example, a group +with weight 200 gets twice the bandwidth, and not just twice the time, +of a group with weight 100. + +BFQ supports hierarchies (group trees) of any depth. Bandwidth is +distributed among groups and processes in the expected way: for each +group, the children of the group share the whole bandwidth of the +group in proportion to their weights. In particular, this implies +that, for each leaf group, every process of the group receives the +same share of the whole group bandwidth, unless the ioprio of the +process is modified. + +The resource-sharing guarantee for a group may partially or totally +switch from bandwidth to time, if providing bandwidth guarantees to +the group lowers the throughput too much. This switch occurs on a +per-process basis: if a process of a leaf group causes throughput loss +if served in such a way to receive its share of the bandwidth, then +BFQ switches back to just time-based proportional share for that +process. + +4-2 Interface +------------- + +To get proportional sharing of bandwidth with BFQ for a given device, +BFQ must of course be the active scheduler for that device. + +Within each group directory, the names of the files associated with +BFQ-specific cgroup parameters and stats begin with the "bfq." +prefix. So, with cgroups-v1 or cgroups-v2, the full prefix for +BFQ-specific files is "blkio.bfq." or "io.bfq." For example, the group +parameter to set the weight of a group with BFQ is blkio.bfq.weight +or io.bfq.weight. + +Parameters to set +----------------- + +For each group, there is only the following parameter to set. + +weight (namely blkio.bfq.weight or io.bfq-weight): the weight of the +group inside its parent. Available values: 1..10000 (default 100). The +linear mapping between ioprio and weights, described at the beginning +of the tunable section, is still valid, but all weights higher than +IOPRIO_BE_NR*10 are mapped to ioprio 0. + +Recall that, if low-latency is set, then BFQ automatically raises the +weight of the queues associated with interactive and soft real-time +applications. Unset this tunable if you need/want to control weights. + + +[1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O + Scheduler", Proceedings of the First Workshop on Mobile System + Technologies (MST-2015), May 2015. + http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf + +[2] P. Valente and M. Andreolini, "Improving Application + Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of + the 5th Annual International Systems and Storage Conference + (SYSTOR '12), June 2012. + Slightly extended version: + http://algogroup.unimore.it/people/paolo/disk_sched/bfq-v1-suite- + results.pdf diff --git a/Documentation/block/kyber-iosched.txt b/Documentation/block/kyber-iosched.txt new file mode 100644 index 000000000000..e94feacd7edc --- /dev/null +++ b/Documentation/block/kyber-iosched.txt @@ -0,0 +1,14 @@ +Kyber I/O scheduler tunables +=========================== + +The only two tunables for the Kyber scheduler are the target latencies for +reads and synchronous writes. Kyber will throttle requests in order to meet +these target latencies. + +read_lat_nsec +------------- +Target latency for reads (in nanoseconds). + +write_lat_nsec +-------------- +Target latency for synchronous writes (in nanoseconds). diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.txt index c0a3bb5a6e4e..2c1e67058fd3 100644 --- a/Documentation/block/queue-sysfs.txt +++ b/Documentation/block/queue-sysfs.txt @@ -43,11 +43,6 @@ large discards are issued, setting this value lower will make Linux issue smaller discards and potentially help reduce latencies induced by large discard operations. -discard_zeroes_data (RO) ------------------------- -When read, this file will show if the discarded block are zeroed by the -device or not. If its value is '1' the blocks are zeroed otherwise not. - hw_sector_size (RO) ------------------- This is the hardware sector size of the device, in bytes. @@ -192,5 +187,11 @@ scaling back writes. Writing a value of '0' to this file disables the feature. Writing a value of '-1' to this file resets the value to the default setting. +throttle_sample_time (RW) +------------------------- +This is the time window that blk-throttle samples data, in millisecond. +blk-throttle makes decision based on the samplings. Lower time means cgroups +have more smooth throughput, but higher CPU overhead. This exists only when +CONFIG_BLK_DEV_THROTTLING_LOW is enabled. Jens Axboe <jens.axboe@oracle.com>, February 2009 diff --git a/Documentation/blockdev/mflash.txt b/Documentation/blockdev/mflash.txt deleted file mode 100644 index f7e050551487..000000000000 --- a/Documentation/blockdev/mflash.txt +++ /dev/null @@ -1,84 +0,0 @@ -This document describes m[g]flash support in linux. - -Contents - 1. Overview - 2. Reserved area configuration - 3. Example of mflash platform driver registration - -1. Overview - -Mflash and gflash are embedded flash drive. The only difference is mflash is -MCP(Multi Chip Package) device. These two device operate exactly same way. -So the rest mflash repersents mflash and gflash altogether. - -Internally, mflash has nand flash and other hardware logics and supports -2 different operation (ATA, IO) modes. ATA mode doesn't need any new -driver and currently works well under standard IDE subsystem. Actually it's -one chip SSD. IO mode is ATA-like custom mode for the host that doesn't have -IDE interface. - -Following are brief descriptions about IO mode. -A. IO mode based on ATA protocol and uses some custom command. (read confirm, -write confirm) -B. IO mode uses SRAM bus interface. -C. IO mode supports 4kB boot area, so host can boot from mflash. - -2. Reserved area configuration -If host boot from mflash, usually needs raw area for boot loader image. All of -the mflash's block device operation will be taken this value as start offset. -Note that boot loader's size of reserved area and kernel configuration value -must be same. - -3. Example of mflash platform driver registration -Working mflash is very straight forward. Adding platform device stuff to board -configuration file is all. Here is some pseudo example. - -static struct mg_drv_data mflash_drv_data = { - /* If you want to polling driver set to 1 */ - .use_polling = 0, - /* device attribution */ - .dev_attr = MG_BOOT_DEV -}; - -static struct resource mg_mflash_rsc[] = { - /* Base address of mflash */ - [0] = { - .start = 0x08000000, - .end = 0x08000000 + SZ_64K - 1, - .flags = IORESOURCE_MEM - }, - /* mflash interrupt pin */ - [1] = { - .start = IRQ_GPIO(84), - .end = IRQ_GPIO(84), - .flags = IORESOURCE_IRQ - }, - /* mflash reset pin */ - [2] = { - .start = 43, - .end = 43, - .name = MG_RST_PIN, - .flags = IORESOURCE_IO - }, - /* mflash reset-out pin - * If you use mflash as storage device (i.e. other than MG_BOOT_DEV), - * should assign this */ - [3] = { - .start = 51, - .end = 51, - .name = MG_RSTOUT_PIN, - .flags = IORESOURCE_IO - } -}; - -static struct platform_device mflash_dev = { - .name = MG_DEV_NAME, - .id = -1, - .dev = { - .platform_data = &mflash_drv_data, - }, - .num_resources = ARRAY_SIZE(mg_mflash_rsc), - .resource = mg_mflash_rsc -}; - -platform_device_register(&mflash_dev); diff --git a/Documentation/cgroup-v2.txt b/Documentation/cgroup-v2.txt index 3b8449f8ac7e..49d7c997fa1e 100644 --- a/Documentation/cgroup-v2.txt +++ b/Documentation/cgroup-v2.txt @@ -1142,16 +1142,17 @@ used by the kernel. pids.max - A read-write single value file which exists on non-root cgroups. The - default is "max". + A read-write single value file which exists on non-root + cgroups. The default is "max". - Hard limit of number of processes. + Hard limit of number of processes. pids.current - A read-only single value file which exists on all cgroups. + A read-only single value file which exists on all cgroups. - The number of processes currently in the cgroup and its descendants. + The number of processes currently in the cgroup and its + descendants. Organisational operations are not blocked by cgroup policies, so it is possible to have pids.current > pids.max. This can be done by either diff --git a/Documentation/conf.py b/Documentation/conf.py index 7fadb3b83293..08aef4595059 100644 --- a/Documentation/conf.py +++ b/Documentation/conf.py @@ -17,7 +17,7 @@ import os import sphinx # Get Sphinx version -major, minor, patch = map(int, sphinx.__version__.split(".")) +major, minor, patch = sphinx.version_info[:3] # If extensions (or modules to document with autodoc) are in another directory, @@ -29,12 +29,12 @@ from load_config import loadConfig # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. -#needs_sphinx = '1.0' +needs_sphinx = '1.2' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. -extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain'] +extensions = ['kerneldoc', 'rstFlatTable', 'kernel_include', 'cdomain', 'kfigure'] # The name of the math extension changed on Sphinx 1.4 if major == 1 and minor > 3: diff --git a/Documentation/core-api/flexible-arrays.rst b/Documentation/core-api/flexible-arrays.rst new file mode 100644 index 000000000000..b6b85a1b518e --- /dev/null +++ b/Documentation/core-api/flexible-arrays.rst @@ -0,0 +1,130 @@ + +=================================== +Using flexible arrays in the kernel +=================================== + +Large contiguous memory allocations can be unreliable in the Linux kernel. +Kernel programmers will sometimes respond to this problem by allocating +pages with :c:func:`vmalloc()`. This solution not ideal, though. On 32-bit +systems, memory from vmalloc() must be mapped into a relatively small address +space; it's easy to run out. On SMP systems, the page table changes required +by vmalloc() allocations can require expensive cross-processor interrupts on +all CPUs. And, on all systems, use of space in the vmalloc() range increases +pressure on the translation lookaside buffer (TLB), reducing the performance +of the system. + +In many cases, the need for memory from vmalloc() can be eliminated by piecing +together an array from smaller parts; the flexible array library exists to make +this task easier. + +A flexible array holds an arbitrary (within limits) number of fixed-sized +objects, accessed via an integer index. Sparse arrays are handled +reasonably well. Only single-page allocations are made, so memory +allocation failures should be relatively rare. The down sides are that the +arrays cannot be indexed directly, individual object size cannot exceed the +system page size, and putting data into a flexible array requires a copy +operation. It's also worth noting that flexible arrays do no internal +locking at all; if concurrent access to an array is possible, then the +caller must arrange for appropriate mutual exclusion. + +The creation of a flexible array is done with :c:func:`flex_array_alloc()`:: + + #include <linux/flex_array.h> + + struct flex_array *flex_array_alloc(int element_size, + unsigned int total, + gfp_t flags); + +The individual object size is provided by ``element_size``, while total is the +maximum number of objects which can be stored in the array. The flags +argument is passed directly to the internal memory allocation calls. With +the current code, using flags to ask for high memory is likely to lead to +notably unpleasant side effects. + +It is also possible to define flexible arrays at compile time with:: + + DEFINE_FLEX_ARRAY(name, element_size, total); + +This macro will result in a definition of an array with the given name; the +element size and total will be checked for validity at compile time. + +Storing data into a flexible array is accomplished with a call to +:c:func:`flex_array_put()`:: + + int flex_array_put(struct flex_array *array, unsigned int element_nr, + void *src, gfp_t flags); + +This call will copy the data from src into the array, in the position +indicated by ``element_nr`` (which must be less than the maximum specified when +the array was created). If any memory allocations must be performed, flags +will be used. The return value is zero on success, a negative error code +otherwise. + +There might possibly be a need to store data into a flexible array while +running in some sort of atomic context; in this situation, sleeping in the +memory allocator would be a bad thing. That can be avoided by using +``GFP_ATOMIC`` for the flags value, but, often, there is a better way. The +trick is to ensure that any needed memory allocations are done before +entering atomic context, using :c:func:`flex_array_prealloc()`:: + + int flex_array_prealloc(struct flex_array *array, unsigned int start, + unsigned int nr_elements, gfp_t flags); + +This function will ensure that memory for the elements indexed in the range +defined by ``start`` and ``nr_elements`` has been allocated. Thereafter, a +``flex_array_put()`` call on an element in that range is guaranteed not to +block. + +Getting data back out of the array is done with :c:func:`flex_array_get()`:: + + void *flex_array_get(struct flex_array *fa, unsigned int element_nr); + +The return value is a pointer to the data element, or NULL if that +particular element has never been allocated. + +Note that it is possible to get back a valid pointer for an element which +has never been stored in the array. Memory for array elements is allocated +one page at a time; a single allocation could provide memory for several +adjacent elements. Flexible array elements are normally initialized to the +value ``FLEX_ARRAY_FREE`` (defined as 0x6c in <linux/poison.h>), so errors +involving that number probably result from use of unstored array entries. +Note that, if array elements are allocated with ``__GFP_ZERO``, they will be +initialized to zero and this poisoning will not happen. + +Individual elements in the array can be cleared with +:c:func:`flex_array_clear()`:: + + int flex_array_clear(struct flex_array *array, unsigned int element_nr); + +This function will set the given element to ``FLEX_ARRAY_FREE`` and return +zero. If storage for the indicated element is not allocated for the array, +``flex_array_clear()`` will return ``-EINVAL`` instead. Note that clearing an +element does not release the storage associated with it; to reduce the +allocated size of an array, call :c:func:`flex_array_shrink()`:: + + int flex_array_shrink(struct flex_array *array); + +The return value will be the number of pages of memory actually freed. +This function works by scanning the array for pages containing nothing but +``FLEX_ARRAY_FREE`` bytes, so (1) it can be expensive, and (2) it will not work +if the array's pages are allocated with ``__GFP_ZERO``. + +It is possible to remove all elements of an array with a call to +:c:func:`flex_array_free_parts()`:: + + void flex_array_free_parts(struct flex_array *array); + +This call frees all elements, but leaves the array itself in place. +Freeing the entire array is done with :c:func:`flex_array_free()`:: + + void flex_array_free(struct flex_array *array); + +As of this writing, there are no users of flexible arrays in the mainline +kernel. The functions described here are also not exported to modules; +that will probably be fixed when somebody comes up with a need for it. + + +Flexible array functions +------------------------ + +.. kernel-doc:: include/linux/flex_array.h diff --git a/Documentation/core-api/genericirq.rst b/Documentation/core-api/genericirq.rst new file mode 100644 index 000000000000..0054bd48be84 --- /dev/null +++ b/Documentation/core-api/genericirq.rst @@ -0,0 +1,440 @@ +.. include:: <isonum.txt> + +========================== +Linux generic IRQ handling +========================== + +:Copyright: |copy| 2005-2010: Thomas Gleixner +:Copyright: |copy| 2005-2006: Ingo Molnar + +Introduction +============ + +The generic interrupt handling layer is designed to provide a complete +abstraction of interrupt handling for device drivers. It is able to +handle all the different types of interrupt controller hardware. Device +drivers use generic API functions to request, enable, disable and free +interrupts. The drivers do not have to know anything about interrupt +hardware details, so they can be used on different platforms without +code changes. + +This documentation is provided to developers who want to implement an +interrupt subsystem based for their architecture, with the help of the +generic IRQ handling layer. + +Rationale +========= + +The original implementation of interrupt handling in Linux uses the +:c:func:`__do_IRQ` super-handler, which is able to deal with every type of +interrupt logic. + +Originally, Russell King identified different types of handlers to build +a quite universal set for the ARM interrupt handler implementation in +Linux 2.5/2.6. He distinguished between: + +- Level type + +- Edge type + +- Simple type + +During the implementation we identified another type: + +- Fast EOI type + +In the SMP world of the :c:func:`__do_IRQ` super-handler another type was +identified: + +- Per CPU type + +This split implementation of high-level IRQ handlers allows us to +optimize the flow of the interrupt handling for each specific interrupt +type. This reduces complexity in that particular code path and allows +the optimized handling of a given type. + +The original general IRQ implementation used hw_interrupt_type +structures and their ``->ack``, ``->end`` [etc.] callbacks to differentiate +the flow control in the super-handler. This leads to a mix of flow logic +and low-level hardware logic, and it also leads to unnecessary code +duplication: for example in i386, there is an ``ioapic_level_irq`` and an +``ioapic_edge_irq`` IRQ-type which share many of the low-level details but +have different flow handling. + +A more natural abstraction is the clean separation of the 'irq flow' and +the 'chip details'. + +Analysing a couple of architecture's IRQ subsystem implementations +reveals that most of them can use a generic set of 'irq flow' methods +and only need to add the chip-level specific code. The separation is +also valuable for (sub)architectures which need specific quirks in the +IRQ flow itself but not in the chip details - and thus provides a more +transparent IRQ subsystem design. + +Each interrupt descriptor is assigned its own high-level flow handler, +which is normally one of the generic implementations. (This high-level +flow handler implementation also makes it simple to provide +demultiplexing handlers which can be found in embedded platforms on +various architectures.) + +The separation makes the generic interrupt handling layer more flexible +and extensible. For example, an (sub)architecture can use a generic +IRQ-flow implementation for 'level type' interrupts and add a +(sub)architecture specific 'edge type' implementation. + +To make the transition to the new model easier and prevent the breakage +of existing implementations, the :c:func:`__do_IRQ` super-handler is still +available. This leads to a kind of duality for the time being. Over time +the new model should be used in more and more architectures, as it +enables smaller and cleaner IRQ subsystems. It's deprecated for three +years now and about to be removed. + +Known Bugs And Assumptions +========================== + +None (knock on wood). + +Abstraction layers +================== + +There are three main levels of abstraction in the interrupt code: + +1. High-level driver API + +2. High-level IRQ flow handlers + +3. Chip-level hardware encapsulation + +Interrupt control flow +---------------------- + +Each interrupt is described by an interrupt descriptor structure +irq_desc. The interrupt is referenced by an 'unsigned int' numeric +value which selects the corresponding interrupt description structure in +the descriptor structures array. The descriptor structure contains +status information and pointers to the interrupt flow method and the +interrupt chip structure which are assigned to this interrupt. + +Whenever an interrupt triggers, the low-level architecture code calls +into the generic interrupt code by calling :c:func:`desc->handle_irq`. This +high-level IRQ handling function only uses desc->irq_data.chip +primitives referenced by the assigned chip descriptor structure. + +High-level Driver API +--------------------- + +The high-level Driver API consists of following functions: + +- :c:func:`request_irq` + +- :c:func:`free_irq` + +- :c:func:`disable_irq` + +- :c:func:`enable_irq` + +- :c:func:`disable_irq_nosync` (SMP only) + +- :c:func:`synchronize_irq` (SMP only) + +- :c:func:`irq_set_irq_type` + +- :c:func:`irq_set_irq_wake` + +- :c:func:`irq_set_handler_data` + +- :c:func:`irq_set_chip` + +- :c:func:`irq_set_chip_data` + +See the autogenerated function documentation for details. + +High-level IRQ flow handlers +---------------------------- + +The generic layer provides a set of pre-defined irq-flow methods: + +- :c:func:`handle_level_irq` + +- :c:func:`handle_edge_irq` + +- :c:func:`handle_fasteoi_irq` + +- :c:func:`handle_simple_irq` + +- :c:func:`handle_percpu_irq` + +- :c:func:`handle_edge_eoi_irq` + +- :c:func:`handle_bad_irq` + +The interrupt flow handlers (either pre-defined or architecture +specific) are assigned to specific interrupts by the architecture either +during bootup or during device initialization. + +Default flow implementations +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Helper functions +^^^^^^^^^^^^^^^^ + +The helper functions call the chip primitives and are used by the +default flow implementations. The following helper functions are +implemented (simplified excerpt):: + + default_enable(struct irq_data *data) + { + desc->irq_data.chip->irq_unmask(data); + } + + default_disable(struct irq_data *data) + { + if (!delay_disable(data)) + desc->irq_data.chip->irq_mask(data); + } + + default_ack(struct irq_data *data) + { + chip->irq_ack(data); + } + + default_mask_ack(struct irq_data *data) + { + if (chip->irq_mask_ack) { + chip->irq_mask_ack(data); + } else { + chip->irq_mask(data); + chip->irq_ack(data); + } + } + + noop(struct irq_data *data)) + { + } + + + +Default flow handler implementations +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Default Level IRQ flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_level_irq provides a generic implementation for level-triggered +interrupts. + +The following control flow is implemented (simplified excerpt):: + + :c:func:`desc->irq_data.chip->irq_mask_ack`; + handle_irq_event(desc->action); + :c:func:`desc->irq_data.chip->irq_unmask`; + + +Default Fast EOI IRQ flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_fasteoi_irq provides a generic implementation for interrupts, +which only need an EOI at the end of the handler. + +The following control flow is implemented (simplified excerpt):: + + handle_irq_event(desc->action); + :c:func:`desc->irq_data.chip->irq_eoi`; + + +Default Edge IRQ flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_edge_irq provides a generic implementation for edge-triggered +interrupts. + +The following control flow is implemented (simplified excerpt):: + + if (desc->status & running) { + :c:func:`desc->irq_data.chip->irq_mask_ack`; + desc->status |= pending | masked; + return; + } + :c:func:`desc->irq_data.chip->irq_ack`; + desc->status |= running; + do { + if (desc->status & masked) + :c:func:`desc->irq_data.chip->irq_unmask`; + desc->status &= ~pending; + handle_irq_event(desc->action); + } while (status & pending); + desc->status &= ~running; + + +Default simple IRQ flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_simple_irq provides a generic implementation for simple +interrupts. + +.. note:: + + The simple flow handler does not call any handler/chip primitives. + +The following control flow is implemented (simplified excerpt):: + + handle_irq_event(desc->action); + + +Default per CPU flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_percpu_irq provides a generic implementation for per CPU +interrupts. + +Per CPU interrupts are only available on SMP and the handler provides a +simplified version without locking. + +The following control flow is implemented (simplified excerpt):: + + if (desc->irq_data.chip->irq_ack) + :c:func:`desc->irq_data.chip->irq_ack`; + handle_irq_event(desc->action); + if (desc->irq_data.chip->irq_eoi) + :c:func:`desc->irq_data.chip->irq_eoi`; + + +EOI Edge IRQ flow handler +^^^^^^^^^^^^^^^^^^^^^^^^^ + +handle_edge_eoi_irq provides an abnomination of the edge handler +which is solely used to tame a badly wreckaged irq controller on +powerpc/cell. + +Bad IRQ flow handler +^^^^^^^^^^^^^^^^^^^^ + +handle_bad_irq is used for spurious interrupts which have no real +handler assigned.. + +Quirks and optimizations +~~~~~~~~~~~~~~~~~~~~~~~~ + +The generic functions are intended for 'clean' architectures and chips, +which have no platform-specific IRQ handling quirks. If an architecture +needs to implement quirks on the 'flow' level then it can do so by +overriding the high-level irq-flow handler. + +Delayed interrupt disable +~~~~~~~~~~~~~~~~~~~~~~~~~ + +This per interrupt selectable feature, which was introduced by Russell +King in the ARM interrupt implementation, does not mask an interrupt at +the hardware level when :c:func:`disable_irq` is called. The interrupt is kept +enabled and is masked in the flow handler when an interrupt event +happens. This prevents losing edge interrupts on hardware which does not +store an edge interrupt event while the interrupt is disabled at the +hardware level. When an interrupt arrives while the IRQ_DISABLED flag +is set, then the interrupt is masked at the hardware level and the +IRQ_PENDING bit is set. When the interrupt is re-enabled by +:c:func:`enable_irq` the pending bit is checked and if it is set, the interrupt +is resent either via hardware or by a software resend mechanism. (It's +necessary to enable CONFIG_HARDIRQS_SW_RESEND when you want to use +the delayed interrupt disable feature and your hardware is not capable +of retriggering an interrupt.) The delayed interrupt disable is not +configurable. + +Chip-level hardware encapsulation +--------------------------------- + +The chip-level hardware descriptor structure :c:type:`irq_chip` contains all +the direct chip relevant functions, which can be utilized by the irq flow +implementations. + +- ``irq_ack`` + +- ``irq_mask_ack`` - Optional, recommended for performance + +- ``irq_mask`` + +- ``irq_unmask`` + +- ``irq_eoi`` - Optional, required for EOI flow handlers + +- ``irq_retrigger`` - Optional + +- ``irq_set_type`` - Optional + +- ``irq_set_wake`` - Optional + +These primitives are strictly intended to mean what they say: ack means +ACK, masking means masking of an IRQ line, etc. It is up to the flow +handler(s) to use these basic units of low-level functionality. + +__do_IRQ entry point +==================== + +The original implementation :c:func:`__do_IRQ` was an alternative entry point +for all types of interrupts. It no longer exists. + +This handler turned out to be not suitable for all interrupt hardware +and was therefore reimplemented with split functionality for +edge/level/simple/percpu interrupts. This is not only a functional +optimization. It also shortens code paths for interrupts. + +Locking on SMP +============== + +The locking of chip registers is up to the architecture that defines the +chip primitives. The per-irq structure is protected via desc->lock, by +the generic layer. + +Generic interrupt chip +====================== + +To avoid copies of identical implementations of IRQ chips the core +provides a configurable generic interrupt chip implementation. +Developers should check carefully whether the generic chip fits their +needs before implementing the same functionality slightly differently +themselves. + +.. kernel-doc:: kernel/irq/generic-chip.c + :export: + +Structures +========== + +This chapter contains the autogenerated documentation of the structures +which are used in the generic IRQ layer. + +.. kernel-doc:: include/linux/irq.h + :internal: + +.. kernel-doc:: include/linux/interrupt.h + :internal: + +Public Functions Provided +========================= + +This chapter contains the autogenerated documentation of the kernel API +functions which are exported. + +.. kernel-doc:: kernel/irq/manage.c + +.. kernel-doc:: kernel/irq/chip.c + +Internal Functions Provided +=========================== + +This chapter contains the autogenerated documentation of the internal +functions. + +.. kernel-doc:: kernel/irq/irqdesc.c + +.. kernel-doc:: kernel/irq/handle.c + +.. kernel-doc:: kernel/irq/chip.c + +Credits +======= + +The following people have contributed to this document: + +1. Thomas Gleixner tglx@linutronix.de + +2. Ingo Molnar mingo@elte.hu diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index 0d93d8089136..62abd36bfffb 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -11,11 +11,14 @@ Core utilities .. toctree:: :maxdepth: 1 + kernel-api assoc_array atomic_ops cpu_hotplug local_ops workqueue + genericirq + flexible-arrays Interfaces for kernel debugging =============================== diff --git a/Documentation/core-api/kernel-api.rst b/Documentation/core-api/kernel-api.rst new file mode 100644 index 000000000000..9ec8488319dc --- /dev/null +++ b/Documentation/core-api/kernel-api.rst @@ -0,0 +1,346 @@ +==================== +The Linux Kernel API +==================== + +Data Types +========== + +Doubly Linked Lists +------------------- + +.. kernel-doc:: include/linux/list.h + :internal: + +Basic C Library Functions +========================= + +When writing drivers, you cannot in general use routines which are from +the C Library. Some of the functions have been found generally useful +and they are listed below. The behaviour of these functions may vary +slightly from those defined by ANSI, and these deviations are noted in +the text. + +String Conversions +------------------ + +.. kernel-doc:: lib/vsprintf.c + :export: + +.. kernel-doc:: include/linux/kernel.h + :functions: kstrtol + +.. kernel-doc:: include/linux/kernel.h + :functions: kstrtoul + +.. kernel-doc:: lib/kstrtox.c + :export: + +String Manipulation +------------------- + +.. kernel-doc:: lib/string.c + :export: + +Bit Operations +-------------- + +.. kernel-doc:: arch/x86/include/asm/bitops.h + :internal: + +Basic Kernel Library Functions +============================== + +The Linux kernel provides more basic utility functions. + +Bitmap Operations +----------------- + +.. kernel-doc:: lib/bitmap.c + :export: + +.. kernel-doc:: lib/bitmap.c + :internal: + +Command-line Parsing +-------------------- + +.. kernel-doc:: lib/cmdline.c + :export: + +CRC Functions +------------- + +.. kernel-doc:: lib/crc7.c + :export: + +.. kernel-doc:: lib/crc16.c + :export: + +.. kernel-doc:: lib/crc-itu-t.c + :export: + +.. kernel-doc:: lib/crc32.c + +.. kernel-doc:: lib/crc-ccitt.c + :export: + +idr/ida Functions +----------------- + +.. kernel-doc:: include/linux/idr.h + :doc: idr sync + +.. kernel-doc:: lib/idr.c + :doc: IDA description + +.. kernel-doc:: lib/idr.c + :export: + +Memory Management in Linux +========================== + +The Slab Cache +-------------- + +.. kernel-doc:: include/linux/slab.h + :internal: + +.. kernel-doc:: mm/slab.c + :export: + +.. kernel-doc:: mm/util.c + :export: + +User Space Memory Access +------------------------ + +.. kernel-doc:: arch/x86/include/asm/uaccess_32.h + :internal: + +.. kernel-doc:: arch/x86/lib/usercopy_32.c + :export: + +More Memory Management Functions +-------------------------------- + +.. kernel-doc:: mm/readahead.c + :export: + +.. kernel-doc:: mm/filemap.c + :export: + +.. kernel-doc:: mm/memory.c + :export: + +.. kernel-doc:: mm/vmalloc.c + :export: + +.. kernel-doc:: mm/page_alloc.c + :internal: + +.. kernel-doc:: mm/mempool.c + :export: + +.. kernel-doc:: mm/dmapool.c + :export: + +.. kernel-doc:: mm/page-writeback.c + :export: + +.. kernel-doc:: mm/truncate.c + :export: + +Kernel IPC facilities +===================== + +IPC utilities +------------- + +.. kernel-doc:: ipc/util.c + :internal: + +FIFO Buffer +=========== + +kfifo interface +--------------- + +.. kernel-doc:: include/linux/kfifo.h + :internal: + +relay interface support +======================= + +Relay interface support is designed to provide an efficient mechanism +for tools and facilities to relay large amounts of data from kernel +space to user space. + +relay interface +--------------- + +.. kernel-doc:: kernel/relay.c + :export: + +.. kernel-doc:: kernel/relay.c + :internal: + +Module Support +============== + +Module Loading +-------------- + +.. kernel-doc:: kernel/kmod.c + :export: + +Inter Module support +-------------------- + +Refer to the file kernel/module.c for more information. + +Hardware Interfaces +=================== + +Interrupt Handling +------------------ + +.. kernel-doc:: kernel/irq/manage.c + :export: + +DMA Channels +------------ + +.. kernel-doc:: kernel/dma.c + :export: + +Resources Management +-------------------- + +.. kernel-doc:: kernel/resource.c + :internal: + +.. kernel-doc:: kernel/resource.c + :export: + +MTRR Handling +------------- + +.. kernel-doc:: arch/x86/kernel/cpu/mtrr/main.c + :export: + +Security Framework +================== + +.. kernel-doc:: security/security.c + :internal: + +.. kernel-doc:: security/inode.c + :export: + +Audit Interfaces +================ + +.. kernel-doc:: kernel/audit.c + :export: + +.. kernel-doc:: kernel/auditsc.c + :internal: + +.. kernel-doc:: kernel/auditfilter.c + :internal: + +Accounting Framework +==================== + +.. kernel-doc:: kernel/acct.c + :internal: + +Block Devices +============= + +.. kernel-doc:: block/blk-core.c + :export: + +.. kernel-doc:: block/blk-core.c + :internal: + +.. kernel-doc:: block/blk-map.c + :export: + +.. kernel-doc:: block/blk-sysfs.c + :internal: + +.. kernel-doc:: block/blk-settings.c + :export: + +.. kernel-doc:: block/blk-exec.c + :export: + +.. kernel-doc:: block/blk-flush.c + :export: + +.. kernel-doc:: block/blk-lib.c + :export: + +.. kernel-doc:: block/blk-tag.c + :export: + +.. kernel-doc:: block/blk-tag.c + :internal: + +.. kernel-doc:: block/blk-integrity.c + :export: + +.. kernel-doc:: kernel/trace/blktrace.c + :internal: + +.. kernel-doc:: block/genhd.c + :internal: + +.. kernel-doc:: block/genhd.c + :export: + +Char devices +============ + +.. kernel-doc:: fs/char_dev.c + :export: + +Clock Framework +=============== + +The clock framework defines programming interfaces to support software +management of the system clock tree. This framework is widely used with +System-On-Chip (SOC) platforms to support power management and various +devices which may need custom clock rates. Note that these "clocks" +don't relate to timekeeping or real time clocks (RTCs), each of which +have separate frameworks. These :c:type:`struct clk <clk>` +instances may be used to manage for example a 96 MHz signal that is used +to shift bits into and out of peripherals or busses, or otherwise +trigger synchronous state machine transitions in system hardware. + +Power management is supported by explicit software clock gating: unused +clocks are disabled, so the system doesn't waste power changing the +state of transistors that aren't in active use. On some systems this may +be backed by hardware clock gating, where clocks are gated without being +disabled in software. Sections of chips that are powered but not clocked +may be able to retain their last state. This low power state is often +called a *retention mode*. This mode still incurs leakage currents, +especially with finer circuit geometries, but for CMOS circuits power is +mostly used by clocked state changes. + +Power-aware drivers only enable their clocks when the device they manage +is in active use. Also, system sleep states often differ according to +which clock domains are active: while a "standby" state may allow wakeup +from several active domains, a "mem" (suspend-to-RAM) state may require +a more wholesale shutdown of clocks derived from higher speed PLLs and +oscillators, limiting the number of possible wakeup event sources. A +driver's suspend method may need to be aware of system-specific clock +constraints on the target sleep state. + +Some platforms support programmable clock generators. These can be used +by external chips of various kinds, such as other CPUs, multimedia +codecs, and devices with strict requirements for interface clocking. + +.. kernel-doc:: include/linux/clk.h + :internal: diff --git a/Documentation/cpu-freq/boost.txt b/Documentation/cpu-freq/boost.txt deleted file mode 100644 index dd62e1334f0a..000000000000 --- a/Documentation/cpu-freq/boost.txt +++ /dev/null @@ -1,93 +0,0 @@ -Processor boosting control - - - information for users - - -Quick guide for the impatient: --------------------- -/sys/devices/system/cpu/cpufreq/boost -controls the boost setting for the whole system. You can read and write -that file with either "0" (boosting disabled) or "1" (boosting allowed). -Reading or writing 1 does not mean that the system is boosting at this -very moment, but only that the CPU _may_ raise the frequency at it's -discretion. --------------------- - -Introduction -------------- -Some CPUs support a functionality to raise the operating frequency of -some cores in a multi-core package if certain conditions apply, mostly -if the whole chip is not fully utilized and below it's intended thermal -budget. The decision about boost disable/enable is made either at hardware -(e.g. x86) or software (e.g ARM). -On Intel CPUs this is called "Turbo Boost", AMD calls it "Turbo-Core", -in technical documentation "Core performance boost". In Linux we use -the term "boost" for convenience. - -Rationale for disable switch ----------------------------- - -Though the idea is to just give better performance without any user -intervention, sometimes the need arises to disable this functionality. -Most systems offer a switch in the (BIOS) firmware to disable the -functionality at all, but a more fine-grained and dynamic control would -be desirable: -1. While running benchmarks, reproducible results are important. Since - the boosting functionality depends on the load of the whole package, - single thread performance can vary. By explicitly disabling the boost - functionality at least for the benchmark's run-time the system will run - at a fixed frequency and results are reproducible again. -2. To examine the impact of the boosting functionality it is helpful - to do tests with and without boosting. -3. Boosting means overclocking the processor, though under controlled - conditions. By raising the frequency and the voltage the processor - will consume more power than without the boosting, which may be - undesirable for instance for mobile users. Disabling boosting may - save power here, though this depends on the workload. - - -User controlled switch ----------------------- - -To allow the user to toggle the boosting functionality, the cpufreq core -driver exports a sysfs knob to enable or disable it. There is a file: -/sys/devices/system/cpu/cpufreq/boost -which can either read "0" (boosting disabled) or "1" (boosting enabled). -The file is exported only when cpufreq driver supports boosting. -Explicitly changing the permissions and writing to that file anyway will -return EINVAL. - -On supported CPUs one can write either a "0" or a "1" into this file. -This will either disable the boost functionality on all cores in the -whole system (0) or will allow the software or hardware to boost at will -(1). - -Writing a "1" does not explicitly boost the system, but just allows the -CPU to boost at their discretion. Some implementations take external -factors like the chip's temperature into account, so boosting once does -not necessarily mean that it will occur every time even using the exact -same software setup. - - -AMD legacy cpb switch ---------------------- -The AMD powernow-k8 driver used to support a very similar switch to -disable or enable the "Core Performance Boost" feature of some AMD CPUs. -This switch was instantiated in each CPU's cpufreq directory -(/sys/devices/system/cpu[0-9]*/cpufreq) and was called "cpb". -Though the per CPU existence hints at a more fine grained control, the -actual implementation only supported a system-global switch semantics, -which was simply reflected into each CPU's file. Writing a 0 or 1 into it -would pull the other CPUs to the same state. -For compatibility reasons this file and its behavior is still supported -on AMD CPUs, though it is now protected by a config switch -(X86_ACPI_CPUFREQ_CPB). On Intel CPUs this file will never be created, -even with the config option set. -This functionality is considered legacy and will be removed in some future -kernel version. - -More fine grained boosting control ----------------------------------- - -Technically it is possible to switch the boosting functionality at least -on a per package basis, for some CPUs even per core. Currently the driver -does not support it, but this may be implemented in the future. diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.txt index f71e6be26b83..434c49cc7330 100644 --- a/Documentation/cpu-freq/cpu-drivers.txt +++ b/Documentation/cpu-freq/cpu-drivers.txt @@ -231,7 +231,7 @@ the reference implementation in drivers/cpufreq/longrun.c Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION unset. get_intermediate should return a stable intermediate frequency platform wants to -switch to, and target_intermediate() should set CPU to to that frequency, before +switch to, and target_intermediate() should set CPU to that frequency, before jumping to the frequency corresponding to 'index'. Core will take care of sending notifications and driver doesn't have to handle them in target_intermediate() or target_index(). diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt deleted file mode 100644 index 61b3184b6c24..000000000000 --- a/Documentation/cpu-freq/governors.txt +++ /dev/null @@ -1,301 +0,0 @@ - CPU frequency and voltage scaling code in the Linux(TM) kernel - - - L i n u x C P U F r e q - - C P U F r e q G o v e r n o r s - - - information for users and developers - - - - Dominik Brodowski <linux@brodo.de> - some additions and corrections by Nico Golde <nico@ngolde.de> - Rafael J. Wysocki <rafael.j.wysocki@intel.com> - Viresh Kumar <viresh.kumar@linaro.org> - - - - Clock scaling allows you to change the clock speed of the CPUs on the - fly. This is a nice method to save battery power, because the lower - the clock speed, the less power the CPU consumes. - - -Contents: ---------- -1. What is a CPUFreq Governor? - -2. Governors In the Linux Kernel -2.1 Performance -2.2 Powersave -2.3 Userspace -2.4 Ondemand -2.5 Conservative -2.6 Schedutil - -3. The Governor Interface in the CPUfreq Core - -4. References - - -1. What Is A CPUFreq Governor? -============================== - -Most cpufreq drivers (except the intel_pstate and longrun) or even most -cpu frequency scaling algorithms only allow the CPU frequency to be set -to predefined fixed values. In order to offer dynamic frequency -scaling, the cpufreq core must be able to tell these drivers of a -"target frequency". So these specific drivers will be transformed to -offer a "->target/target_index/fast_switch()" call instead of the -"->setpolicy()" call. For set_policy drivers, all stays the same, -though. - -How to decide what frequency within the CPUfreq policy should be used? -That's done using "cpufreq governors". - -Basically, it's the following flow graph: - -CPU can be set to switch independently | CPU can only be set - within specific "limits" | to specific frequencies - - "CPUfreq policy" - consists of frequency limits (policy->{min,max}) - and CPUfreq governor to be used - / \ - / \ - / the cpufreq governor decides - / (dynamically or statically) - / what target_freq to set within - / the limits of policy->{min,max} - / \ - / \ - Using the ->setpolicy call, Using the ->target/target_index/fast_switch call, - the limits and the the frequency closest - "policy" is set. to target_freq is set. - It is assured that it - is within policy->{min,max} - - -2. Governors In the Linux Kernel -================================ - -2.1 Performance ---------------- - -The CPUfreq governor "performance" sets the CPU statically to the -highest frequency within the borders of scaling_min_freq and -scaling_max_freq. - - -2.2 Powersave -------------- - -The CPUfreq governor "powersave" sets the CPU statically to the -lowest frequency within the borders of scaling_min_freq and -scaling_max_freq. - - -2.3 Userspace -------------- - -The CPUfreq governor "userspace" allows the user, or any userspace -program running with UID "root", to set the CPU to a specific frequency -by making a sysfs file "scaling_setspeed" available in the CPU-device -directory. - - -2.4 Ondemand ------------- - -The CPUfreq governor "ondemand" sets the CPU frequency depending on the -current system load. Load estimation is triggered by the scheduler -through the update_util_data->func hook; when triggered, cpufreq checks -the CPU-usage statistics over the last period and the governor sets the -CPU accordingly. The CPU must have the capability to switch the -frequency very quickly. - -Sysfs files: - -* sampling_rate: - - Measured in uS (10^-6 seconds), this is how often you want the kernel - to look at the CPU usage and to make decisions on what to do about the - frequency. Typically this is set to values of around '10000' or more. - It's default value is (cmp. with users-guide.txt): transition_latency - * 1000. Be aware that transition latency is in ns and sampling_rate - is in us, so you get the same sysfs value by default. Sampling rate - should always get adjusted considering the transition latency to set - the sampling rate 750 times as high as the transition latency in the - bash (as said, 1000 is default), do: - - $ echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) > ondemand/sampling_rate - -* sampling_rate_min: - - The sampling rate is limited by the HW transition latency: - transition_latency * 100 - - Or by kernel restrictions: - - If CONFIG_NO_HZ_COMMON is set, the limit is 10ms fixed. - - If CONFIG_NO_HZ_COMMON is not set or nohz=off boot parameter is - used, the limits depend on the CONFIG_HZ option: - HZ=1000: min=20000us (20ms) - HZ=250: min=80000us (80ms) - HZ=100: min=200000us (200ms) - - The highest value of kernel and HW latency restrictions is shown and - used as the minimum sampling rate. - -* up_threshold: - - This defines what the average CPU usage between the samplings of - 'sampling_rate' needs to be for the kernel to make a decision on - whether it should increase the frequency. For example when it is set - to its default value of '95' it means that between the checking - intervals the CPU needs to be on average more than 95% in use to then - decide that the CPU frequency needs to be increased. - -* ignore_nice_load: - - This parameter takes a value of '0' or '1'. When set to '0' (its - default), all processes are counted towards the 'cpu utilisation' - value. When set to '1', the processes that are run with a 'nice' - value will not count (and thus be ignored) in the overall usage - calculation. This is useful if you are running a CPU intensive - calculation on your laptop that you do not care how long it takes to - complete as you can 'nice' it and prevent it from taking part in the - deciding process of whether to increase your CPU frequency. - -* sampling_down_factor: - - This parameter controls the rate at which the kernel makes a decision - on when to decrease the frequency while running at top speed. When set - to 1 (the default) decisions to reevaluate load are made at the same - interval regardless of current clock speed. But when set to greater - than 1 (e.g. 100) it acts as a multiplier for the scheduling interval - for reevaluating load when the CPU is at its top speed due to high - load. This improves performance by reducing the overhead of load - evaluation and helping the CPU stay at its top speed when truly busy, - rather than shifting back and forth in speed. This tunable has no - effect on behavior at lower speeds/lower CPU loads. - -* powersave_bias: - - This parameter takes a value between 0 to 1000. It defines the - percentage (times 10) value of the target frequency that will be - shaved off of the target. For example, when set to 100 -- 10%, when - ondemand governor would have targeted 1000 MHz, it will target - 1000 MHz - (10% of 1000 MHz) = 900 MHz instead. This is set to 0 - (disabled) by default. - - When AMD frequency sensitivity powersave bias driver -- - drivers/cpufreq/amd_freq_sensitivity.c is loaded, this parameter - defines the workload frequency sensitivity threshold in which a lower - frequency is chosen instead of ondemand governor's original target. - The frequency sensitivity is a hardware reported (on AMD Family 16h - Processors and above) value between 0 to 100% that tells software how - the performance of the workload running on a CPU will change when - frequency changes. A workload with sensitivity of 0% (memory/IO-bound) - will not perform any better on higher core frequency, whereas a - workload with sensitivity of 100% (CPU-bound) will perform better - higher the frequency. When the driver is loaded, this is set to 400 by - default -- for CPUs running workloads with sensitivity value below - 40%, a lower frequency is chosen. Unloading the driver or writing 0 - will disable this feature. - - -2.5 Conservative ----------------- - -The CPUfreq governor "conservative", much like the "ondemand" -governor, sets the CPU frequency depending on the current usage. It -differs in behaviour in that it gracefully increases and decreases the -CPU speed rather than jumping to max speed the moment there is any load -on the CPU. This behaviour is more suitable in a battery powered -environment. The governor is tweaked in the same manner as the -"ondemand" governor through sysfs with the addition of: - -* freq_step: - - This describes what percentage steps the cpu freq should be increased - and decreased smoothly by. By default the cpu frequency will increase - in 5% chunks of your maximum cpu frequency. You can change this value - to anywhere between 0 and 100 where '0' will effectively lock your CPU - at a speed regardless of its load whilst '100' will, in theory, make - it behave identically to the "ondemand" governor. - -* down_threshold: - - Same as the 'up_threshold' found for the "ondemand" governor but for - the opposite direction. For example when set to its default value of - '20' it means that if the CPU usage needs to be below 20% between - samples to have the frequency decreased. - -* sampling_down_factor: - - Similar functionality as in "ondemand" governor. But in - "conservative", it controls the rate at which the kernel makes a - decision on when to decrease the frequency while running in any speed. - Load for frequency increase is still evaluated every sampling rate. - - -2.6 Schedutil -------------- - -The "schedutil" governor aims at better integration with the Linux -kernel scheduler. Load estimation is achieved through the scheduler's -Per-Entity Load Tracking (PELT) mechanism, which also provides -information about the recent load [1]. This governor currently does -load based DVFS only for tasks managed by CFS. RT and DL scheduler tasks -are always run at the highest frequency. Unlike all the other -governors, the code is located under the kernel/sched/ directory. - -Sysfs files: - -* rate_limit_us: - - This contains a value in microseconds. The governor waits for - rate_limit_us time before reevaluating the load again, after it has - evaluated the load once. - -For an in-depth comparison with the other governors refer to [2]. - - -3. The Governor Interface in the CPUfreq Core -============================================= - -A new governor must register itself with the CPUfreq core using -"cpufreq_register_governor". The struct cpufreq_governor, which has to -be passed to that function, must contain the following values: - -governor->name - A unique name for this governor. -governor->owner - .THIS_MODULE for the governor module (if appropriate). - -plus a set of hooks to the functions implementing the governor's logic. - -The CPUfreq governor may call the CPU processor driver using one of -these two functions: - -int cpufreq_driver_target(struct cpufreq_policy *policy, - unsigned int target_freq, - unsigned int relation); - -int __cpufreq_driver_target(struct cpufreq_policy *policy, - unsigned int target_freq, - unsigned int relation); - -target_freq must be within policy->min and policy->max, of course. -What's the difference between these two functions? When your governor is -in a direct code path of a call to governor callbacks, like -governor->start(), the policy->rwsem is still held in the cpufreq core, -and there's no need to lock it again (in fact, this would cause a -deadlock). So use __cpufreq_driver_target only in these cases. In all -other cases (for example, when there's a "daemonized" function that -wakes up every second), use cpufreq_driver_target to take policy->rwsem -before the command is passed to the cpufreq driver. - -4. References -============= - -[1] Per-entity load tracking: https://lwn.net/Articles/531853/ -[2] Improvements in CPU frequency management: https://lwn.net/Articles/682391/ - diff --git a/Documentation/cpu-freq/index.txt b/Documentation/cpu-freq/index.txt index ef1d39247b05..03a7cee6ac73 100644 --- a/Documentation/cpu-freq/index.txt +++ b/Documentation/cpu-freq/index.txt @@ -21,8 +21,6 @@ Documents in this directory: amd-powernow.txt - AMD powernow driver specific file. -boost.txt - Frequency boosting support. - core.txt - General description of the CPUFreq core and of CPUFreq notifiers. @@ -32,17 +30,12 @@ cpufreq-nforce2.txt - nVidia nForce2 platform specific file. cpufreq-stats.txt - General description of sysfs cpufreq stats. -governors.txt - What are cpufreq governors and how to - implement them? - index.txt - File index, Mailing list and Links (this document) intel-pstate.txt - Intel pstate cpufreq driver specific file. pcc-cpufreq.txt - PCC cpufreq driver specific file. -user-guide.txt - User Guide to CPUFreq - Mailing List ------------ diff --git a/Documentation/cpu-freq/user-guide.txt b/Documentation/cpu-freq/user-guide.txt deleted file mode 100644 index 391da64e9492..000000000000 --- a/Documentation/cpu-freq/user-guide.txt +++ /dev/null @@ -1,228 +0,0 @@ - CPU frequency and voltage scaling code in the Linux(TM) kernel - - - L i n u x C P U F r e q - - U S E R G U I D E - - - Dominik Brodowski <linux@brodo.de> - - - - Clock scaling allows you to change the clock speed of the CPUs on the - fly. This is a nice method to save battery power, because the lower - the clock speed, the less power the CPU consumes. - - -Contents: ---------- -1. Supported Architectures and Processors -1.1 ARM and ARM64 -1.2 x86 -1.3 sparc64 -1.4 ppc -1.5 SuperH -1.6 Blackfin - -2. "Policy" / "Governor"? -2.1 Policy -2.2 Governor - -3. How to change the CPU cpufreq policy and/or speed -3.1 Preferred interface: sysfs - - - -1. Supported Architectures and Processors -========================================= - -1.1 ARM and ARM64 ------------------ - -Almost all ARM and ARM64 platforms support CPU frequency scaling. - -1.2 x86 -------- - -The following processors for the x86 architecture are supported by cpufreq: - -AMD Elan - SC400, SC410 -AMD mobile K6-2+ -AMD mobile K6-3+ -AMD mobile Duron -AMD mobile Athlon -AMD Opteron -AMD Athlon 64 -Cyrix Media GXm -Intel mobile PIII and Intel mobile PIII-M on certain chipsets -Intel Pentium 4, Intel Xeon -Intel Pentium M (Centrino) -National Semiconductors Geode GX -Transmeta Crusoe -Transmeta Efficeon -VIA Cyrix 3 / C3 -various processors on some ACPI 2.0-compatible systems [*] -And many more - -[*] Only if "ACPI Processor Performance States" are available -to the ACPI<->BIOS interface. - - -1.3 sparc64 ------------ - -The following processors for the sparc64 architecture are supported by -cpufreq: - -UltraSPARC-III - - -1.4 ppc -------- - -Several "PowerBook" and "iBook2" notebooks are supported. -The following POWER processors are supported in powernv mode: -POWER8 -POWER9 - -1.5 SuperH ----------- - -All SuperH processors supporting rate rounding through the clock -framework are supported by cpufreq. - -1.6 Blackfin ------------- - -The following Blackfin processors are supported by cpufreq: - -BF522, BF523, BF524, BF525, BF526, BF527, Rev 0.1 or higher -BF531, BF532, BF533, Rev 0.3 or higher -BF534, BF536, BF537, Rev 0.2 or higher -BF561, Rev 0.3 or higher -BF542, BF544, BF547, BF548, BF549, Rev 0.1 or higher - - -2. "Policy" / "Governor" ? -========================== - -Some CPU frequency scaling-capable processor switch between various -frequencies and operating voltages "on the fly" without any kernel or -user involvement. This guarantees very fast switching to a frequency -which is high enough to serve the user's needs, but low enough to save -power. - - -2.1 Policy ----------- - -On these systems, all you can do is select the lower and upper -frequency limit as well as whether you want more aggressive -power-saving or more instantly available processing power. - - -2.2 Governor ------------- - -On all other cpufreq implementations, these boundaries still need to -be set. Then, a "governor" must be selected. Such a "governor" decides -what speed the processor shall run within the boundaries. One such -"governor" is the "userspace" governor. This one allows the user - or -a yet-to-implement userspace program - to decide what specific speed -the processor shall run at. - - -3. How to change the CPU cpufreq policy and/or speed -==================================================== - -3.1 Preferred Interface: sysfs ------------------------------- - -The preferred interface is located in the sysfs filesystem. If you -mounted it at /sys, the cpufreq interface is located in a subdirectory -"cpufreq" within the cpu-device directory -(e.g. /sys/devices/system/cpu/cpu0/cpufreq/ for the first CPU). - -affected_cpus : List of Online CPUs that require software - coordination of frequency. - -cpuinfo_cur_freq : Current frequency of the CPU as obtained from - the hardware, in KHz. This is the frequency - the CPU actually runs at. - -cpuinfo_min_freq : this file shows the minimum operating - frequency the processor can run at(in kHz) - -cpuinfo_max_freq : this file shows the maximum operating - frequency the processor can run at(in kHz) - -cpuinfo_transition_latency The time it takes on this CPU to - switch between two frequencies in nano - seconds. If unknown or known to be - that high that the driver does not - work with the ondemand governor, -1 - (CPUFREQ_ETERNAL) will be returned. - Using this information can be useful - to choose an appropriate polling - frequency for a kernel governor or - userspace daemon. Make sure to not - switch the frequency too often - resulting in performance loss. - -related_cpus : List of Online + Offline CPUs that need software - coordination of frequency. - -scaling_available_frequencies : List of available frequencies, in KHz. - -scaling_available_governors : this file shows the CPUfreq governors - available in this kernel. You can see the - currently activated governor in - -scaling_cur_freq : Current frequency of the CPU as determined by - the governor and cpufreq core, in KHz. This is - the frequency the kernel thinks the CPU runs - at. - -scaling_driver : this file shows what cpufreq driver is - used to set the frequency on this CPU - -scaling_governor, and by "echoing" the name of another - governor you can change it. Please note - that some governors won't load - they only - work on some specific architectures or - processors. - -scaling_min_freq and -scaling_max_freq show the current "policy limits" (in - kHz). By echoing new values into these - files, you can change these limits. - NOTE: when setting a policy you need to - first set scaling_max_freq, then - scaling_min_freq. - -scaling_setspeed This can be read to get the currently programmed - value by the governor. This can be written to - change the current frequency for a group of - CPUs, represented by a policy. This is supported - currently only by the userspace governor. - -bios_limit : If the BIOS tells the OS to limit a CPU to - lower frequencies, the user can read out the - maximum available frequency from this file. - This typically can happen through (often not - intended) BIOS settings, restrictions - triggered through a service processor or other - BIOS/HW based implementations. - This does not cover thermal ACPI limitations - which can be detected through the generic - thermal driver. - -If you have selected the "userspace" governor which allows you to -set the CPU operating frequency to a specific value, you can read out -the current frequency in - -scaling_setspeed. By "echoing" a new frequency into this - you can change the speed of the CPU, - but only within the limits of - scaling_min_freq and scaling_max_freq. diff --git a/Documentation/cputopology.txt b/Documentation/cputopology.txt index f722f227a73b..127c9d8c2174 100644 --- a/Documentation/cputopology.txt +++ b/Documentation/cputopology.txt @@ -100,7 +100,7 @@ not defined by include/asm-XXX/topology.h: For architectures that don't support books (CONFIG_SCHED_BOOK) there are no default definitions for topology_book_id() and topology_book_cpumask(). -For architectures that don't support drawes (CONFIG_SCHED_DRAWER) there are +For architectures that don't support drawers (CONFIG_SCHED_DRAWER) there are no default definitions for topology_drawer_id() and topology_drawer_cpumask(). Additionally, CPU topology information is provided under diff --git a/Documentation/crypto/api-samples.rst b/Documentation/crypto/api-samples.rst index 0a10819f6107..d021fd96a76d 100644 --- a/Documentation/crypto/api-samples.rst +++ b/Documentation/crypto/api-samples.rst @@ -155,9 +155,9 @@ Code Example For Use of Operational State Memory With SHASH char ctx[]; }; - static struct sdescinit_sdesc(struct crypto_shash *alg) + static struct sdesc init_sdesc(struct crypto_shash *alg) { - struct sdescsdesc; + struct sdesc sdesc; int size; size = sizeof(struct shash_desc) + crypto_shash_descsize(alg); @@ -172,7 +172,7 @@ Code Example For Use of Operational State Memory With SHASH static int calc_hash(struct crypto_shashalg, const unsigned chardata, unsigned int datalen, unsigned chardigest) { - struct sdescsdesc; + struct sdesc sdesc; int ret; sdesc = init_sdesc(alg); diff --git a/Documentation/crypto/asymmetric-keys.txt b/Documentation/crypto/asymmetric-keys.txt index 2b7816dea370..5ad6480e3fb9 100644 --- a/Documentation/crypto/asymmetric-keys.txt +++ b/Documentation/crypto/asymmetric-keys.txt @@ -311,3 +311,54 @@ Functions are provided to register and unregister parsers: Parsers may not have the same name. The names are otherwise only used for displaying in debugging messages. + + +========================= +KEYRING LINK RESTRICTIONS +========================= + +Keyrings created from userspace using add_key can be configured to check the +signature of the key being linked. + +Several restriction methods are available: + + (1) Restrict using the kernel builtin trusted keyring + + - Option string used with KEYCTL_RESTRICT_KEYRING: + - "builtin_trusted" + + The kernel builtin trusted keyring will be searched for the signing + key. The ca_keys kernel parameter also affects which keys are used for + signature verification. + + (2) Restrict using the kernel builtin and secondary trusted keyrings + + - Option string used with KEYCTL_RESTRICT_KEYRING: + - "builtin_and_secondary_trusted" + + The kernel builtin and secondary trusted keyrings will be searched for the + signing key. The ca_keys kernel parameter also affects which keys are used + for signature verification. + + (3) Restrict using a separate key or keyring + + - Option string used with KEYCTL_RESTRICT_KEYRING: + - "key_or_keyring:<key or keyring serial number>[:chain]" + + Whenever a key link is requested, the link will only succeed if the key + being linked is signed by one of the designated keys. This key may be + specified directly by providing a serial number for one asymmetric key, or + a group of keys may be searched for the signing key by providing the + serial number for a keyring. + + When the "chain" option is provided at the end of the string, the keys + within the destination keyring will also be searched for signing keys. + This allows for verification of certificate chains by adding each + cert in order (starting closest to the root) to one keyring. + +In all of these cases, if the signing key is found the signature of the key to +be linked will be verified using the signing key. The requested key is added +to the keyring only if the signature is successfully verified. -ENOKEY is +returned if the parent certificate could not be found, or -EKEYREJECTED is +returned if the signature check fails or the key is blacklisted. Other errors +may be returned if the signature check could not be performed. diff --git a/Documentation/debugging-via-ohci1394.txt b/Documentation/debugging-via-ohci1394.txt index 03703afc4d30..9ff026d22b75 100644 --- a/Documentation/debugging-via-ohci1394.txt +++ b/Documentation/debugging-via-ohci1394.txt @@ -100,8 +100,8 @@ Step-by-step instructions for using firescope with early OHCI initialization: CardBus and even some Express cards which are fully compliant to OHCI-1394 specification are available. If it requires no driver for Windows operating systems, it most likely is. Only specialized shops have cards which are not - compliant, they are based on TI PCILynx chips and require drivers for Win- - dows operating systems. + compliant, they are based on TI PCILynx chips and require drivers for Windows + operating systems. The mentioned kernel log message contains the string "physUB" if the controller implements a writable Physical Upper Bound register. This is diff --git a/Documentation/dev-tools/kcov.rst b/Documentation/dev-tools/kcov.rst index 2c41b713841f..44886c91e112 100644 --- a/Documentation/dev-tools/kcov.rst +++ b/Documentation/dev-tools/kcov.rst @@ -10,7 +10,7 @@ Note that kcov does not aim to collect as much coverage as possible. It aims to collect more or less stable coverage that is function of syscall inputs. To achieve this goal it does not collect coverage in soft/hard interrupts and instrumentation of some inherently non-deterministic parts of kernel is -disbled (e.g. scheduler, locking). +disabled (e.g. scheduler, locking). Usage ----- diff --git a/Documentation/device-mapper/cache.txt b/Documentation/device-mapper/cache.txt index f228604ddbcd..cdfd0feb294e 100644 --- a/Documentation/device-mapper/cache.txt +++ b/Documentation/device-mapper/cache.txt @@ -290,7 +290,7 @@ message, which takes an arbitrary number of cblock ranges. Each cblock range's end value is "one past the end", meaning 5-10 expresses a range of values from 5 to 9. Each cblock must be expressed as a decimal value, in the future a variant message that takes cblock ranges -expressed in hexidecimal may be needed to better support efficient +expressed in hexadecimal may be needed to better support efficient invalidation of larger caches. The cache must be in passthrough mode when invalidate_cblocks is used. diff --git a/Documentation/device-mapper/dm-crypt.txt b/Documentation/device-mapper/dm-crypt.txt index ff1f87bf26e8..3b3e1de21c9c 100644 --- a/Documentation/device-mapper/dm-crypt.txt +++ b/Documentation/device-mapper/dm-crypt.txt @@ -11,14 +11,31 @@ Parameters: <cipher> <key> <iv_offset> <device path> \ <offset> [<#opt_params> <opt_params>] <cipher> - Encryption cipher and an optional IV generation mode. - (In format cipher[:keycount]-chainmode-ivmode[:ivopts]). + Encryption cipher, encryption mode and Initial Vector (IV) generator. + + The cipher specifications format is: + cipher[:keycount]-chainmode-ivmode[:ivopts] Examples: - des aes-cbc-essiv:sha256 - twofish-ecb + aes-xts-plain64 + serpent-xts-plain64 + + Cipher format also supports direct specification with kernel crypt API + format (selected by capi: prefix). The IV specification is the same + as for the first format type. + This format is mainly used for specification of authenticated modes. - /proc/crypto contains supported crypto modes + The crypto API cipher specifications format is: + capi:cipher_api_spec-ivmode[:ivopts] + Examples: + capi:cbc(aes)-essiv:sha256 + capi:xts(aes)-plain64 + Examples of authenticated modes: + capi:gcm(aes)-random + capi:authenc(hmac(sha256),xts(aes))-random + capi:rfc7539(chacha20,poly1305)-random + + The /proc/crypto contains a list of curently loaded crypto modes. <key> Key used for encryption. It is encoded either as a hexadecimal number @@ -93,6 +110,32 @@ submit_from_crypt_cpus thread because it benefits CFQ to have writes submitted using the same context. +integrity:<bytes>:<type> + The device requires additional <bytes> metadata per-sector stored + in per-bio integrity structure. This metadata must by provided + by underlying dm-integrity target. + + The <type> can be "none" if metadata is used only for persistent IV. + + For Authenticated Encryption with Additional Data (AEAD) + the <type> is "aead". An AEAD mode additionally calculates and verifies + integrity for the encrypted device. The additional space is then + used for storing authentication tag (and persistent IV if needed). + +sector_size:<bytes> + Use <bytes> as the encryption unit instead of 512 bytes sectors. + This option can be in range 512 - 4096 bytes and must be power of two. + Virtual device will announce this size as a minimal IO and logical sector. + +iv_large_sectors + IV generators will use sector number counted in <sector_size> units + instead of default 512 bytes sectors. + + For example, if <sector_size> is 4096 bytes, plain64 IV for the second + sector will be 8 (without flag) and 1 if iv_large_sectors is present. + The <iv_offset> must be multiple of <sector_size> (in 512 bytes units) + if this flag is specified. + Example scripts =============== LUKS (Linux Unified Key Setup) is now the preferred way to set up disk diff --git a/Documentation/device-mapper/dm-integrity.txt b/Documentation/device-mapper/dm-integrity.txt new file mode 100644 index 000000000000..f33e3ade7a09 --- /dev/null +++ b/Documentation/device-mapper/dm-integrity.txt @@ -0,0 +1,199 @@ +The dm-integrity target emulates a block device that has additional +per-sector tags that can be used for storing integrity information. + +A general problem with storing integrity tags with every sector is that +writing the sector and the integrity tag must be atomic - i.e. in case of +crash, either both sector and integrity tag or none of them is written. + +To guarantee write atomicity, the dm-integrity target uses journal, it +writes sector data and integrity tags into a journal, commits the journal +and then copies the data and integrity tags to their respective location. + +The dm-integrity target can be used with the dm-crypt target - in this +situation the dm-crypt target creates the integrity data and passes them +to the dm-integrity target via bio_integrity_payload attached to the bio. +In this mode, the dm-crypt and dm-integrity targets provide authenticated +disk encryption - if the attacker modifies the encrypted device, an I/O +error is returned instead of random data. + +The dm-integrity target can also be used as a standalone target, in this +mode it calculates and verifies the integrity tag internally. In this +mode, the dm-integrity target can be used to detect silent data +corruption on the disk or in the I/O path. + + +When loading the target for the first time, the kernel driver will format +the device. But it will only format the device if the superblock contains +zeroes. If the superblock is neither valid nor zeroed, the dm-integrity +target can't be loaded. + +To use the target for the first time: +1. overwrite the superblock with zeroes +2. load the dm-integrity target with one-sector size, the kernel driver + will format the device +3. unload the dm-integrity target +4. read the "provided_data_sectors" value from the superblock +5. load the dm-integrity target with the the target size + "provided_data_sectors" +6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target + with the size "provided_data_sectors" + + +Target arguments: + +1. the underlying block device + +2. the number of reserved sector at the beginning of the device - the + dm-integrity won't read of write these sectors + +3. the size of the integrity tag (if "-" is used, the size is taken from + the internal-hash algorithm) + +4. mode: + D - direct writes (without journal) - in this mode, journaling is + not used and data sectors and integrity tags are written + separately. In case of crash, it is possible that the data + and integrity tag doesn't match. + J - journaled writes - data and integrity tags are written to the + journal and atomicity is guaranteed. In case of crash, + either both data and tag or none of them are written. The + journaled mode degrades write throughput twice because the + data have to be written twice. + R - recovery mode - in this mode, journal is not replayed, + checksums are not checked and writes to the device are not + allowed. This mode is useful for data recovery if the + device cannot be activated in any of the other standard + modes. + +5. the number of additional arguments + +Additional arguments: + +journal_sectors:number + The size of journal, this argument is used only if formatting the + device. If the device is already formatted, the value from the + superblock is used. + +interleave_sectors:number + The number of interleaved sectors. This values is rounded down to + a power of two. If the device is already formatted, the value from + the superblock is used. + +buffer_sectors:number + The number of sectors in one buffer. The value is rounded down to + a power of two. + + The tag area is accessed using buffers, the buffer size is + configurable. The large buffer size means that the I/O size will + be larger, but there could be less I/Os issued. + +journal_watermark:number + The journal watermark in percents. When the size of the journal + exceeds this watermark, the thread that flushes the journal will + be started. + +commit_time:number + Commit time in milliseconds. When this time passes, the journal is + written. The journal is also written immediatelly if the FLUSH + request is received. + +internal_hash:algorithm(:key) (the key is optional) + Use internal hash or crc. + When this argument is used, the dm-integrity target won't accept + integrity tags from the upper target, but it will automatically + generate and verify the integrity tags. + + You can use a crc algorithm (such as crc32), then integrity target + will protect the data against accidental corruption. + You can also use a hmac algorithm (for example + "hmac(sha256):0123456789abcdef"), in this mode it will provide + cryptographic authentication of the data without encryption. + + When this argument is not used, the integrity tags are accepted + from an upper layer target, such as dm-crypt. The upper layer + target should check the validity of the integrity tags. + +journal_crypt:algorithm(:key) (the key is optional) + Encrypt the journal using given algorithm to make sure that the + attacker can't read the journal. You can use a block cipher here + (such as "cbc(aes)") or a stream cipher (for example "chacha20", + "salsa20", "ctr(aes)" or "ecb(arc4)"). + + The journal contains history of last writes to the block device, + an attacker reading the journal could see the last sector nubmers + that were written. From the sector numbers, the attacker can infer + the size of files that were written. To protect against this + situation, you can encrypt the journal. + +journal_mac:algorithm(:key) (the key is optional) + Protect sector numbers in the journal from accidental or malicious + modification. To protect against accidental modification, use a + crc algorithm, to protect against malicious modification, use a + hmac algorithm with a key. + + This option is not needed when using internal-hash because in this + mode, the integrity of journal entries is checked when replaying + the journal. Thus, modified sector number would be detected at + this stage. + +block_size:number + The size of a data block in bytes. The larger the block size the + less overhead there is for per-block integrity metadata. + Supported values are 512, 1024, 2048 and 4096 bytes. If not + specified the default block size is 512 bytes. + +The journal mode (D/J), buffer_sectors, journal_watermark, commit_time can +be changed when reloading the target (load an inactive table and swap the +tables with suspend and resume). The other arguments should not be changed +when reloading the target because the layout of disk data depend on them +and the reloaded target would be non-functional. + + +The layout of the formatted block device: +* reserved sectors (they are not used by this target, they can be used for + storing LUKS metadata or for other purpose), the size of the reserved + area is specified in the target arguments +* superblock (4kiB) + * magic string - identifies that the device was formatted + * version + * log2(interleave sectors) + * integrity tag size + * the number of journal sections + * provided data sectors - the number of sectors that this target + provides (i.e. the size of the device minus the size of all + metadata and padding). The user of this target should not send + bios that access data beyond the "provided data sectors" limit. + * flags - a flag is set if journal_mac is used +* journal + The journal is divided into sections, each section contains: + * metadata area (4kiB), it contains journal entries + every journal entry contains: + * logical sector (specifies where the data and tag should + be written) + * last 8 bytes of data + * integrity tag (the size is specified in the superblock) + every metadata sector ends with + * mac (8-bytes), all the macs in 8 metadata sectors form a + 64-byte value. It is used to store hmac of sector + numbers in the journal section, to protect against a + possibility that the attacker tampers with sector + numbers in the journal. + * commit id + * data area (the size is variable; it depends on how many journal + entries fit into the metadata area) + every sector in the data area contains: + * data (504 bytes of data, the last 8 bytes are stored in + the journal entry) + * commit id + To test if the whole journal section was written correctly, every + 512-byte sector of the journal ends with 8-byte commit id. If the + commit id matches on all sectors in a journal section, then it is + assumed that the section was written correctly. If the commit id + doesn't match, the section was written partially and it should not + be replayed. +* one or more runs of interleaved tags and data. Each run contains: + * tag area - it contains integrity tags. There is one tag for each + sector in the data area + * data area - it contains data sectors. The number of data sectors + in one run must be a power of two. log2 of this value is stored + in the superblock. diff --git a/Documentation/device-mapper/dm-raid.txt b/Documentation/device-mapper/dm-raid.txt index cd2cb2fc85ea..7e06e65586d4 100644 --- a/Documentation/device-mapper/dm-raid.txt +++ b/Documentation/device-mapper/dm-raid.txt @@ -170,6 +170,13 @@ The target is named "raid" and it accepts the following parameters: Takeover/reshape is not possible with a raid4/5/6 journal device; it has to be deconfigured before requesting these. + [journal_mode <mode>] + This option sets the caching mode on journaled raid4/5/6 raid sets + (see 'journal_dev <dev>' above) to 'writethrough' or 'writeback'. + If 'writeback' is selected the journal device has to be resilient + and must not suffer from the 'write hole' problem itself (e.g. use + raid1 or raid10) to avoid a single point of failure. + <#raid_devs>: The number of devices composing the array. Each device consists of two entries. The first is the device containing the metadata (if any); the second is the one containing the @@ -254,7 +261,8 @@ recovery. Here is a fuller description of the individual fields: <data_offset> The current data offset to the start of the user data on each component device of a raid set (see the respective raid parameter to support out-of-place reshaping). - <journal_char> 'A' - active raid4/5/6 journal device. + <journal_char> 'A' - active write-through journal device. + 'a' - active write-back journal device. 'D' - dead journal device. '-' - no journal device. @@ -331,3 +339,7 @@ Version History 'D' on the status line. If '- -' is passed into the constructor, emit '- -' on the table line and '-' as the status line health character. 1.10.0 Add support for raid4/5/6 journal device +1.10.1 Fix data corruption on reshape request +1.11.0 Fix table line argument order + (wrong raid10_copies/raid10_format sequence) +1.11.1 Add raid4/5/6 journal write-back support via journal_mode option diff --git a/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt b/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt index 30c546900b60..07dbb358182c 100644 --- a/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt +++ b/Documentation/devicetree/bindings/arm/marvell/cp110-system-controller0.txt @@ -45,7 +45,7 @@ The following clocks are available: - 1 15 SATA - 1 16 SATA USB - 1 17 Main - - 1 18 SD/MMC + - 1 18 SD/MMC/GOP - 1 21 Slow IO (SPI, NOR, BootROM, I2C, UART) - 1 22 USB3H0 - 1 23 USB3H1 @@ -65,7 +65,7 @@ Required properties: "cpm-audio", "cpm-communit", "cpm-nand", "cpm-ppv2", "cpm-sdio", "cpm-mg-domain", "cpm-mg-core", "cpm-xor1", "cpm-xor0", "cpm-gop-dp", "none", "cpm-pcie_x10", "cpm-pcie_x11", "cpm-pcie_x4", "cpm-pcie-xor", "cpm-sata", - "cpm-sata-usb", "cpm-main", "cpm-sd-mmc", "none", "none", "cpm-slow-io", + "cpm-sata-usb", "cpm-main", "cpm-sd-mmc-gop", "none", "none", "cpm-slow-io", "cpm-usb3h0", "cpm-usb3h1", "cpm-usb3dev", "cpm-eip150", "cpm-eip197"; Example: @@ -78,6 +78,6 @@ Example: gate-clock-output-names = "cpm-audio", "cpm-communit", "cpm-nand", "cpm-ppv2", "cpm-sdio", "cpm-mg-domain", "cpm-mg-core", "cpm-xor1", "cpm-xor0", "cpm-gop-dp", "none", "cpm-pcie_x10", "cpm-pcie_x11", "cpm-pcie_x4", "cpm-pcie-xor", "cpm-sata", - "cpm-sata-usb", "cpm-main", "cpm-sd-mmc", "none", "none", "cpm-slow-io", + "cpm-sata-usb", "cpm-main", "cpm-sd-mmc-gop", "none", "none", "cpm-slow-io", "cpm-usb3h0", "cpm-usb3h1", "cpm-usb3dev", "cpm-eip150", "cpm-eip197"; }; diff --git a/Documentation/devicetree/bindings/ata/ahci-dm816.txt b/Documentation/devicetree/bindings/ata/ahci-dm816.txt new file mode 100644 index 000000000000..f8c535f3541f --- /dev/null +++ b/Documentation/devicetree/bindings/ata/ahci-dm816.txt @@ -0,0 +1,21 @@ +Device tree binding for the TI DM816 AHCI SATA Controller +--------------------------------------------------------- + +Required properties: + - compatible: must be "ti,dm816-ahci" + - reg: physical base address and size of the register region used by + the controller (as defined by the AHCI 1.1 standard) + - interrupts: interrupt specifier (refer to the interrupt binding) + - clocks: list of phandle and clock specifier pairs (or only + phandles for clock providers with '0' defined for + #clock-cells); two clocks must be specified: the functional + clock and an external reference clock + +Example: + + sata: sata@4a140000 { + compatible = "ti,dm816-ahci"; + reg = <0x4a140000 0x10000>; + interrupts = <16>; + clocks = <&sysclk5_ck>, <&sata_refclk>; + }; diff --git a/Documentation/devicetree/bindings/clock/armada3700-xtal-clock.txt b/Documentation/devicetree/bindings/clock/armada3700-xtal-clock.txt index a88f1f05fbd6..4c0807f28cfa 100644 --- a/Documentation/devicetree/bindings/clock/armada3700-xtal-clock.txt +++ b/Documentation/devicetree/bindings/clock/armada3700-xtal-clock.txt @@ -5,6 +5,7 @@ reading the gpio latch register. This node must be a subnode of the node exposing the register address of the GPIO block where the gpio latch is located. +See Documentation/devicetree/bindings/pinctrl/marvell,armada-37xx-pinctrl.txt Required properties: - compatible : shall be one of the following: @@ -16,9 +17,9 @@ Optional properties: output names ("xtal") Example: -gpio1: gpio@13800 { - compatible = "marvell,armada-3700-gpio", "syscon", "simple-mfd"; - reg = <0x13800 0x1000>; +pinctrl_nb: pinctrl-nb@13800 { + compatible = "armada3710-nb-pinctrl", "syscon", "simple-mfd"; + reg = <0x13800 0x100>, <0x13C00 0x20>; xtalclk: xtal-clk { compatible = "marvell,armada-3700-xtal-clock"; diff --git a/Documentation/devicetree/bindings/crypto/st,stm32-crc.txt b/Documentation/devicetree/bindings/crypto/st,stm32-crc.txt new file mode 100644 index 000000000000..3ba92a5e9b36 --- /dev/null +++ b/Documentation/devicetree/bindings/crypto/st,stm32-crc.txt @@ -0,0 +1,16 @@ +* STMicroelectronics STM32 CRC + +Required properties: +- compatible: Should be "st,stm32f7-crc". +- reg: The address and length of the peripheral registers space +- clocks: The input clock of the CRC instance + +Optional properties: none + +Example: + +crc: crc@40023000 { + compatible = "st,stm32f7-crc"; + reg = <0x40023000 0x400>; + clocks = <&rcc 0 12>; +}; diff --git a/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt b/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt new file mode 100644 index 000000000000..7f040edc16fe --- /dev/null +++ b/Documentation/devicetree/bindings/display/amlogic,meson-dw-hdmi.txt @@ -0,0 +1,111 @@ +Amlogic specific extensions to the Synopsys Designware HDMI Controller +====================================================================== + +The Amlogic Meson Synopsys Designware Integration is composed of : +- A Synopsys DesignWare HDMI Controller IP +- A TOP control block controlling the Clocks and PHY +- A custom HDMI PHY in order to convert video to TMDS signal + ___________________________________ +| HDMI TOP |<= HPD +|___________________________________| +| | | +| Synopsys HDMI | HDMI PHY |=> TMDS +| Controller |________________| +|___________________________________|<=> DDC + +The HDMI TOP block only supports HPD sensing. +The Synopsys HDMI Controller interrupt is routed through the +TOP Block interrupt. +Communication to the TOP Block and the Synopsys HDMI Controller is done +via a pair of dedicated addr+read/write registers. +The HDMI PHY is configured by registers in the HHI register block. + +Pixel data arrives in 4:4:4 format from the VENC block and the VPU HDMI mux +selects either the ENCI encoder for the 576i or 480i formats or the ENCP +encoder for all the other formats including interlaced HD formats. + +The VENC uses a DVI encoder on top of the ENCI or ENCP encoders to generate +DVI timings for the HDMI controller. + +Amlogic Meson GXBB, GXL and GXM SoCs families embeds the Synopsys DesignWare +HDMI TX IP version 2.01a with HDCP and I2C & S/PDIF +audio source interfaces. + +Required properties: +- compatible: value should be different for each SoC family as : + - GXBB (S905) : "amlogic,meson-gxbb-dw-hdmi" + - GXL (S905X, S905D) : "amlogic,meson-gxl-dw-hdmi" + - GXM (S912) : "amlogic,meson-gxm-dw-hdmi" + followed by the common "amlogic,meson-gx-dw-hdmi" +- reg: Physical base address and length of the controller's registers. +- interrupts: The HDMI interrupt number +- clocks, clock-names : must have the phandles to the HDMI iahb and isfr clocks, + and the Amlogic Meson venci clocks as described in + Documentation/devicetree/bindings/clock/clock-bindings.txt, + the clocks are soc specific, the clock-names should be "iahb", "isfr", "venci" +- resets, resets-names: must have the phandles to the HDMI apb, glue and phy + resets as described in : + Documentation/devicetree/bindings/reset/reset.txt, + the reset-names should be "hdmitx_apb", "hdmitx", "hdmitx_phy" + +Required nodes: + +The connections to the HDMI ports are modeled using the OF graph +bindings specified in Documentation/devicetree/bindings/graph.txt. + +The following table lists for each supported model the port number +corresponding to each HDMI output and input. + + Port 0 Port 1 +----------------------------------------- + S905 (GXBB) VENC Input TMDS Output + S905X (GXL) VENC Input TMDS Output + S905D (GXL) VENC Input TMDS Output + S912 (GXM) VENC Input TMDS Output + +Example: + +hdmi-connector { + compatible = "hdmi-connector"; + type = "a"; + + port { + hdmi_connector_in: endpoint { + remote-endpoint = <&hdmi_tx_tmds_out>; + }; + }; +}; + +hdmi_tx: hdmi-tx@c883a000 { + compatible = "amlogic,meson-gxbb-dw-hdmi", "amlogic,meson-gx-dw-hdmi"; + reg = <0x0 0xc883a000 0x0 0x1c>; + interrupts = <GIC_SPI 57 IRQ_TYPE_EDGE_RISING>; + resets = <&reset RESET_HDMITX_CAPB3>, + <&reset RESET_HDMI_SYSTEM_RESET>, + <&reset RESET_HDMI_TX>; + reset-names = "hdmitx_apb", "hdmitx", "hdmitx_phy"; + clocks = <&clkc CLKID_HDMI_PCLK>, + <&clkc CLKID_CLK81>, + <&clkc CLKID_GCLK_VENCI_INT0>; + clock-names = "isfr", "iahb", "venci"; + #address-cells = <1>; + #size-cells = <0>; + + /* VPU VENC Input */ + hdmi_tx_venc_port: port@0 { + reg = <0>; + + hdmi_tx_in: endpoint { + remote-endpoint = <&hdmi_tx_out>; + }; + }; + + /* TMDS Output */ + hdmi_tx_tmds_port: port@1 { + reg = <1>; + + hdmi_tx_tmds_out: endpoint { + remote-endpoint = <&hdmi_connector_in>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/brcm,bcm-vc4.txt b/Documentation/devicetree/bindings/display/brcm,bcm-vc4.txt index 34c7fddcea39..ca02d3e4db91 100644 --- a/Documentation/devicetree/bindings/display/brcm,bcm-vc4.txt +++ b/Documentation/devicetree/bindings/display/brcm,bcm-vc4.txt @@ -34,6 +34,9 @@ Optional properties for HDMI: - hpd-gpios: The GPIO pin for HDMI hotplug detect (if it doesn't appear as an interrupt/status bit in the HDMI controller itself). See bindings/pinctrl/brcm,bcm2835-gpio.txt +- dmas: Should contain one entry pointing to the DMA channel used to + transfer audio data +- dma-names: Should contain "audio-rx" Required properties for DPI: - compatible: Should be "brcm,bcm2835-dpi" diff --git a/Documentation/devicetree/bindings/display/bridge/lvds-transmitter.txt b/Documentation/devicetree/bindings/display/bridge/lvds-transmitter.txt new file mode 100644 index 000000000000..fd39ad34c383 --- /dev/null +++ b/Documentation/devicetree/bindings/display/bridge/lvds-transmitter.txt @@ -0,0 +1,64 @@ +Parallel to LVDS Encoder +------------------------ + +This binding supports the parallel to LVDS encoders that don't require any +configuration. + +LVDS is a physical layer specification defined in ANSI/TIA/EIA-644-A. Multiple +incompatible data link layers have been used over time to transmit image data +to LVDS panels. This binding targets devices compatible with the following +specifications only. + +[JEIDA] "Digital Interface Standards for Monitor", JEIDA-59-1999, February +1999 (Version 1.0), Japan Electronic Industry Development Association (JEIDA) +[LDI] "Open LVDS Display Interface", May 1999 (Version 0.95), National +Semiconductor +[VESA] "VESA Notebook Panel Standard", October 2007 (Version 1.0), Video +Electronics Standards Association (VESA) + +Those devices have been marketed under the FPD-Link and FlatLink brand names +among others. + + +Required properties: + +- compatible: Must be "lvds-encoder" + +Required nodes: + +This device has two video ports. Their connections are modeled using the OF +graph bindings specified in Documentation/devicetree/bindings/graph.txt. + +- Video port 0 for parallel input +- Video port 1 for LVDS output + + +Example +------- + +lvds-encoder { + compatible = "lvds-encoder"; + #address-cells = <1>; + #size-cells = <0>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + port@0 { + reg = <0>; + + lvds_enc_in: endpoint { + remote-endpoint = <&display_out_rgb>; + }; + }; + + port@1 { + reg = <1>; + + lvds_enc_out: endpoint { + remote-endpoint = <&lvds_panel_in>; + }; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/bridge/megachips-stdpxxxx-ge-b850v3-fw.txt b/Documentation/devicetree/bindings/display/bridge/megachips-stdpxxxx-ge-b850v3-fw.txt new file mode 100644 index 000000000000..7baa6582517e --- /dev/null +++ b/Documentation/devicetree/bindings/display/bridge/megachips-stdpxxxx-ge-b850v3-fw.txt @@ -0,0 +1,94 @@ +Drivers for the second video output of the GE B850v3: + STDP4028-ge-b850v3-fw bridges (LVDS-DP) + STDP2690-ge-b850v3-fw bridges (DP-DP++) + +The video processing pipeline on the second output on the GE B850v3: + + Host -> LVDS|--(STDP4028)--|DP -> DP|--(STDP2690)--|DP++ -> Video output + +Each bridge has a dedicated flash containing firmware for supporting the custom +design. The result is that, in this design, neither the STDP4028 nor the +STDP2690 behave as the stock bridges would. The compatible strings include the +suffix "-ge-b850v3-fw" to make it clear that the driver is for the bridges with +the firmware specific for the GE B850v3. + +The hardware do not provide control over the video processing pipeline, as the +two bridges behaves as a single one. The only interfaces exposed by the +hardware are EDID, HPD, and interrupts. + +stdp4028-ge-b850v3-fw required properties: + - compatible : "megachips,stdp4028-ge-b850v3-fw" + - reg : I2C bus address + - interrupt-parent : phandle of the interrupt controller that services + interrupts to the device + - interrupts : one interrupt should be described here, as in + <0 IRQ_TYPE_LEVEL_HIGH> + - ports : One input port(reg = <0>) and one output port(reg = <1>) + +stdp2690-ge-b850v3-fw required properties: + compatible : "megachips,stdp2690-ge-b850v3-fw" + - reg : I2C bus address + - ports : One input port(reg = <0>) and one output port(reg = <1>) + +Example: + +&mux2_i2c2 { + status = "okay"; + clock-frequency = <100000>; + + stdp4028@73 { + compatible = "megachips,stdp4028-ge-b850v3-fw"; + #address-cells = <1>; + #size-cells = <0>; + + reg = <0x73>; + + interrupt-parent = <&gpio2>; + interrupts = <0 IRQ_TYPE_LEVEL_HIGH>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + port@0 { + reg = <0>; + stdp4028_in: endpoint { + remote-endpoint = <&lvds0_out>; + }; + }; + port@1 { + reg = <1>; + stdp4028_out: endpoint { + remote-endpoint = <&stdp2690_in>; + }; + }; + }; + }; + + stdp2690@72 { + compatible = "megachips,stdp2690-ge-b850v3-fw"; + #address-cells = <1>; + #size-cells = <0>; + + reg = <0x72>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + port@0 { + reg = <0>; + stdp2690_in: endpoint { + remote-endpoint = <&stdp4028_out>; + }; + }; + + port@1 { + reg = <1>; + stdp2690_out: endpoint { + /* Connector for external display */ + }; + }; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt new file mode 100644 index 000000000000..f6b3f36d422b --- /dev/null +++ b/Documentation/devicetree/bindings/display/bridge/renesas,dw-hdmi.txt @@ -0,0 +1,75 @@ +Renesas Gen3 DWC HDMI TX Encoder +================================ + +The HDMI transmitter is a Synopsys DesignWare HDMI 1.4 TX controller IP +with a companion PHY IP. + +These DT bindings follow the Synopsys DWC HDMI TX bindings defined in +Documentation/devicetree/bindings/display/bridge/dw_hdmi.txt with the +following device-specific properties. + + +Required properties: + +- compatible : Shall contain one or more of + - "renesas,r8a7795-hdmi" for R8A7795 (R-Car H3) compatible HDMI TX + - "renesas,rcar-gen3-hdmi" for the generic R-Car Gen3 compatible HDMI TX + + When compatible with generic versions, nodes must list the SoC-specific + version corresponding to the platform first, followed by the + family-specific version. + +- reg: See dw_hdmi.txt. +- interrupts: HDMI interrupt number +- clocks: See dw_hdmi.txt. +- clock-names: Shall contain "iahb" and "isfr" as defined in dw_hdmi.txt. +- ports: See dw_hdmi.txt. The DWC HDMI shall have one port numbered 0 + corresponding to the video input of the controller and one port numbered 1 + corresponding to its HDMI output. Each port shall have a single endpoint. + +Optional properties: + +- power-domains: Shall reference the power domain that contains the DWC HDMI, + if any. + + +Example: + + hdmi0: hdmi0@fead0000 { + compatible = "renesas,r8a7795-dw-hdmi"; + reg = <0 0xfead0000 0 0x10000>; + interrupts = <0 389 IRQ_TYPE_LEVEL_HIGH>; + clocks = <&cpg CPG_CORE R8A7795_CLK_S0D4>, <&cpg CPG_MOD 729>; + clock-names = "iahb", "isfr"; + power-domains = <&sysc R8A7795_PD_ALWAYS_ON>; + status = "disabled"; + + ports { + #address-cells = <1>; + #size-cells = <0>; + port@0 { + reg = <0>; + dw_hdmi0_in: endpoint { + remote-endpoint = <&du_out_hdmi0>; + }; + }; + port@1 { + reg = <1>; + rcar_dw_hdmi0_out: endpoint { + remote-endpoint = <&hdmi0_con>; + }; + }; + }; + }; + + hdmi0-out { + compatible = "hdmi-connector"; + label = "HDMI0 OUT"; + type = "a"; + + port { + hdmi0_con: endpoint { + remote-endpoint = <&rcar_dw_hdmi0_out>; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/display/exynos/exynos_dsim.txt b/Documentation/devicetree/bindings/display/exynos/exynos_dsim.txt index a78265993665..ca5204b3bc21 100644 --- a/Documentation/devicetree/bindings/display/exynos/exynos_dsim.txt +++ b/Documentation/devicetree/bindings/display/exynos/exynos_dsim.txt @@ -4,7 +4,6 @@ Required properties: - compatible: value should be one of the following "samsung,exynos3250-mipi-dsi" /* for Exynos3250/3472 SoCs */ "samsung,exynos4210-mipi-dsi" /* for Exynos4 SoCs */ - "samsung,exynos4415-mipi-dsi" /* for Exynos4415 SoC */ "samsung,exynos5410-mipi-dsi" /* for Exynos5410/5420/5440 SoCs */ "samsung,exynos5422-mipi-dsi" /* for Exynos5422/5800 SoCs */ "samsung,exynos5433-mipi-dsi" /* for Exynos5433 SoCs */ diff --git a/Documentation/devicetree/bindings/display/exynos/samsung-fimd.txt b/Documentation/devicetree/bindings/display/exynos/samsung-fimd.txt index 18645e0228b0..5837402c3ade 100644 --- a/Documentation/devicetree/bindings/display/exynos/samsung-fimd.txt +++ b/Documentation/devicetree/bindings/display/exynos/samsung-fimd.txt @@ -11,7 +11,6 @@ Required properties: "samsung,s5pv210-fimd"; /* for S5PV210 SoC */ "samsung,exynos3250-fimd"; /* for Exynos3250/3472 SoCs */ "samsung,exynos4210-fimd"; /* for Exynos4 SoCs */ - "samsung,exynos4415-fimd"; /* for Exynos4415 SoC */ "samsung,exynos5250-fimd"; /* for Exynos5250 SoCs */ "samsung,exynos5420-fimd"; /* for Exynos5420/5422/5800 SoCs */ diff --git a/Documentation/devicetree/bindings/display/imx/fsl-imx-drm.txt b/Documentation/devicetree/bindings/display/imx/fsl-imx-drm.txt index 971c3eedb1c7..fa01db7eb66c 100644 --- a/Documentation/devicetree/bindings/display/imx/fsl-imx-drm.txt +++ b/Documentation/devicetree/bindings/display/imx/fsl-imx-drm.txt @@ -21,13 +21,19 @@ Freescale i.MX IPUv3 ==================== Required properties: -- compatible: Should be "fsl,<chip>-ipu" +- compatible: Should be "fsl,<chip>-ipu" where <chip> is one of + - imx51 + - imx53 + - imx6q + - imx6qp - reg: should be register base and length as documented in the datasheet - interrupts: Should contain sync interrupt and error interrupt, in this order. - resets: phandle pointing to the system reset controller and reset line index, see reset/fsl,imx-src.txt for details +Additional required properties for fsl,imx6qp-ipu: +- fsl,prg: phandle to prg node associated with this IPU instance Optional properties: - port@[0-3]: Port nodes with endpoint definitions as defined in Documentation/devicetree/bindings/media/video-interfaces.txt. @@ -53,6 +59,57 @@ ipu: ipu@18000000 { }; }; +Freescale i.MX PRE (Prefetch Resolve Engine) +============================================ + +Required properties: +- compatible: should be "fsl,imx6qp-pre" +- reg: should be register base and length as documented in the + datasheet +- clocks : phandle to the PRE axi clock input, as described + in Documentation/devicetree/bindings/clock/clock-bindings.txt and + Documentation/devicetree/bindings/clock/imx6q-clock.txt. +- clock-names: should be "axi" +- interrupts: should contain the PRE interrupt +- fsl,iram: phandle pointing to the mmio-sram device node, that should be + used for the PRE SRAM double buffer. + +example: + +pre@21c8000 { + compatible = "fsl,imx6qp-pre"; + reg = <0x021c8000 0x1000>; + interrupts = <GIC_SPI 90 IRQ_TYPE_EDGE_RISING>; + clocks = <&clks IMX6QDL_CLK_PRE0>; + clock-names = "axi"; + fsl,iram = <&ocram2>; +}; + +Freescale i.MX PRG (Prefetch Resolve Gasket) +============================================ + +Required properties: +- compatible: should be "fsl,imx6qp-prg" +- reg: should be register base and length as documented in the + datasheet +- clocks : phandles to the PRG ipg and axi clock inputs, as described + in Documentation/devicetree/bindings/clock/clock-bindings.txt and + Documentation/devicetree/bindings/clock/imx6q-clock.txt. +- clock-names: should be "ipg" and "axi" +- fsl,pres: phandles to the PRE units attached to this PRG, with the fixed + PRE as the first entry and the muxable PREs following. + +example: + +prg@21cc000 { + compatible = "fsl,imx6qp-prg"; + reg = <0x021cc000 0x1000>; + clocks = <&clks IMX6QDL_CLK_PRG0_APB>, + <&clks IMX6QDL_CLK_PRG0_AXI>; + clock-names = "ipg", "axi"; + fsl,pres = <&pre1>, <&pre2>, <&pre3>; +}; + Parallel display support ======================== diff --git a/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt b/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt index 708f5664a316..383183a89164 100644 --- a/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt +++ b/Documentation/devicetree/bindings/display/mediatek/mediatek,disp.txt @@ -40,6 +40,7 @@ Required properties (all function blocks): "mediatek,<chip>-dpi" - DPI controller, see mediatek,dpi.txt "mediatek,<chip>-disp-mutex" - display mutex "mediatek,<chip>-disp-od" - overdrive + the supported chips are mt2701 and mt8173. - reg: Physical base address and length of the function block register space - interrupts: The interrupt signal from the function block (required, except for merge and split function blocks). @@ -54,6 +55,7 @@ Required properties (DMA function blocks): "mediatek,<chip>-disp-ovl" "mediatek,<chip>-disp-rdma" "mediatek,<chip>-disp-wdma" + the supported chips are mt2701 and mt8173. - larb: Should contain a phandle pointing to the local arbiter device as defined in Documentation/devicetree/bindings/memory-controllers/mediatek,smi-larb.txt - iommus: Should point to the respective IOMMU block with master port as diff --git a/Documentation/devicetree/bindings/display/mediatek/mediatek,dsi.txt b/Documentation/devicetree/bindings/display/mediatek/mediatek,dsi.txt index 2b1585a34b85..fadf327c7cdf 100644 --- a/Documentation/devicetree/bindings/display/mediatek/mediatek,dsi.txt +++ b/Documentation/devicetree/bindings/display/mediatek/mediatek,dsi.txt @@ -7,6 +7,7 @@ channel output. Required properties: - compatible: "mediatek,<chip>-dsi" + the supported chips are mt2701 and mt8173. - reg: Physical base address and length of the controller's registers - interrupts: The interrupt signal from the function block. - clocks: device clocks @@ -25,6 +26,7 @@ The MIPI TX configuration module controls the MIPI D-PHY. Required properties: - compatible: "mediatek,<chip>-mipi-tx" + the supported chips are mt2701 and mt8173. - reg: Physical base address and length of the controller's registers - clocks: PLL reference clock - clock-output-names: name of the output clock line to the DSI encoder diff --git a/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt b/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt new file mode 100644 index 000000000000..6812280cb109 --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/ampire,am-480272h3tmqw-t01h.txt @@ -0,0 +1,26 @@ +Ampire AM-480272H3TMQW-T01H 4.3" WQVGA TFT LCD panel + +This binding is compatible with the simple-panel binding, which is specified +in simple-panel.txt in this directory. + +Required properties: +- compatible: should be "ampire,am-480272h3tmqw-t01h" + +Optional properties: +- power-supply: regulator to provide the supply voltage +- enable-gpios: GPIO pin to enable or disable the panel +- backlight: phandle of the backlight device attached to the panel + +Optional nodes: +- Video port for RGB input. + +Example: + panel_rgb: panel-rgb { + compatible = "ampire,am-480272h3tmqw-t01h"; + enable-gpios = <&gpioa 8 1>; + port { + panel_in_rgb: endpoint { + remote-endpoint = <&controller_out_rgb>; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt new file mode 100644 index 000000000000..ced0121aed7d --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa104xd12.txt @@ -0,0 +1,47 @@ +Mitsubishi AA204XD12 LVDS Display Panel +======================================= + +The AA104XD12 is a 10.4" XGA TFT-LCD display panel. + +These DT bindings follow the LVDS panel bindings defined in panel-lvds.txt +with the following device-specific properties. + + +Required properties: + +- compatible: Shall contain "mitsubishi,aa121td01" and "panel-lvds", in that + order. +- vcc-supply: Reference to the regulator powering the panel VCC pins. + + +Example +------- + +panel { + compatible = "mitsubishi,aa104xd12", "panel-lvds"; + vcc-supply = <&vcc_3v3>; + + width-mm = <210>; + height-mm = <158>; + + data-mapping = "jeida-24"; + + panel-timing { + /* 1024x768 @65Hz */ + clock-frequency = <65000000>; + hactive = <1024>; + vactive = <768>; + hsync-len = <136>; + hfront-porch = <20>; + hback-porch = <160>; + vfront-porch = <3>; + vback-porch = <29>; + vsync-len = <6>; + }; + + port { + panel_in: endpoint { + remote-endpoint = <&lvds_encoder>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt new file mode 100644 index 000000000000..d6e1097504fe --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/mitsubishi,aa121td01.txt @@ -0,0 +1,47 @@ +Mitsubishi AA121TD01 LVDS Display Panel +======================================= + +The AA121TD01 is a 12.1" WXGA TFT-LCD display panel. + +These DT bindings follow the LVDS panel bindings defined in panel-lvds.txt +with the following device-specific properties. + + +Required properties: + +- compatible: Shall contain "mitsubishi,aa121td01" and "panel-lvds", in that + order. +- vcc-supply: Reference to the regulator powering the panel VCC pins. + + +Example +------- + +panel { + compatible = "mitsubishi,aa121td01", "panel-lvds"; + vcc-supply = <&vcc_3v3>; + + width-mm = <261>; + height-mm = <163>; + + data-mapping = "jeida-24"; + + panel-timing { + /* 1280x800 @60Hz */ + clock-frequency = <71000000>; + hactive = <1280>; + vactive = <800>; + hsync-len = <70>; + hfront-porch = <20>; + hback-porch = <70>; + vsync-len = <5>; + vfront-porch = <3>; + vback-porch = <15>; + }; + + port { + panel_in: endpoint { + remote-endpoint = <&lvds_encoder>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/panel/panel-common.txt b/Documentation/devicetree/bindings/display/panel/panel-common.txt new file mode 100644 index 000000000000..ec52c472c845 --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/panel-common.txt @@ -0,0 +1,91 @@ +Common Properties for Display Panel +=================================== + +This document defines device tree properties common to several classes of +display panels. It doesn't constitue a device tree binding specification by +itself but is meant to be referenced by device tree bindings. + +When referenced from panel device tree bindings the properties defined in this +document are defined as follows. The panel device tree bindings are +responsible for defining whether each property is required or optional. + + +Descriptive Properties +---------------------- + +- width-mm, +- height-mm: The width-mm and height-mm specify the width and height of the + physical area where images are displayed. These properties are expressed in + millimeters and rounded to the closest unit. + +- label: The label property specifies a symbolic name for the panel as a + string suitable for use by humans. It typically contains a name inscribed on + the system (e.g. as an affixed label) or specified in the system's + documentation (e.g. in the user's manual). + + If no such name exists, and unless the property is mandatory according to + device tree bindings, it shall rather be omitted than constructed of + non-descriptive information. For instance an LCD panel in a system that + contains a single panel shall not be labelled "LCD" if that name is not + inscribed on the system or used in a descriptive fashion in system + documentation. + + +Display Timings +--------------- + +- panel-timing: Most display panels are restricted to a single resolution and + require specific display timings. The panel-timing subnode expresses those + timings as specified in the timing subnode section of the display timing + bindings defined in + Documentation/devicetree/bindings/display/display-timing.txt. + + +Connectivity +------------ + +- ports: Panels receive video data through one or multiple connections. While + the nature of those connections is specific to the panel type, the + connectivity is expressed in a standard fashion using ports as specified in + the device graph bindings defined in + Documentation/devicetree/bindings/graph.txt. + +- ddc-i2c-bus: Some panels expose EDID information through an I2C-compatible + bus such as DDC2 or E-DDC. For such panels the ddc-i2c-bus contains a + phandle to the system I2C controller connected to that bus. + + +Control I/Os +------------ + +Many display panels can be controlled through pins driven by GPIOs. The nature +and timing of those control signals are device-specific and left for panel +device tree bindings to specify. The following GPIO specifiers can however be +used for panels that implement compatible control signals. + +- enable-gpios: Specifier for a GPIO connected to the panel enable control + signal. The enable signal is active high and enables operation of the panel. + This property can also be used for panels implementing an active low power + down signal, which is a negated version of the enable signal. Active low + enable signals (or active high power down signals) can be supported by + inverting the GPIO specifier polarity flag. + + Note that the enable signal control panel operation only and must not be + confused with a backlight enable signal. + +- reset-gpios: Specifier for a GPIO coonnected to the panel reset control + signal. The reset signal is active low and resets the panel internal logic + while active. Active high reset signals can be supported by inverting the + GPIO specifier polarity flag. + + +Backlight +--------- + +Most display panels include a backlight. Some of them also include a backlight +controller exposed through a control bus such as I2C or DSI. Others expose +backlight control through GPIO, PWM or other signals connected to an external +backlight controller. + +- backlight: For panels whose backlight is controlled by an external backlight + controller, this property contains a phandle that references the controller. diff --git a/Documentation/devicetree/bindings/display/panel/panel-dpi.txt b/Documentation/devicetree/bindings/display/panel/panel-dpi.txt index d4add13e592d..6b203bc4d932 100644 --- a/Documentation/devicetree/bindings/display/panel/panel-dpi.txt +++ b/Documentation/devicetree/bindings/display/panel/panel-dpi.txt @@ -9,6 +9,7 @@ Optional properties: - enable-gpios: panel enable gpio - reset-gpios: GPIO to control the RESET pin - vcc-supply: phandle of regulator that will be used to enable power to the display +- backlight: phandle of the backlight device Required nodes: - "panel-timing" containing video timings @@ -22,6 +23,8 @@ lcd0: display@0 { compatible = "samsung,lte430wq-f0c", "panel-dpi"; label = "lcd"; + backlight = <&backlight>; + port { lcd_in: endpoint { remote-endpoint = <&dpi_out>; diff --git a/Documentation/devicetree/bindings/display/panel/panel-lvds.txt b/Documentation/devicetree/bindings/display/panel/panel-lvds.txt new file mode 100644 index 000000000000..b938269f841e --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/panel-lvds.txt @@ -0,0 +1,120 @@ +LVDS Display Panel +================== + +LVDS is a physical layer specification defined in ANSI/TIA/EIA-644-A. Multiple +incompatible data link layers have been used over time to transmit image data +to LVDS panels. This bindings supports display panels compatible with the +following specifications. + +[JEIDA] "Digital Interface Standards for Monitor", JEIDA-59-1999, February +1999 (Version 1.0), Japan Electronic Industry Development Association (JEIDA) +[LDI] "Open LVDS Display Interface", May 1999 (Version 0.95), National +Semiconductor +[VESA] "VESA Notebook Panel Standard", October 2007 (Version 1.0), Video +Electronics Standards Association (VESA) + +Device compatible with those specifications have been marketed under the +FPD-Link and FlatLink brands. + + +Required properties: + +- compatible: Shall contain "panel-lvds" in addition to a mandatory + panel-specific compatible string defined in individual panel bindings. The + "panel-lvds" value shall never be used on its own. +- width-mm: See panel-common.txt. +- height-mm: See panel-common.txt. +- data-mapping: The color signals mapping order, "jeida-18", "jeida-24" + or "vesa-24". + +Optional properties: + +- label: See panel-common.txt. +- gpios: See panel-common.txt. +- backlight: See panel-common.txt. +- data-mirror: If set, reverse the bit order described in the data mappings + below on all data lanes, transmitting bits for slots 6 to 0 instead of + 0 to 6. + +Required nodes: + +- panel-timing: See panel-common.txt. +- ports: See panel-common.txt. These bindings require a single port subnode + corresponding to the panel LVDS input. + + +LVDS data mappings are defined as follows. + +- "jeida-18" - 18-bit data mapping compatible with the [JEIDA], [LDI] and + [VESA] specifications. Data are transferred as follows on 3 LVDS lanes. + +Slot 0 1 2 3 4 5 6 + ________________ _________________ +Clock \_______________________/ + ______ ______ ______ ______ ______ ______ ______ +DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__>< +DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__>< +DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__>< + +- "jeida-24" - 24-bit data mapping compatible with the [DSIM] and [LDI] + specifications. Data are transferred as follows on 4 LVDS lanes. + +Slot 0 1 2 3 4 5 6 + ________________ _________________ +Clock \_______________________/ + ______ ______ ______ ______ ______ ______ ______ +DATA0 ><__G2__><__R7__><__R6__><__R5__><__R4__><__R3__><__R2__>< +DATA1 ><__B3__><__B2__><__G7__><__G6__><__G5__><__G4__><__G3__>< +DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B7__><__B6__><__B5__><__B4__>< +DATA3 ><_CTL3_><__B1__><__B0__><__G1__><__G0__><__R1__><__R0__>< + +- "vesa-24" - 24-bit data mapping compatible with the [VESA] specification. + Data are transferred as follows on 4 LVDS lanes. + +Slot 0 1 2 3 4 5 6 + ________________ _________________ +Clock \_______________________/ + ______ ______ ______ ______ ______ ______ ______ +DATA0 ><__G0__><__R5__><__R4__><__R3__><__R2__><__R1__><__R0__>< +DATA1 ><__B1__><__B0__><__G5__><__G4__><__G3__><__G2__><__G1__>< +DATA2 ><_CTL2_><_CTL1_><_CTL0_><__B5__><__B4__><__B3__><__B2__>< +DATA3 ><_CTL3_><__B7__><__B6__><__G7__><__G6__><__R7__><__R6__>< + +Control signals are mapped as follows. + +CTL0: HSync +CTL1: VSync +CTL2: Data Enable +CTL3: 0 + + +Example +------- + +panel { + compatible = "mitsubishi,aa121td01", "panel-lvds"; + + width-mm = <261>; + height-mm = <163>; + + data-mapping = "jeida-24"; + + panel-timing { + /* 1280x800 @60Hz */ + clock-frequency = <71000000>; + hactive = <1280>; + vactive = <800>; + hsync-len = <70>; + hfront-porch = <20>; + hback-porch = <70>; + vsync-len = <5>; + vfront-porch = <3>; + vback-porch = <15>; + }; + + port { + panel_in: endpoint { + remote-endpoint = <&lvds_encoder>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/panel/samsung,s6e3ha2.txt b/Documentation/devicetree/bindings/display/panel/samsung,s6e3ha2.txt new file mode 100644 index 000000000000..18854f4c8376 --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/samsung,s6e3ha2.txt @@ -0,0 +1,28 @@ +Samsung S6E3HA2 5.7" 1440x2560 AMOLED panel + +Required properties: + - compatible: "samsung,s6e3ha2" + - reg: the virtual channel number of a DSI peripheral + - vdd3-supply: I/O voltage supply + - vci-supply: voltage supply for analog circuits + - reset-gpios: a GPIO spec for the reset pin (active low) + - enable-gpios: a GPIO spec for the panel enable pin (active high) + +Optional properties: + - te-gpios: a GPIO spec for the tearing effect synchronization signal + gpio pin (active high) + +Example: +&dsi { + ... + + panel@0 { + compatible = "samsung,s6e3ha2"; + reg = <0>; + vdd3-supply = <&ldo27_reg>; + vci-supply = <&ldo28_reg>; + reset-gpios = <&gpg0 0 GPIO_ACTIVE_LOW>; + enable-gpios = <&gpf1 5 GPIO_ACTIVE_HIGH>; + te-gpios = <&gpf1 3 GPIO_ACTIVE_HIGH>; + }; +}; diff --git a/Documentation/devicetree/bindings/display/panel/sitronix,st7789v.txt b/Documentation/devicetree/bindings/display/panel/sitronix,st7789v.txt new file mode 100644 index 000000000000..c6995dde641b --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/sitronix,st7789v.txt @@ -0,0 +1,37 @@ +Sitronix ST7789V RGB panel with SPI control bus + +Required properties: + - compatible: "sitronix,st7789v" + - reg: Chip select of the panel on the SPI bus + - reset-gpios: a GPIO phandle for the reset pin + - power-supply: phandle of the regulator that provides the supply voltage + +Optional properties: + - backlight: phandle to the backlight used + +The generic bindings for the SPI slaves documented in [1] also applies + +The device node can contain one 'port' child node with one child +'endpoint' node, according to the bindings defined in [2]. This +node should describe panel's video bus. + +[1]: Documentation/devicetree/bindings/spi/spi-bus.txt +[2]: Documentation/devicetree/bindings/graph.txt + +Example: + +panel@0 { + compatible = "sitronix,st7789v"; + reg = <0>; + reset-gpios = <&pio 6 11 GPIO_ACTIVE_LOW>; + backlight = <&pwm_bl>; + spi-max-frequency = <100000>; + spi-cpol; + spi-cpha; + + port { + panel_input: endpoint { + remote-endpoint = <&tcon0_out_panel>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/display/panel/winstar,wf35ltiacd.txt b/Documentation/devicetree/bindings/display/panel/winstar,wf35ltiacd.txt new file mode 100644 index 000000000000..2a7e6e3ba64c --- /dev/null +++ b/Documentation/devicetree/bindings/display/panel/winstar,wf35ltiacd.txt @@ -0,0 +1,48 @@ +Winstar Display Corporation 3.5" QVGA (320x240) TFT LCD panel + +Required properties: +- compatible: should be "winstar,wf35ltiacd" +- power-supply: regulator to provide the VCC supply voltage (3.3 volts) + +This binding is compatible with the simple-panel binding, which is specified +in simple-panel.txt in this directory. + +Example: + backlight: backlight { + compatible = "pwm-backlight"; + pwms = <&hlcdc_pwm 0 50000 PWM_POLARITY_INVERTED>; + brightness-levels = <0 31 63 95 127 159 191 223 255>; + default-brightness-level = <191>; + power-supply = <&bl_reg>; + }; + + bl_reg: backlight_regulator { + compatible = "regulator-fixed"; + regulator-name = "backlight-power-supply"; + regulator-min-microvolt = <5000000>; + regulator-max-microvolt = <5000000>; + }; + + panel: panel { + compatible = "winstar,wf35ltiacd", "simple-panel"; + backlight = <&backlight>; + power-supply = <&panel_reg>; + #address-cells = <1>; + #size-cells = <0>; + + port { + #address-cells = <1>; + #size-cells = <0>; + + panel_input: endpoint { + remote-endpoint = <&hlcdc_panel_output>; + }; + }; + }; + + panel_reg: panel_regulator { + compatible = "regulator-fixed"; + regulator-name = "panel-power-supply"; + regulator-min-microvolt = <3300000>; + regulator-max-microvolt = <3300000>; + }; diff --git a/Documentation/devicetree/bindings/display/renesas,du.txt b/Documentation/devicetree/bindings/display/renesas,du.txt index 1a02f099a0ff..c6cb96a4fa93 100644 --- a/Documentation/devicetree/bindings/display/renesas,du.txt +++ b/Documentation/devicetree/bindings/display/renesas,du.txt @@ -36,6 +36,9 @@ Required Properties: When supplied they must be named "dclkin.x" with "x" being the input clock numerical index. + - vsps: A list of phandles to the VSP nodes that handle the memory + interfaces for the DU channels. + Required nodes: The connections to the DU output video ports are modeled using the OF graph diff --git a/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt b/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt index 1753f0cc6fad..543b07435f4f 100644 --- a/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt +++ b/Documentation/devicetree/bindings/display/rockchip/dw_mipi_dsi_rockchip.txt @@ -5,16 +5,24 @@ Required properties: - #address-cells: Should be <1>. - #size-cells: Should be <0>. - compatible: "rockchip,rk3288-mipi-dsi", "snps,dw-mipi-dsi". + "rockchip,rk3399-mipi-dsi", "snps,dw-mipi-dsi". - reg: Represent the physical address range of the controller. - interrupts: Represent the controller's interrupt to the CPU(s). - clocks, clock-names: Phandles to the controller's pll reference - clock(ref) and APB clock(pclk), as described in [1]. + clock(ref) and APB clock(pclk). For RK3399, a phy config clock + (phy_cfg) and a grf clock(grf) are required. As described in [1]. - rockchip,grf: this soc should set GRF regs to mux vopl/vopb. - ports: contain a port node with endpoint definitions as defined in [2]. For vopb,set the reg = <0> and set the reg = <1> for vopl. +Optional properties: +- power-domains: a phandle to mipi dsi power domain node. +- resets: list of phandle + reset specifier pairs, as described in [3]. +- reset-names: string reset name, must be "apb". + [1] Documentation/devicetree/bindings/clock/clock-bindings.txt [2] Documentation/devicetree/bindings/media/video-interfaces.txt +[3] Documentation/devicetree/bindings/reset/reset.txt Example: mipi_dsi: mipi@ff960000 { @@ -25,6 +33,8 @@ Example: interrupts = <GIC_SPI 83 IRQ_TYPE_LEVEL_HIGH>; clocks = <&cru SCLK_MIPI_24M>, <&cru PCLK_MIPI_DSI0>; clock-names = "ref", "pclk"; + resets = <&cru SRST_MIPIDSI0>; + reset-names = "apb"; rockchip,grf = <&grf>; status = "okay"; diff --git a/Documentation/devicetree/bindings/hwmon/ads7828.txt b/Documentation/devicetree/bindings/hwmon/ads7828.txt new file mode 100644 index 000000000000..fe0cc4ad7ea9 --- /dev/null +++ b/Documentation/devicetree/bindings/hwmon/ads7828.txt @@ -0,0 +1,25 @@ +ads7828 properties + +Required properties: +- compatible: Should be one of + ti,ads7828 + ti,ads7830 +- reg: I2C address + +Optional properties: + +- ti,differential-input + Set to use the device in differential mode. +- vref-supply + The external reference on the device is set to this regulators output. If it + does not exists the internal reference will be used and output by the ads78xx + on the "external vref" pin. + + Example ADS7828 node: + + ads7828: ads@48 { + comatible = "ti,ads7828"; + reg = <0x48>; + vref-supply = <&vref>; + ti,differential-input; + }; diff --git a/Documentation/devicetree/bindings/hwmon/aspeed-pwm-tacho.txt b/Documentation/devicetree/bindings/hwmon/aspeed-pwm-tacho.txt new file mode 100644 index 000000000000..cf4460564adb --- /dev/null +++ b/Documentation/devicetree/bindings/hwmon/aspeed-pwm-tacho.txt @@ -0,0 +1,68 @@ +ASPEED AST2400/AST2500 PWM and Fan Tacho controller device driver + +The ASPEED PWM controller can support upto 8 PWM outputs. The ASPEED Fan Tacho +controller can support upto 16 Fan tachometer inputs. + +There can be upto 8 fans supported. Each fan can have one PWM output and +one/two Fan tach inputs. + +Required properties for pwm-tacho node: +- #address-cells : should be 1. + +- #size-cells : should be 1. + +- reg : address and length of the register set for the device. + +- pinctrl-names : a pinctrl state named "default" must be defined. + +- pinctrl-0 : phandle referencing pin configuration of the PWM ports. + +- compatible : should be "aspeed,ast2400-pwm-tacho" for AST2400 and + "aspeed,ast2500-pwm-tacho" for AST2500. + +- clocks : a fixed clock providing input clock frequency(PWM + and Fan Tach clock) + +fan subnode format: +=================== +Under fan subnode there can upto 8 child nodes, with each child node +representing a fan. If there are 8 fans each fan can have one PWM port and +one/two Fan tach inputs. + +Required properties for each child node: +- reg : should specify PWM source port. + integer value in the range 0 to 7 with 0 indicating PWM port A and + 7 indicating PWM port H. + +- aspeed,fan-tach-ch : should specify the Fan tach input channel. + integer value in the range 0 through 15, with 0 indicating + Fan tach channel 0 and 15 indicating Fan tach channel 15. + Atleast one Fan tach input channel is required. + +Examples: + +pwm_tacho_fixed_clk: fixedclk { + compatible = "fixed-clock"; + #clock-cells = <0>; + clock-frequency = <24000000>; +}; + +pwm_tacho: pwmtachocontroller@1e786000 { + #address-cells = <1>; + #size-cells = <1>; + reg = <0x1E786000 0x1000>; + compatible = "aspeed,ast2500-pwm-tacho"; + clocks = <&pwm_tacho_fixed_clk>; + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_pwm0_default &pinctrl_pwm1_default>; + + fan@0 { + reg = <0x00>; + aspeed,fan-tach-ch = /bits/ 8 <0x00>; + }; + + fan@1 { + reg = <0x01>; + aspeed,fan-tach-ch = /bits/ 8 <0x01 0x02>; + }; +}; diff --git a/Documentation/devicetree/bindings/hwmon/lm87.txt b/Documentation/devicetree/bindings/hwmon/lm87.txt new file mode 100644 index 000000000000..e1b79903f204 --- /dev/null +++ b/Documentation/devicetree/bindings/hwmon/lm87.txt @@ -0,0 +1,30 @@ +*LM87 hwmon sensor. + +Required properties: +- compatible: Should be + "ti,lm87" + +- reg: I2C address + +optional properties: +- has-temp3: This configures pins 18 and 19 to be used as a second + remote temperature sensing channel. By default the pins + are configured as voltage input pins in0 and in5. + +- has-in6: When set, pin 5 is configured to be used as voltage input + in6. Otherwise the pin is set as FAN1 input. + +- has-in7: When set, pin 6 is configured to be used as voltage input + in7. Otherwise the pin is set as FAN2 input. + +- vcc-supply: a Phandle for the regulator supplying power, can be + cofigured to measure 5.0V power supply. Default is 3.3V. + +Example: + +lm87@2e { + compatible = "ti,lm87"; + reg = <0x2e>; + has-temp3; + vcc-supply = <®_5v0>; +}; diff --git a/Documentation/devicetree/bindings/input/hid-over-i2c.txt b/Documentation/devicetree/bindings/input/hid-over-i2c.txt index 488edcb264c4..28e8bd8b7d64 100644 --- a/Documentation/devicetree/bindings/input/hid-over-i2c.txt +++ b/Documentation/devicetree/bindings/input/hid-over-i2c.txt @@ -17,6 +17,22 @@ Required properties: - interrupt-parent: the phandle for the interrupt controller - interrupts: interrupt line +Additional optional properties: + +Some devices may support additional optional properties to help with, e.g., +power sequencing. The following properties can be supported by one or more +device-specific compatible properties, which should be used in addition to the +"hid-over-i2c" string. + +- compatible: + * "wacom,w9013" (Wacom W9013 digitizer). Supports: + - vdd-supply + - post-power-on-delay-ms + +- vdd-supply: phandle of the regulator that provides the supply voltage. +- post-power-on-delay-ms: time required by the device after enabling its regulators + before it is ready for communication. Must be used with 'vdd-supply'. + Example: i2c-hid-dev@2c { diff --git a/Documentation/devicetree/bindings/interrupt-controller/cortina,gemini-interrupt-controller.txt b/Documentation/devicetree/bindings/interrupt-controller/faraday,ftintc010.txt index 97c1167fa533..24428d47f487 100644 --- a/Documentation/devicetree/bindings/interrupt-controller/cortina,gemini-interrupt-controller.txt +++ b/Documentation/devicetree/bindings/interrupt-controller/faraday,ftintc010.txt @@ -1,9 +1,12 @@ -* Cortina Systems Gemini interrupt controller +* Faraday Technologt FTINTC010 interrupt controller -This interrupt controller is found on the Gemini SoCs. +This interrupt controller is a stock IP block from Faraday Technology found +in the Gemini SoCs and other designs. Required properties: -- compatible: must be "cortina,gemini-interrupt-controller" +- compatible: must be one of + "faraday,ftintc010" + "cortina,gemini-interrupt-controller" (deprecated) - reg: The register bank for the interrupt controller. - interrupt-controller: Identifies the node as an interrupt controller - #interrupt-cells: The number of cells to define the interrupts. @@ -15,7 +18,7 @@ Required properties: Example: interrupt-controller@48000000 { - compatible = "cortina,gemini-interrupt-controller"; + compatible = "faraday,ftintc010" reg = <0x48000000 0x1000>; interrupt-controller; #interrupt-cells = <2>; diff --git a/Documentation/devicetree/bindings/interrupt-controller/mediatek,cirq.txt b/Documentation/devicetree/bindings/interrupt-controller/mediatek,cirq.txt new file mode 100644 index 000000000000..a7efdbc3de5b --- /dev/null +++ b/Documentation/devicetree/bindings/interrupt-controller/mediatek,cirq.txt @@ -0,0 +1,35 @@ +* Mediatek 27xx cirq + +In Mediatek SOCs, the CIRQ is a low power interrupt controller designed to +work outside MCUSYS which comprises with Cortex-Ax cores,CCI and GIC. +The external interrupts (outside MCUSYS) will feed through CIRQ and connect +to GIC in MCUSYS. When CIRQ is enabled, it will record the edge-sensitive +interrupts and generate a pulse signal to parent interrupt controller when +flush command is executed. With CIRQ, MCUSYS can be completely turned off +to improve the system power consumption without losing interrupts. + +Required properties: +- compatible: should be one of + - "mediatek,mt2701-cirq" for mt2701 CIRQ + - "mediatek,mt8135-cirq" for mt8135 CIRQ + - "mediatek,mt8173-cirq" for mt8173 CIRQ + and "mediatek,cirq" as a fallback. +- interrupt-controller : Identifies the node as an interrupt controller. +- #interrupt-cells : Use the same format as specified by GIC in arm,gic.txt. +- interrupt-parent: phandle of irq parent for cirq. The parent must + use the same interrupt-cells format as GIC. +- reg: Physical base address of the cirq registers and length of memory + mapped region. +- mediatek,ext-irq-range: Identifies external irq number range in different + SOCs. + +Example: + cirq: interrupt-controller@10204000 { + compatible = "mediatek,mt2701-cirq", + "mediatek,mtk-cirq"; + interrupt-controller; + #interrupt-cells = <3>; + interrupt-parent = <&sysirq>; + reg = <0 0x10204000 0 0x400>; + mediatek,ext-irq-start = <32 200>; + }; diff --git a/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt b/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt index 9d1d72c65489..a89c03bb1a81 100644 --- a/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt +++ b/Documentation/devicetree/bindings/interrupt-controller/mediatek,sysirq.txt @@ -21,13 +21,16 @@ Required properties: - interrupt-parent: phandle of irq parent for sysirq. The parent must use the same interrupt-cells format as GIC. - reg: Physical base address of the intpol registers and length of memory - mapped region. + mapped region. Could be multiple bases here. Ex: mt6797 needs 2 reg, others + need 1. Example: - sysirq: interrupt-controller@10200100 { - compatible = "mediatek,mt6589-sysirq", "mediatek,mt6577-sysirq"; + sysirq: intpol-controller@10200620 { + compatible = "mediatek,mt6797-sysirq", + "mediatek,mt6577-sysirq"; interrupt-controller; #interrupt-cells = <3>; interrupt-parent = <&gic>; - reg = <0 0x10200100 0 0x1c>; + reg = <0 0x10220620 0 0x20>, + <0 0x10220690 0 0x10>; }; diff --git a/Documentation/devicetree/bindings/ipmi/aspeed,ast2400-ibt-bmc.txt b/Documentation/devicetree/bindings/ipmi/aspeed,ast2400-ibt-bmc.txt index 6f28969af9dc..028268fd99ee 100644 --- a/Documentation/devicetree/bindings/ipmi/aspeed,ast2400-ibt-bmc.txt +++ b/Documentation/devicetree/bindings/ipmi/aspeed,ast2400-ibt-bmc.txt @@ -6,7 +6,9 @@ perform in-band IPMI communication with their host. Required properties: -- compatible : should be "aspeed,ast2400-ibt-bmc" +- compatible : should be one of + "aspeed,ast2400-ibt-bmc" + "aspeed,ast2500-ibt-bmc" - reg: physical address and size of the registers Optional properties: diff --git a/Documentation/devicetree/bindings/leds/backlight/arcxcnn_bl.txt b/Documentation/devicetree/bindings/leds/backlight/arcxcnn_bl.txt new file mode 100644 index 000000000000..230abdefd6e7 --- /dev/null +++ b/Documentation/devicetree/bindings/leds/backlight/arcxcnn_bl.txt @@ -0,0 +1,33 @@ +Binding for ArcticSand arc2c0608 LED driver + +Required properties: +- compatible: should be "arc,arc2c0608" +- reg: slave address + +Optional properties: +- default-brightness: brightness value on boot, value from: 0-4095 +- label: The name of the backlight device + See Documentation/devicetree/bindings/leds/common.txt +- led-sources: List of enabled channels from 0 to 5. + See Documentation/devicetree/bindings/leds/common.txt + +- arc,led-config-0: setting for register ILED_CONFIG_0 +- arc,led-config-1: setting for register ILED_CONFIG_1 +- arc,dim-freq: PWM mode frequence setting (bits [3:0] used) +- arc,comp-config: setting for register CONFIG_COMP +- arc,filter-config: setting for register FILTER_CONFIG +- arc,trim-config: setting for register IMAXTUNE + +Note: Optional properties not specified will default to values in IC EPROM + +Example: + +arc2c0608@30 { + compatible = "arc,arc2c0608"; + reg = <0x30>; + default-brightness = <500>; + label = "lcd-backlight"; + linux,default-trigger = "backlight"; + led-sources = <0 1 2 5>; +}; + diff --git a/Documentation/devicetree/bindings/leds/leds-cpcap.txt b/Documentation/devicetree/bindings/leds/leds-cpcap.txt new file mode 100644 index 000000000000..ebf7cdc7f70c --- /dev/null +++ b/Documentation/devicetree/bindings/leds/leds-cpcap.txt @@ -0,0 +1,29 @@ +Motorola CPCAP PMIC LEDs +------------------------ + +This module is part of the CPCAP. For more details about the whole +chip see Documentation/devicetree/bindings/mfd/motorola-cpcap.txt. + +Requires node properties: +- compatible: should be one of + * "motorola,cpcap-led-mdl" (Main Display Lighting) + * "motorola,cpcap-led-kl" (Keyboard Lighting) + * "motorola,cpcap-led-adl" (Aux Display Lighting) + * "motorola,cpcap-led-red" (Red Triode) + * "motorola,cpcap-led-green" (Green Triode) + * "motorola,cpcap-led-blue" (Blue Triode) + * "motorola,cpcap-led-cf" (Camera Flash) + * "motorola,cpcap-led-bt" (Bluetooth) + * "motorola,cpcap-led-cp" (Camera Privacy LED) +- label: see Documentation/devicetree/bindings/leds/common.txt +- vdd-supply: A phandle to the regulator powering the LED + +Example: + +&cpcap { + cpcap_led_red: red-led { + compatible = "motorola,cpcap-led-red"; + label = "cpcap:red"; + vdd-supply = <&sw5>; + }; +}; diff --git a/Documentation/devicetree/bindings/leds/leds-mt6323.txt b/Documentation/devicetree/bindings/leds/leds-mt6323.txt new file mode 100644 index 000000000000..45bf9f7d85f3 --- /dev/null +++ b/Documentation/devicetree/bindings/leds/leds-mt6323.txt @@ -0,0 +1,60 @@ +Device Tree Bindings for LED support on MT6323 PMIC + +MT6323 LED controller is subfunction provided by MT6323 PMIC, so the LED +controllers are defined as the subnode of the function node provided by MT6323 +PMIC controller that is being defined as one kind of Muti-Function Device (MFD) +using shared bus called PMIC wrapper for each subfunction to access remote +MT6323 PMIC hardware. + +For MT6323 MFD bindings see: +Documentation/devicetree/bindings/mfd/mt6397.txt +For MediaTek PMIC wrapper bindings see: +Documentation/devicetree/bindings/soc/mediatek/pwrap.txt + +Required properties: +- compatible : Must be "mediatek,mt6323-led" +- address-cells : Must be 1 +- size-cells : Must be 0 + +Each led is represented as a child node of the mediatek,mt6323-led that +describes the initial behavior for each LED physically and currently only four +LED child nodes can be supported. + +Required properties for the LED child node: +- reg : LED channel number (0..3) + +Optional properties for the LED child node: +- label : See Documentation/devicetree/bindings/leds/common.txt +- linux,default-trigger : See Documentation/devicetree/bindings/leds/common.txt +- default-state: See Documentation/devicetree/bindings/leds/common.txt + +Example: + + mt6323: pmic { + compatible = "mediatek,mt6323"; + + ... + + mt6323led: leds { + compatible = "mediatek,mt6323-led"; + #address-cells = <1>; + #size-cells = <0>; + + led@0 { + reg = <0>; + label = "LED0"; + linux,default-trigger = "timer"; + default-state = "on"; + }; + led@1 { + reg = <1>; + label = "LED1"; + default-state = "off"; + }; + led@2 { + reg = <2>; + label = "LED2"; + default-state = "on"; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/leds/leds-pca9532.txt b/Documentation/devicetree/bindings/leds/leds-pca9532.txt index 198f3ba0e01f..f769c52e3643 100644 --- a/Documentation/devicetree/bindings/leds/leds-pca9532.txt +++ b/Documentation/devicetree/bindings/leds/leds-pca9532.txt @@ -17,6 +17,8 @@ Optional sub-node properties: - label: see Documentation/devicetree/bindings/leds/common.txt - type: Output configuration, see dt-bindings/leds/leds-pca9532.h (default NONE) - linux,default-trigger: see Documentation/devicetree/bindings/leds/common.txt + - default-state: see Documentation/devicetree/bindings/leds/common.txt + This property is only valid for sub-nodes of type <PCA9532_TYPE_LED>. Example: #include <dt-bindings/leds/leds-pca9532.h> @@ -33,6 +35,14 @@ Example: label = "pca:green:power"; type = <PCA9532_TYPE_LED>; }; + kernel-booting { + type = <PCA9532_TYPE_LED>; + default-state = "on"; + }; + sys-stat { + type = <PCA9532_TYPE_LED>; + default-state = "keep"; // don't touch, was set by U-Boot + }; }; For more product information please see the link below: diff --git a/Documentation/devicetree/bindings/mailbox/brcm,iproc-flexrm-mbox.txt b/Documentation/devicetree/bindings/mailbox/brcm,iproc-flexrm-mbox.txt new file mode 100644 index 000000000000..752ae6b00d26 --- /dev/null +++ b/Documentation/devicetree/bindings/mailbox/brcm,iproc-flexrm-mbox.txt @@ -0,0 +1,59 @@ +Broadcom FlexRM Ring Manager +============================ +The Broadcom FlexRM ring manager provides a set of rings which can be +used to submit work to offload engines. An SoC may have multiple FlexRM +hardware blocks. There is one device tree entry per FlexRM block. The +FlexRM driver will create a mailbox-controller instance for given FlexRM +hardware block where each mailbox channel is a separate FlexRM ring. + +Required properties: +-------------------- +- compatible: Should be "brcm,iproc-flexrm-mbox" +- reg: Specifies base physical address and size of the FlexRM + ring registers +- msi-parent: Phandles (and potential Device IDs) to MSI controllers + The FlexRM engine will send MSIs (instead of wired + interrupts) to CPU. There is one MSI for each FlexRM ring. + Refer devicetree/bindings/interrupt-controller/msi.txt +- #mbox-cells: Specifies the number of cells needed to encode a mailbox + channel. This should be 3. + + The 1st cell is the mailbox channel number. + + The 2nd cell contains MSI completion threshold. This is the + number of completion messages for which FlexRM will inject + one MSI interrupt to CPU. + + The 3nd cell contains MSI timer value representing time for + which FlexRM will wait to accumulate N completion messages + where N is the value specified by 2nd cell above. If FlexRM + does not get required number of completion messages in time + specified by this cell then it will inject one MSI interrupt + to CPU provided atleast one completion message is available. + +Optional properties: +-------------------- +- dma-coherent: Present if DMA operations made by the FlexRM engine (such + as DMA descriptor access, access to buffers pointed by DMA + descriptors and read/write pointer updates to DDR) are + cache coherent with the CPU. + +Example: +-------- +crypto_mbox: mbox@67000000 { + compatible = "brcm,iproc-flexrm-mbox"; + reg = <0x67000000 0x200000>; + msi-parent = <&gic_its 0x7f00>; + #mbox-cells = <3>; +}; + +crypto@672c0000 { + compatible = "brcm,spu2-v2-crypto"; + reg = <0x672c0000 0x1000>; + mboxes = <&crypto_mbox 0 0x1 0xffff>, + <&crypto_mbox 1 0x1 0xffff>, + <&crypto_mbox 16 0x1 0xffff>, + <&crypto_mbox 17 0x1 0xffff>, + <&crypto_mbox 30 0x1 0xffff>, + <&crypto_mbox 31 0x1 0xffff>; +}; diff --git a/Documentation/devicetree/bindings/mailbox/brcm,iproc-pdc-mbox.txt b/Documentation/devicetree/bindings/mailbox/brcm,iproc-pdc-mbox.txt index 411ccf421584..0f3ee81d92c2 100644 --- a/Documentation/devicetree/bindings/mailbox/brcm,iproc-pdc-mbox.txt +++ b/Documentation/devicetree/bindings/mailbox/brcm,iproc-pdc-mbox.txt @@ -1,9 +1,11 @@ The PDC driver manages data transfer to and from various offload engines on some Broadcom SoCs. An SoC may have multiple PDC hardware blocks. There is -one device tree entry per block. +one device tree entry per block. On some chips, the PDC functionality is +handled by the FA2 (Northstar Plus). Required properties: -- compatible : Should be "brcm,iproc-pdc-mbox". +- compatible : Should be "brcm,iproc-pdc-mbox" or "brcm,iproc-fa2-mbox" for + FA2/Northstar Plus. - reg: Should contain PDC registers location and length. - interrupts: Should contain the IRQ line for the PDC. - #mbox-cells: 1 diff --git a/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhost.txt b/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhost.txt new file mode 100644 index 000000000000..d876580ae3b8 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/brcm,bcm2835-sdhost.txt @@ -0,0 +1,23 @@ +Broadcom BCM2835 SDHOST controller + +This file documents differences between the core properties described +by mmc.txt and the properties that represent the BCM2835 controller. + +Required properties: +- compatible: Should be "brcm,bcm2835-sdhost". +- clocks: The clock feeding the SDHOST controller. + +Optional properties: +- dmas: DMA channel for read and write. + See Documentation/devicetree/bindings/dma/dma.txt for details + +Example: + +sdhost: mmc@7e202000 { + compatible = "brcm,bcm2835-sdhost"; + reg = <0x7e202000 0x100>; + interrupts = <2 24>; + clocks = <&clocks BCM2835_CLOCK_VPU>; + dmas = <&dma 13>; + dma-names = "rx-tx"; +}; diff --git a/Documentation/devicetree/bindings/mmc/cavium-mmc.txt b/Documentation/devicetree/bindings/mmc/cavium-mmc.txt new file mode 100644 index 000000000000..1433e6201dff --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/cavium-mmc.txt @@ -0,0 +1,57 @@ +* Cavium Octeon & ThunderX MMC controller + +The highspeed MMC host controller on Caviums SoCs provides an interface +for MMC and SD types of memory cards. + +Supported maximum speeds are the ones of the eMMC standard 4.41 as well +as the speed of SD standard 4.0. Only 3.3 Volt is supported. + +Required properties: + - compatible : should be one of: + cavium,octeon-6130-mmc + cavium,octeon-7890-mmc + cavium,thunder-8190-mmc + cavium,thunder-8390-mmc + mmc-slot + - reg : mmc controller base registers + - clocks : phandle + +Optional properties: + - for cd, bus-width and additional generic mmc parameters + please refer to mmc.txt within this directory + - cavium,cmd-clk-skew : number of coprocessor clocks before sampling command + - cavium,dat-clk-skew : number of coprocessor clocks before sampling data + +Deprecated properties: +- spi-max-frequency : use max-frequency instead +- cavium,bus-max-width : use bus-width instead +- power-gpios : use vmmc-supply instead +- cavium,octeon-6130-mmc-slot : use mmc-slot instead + +Examples: + mmc_1_4: mmc@1,4 { + compatible = "cavium,thunder-8390-mmc"; + reg = <0x0c00 0 0 0 0>; /* DEVFN = 0x0c (1:4) */ + #address-cells = <1>; + #size-cells = <0>; + clocks = <&sclk>; + + mmc-slot@0 { + compatible = "mmc-slot"; + reg = <0>; + vmmc-supply = <&mmc_supply_3v3>; + max-frequency = <42000000>; + bus-width = <4>; + cap-sd-highspeed; + }; + + mmc-slot@1 { + compatible = "mmc-slot"; + reg = <1>; + vmmc-supply = <&mmc_supply_3v3>; + max-frequency = <42000000>; + bus-width = <8>; + cap-mmc-highspeed; + non-removable; + }; + }; diff --git a/Documentation/devicetree/bindings/mmc/marvell,xenon-sdhci.txt b/Documentation/devicetree/bindings/mmc/marvell,xenon-sdhci.txt new file mode 100644 index 000000000000..b878a1e305af --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/marvell,xenon-sdhci.txt @@ -0,0 +1,170 @@ +Marvell Xenon SDHCI Controller device tree bindings +This file documents differences between the core mmc properties +described by mmc.txt and the properties used by the Xenon implementation. + +Multiple SDHCs might be put into a single Xenon IP, to save size and cost. +Each SDHC is independent and owns independent resources, such as register sets, +clock and PHY. +Each SDHC should have an independent device tree node. + +Required Properties: +- compatible: should be one of the following + - "marvell,armada-3700-sdhci": For controllers on Armada-3700 SoC. + Must provide a second register area and marvell,pad-type. + - "marvell,armada-ap806-sdhci": For controllers on Armada AP806. + - "marvell,armada-cp110-sdhci": For controllers on Armada CP110. + +- clocks: + Array of clocks required for SDHC. + Require at least input clock for Xenon IP core. + +- clock-names: + Array of names corresponding to clocks property. + The input clock for Xenon IP core should be named as "core". + +- reg: + * For "marvell,armada-3700-sdhci", two register areas. + The first one for Xenon IP register. The second one for the Armada 3700 SoC + PHY PAD Voltage Control register. + Please follow the examples with compatible "marvell,armada-3700-sdhci" + in below. + Please also check property marvell,pad-type in below. + + * For other compatible strings, one register area for Xenon IP. + +Optional Properties: +- marvell,xenon-sdhc-id: + Indicate the corresponding bit index of current SDHC in + SDHC System Operation Control Register Bit[7:0]. + Set/clear the corresponding bit to enable/disable current SDHC. + If Xenon IP contains only one SDHC, this property is optional. + +- marvell,xenon-phy-type: + Xenon support multiple types of PHYs. + To select eMMC 5.1 PHY, set: + marvell,xenon-phy-type = "emmc 5.1 phy" + eMMC 5.1 PHY is the default choice if this property is not provided. + To select eMMC 5.0 PHY, set: + marvell,xenon-phy-type = "emmc 5.0 phy" + + All those types of PHYs can support eMMC, SD and SDIO. + Please note that this property only presents the type of PHY. + It doesn't stand for the entire SDHC type or property. + For example, "emmc 5.1 phy" doesn't mean that this Xenon SDHC only + supports eMMC 5.1. + +- marvell,xenon-phy-znr: + Set PHY ZNR value. + Only available for eMMC PHY. + Valid range = [0:0x1F]. + ZNR is set as 0xF by default if this property is not provided. + +- marvell,xenon-phy-zpr: + Set PHY ZPR value. + Only available for eMMC PHY. + Valid range = [0:0x1F]. + ZPR is set as 0xF by default if this property is not provided. + +- marvell,xenon-phy-nr-success-tun: + Set the number of required consecutive successful sampling points + used to identify a valid sampling window, in tuning process. + Valid range = [1:7]. + Set as 0x4 by default if this property is not provided. + +- marvell,xenon-phy-tun-step-divider: + Set the divider for calculating TUN_STEP. + Set as 64 by default if this property is not provided. + +- marvell,xenon-phy-slow-mode: + If this property is selected, transfers will bypass PHY. + Only available when bus frequency lower than 55MHz in SDR mode. + Disabled by default. Please only try this property if timing issues + always occur with PHY enabled in eMMC HS SDR, SD SDR12, SD SDR25, + SD Default Speed and HS mode and eMMC legacy speed mode. + +- marvell,xenon-tun-count: + Xenon SDHC SoC usually doesn't provide re-tuning counter in + Capabilities Register 3 Bit[11:8]. + This property provides the re-tuning counter. + If this property is not set, default re-tuning counter will + be set as 0x9 in driver. + +- marvell,pad-type: + Type of Armada 3700 SoC PHY PAD Voltage Controller register. + Only valid when "marvell,armada-3700-sdhci" is selected. + Two types: "sd" and "fixed-1-8v". + If "sd" is selected, SoC PHY PAD is set as 3.3V at the beginning and is + switched to 1.8V when later in higher speed mode. + If "fixed-1-8v" is selected, SoC PHY PAD is fixed 1.8V, such as for eMMC. + Please follow the examples with compatible "marvell,armada-3700-sdhci" + in below. + +Example: +- For eMMC: + + sdhci@aa0000 { + compatible = "marvell,armada-ap806-sdhci"; + reg = <0xaa0000 0x1000>; + interrupts = <GIC_SPI 13 IRQ_TYPE_LEVEL_HIGH> + clocks = <&emmc_clk>; + clock-names = "core"; + bus-width = <4>; + marvell,xenon-phy-slow-mode; + marvell,xenon-tun-count = <11>; + non-removable; + no-sd; + no-sdio; + + /* Vmmc and Vqmmc are both fixed */ + }; + +- For SD/SDIO: + + sdhci@ab0000 { + compatible = "marvell,armada-cp110-sdhci"; + reg = <0xab0000 0x1000>; + interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH> + vqmmc-supply = <&sd_vqmmc_regulator>; + vmmc-supply = <&sd_vmmc_regulator>; + clocks = <&sdclk>; + clock-names = "core"; + bus-width = <4>; + marvell,xenon-tun-count = <9>; + }; + +- For eMMC with compatible "marvell,armada-3700-sdhci": + + sdhci@aa0000 { + compatible = "marvell,armada-3700-sdhci"; + reg = <0xaa0000 0x1000>, + <phy_addr 0x4>; + interrupts = <GIC_SPI 13 IRQ_TYPE_LEVEL_HIGH> + clocks = <&emmcclk>; + clock-names = "core"; + bus-width = <8>; + mmc-ddr-1_8v; + mmc-hs400-1_8v; + non-removable; + no-sd; + no-sdio; + + /* Vmmc and Vqmmc are both fixed */ + + marvell,pad-type = "fixed-1-8v"; + }; + +- For SD/SDIO with compatible "marvell,armada-3700-sdhci": + + sdhci@ab0000 { + compatible = "marvell,armada-3700-sdhci"; + reg = <0xab0000 0x1000>, + <phy_addr 0x4>; + interrupts = <GIC_SPI 55 IRQ_TYPE_LEVEL_HIGH> + vqmmc-supply = <&sd_regulator>; + /* Vmmc is fixed */ + clocks = <&sdclk>; + clock-names = "core"; + bus-width = <4>; + + marvell,pad-type = "sd"; + }; diff --git a/Documentation/devicetree/bindings/mmc/mtk-sd.txt b/Documentation/devicetree/bindings/mmc/mtk-sd.txt index 0120c7f1109c..4182ea36ca5b 100644 --- a/Documentation/devicetree/bindings/mmc/mtk-sd.txt +++ b/Documentation/devicetree/bindings/mmc/mtk-sd.txt @@ -21,6 +21,15 @@ Optional properties: - assigned-clocks: PLL of the source clock - assigned-clock-parents: parent of source clock, used for HS400 mode to get 400Mhz source clock - hs400-ds-delay: HS400 DS delay setting +- mediatek,hs200-cmd-int-delay: HS200 command internal delay setting. + This field has total 32 stages. + The value is an integer from 0 to 31. +- mediatek,hs400-cmd-int-delay: HS400 command internal delay setting + This field has total 32 stages. + The value is an integer from 0 to 31. +- mediatek,hs400-cmd-resp-sel-rising: HS400 command response sample selection + If present,HS400 command responses are sampled on rising edges. + If not present,HS400 command responses are sampled on falling edges. Examples: mmc0: mmc@11230000 { @@ -38,4 +47,7 @@ mmc0: mmc@11230000 { assigned-clocks = <&topckgen CLK_TOP_MSDC50_0_SEL>; assigned-clock-parents = <&topckgen CLK_TOP_MSDCPLL_D2>; hs400-ds-delay = <0x14015>; + mediatek,hs200-cmd-int-delay = <26>; + mediatek,hs400-cmd-int-delay = <14>; + mediatek,hs400-cmd-resp-sel-rising; }; diff --git a/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt b/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt index 15b8368ee1f2..9bce57862ed6 100644 --- a/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt +++ b/Documentation/devicetree/bindings/mmc/nvidia,tegra20-sdhci.txt @@ -7,11 +7,13 @@ This file documents differences between the core properties described by mmc.txt and the properties used by the sdhci-tegra driver. Required properties: -- compatible : For Tegra20, must contain "nvidia,tegra20-sdhci". - For Tegra30, must contain "nvidia,tegra30-sdhci". For Tegra114, - must contain "nvidia,tegra114-sdhci". For Tegra124, must contain - "nvidia,tegra124-sdhci". Otherwise, must contain "nvidia,<chip>-sdhci", - plus one of the above, where <chip> is tegra132 or tegra210. +- compatible : should be one of: + - "nvidia,tegra20-sdhci": for Tegra20 + - "nvidia,tegra30-sdhci": for Tegra30 + - "nvidia,tegra114-sdhci": for Tegra114 + - "nvidia,tegra124-sdhci": for Tegra124 and Tegra132 + - "nvidia,tegra210-sdhci": for Tegra210 + - "nvidia,tegra186-sdhci": for Tegra186 - clocks : Must contain one entry, for the module clock. See ../clocks/clock-bindings.txt for details. - resets : Must contain an entry for each entry in reset-names. diff --git a/Documentation/devicetree/bindings/mmc/renesas,mmcif.txt b/Documentation/devicetree/bindings/mmc/renesas,mmcif.txt index e4ba92aa035e..c32dc5a9dbe6 100644 --- a/Documentation/devicetree/bindings/mmc/renesas,mmcif.txt +++ b/Documentation/devicetree/bindings/mmc/renesas,mmcif.txt @@ -8,6 +8,7 @@ Required properties: - compatible: should be "renesas,mmcif-<soctype>", "renesas,sh-mmcif" as a fallback. Examples with <soctype> are: + - "renesas,mmcif-r7s72100" for the MMCIF found in r7s72100 SoCs - "renesas,mmcif-r8a73a4" for the MMCIF found in r8a73a4 SoCs - "renesas,mmcif-r8a7740" for the MMCIF found in r8a7740 SoCs - "renesas,mmcif-r8a7778" for the MMCIF found in r8a7778 SoCs @@ -17,6 +18,13 @@ Required properties: - "renesas,mmcif-r8a7794" for the MMCIF found in r8a7794 SoCs - "renesas,mmcif-sh73a0" for the MMCIF found in sh73a0 SoCs +- interrupts: Some SoCs have only 1 shared interrupt, while others have either + 2 or 3 individual interrupts (error, int, card detect). Below is the number + of interrupts for each SoC: + 1: r8a73a4, r8a7778, r8a7790, r8a7791, r8a7793, r8a7794 + 2: r8a7740, sh73a0 + 3: r7s72100 + - clocks: reference to the functional clock - dmas: reference to the DMA channels, one per channel name listed in the diff --git a/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt b/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt index ea9c1c9607f6..520d61dad6dd 100644 --- a/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt +++ b/Documentation/devicetree/bindings/mmc/rockchip-dw-mshc.txt @@ -13,7 +13,7 @@ Required Properties: - "rockchip,rk2928-dw-mshc": for Rockchip RK2928 and following, before RK3288 - "rockchip,rk3288-dw-mshc": for Rockchip RK3288 - - "rockchip,rk1108-dw-mshc", "rockchip,rk3288-dw-mshc": for Rockchip RK1108 + - "rockchip,rv1108-dw-mshc", "rockchip,rk3288-dw-mshc": for Rockchip RV1108 - "rockchip,rk3036-dw-mshc", "rockchip,rk3288-dw-mshc": for Rockchip RK3036 - "rockchip,rk3368-dw-mshc", "rockchip,rk3288-dw-mshc": for Rockchip RK3368 - "rockchip,rk3399-dw-mshc", "rockchip,rk3288-dw-mshc": for Rockchip RK3399 diff --git a/Documentation/devicetree/bindings/mmc/samsung,s3cmci.txt b/Documentation/devicetree/bindings/mmc/samsung,s3cmci.txt new file mode 100644 index 000000000000..5f68feb9f9d6 --- /dev/null +++ b/Documentation/devicetree/bindings/mmc/samsung,s3cmci.txt @@ -0,0 +1,42 @@ +* Samsung's S3C24XX MMC/SD/SDIO controller device tree bindings + +Samsung's S3C24XX MMC/SD/SDIO controller is used as a connectivity interface +with external MMC, SD and SDIO storage mediums. + +This file documents differences between the core mmc properties described by +mmc.txt and the properties used by the Samsung S3C24XX MMC/SD/SDIO controller +implementation. + +Required SoC Specific Properties: +- compatible: should be one of the following + - "samsung,s3c2410-sdi": for controllers compatible with s3c2410 + - "samsung,s3c2412-sdi": for controllers compatible with s3c2412 + - "samsung,s3c2440-sdi": for controllers compatible with s3c2440 +- reg: register location and length +- interrupts: mmc controller interrupt +- clocks: Should reference the controller clock +- clock-names: Should contain "sdi" + +Required Board Specific Properties: +- pinctrl-0: Should specify pin control groups used for this controller. +- pinctrl-names: Should contain only one value - "default". + +Optional Properties: +- bus-width: number of data lines (see mmc.txt) +- cd-gpios: gpio for card detection (see mmc.txt) +- wp-gpios: gpio for write protection (see mmc.txt) + +Example: + + mmc0: mmc@5a000000 { + compatible = "samsung,s3c2440-sdi"; + pinctrl-names = "default"; + pinctrl-0 = <&sdi_pins>; + reg = <0x5a000000 0x100000>; + interrupts = <0 0 21 3>; + clocks = <&clocks PCLK_SDI>; + clock-names = "sdi"; + bus-width = <4>; + cd-gpios = <&gpg 8 GPIO_ACTIVE_LOW>; + wp-gpios = <&gph 8 GPIO_ACTIVE_LOW>; + }; diff --git a/Documentation/devicetree/bindings/mmc/sdhci-cadence.txt b/Documentation/devicetree/bindings/mmc/sdhci-cadence.txt index c0f37cb41a9b..fa423c277853 100644 --- a/Documentation/devicetree/bindings/mmc/sdhci-cadence.txt +++ b/Documentation/devicetree/bindings/mmc/sdhci-cadence.txt @@ -19,6 +19,53 @@ if supported. See mmc.txt for details. - mmc-hs400-1_8v - mmc-hs400-1_2v +Some PHY delays can be configured by following properties. +PHY DLL input delays: +They are used to delay the data valid window, and align the window +to sampling clock. The delay starts from 5ns (for delay parameter equal to 0) +and it is increased by 2.5ns in each step. +- cdns,phy-input-delay-sd-highspeed: + Value of the delay in the input path for SD high-speed timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-legacy: + Value of the delay in the input path for legacy timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-sd-uhs-sdr12: + Value of the delay in the input path for SD UHS SDR12 timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-sd-uhs-sdr25: + Value of the delay in the input path for SD UHS SDR25 timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-sd-uhs-sdr50: + Value of the delay in the input path for SD UHS SDR50 timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-sd-uhs-ddr50: + Value of the delay in the input path for SD UHS DDR50 timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-mmc-highspeed: + Value of the delay in the input path for MMC high-speed timing + Valid range = [0:0x1F]. +- cdns,phy-input-delay-mmc-ddr: + Value of the delay in the input path for eMMC high-speed DDR timing + Valid range = [0:0x1F]. + +PHY DLL clock delays: +Each delay property represents the fraction of the clock period. +The approximate delay value will be +(<delay property value>/128)*sdmclk_clock_period. +- cdns,phy-dll-delay-sdclk: + Value of the delay introduced on the sdclk output + for all modes except HS200, HS400 and HS400_ES. + Valid range = [0:0x7F]. +- cdns,phy-dll-delay-sdclk-hsmmc: + Value of the delay introduced on the sdclk output + for HS200, HS400 and HS400_ES speed modes. + Valid range = [0:0x7F]. +- cdns,phy-dll-delay-strobe: + Value of the delay introduced on the dat_strobe input + used in HS400 / HS400_ES speed modes. + Valid range = [0:0x7F]. + Example: emmc: sdhci@5a000000 { compatible = "socionext,uniphier-sd4hc", "cdns,sd4hc"; @@ -29,4 +76,5 @@ Example: mmc-ddr-1_8v; mmc-hs200-1_8v; mmc-hs400-1_8v; + cdns,phy-dll-delay-sdclk = <0>; }; diff --git a/Documentation/devicetree/bindings/net/brcm,bcmgenet.txt b/Documentation/devicetree/bindings/net/brcm,bcmgenet.txt index 10587bdadbbe..26c77d985faf 100644 --- a/Documentation/devicetree/bindings/net/brcm,bcmgenet.txt +++ b/Documentation/devicetree/bindings/net/brcm,bcmgenet.txt @@ -2,11 +2,14 @@ Required properties: - compatible: should contain one of "brcm,genet-v1", "brcm,genet-v2", - "brcm,genet-v3", "brcm,genet-v4". + "brcm,genet-v3", "brcm,genet-v4", "brcm,genet-v5". - reg: address and length of the register set for the device -- interrupts: must be two cells, the first cell is the general purpose - interrupt line, while the second cell is the interrupt for the ring - RX and TX queues operating in ring mode +- interrupts and/or interrupts-extended: must be two cells, the first cell + is the general purpose interrupt line, while the second cell is the + interrupt for the ring RX and TX queues operating in ring mode. An + optional third interrupt cell for Wake-on-LAN can be specified. + See Documentation/devicetree/bindings/interrupt-controller/interrupts.txt + for information on the property specifics. - phy-mode: see ethernet.txt file in the same directory - #address-cells: should be 1 - #size-cells: should be 1 @@ -29,15 +32,15 @@ Optional properties: Required child nodes: -- mdio bus node: this node should always be present regarless of the PHY +- mdio bus node: this node should always be present regardless of the PHY configuration of the GENET instance MDIO bus node required properties: - compatible: should contain one of "brcm,genet-mdio-v1", "brcm,genet-mdio-v2" - "brcm,genet-mdio-v3", "brcm,genet-mdio-v4", the version has to match the - parent node compatible property (e.g: brcm,genet-v4 pairs with - brcm,genet-mdio-v4) + "brcm,genet-mdio-v3", "brcm,genet-mdio-v4", "brcm,genet-mdio-v5", the version + has to match the parent node compatible property (e.g: brcm,genet-v4 pairs + with brcm,genet-mdio-v4) - reg: address and length relative to the parent node base register address - #address-cells: address cell for MDIO bus addressing, should be 1 - #size-cells: size of the cells for MDIO bus addressing, should be 0 diff --git a/Documentation/devicetree/bindings/net/brcm,unimac-mdio.txt b/Documentation/devicetree/bindings/net/brcm,unimac-mdio.txt index ab0bb4247d14..4648948f7c3b 100644 --- a/Documentation/devicetree/bindings/net/brcm,unimac-mdio.txt +++ b/Documentation/devicetree/bindings/net/brcm,unimac-mdio.txt @@ -2,8 +2,9 @@ Required properties: - compatible: should one from "brcm,genet-mdio-v1", "brcm,genet-mdio-v2", - "brcm,genet-mdio-v3", "brcm,genet-mdio-v4" or "brcm,unimac-mdio" -- reg: address and length of the regsiter set for the device, first one is the + "brcm,genet-mdio-v3", "brcm,genet-mdio-v4", "brcm,genet-mdio-v5" or + "brcm,unimac-mdio" +- reg: address and length of the register set for the device, first one is the base register, and the second one is optional and for indirect accesses to larger than 16-bits MDIO transactions - reg-names: name(s) of the register must be "mdio" and optional "mdio_indir_rw" diff --git a/Documentation/devicetree/bindings/net/can/holt_hi311x.txt b/Documentation/devicetree/bindings/net/can/holt_hi311x.txt new file mode 100644 index 000000000000..23aa94eab207 --- /dev/null +++ b/Documentation/devicetree/bindings/net/can/holt_hi311x.txt @@ -0,0 +1,24 @@ +* Holt HI-311X stand-alone CAN controller device tree bindings + +Required properties: + - compatible: Should be one of the following: + - "holt,hi3110" for HI-3110 + - reg: SPI chip select. + - clocks: The clock feeding the CAN controller. + - interrupt-parent: The parent interrupt controller. + - interrupts: Should contain IRQ line for the CAN controller. + +Optional properties: + - vdd-supply: Regulator that powers the CAN controller. + - xceiver-supply: Regulator that powers the CAN transceiver. + +Example: + can0: can@1 { + compatible = "holt,hi3110"; + reg = <1>; + clocks = <&clk32m>; + interrupt-parent = <&gpio4>; + interrupts = <13 IRQ_TYPE_EDGE_RISING>; + vdd-supply = <®5v0>; + xceiver-supply = <®5v0>; + }; diff --git a/Documentation/devicetree/bindings/net/can/ti_hecc.txt b/Documentation/devicetree/bindings/net/can/ti_hecc.txt new file mode 100644 index 000000000000..e0f0a7cfe329 --- /dev/null +++ b/Documentation/devicetree/bindings/net/can/ti_hecc.txt @@ -0,0 +1,32 @@ +Texas Instruments High End CAN Controller (HECC) +================================================ + +This file provides information, what the device node +for the hecc interface contains. + +Required properties: +- compatible: "ti,am3517-hecc" +- reg: addresses and lengths of the register spaces for 'hecc', 'hecc-ram' + and 'mbx' +- reg-names :"hecc", "hecc-ram", "mbx" +- interrupts: interrupt mapping for the hecc interrupts sources +- clocks: clock phandles (see clock bindings for details) + +Optional properties: +- ti,use-hecc1int: if provided configures HECC to produce all interrupts + on HECC1INT interrupt line. By default HECC0INT interrupt + line will be used. +- xceiver-supply: regulator that powers the CAN transceiver + +Example: + +For am3517evm board: + hecc: can@5c050000 { + compatible = "ti,am3517-hecc"; + reg = <0x5c050000 0x80>, + <0x5c053000 0x180>, + <0x5c052000 0x200>; + reg-names = "hecc", "hecc-ram", "mbx"; + interrupts = <24>; + clocks = <&hecc_ck>; + }; diff --git a/Documentation/devicetree/bindings/net/dsa/lan9303.txt b/Documentation/devicetree/bindings/net/dsa/lan9303.txt new file mode 100644 index 000000000000..04f2965a4467 --- /dev/null +++ b/Documentation/devicetree/bindings/net/dsa/lan9303.txt @@ -0,0 +1,105 @@ +SMSC/MicroChip LAN9303 three port ethernet switch +------------------------------------------------- + +Required properties: + +- compatible: should be + - "smsc,lan9303-i2c" for I2C managed mode + or + - "smsc,lan9303-mdio" for mdio managed mode + +Optional properties: + +- reset-gpios: GPIO to be used to reset the whole device +- reset-duration: reset duration in milliseconds, defaults to 200 ms + +Subnodes: + +The integrated switch subnode should be specified according to the binding +described in dsa/dsa.txt. The CPU port of this switch is always port 0. + +Note: always use 'reg = <0/1/2>;' for the three DSA ports, even if the device is +configured to use 1/2/3 instead. This hardware configuration will be +auto-detected and mapped accordingly. + +Example: + +I2C managed mode: + + master: masterdevice@X { + status = "okay"; + + fixed-link { /* RMII fixed link to LAN9303 */ + speed = <100>; + full-duplex; + }; + }; + + switch: switch@a { + compatible = "smsc,lan9303-i2c"; + reg = <0xa>; + status = "okay"; + reset-gpios = <&gpio7 6 GPIO_ACTIVE_LOW>; + reset-duration = <200>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + port@0 { /* RMII fixed link to master */ + reg = <0>; + label = "cpu"; + ethernet = <&master>; + }; + + port@1 { /* external port 1 */ + reg = <1>; + label = "lan1; + }; + + port@2 { /* external port 2 */ + reg = <2>; + label = "lan2"; + }; + }; + }; + +MDIO managed mode: + + master: masterdevice@X { + status = "okay"; + phy-handle = <&switch>; + + mdio { + #address-cells = <1>; + #size-cells = <0>; + + switch: switch-phy@0 { + compatible = "smsc,lan9303-mdio"; + reg = <0>; + reset-gpios = <&gpio7 6 GPIO_ACTIVE_LOW>; + reset-duration = <100>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + port@0 { + reg = <0>; + label = "cpu"; + ethernet = <&master>; + }; + + port@1 { /* external port 1 */ + reg = <1>; + label = "lan1; + }; + + port@2 { /* external port 2 */ + reg = <2>; + label = "lan2"; + }; + }; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/net/dsa/mt7530.txt b/Documentation/devicetree/bindings/net/dsa/mt7530.txt new file mode 100644 index 000000000000..a9bc27b93ee3 --- /dev/null +++ b/Documentation/devicetree/bindings/net/dsa/mt7530.txt @@ -0,0 +1,92 @@ +Mediatek MT7530 Ethernet switch +================================ + +Required properties: + +- compatible: Must be compatible = "mediatek,mt7530"; +- #address-cells: Must be 1. +- #size-cells: Must be 0. +- mediatek,mcm: Boolean; if defined, indicates that either MT7530 is the part + on multi-chip module belong to MT7623A has or the remotely standalone + chip as the function MT7623N reference board provided for. +- core-supply: Phandle to the regulator node necessary for the core power. +- io-supply: Phandle to the regulator node necessary for the I/O power. + See Documentation/devicetree/bindings/regulator/mt6323-regulator.txt + for details for the regulator setup on these boards. + +If the property mediatek,mcm isn't defined, following property is required + +- reset-gpios: Should be a gpio specifier for a reset line. + +Else, following properties are required + +- resets : Phandle pointing to the system reset controller with + line index for the ethsys. +- reset-names : Should be set to "mcm". + +Required properties for the child nodes within ports container: + +- reg: Port address described must be 6 for CPU port and from 0 to 5 for + user ports. +- phy-mode: String, must be either "trgmii" or "rgmii" for port labeled + "cpu". + +See Documentation/devicetree/bindings/dsa/dsa.txt for a list of additional +required, optional properties and how the integrated switch subnodes must +be specified. + +Example: + + &mdio0 { + switch@0 { + compatible = "mediatek,mt7530"; + #address-cells = <1>; + #size-cells = <0>; + reg = <0>; + + core-supply = <&mt6323_vpa_reg>; + io-supply = <&mt6323_vemc3v3_reg>; + reset-gpios = <&pio 33 0>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + reg = <0>; + port@0 { + reg = <0>; + label = "lan0"; + }; + + port@1 { + reg = <1>; + label = "lan1"; + }; + + port@2 { + reg = <2>; + label = "lan2"; + }; + + port@3 { + reg = <3>; + label = "lan3"; + }; + + port@4 { + reg = <4>; + label = "wan"; + }; + + port@6 { + reg = <6>; + label = "cpu"; + ethernet = <&gmac0>; + phy-mode = "trgmii"; + fixed-link { + speed = <1000>; + full-duplex; + }; + }; + }; + }; + }; diff --git a/Documentation/devicetree/bindings/net/ftgmac100.txt b/Documentation/devicetree/bindings/net/ftgmac100.txt new file mode 100644 index 000000000000..c1ce1680246f --- /dev/null +++ b/Documentation/devicetree/bindings/net/ftgmac100.txt @@ -0,0 +1,35 @@ +* Faraday Technology FTGMAC100 gigabit ethernet controller + +Required properties: +- compatible: "faraday,ftgmac100" + + Must also contain one of these if used as part of an Aspeed AST2400 + or 2500 family SoC as they have some subtle tweaks to the + implementation: + + - "aspeed,ast2400-mac" + - "aspeed,ast2500-mac" + +- reg: Address and length of the register set for the device +- interrupts: Should contain ethernet controller interrupt + +Optional properties: +- phy-mode: See ethernet.txt file in the same directory. If the property is + absent, "rgmii" is assumed. Supported values are "rgmii*" and "rmii" for + aspeed parts. Other (unknown) parts will accept any value. +- use-ncsi: Use the NC-SI stack instead of an MDIO PHY. Currently assumes + rmii (100bT) but kept as a separate property in case NC-SI grows support + for a gigabit link. +- no-hw-checksum: Used to disable HW checksum support. Here for backward + compatibility as the driver now should have correct defaults based on + the SoC. + +Example: + + mac0: ethernet@1e660000 { + compatible = "aspeed,ast2500-mac", "faraday,ftgmac100"; + reg = <0x1e660000 0x180>; + interrupts = <2>; + status = "okay"; + use-ncsi; + }; diff --git a/Documentation/devicetree/bindings/net/ieee802154/ca8210.txt b/Documentation/devicetree/bindings/net/ieee802154/ca8210.txt new file mode 100644 index 000000000000..a1046e636fa1 --- /dev/null +++ b/Documentation/devicetree/bindings/net/ieee802154/ca8210.txt @@ -0,0 +1,28 @@ +* CA8210 IEEE 802.15.4 * + +Required properties: + - compatible: Should be "cascoda,ca8210" + - reg: Controlling chip select + - spi-max-frequency: Maximum clock speed, should be *less than* + 4000000 + - spi-cpol: Requires inverted clock polarity + - reset-gpio: GPIO attached to reset + - irq-gpio: GPIO attached to IRQ +Optional properties: + - extclock-enable: Include for the ca8210 to route its 16MHz clock + to an output + - extclock-freq: Frequency in Hz of the external clock + - extclock-gpio: GPIO of the ca8210 to output the clock on + +Example: + ca8210@0 { + compatible = "cascoda,ca8210"; + reg = <0>; + spi-max-frequency = <3000000>; + spi-cpol; + reset-gpio = <&gpio1 1 GPIO_ACTIVE_HIGH>; + irq-gpio = <&gpio1 2 GPIO_ACTIVE_HIGH>; + extclock-enable; + extclock-freq = 16000000; + extclock-gpio = 2; + }; diff --git a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt index 9417e54c26c0..ccdabdcc8618 100644 --- a/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt +++ b/Documentation/devicetree/bindings/net/marvell-orion-mdio.txt @@ -7,17 +7,20 @@ interface. Required properties: - compatible: "marvell,orion-mdio" -- reg: address and length of the SMI register +- reg: address and length of the MDIO registers. When an interrupt is + not present, the length is the size of the SMI register (4 bytes) + otherwise it must be 0x84 bytes to cover the interrupt control + registers. Optional properties: - interrupts: interrupt line number for the SMI error/done interrupt -- clocks: Phandle to the clock control device and gate bit +- clocks: phandle for up to three required clocks for the MDIO instance The child nodes of the MDIO driver are the individual PHY devices connected to this MDIO bus. They must have a "reg" property given the PHY address on the MDIO bus. -Example at the SoC level: +Example at the SoC level without an interrupt property: mdio { #address-cells = <1>; @@ -26,6 +29,16 @@ mdio { reg = <0xd0072004 0x4>; }; +Example with an interrupt property: + +mdio { + #address-cells = <1>; + #size-cells = <0>; + compatible = "marvell,orion-mdio"; + reg = <0xd0072004 0x84>; + interrupts = <30>; +}; + And at the board level: mdio { diff --git a/Documentation/devicetree/bindings/net/marvell-pp2.txt b/Documentation/devicetree/bindings/net/marvell-pp2.txt index 4754364df4c6..6b4956beff8c 100644 --- a/Documentation/devicetree/bindings/net/marvell-pp2.txt +++ b/Documentation/devicetree/bindings/net/marvell-pp2.txt @@ -1,17 +1,28 @@ -* Marvell Armada 375 Ethernet Controller (PPv2) +* Marvell Armada 375 Ethernet Controller (PPv2.1) + Marvell Armada 7K/8K Ethernet Controller (PPv2.2) Required properties: -- compatible: should be "marvell,armada-375-pp2" +- compatible: should be one of: + "marvell,armada-375-pp2" + "marvell,armada-7k-pp2" - reg: addresses and length of the register sets for the device. - Must contain the following register sets: + For "marvell,armada-375-pp2", must contain the following register + sets: - common controller registers - LMS registers - In addition, at least one port register set is required. -- clocks: a pointer to the reference clocks for this device, consequently: - - main controller clock - - GOP clock -- clock-names: names of used clocks, must be "pp_clk" and "gop_clk". + - one register area per Ethernet port + For "marvell,armada-7k-pp2", must contain the following register + sets: + - packet processor registers + - networking interfaces registers + +- clocks: pointers to the reference clocks for this device, consequently: + - main controller clock (for both armada-375-pp2 and armada-7k-pp2) + - GOP clock (for both armada-375-pp2 and armada-7k-pp2) + - MG clock (only for armada-7k-pp2) +- clock-names: names of used clocks, must be "pp_clk", "gop_clk" and + "mg_clk" (the latter only for armada-7k-pp2). The ethernet ports are represented by subnodes. At least one port is required. @@ -19,8 +30,10 @@ required. Required properties (port): - interrupts: interrupt for the port -- port-id: should be '0' or '1' for ethernet ports, and '2' for the - loopback port +- port-id: ID of the port from the MAC point of view +- gop-port-id: only for marvell,armada-7k-pp2, ID of the port from the + GOP (Group Of Ports) point of view. This ID is used to index the + per-port registers in the second register area. - phy-mode: See ethernet.txt file in the same directory Optional properties (port): @@ -29,7 +42,7 @@ Optional properties (port): - phy: a phandle to a phy node defining the PHY address (as the reg property, a single integer). -Example: +Example for marvell,armada-375-pp2: ethernet@f0000 { compatible = "marvell,armada-375-pp2"; @@ -57,3 +70,30 @@ ethernet@f0000 { phy-mode = "gmii"; }; }; + +Example for marvell,armada-7k-pp2: + +cpm_ethernet: ethernet@0 { + compatible = "marvell,armada-7k-pp22"; + reg = <0x0 0x100000>, <0x129000 0xb000>; + clocks = <&cpm_syscon0 1 3>, <&cpm_syscon0 1 9>, <&cpm_syscon0 1 5>; + clock-names = "pp_clk", "gop_clk", "gp_clk"; + + eth0: eth0 { + interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>; + port-id = <0>; + gop-port-id = <0>; + }; + + eth1: eth1 { + interrupts = <GIC_SPI 38 IRQ_TYPE_LEVEL_HIGH>; + port-id = <1>; + gop-port-id = <2>; + }; + + eth2: eth2 { + interrupts = <GIC_SPI 39 IRQ_TYPE_LEVEL_HIGH>; + port-id = <2>; + gop-port-id = <3>; + }; +}; diff --git a/Documentation/devicetree/bindings/net/mdio.txt b/Documentation/devicetree/bindings/net/mdio.txt new file mode 100644 index 000000000000..96a53f89aa6e --- /dev/null +++ b/Documentation/devicetree/bindings/net/mdio.txt @@ -0,0 +1,37 @@ +Common MDIO bus properties. + +These are generic properties that can apply to any MDIO bus. + +Optional properties: +- reset-gpios: One GPIO that control the RESET lines of all PHYs on that MDIO + bus. +- reset-delay-us: RESET pulse width in microseconds. + +A list of child nodes, one per device on the bus is expected. These +should follow the generic phy.txt, or a device specific binding document. + +The 'reset-delay-us' indicates the RESET signal pulse width in microseconds and +applies to all PHY devices. It must therefore be appropriately determined based +on all PHY requirements (maximum value of all per-PHY RESET pulse widths). + +Example : +This example shows these optional properties, plus other properties +required for the TI Davinci MDIO driver. + + davinci_mdio: ethernet@0x5c030000 { + compatible = "ti,davinci_mdio"; + reg = <0x5c030000 0x1000>; + #address-cells = <1>; + #size-cells = <0>; + + reset-gpios = <&gpio2 5 GPIO_ACTIVE_LOW>; + reset-delay-us = <2>; + + ethphy0: ethernet-phy@1 { + reg = <1>; + }; + + ethphy1: ethernet-phy@3 { + reg = <3>; + }; + }; diff --git a/Documentation/devicetree/bindings/net/nfc/trf7970a.txt b/Documentation/devicetree/bindings/net/nfc/trf7970a.txt index 32b35a07abe4..c627bbb3009e 100644 --- a/Documentation/devicetree/bindings/net/nfc/trf7970a.txt +++ b/Documentation/devicetree/bindings/net/nfc/trf7970a.txt @@ -5,8 +5,8 @@ Required properties: - spi-max-frequency: Maximum SPI frequency (<= 2000000). - interrupt-parent: phandle of parent interrupt handler. - interrupts: A single interrupt specifier. -- ti,enable-gpios: Two GPIO entries used for 'EN' and 'EN2' pins on the - TRF7970A. +- ti,enable-gpios: One or two GPIO entries used for 'EN' and 'EN2' pins on the + TRF7970A. EN2 is optional. - vin-supply: Regulator for supply voltage to VIN pin Optional SoC Specific Properties: @@ -21,6 +21,8 @@ Optional SoC Specific Properties: - t5t-rmb-extra-byte-quirk: Specify that the trf7970a has the erratum where an extra byte is returned by Read Multiple Block commands issued to Type 5 tags. +- vdd-io-supply: Regulator specifying voltage for vdd-io +- clock-frequency: Set to specify that the input frequency to the trf7970a is 13560000Hz or 27120000Hz Example (for ARM-based BeagleBone with TRF7970A on SPI1): @@ -39,10 +41,12 @@ Example (for ARM-based BeagleBone with TRF7970A on SPI1): <&gpio2 5 GPIO_ACTIVE_LOW>; vin-supply = <&ldo3_reg>; vin-voltage-override = <5000000>; + vdd-io-supply = <&ldo2_reg>; autosuspend-delay = <30000>; irq-status-read-quirk; en2-rf-quirk; t5t-rmb-extra-byte-quirk; + clock-frequency = <27120000>; status = "okay"; }; }; diff --git a/Documentation/devicetree/bindings/net/nokia-bluetooth.txt b/Documentation/devicetree/bindings/net/nokia-bluetooth.txt new file mode 100644 index 000000000000..42be7dc9a70b --- /dev/null +++ b/Documentation/devicetree/bindings/net/nokia-bluetooth.txt @@ -0,0 +1,51 @@ +Nokia Bluetooth Chips +--------------------- + +Nokia phones often come with UART connected bluetooth chips from different +vendors and modified device API. Those devices speak a protocol named H4+ +(also known as h4p) by Nokia, which is similar to the H4 protocol from the +Bluetooth standard. In addition to the H4 protocol it specifies two more +UART status lines for wakeup of UART transceivers to improve power management +and a few new packet types used to negotiate uart speed. + +Required properties: + + - compatible: should contain "nokia,h4p-bluetooth" as well as one of the following: + * "brcm,bcm2048-nokia" + * "ti,wl1271-bluetooth-nokia" + - reset-gpios: GPIO specifier, used to reset the BT module (active low) + - bluetooth-wakeup-gpios: GPIO specifier, used to wakeup the BT module (active high) + - host-wakeup-gpios: GPIO specifier, used to wakeup the host processor (active high) + - clock-names: should be "sysclk" + - clocks: should contain a clock specifier for every name in clock-names + +Optional properties: + + - None + +Example: + +/ { + /* controlled (enabled/disabled) directly by BT module */ + bluetooth_clk: vctcxo { + compatible = "fixed-clock"; + #clock-cells = <0>; + clock-frequency = <38400000>; + }; +}; + +&uart2 { + pinctrl-names = "default"; + pinctrl-0 = <&uart2_pins>; + + bluetooth { + compatible = "ti,wl1271-bluetooth-nokia", "nokia,h4p-bluetooth"; + + reset-gpios = <&gpio1 26 GPIO_ACTIVE_LOW>; /* gpio26 */ + host-wakeup-gpios = <&gpio4 5 GPIO_ACTIVE_HIGH>; /* gpio101 */ + bluetooth-wakeup-gpios = <&gpio2 5 GPIO_ACTIVE_HIGH>; /* gpio37 */ + + clocks = <&bluetooth_clk>; + clock-names = "sysclk"; + }; +}; diff --git a/Documentation/devicetree/bindings/net/stmmac.txt b/Documentation/devicetree/bindings/net/stmmac.txt index d3bfc2b30fb5..c3a7be6615c5 100644 --- a/Documentation/devicetree/bindings/net/stmmac.txt +++ b/Documentation/devicetree/bindings/net/stmmac.txt @@ -7,9 +7,12 @@ Required properties: - interrupt-parent: Should be the phandle for the interrupt controller that services interrupts for this device - interrupts: Should contain the STMMAC interrupts -- interrupt-names: Should contain the interrupt names "macirq" - "eth_wake_irq" if this interrupt is supported in the "interrupts" - property +- interrupt-names: Should contain a list of interrupt names corresponding to + the interrupts in the interrupts property, if available. + Valid interrupt names are: + - "macirq" (combined signal for various interrupt events) + - "eth_wake_irq" (the interrupt to manage the remote wake-up packet detection) + - "eth_lpi" (the interrupt that occurs when Tx or Rx enters/exits LPI state) - phy-mode: See ethernet.txt file in the same directory. - snps,reset-gpio gpio number for phy reset. - snps,reset-active-low boolean flag to indicate if phy reset is active low. @@ -28,9 +31,9 @@ Optional properties: clocks may be specified in derived bindings. - clock-names: One name for each entry in the clocks property, the first one should be "stmmaceth" and the second one should be "pclk". -- clk_ptp_ref: this is the PTP reference clock; in case of the PTP is - available this clock is used for programming the Timestamp Addend Register. - If not passed then the system clock will be used and this is fine on some +- ptp_ref: this is the PTP reference clock; in case of the PTP is available + this clock is used for programming the Timestamp Addend Register. If not + passed then the system clock will be used and this is fine on some platforms. - tx-fifo-depth: See ethernet.txt file in the same directory - rx-fifo-depth: See ethernet.txt file in the same directory @@ -72,7 +75,45 @@ Optional properties: - snps,mb: mixed-burst - snps,rb: rebuild INCRx Burst - mdio: with compatible = "snps,dwmac-mdio", create and register mdio bus. - +- Multiple RX Queues parameters: below the list of all the parameters to + configure the multiple RX queues: + - snps,rx-queues-to-use: number of RX queues to be used in the driver + - Choose one of these RX scheduling algorithms: + - snps,rx-sched-sp: Strict priority + - snps,rx-sched-wsp: Weighted Strict priority + - For each RX queue + - Choose one of these modes: + - snps,dcb-algorithm: Queue to be enabled as DCB + - snps,avb-algorithm: Queue to be enabled as AVB + - snps,map-to-dma-channel: Channel to map + - Specifiy specific packet routing: + - snps,route-avcp: AV Untagged Control packets + - snps,route-ptp: PTP Packets + - snps,route-dcbcp: DCB Control Packets + - snps,route-up: Untagged Packets + - snps,route-multi-broad: Multicast & Broadcast Packets + - snps,priority: RX queue priority (Range: 0x0 to 0xF) +- Multiple TX Queues parameters: below the list of all the parameters to + configure the multiple TX queues: + - snps,tx-queues-to-use: number of TX queues to be used in the driver + - Choose one of these TX scheduling algorithms: + - snps,tx-sched-wrr: Weighted Round Robin + - snps,tx-sched-wfq: Weighted Fair Queuing + - snps,tx-sched-dwrr: Deficit Weighted Round Robin + - snps,tx-sched-sp: Strict priority + - For each TX queue + - snps,weight: TX queue weight (if using a DCB weight algorithm) + - Choose one of these modes: + - snps,dcb-algorithm: TX queue will be working in DCB + - snps,avb-algorithm: TX queue will be working in AVB + [Attention] Queue 0 is reserved for legacy traffic + and so no AVB is available in this queue. + - Configure Credit Base Shaper (if AVB Mode selected): + - snps,send_slope: enable Low Power Interface + - snps,idle_slope: unlock on WoL + - snps,high_credit: max write outstanding req. limit + - snps,low_credit: max read outstanding req. limit + - snps,priority: TX queue priority (Range: 0x0 to 0xF) Examples: stmmac_axi_setup: stmmac-axi-config { @@ -81,12 +122,41 @@ Examples: snps,blen = <256 128 64 32 0 0 0>; }; + mtl_rx_setup: rx-queues-config { + snps,rx-queues-to-use = <1>; + snps,rx-sched-sp; + queue0 { + snps,dcb-algorithm; + snps,map-to-dma-channel = <0x0>; + snps,priority = <0x0>; + }; + }; + + mtl_tx_setup: tx-queues-config { + snps,tx-queues-to-use = <2>; + snps,tx-sched-wrr; + queue0 { + snps,weight = <0x10>; + snps,dcb-algorithm; + snps,priority = <0x0>; + }; + + queue1 { + snps,avb-algorithm; + snps,send_slope = <0x1000>; + snps,idle_slope = <0x1000>; + snps,high_credit = <0x3E800>; + snps,low_credit = <0xFFC18000>; + snps,priority = <0x1>; + }; + }; + gmac0: ethernet@e0800000 { compatible = "st,spear600-gmac"; reg = <0xe0800000 0x8000>; interrupt-parent = <&vic1>; - interrupts = <24 23>; - interrupt-names = "macirq", "eth_wake_irq"; + interrupts = <24 23 22>; + interrupt-names = "macirq", "eth_wake_irq", "eth_lpi"; mac-address = [000000000000]; /* Filled in by U-Boot */ max-frame-size = <3800>; phy-mode = "gmii"; @@ -104,4 +174,6 @@ Examples: phy1: ethernet-phy@0 { }; }; + snps,mtl-rx-config = <&mtl_rx_setup>; + snps,mtl-tx-config = <&mtl_tx_setup>; }; diff --git a/Documentation/devicetree/bindings/net/ti,wilink-st.txt b/Documentation/devicetree/bindings/net/ti,wilink-st.txt new file mode 100644 index 000000000000..cbad73a84ac4 --- /dev/null +++ b/Documentation/devicetree/bindings/net/ti,wilink-st.txt @@ -0,0 +1,35 @@ +TI WiLink 7/8 (wl12xx/wl18xx) Shared Transport BT/FM/GPS devices + +TI WiLink devices have a UART interface for providing Bluetooth, FM radio, +and GPS over what's called "shared transport". The shared transport is +standard BT HCI protocol with additional channels for the other functions. + +These devices also have a separate WiFi interface as described in +wireless/ti,wlcore.txt. + +This bindings follows the UART slave device binding in +../serial/slave-device.txt. + +Required properties: + - compatible: should be one of the following: + "ti,wl1271-st" + "ti,wl1273-st" + "ti,wl1831-st" + "ti,wl1835-st" + "ti,wl1837-st" + +Optional properties: + - enable-gpios : GPIO signal controlling enabling of BT. Active high. + - vio-supply : Vio input supply (1.8V) + - vbat-supply : Vbat input supply (2.9-4.8V) + +Example: + +&serial0 { + compatible = "ns16550a"; + ... + bluetooth { + compatible = "ti,wl1835-st"; + enable-gpios = <&gpio1 7 GPIO_ACTIVE_HIGH>; + }; +}; diff --git a/Documentation/devicetree/bindings/pci/hisilicon-pcie.txt b/Documentation/devicetree/bindings/pci/hisilicon-pcie.txt index b7fa3b97986d..a339dbb15493 100644 --- a/Documentation/devicetree/bindings/pci/hisilicon-pcie.txt +++ b/Documentation/devicetree/bindings/pci/hisilicon-pcie.txt @@ -44,13 +44,19 @@ Hip05 Example (note that Hip06 is the same except compatible): }; HiSilicon Hip06/Hip07 PCIe host bridge DT (almost-ECAM) description. + +Some BIOSes place the host controller in a mode where it is ECAM +compliant for all devices other than the root complex. In such cases, +the host controller should be described as below. + The properties and their meanings are identical to those described in host-generic-pci.txt except as listed below. Properties of the host controller node that differ from host-generic-pci.txt: -- compatible : Must be "hisilicon,pcie-almost-ecam" +- compatible : Must be "hisilicon,hip06-pcie-ecam", or + "hisilicon,hip07-pcie-ecam" - reg : Two entries: First the ECAM configuration space for any other bus underneath the root bus. Second, the base @@ -59,7 +65,7 @@ host-generic-pci.txt: Example: pcie0: pcie@a0090000 { - compatible = "hisilicon,pcie-almost-ecam"; + compatible = "hisilicon,hip06-pcie-ecam"; reg = <0 0xb0000000 0 0x2000000>, /* ECAM configuration space */ <0 0xa0090000 0 0x10000>; /* host bridge registers */ bus-range = <0 31>; diff --git a/Documentation/devicetree/bindings/phy/brcm,nsp-usb3-phy.txt b/Documentation/devicetree/bindings/phy/brcm,nsp-usb3-phy.txt deleted file mode 100644 index e68ae5dec9c9..000000000000 --- a/Documentation/devicetree/bindings/phy/brcm,nsp-usb3-phy.txt +++ /dev/null @@ -1,39 +0,0 @@ -Broadcom USB3 phy binding for northstar plus SoC -The USB3 phy is internal to the SoC and is accessed using mdio interface. - -Required mdio bus properties: -- reg: Should be 0x0 for SoC internal USB3 phy -- #address-cells: must be 1 -- #size-cells: must be 0 - -Required USB3 PHY properties: -- compatible: should be "brcm,nsp-usb3-phy" -- reg: USB3 Phy address on SoC internal MDIO bus and it should be 0x10. -- usb3-ctrl-syscon: handler of syscon node defining physical address - of usb3 control register. -- #phy-cells: must be 0 - -Required usb3 control properties: -- compatible: should be "brcm,nsp-usb3-ctrl" -- reg: offset and length of the control registers - -Example: - - mdio@0 { - reg = <0x0>; - #address-cells = <1>; - #size-cells = <0>; - - usb3_phy: usb-phy@10 { - compatible = "brcm,nsp-usb3-phy"; - reg = <0x10>; - usb3-ctrl-syscon = <&usb3_ctrl>; - #phy-cells = <0>; - status = "disabled"; - }; - }; - - usb3_ctrl: syscon@104408 { - compatible = "brcm,nsp-usb3-ctrl", "syscon"; - reg = <0x104408 0x3fc>; - }; diff --git a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt index 2fd688c8dbdb..b53224473672 100644 --- a/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt +++ b/Documentation/devicetree/bindings/pinctrl/allwinner,sunxi-pinctrl.txt @@ -23,7 +23,8 @@ Required properties: "allwinner,sun8i-h3-pinctrl" "allwinner,sun8i-h3-r-pinctrl" "allwinner,sun50i-a64-pinctrl" - "allwinner,sun50i-h5-r-pinctrl" + "allwinner,sun50i-a64-r-pinctrl" + "allwinner,sun50i-h5-pinctrl" "nextthing,gr8-pinctrl" - reg: Should contain the register physical address and length for the diff --git a/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt index 9a8a45d9d8ab..590e60378be3 100644 --- a/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt +++ b/Documentation/devicetree/bindings/pinctrl/atmel,at91-pinctrl.txt @@ -4,7 +4,7 @@ The AT91 Pinmux Controller, enables the IC to share one PAD to several functional blocks. The sharing is done by multiplexing the PAD input/output signals. For each PAD there are up to 8 muxing options (called periph modes). Since different modules require -different PAD settings (like pull up, keeper, etc) the contoller controls +different PAD settings (like pull up, keeper, etc) the controller controls also the PAD settings parameters. Please refer to pinctrl-bindings.txt in this directory for details of the diff --git a/Documentation/devicetree/bindings/pinctrl/axis,artpec6-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/axis,artpec6-pinctrl.txt new file mode 100644 index 000000000000..47284f85ec80 --- /dev/null +++ b/Documentation/devicetree/bindings/pinctrl/axis,artpec6-pinctrl.txt @@ -0,0 +1,85 @@ +Axis ARTPEC-6 Pin Controller + +Required properties: +- compatible: "axis,artpec6-pinctrl". +- reg: Should contain the register physical address and length for the pin + controller. + +A pinctrl node should contain at least one subnode representing the pinctrl +groups available on the machine. Each subnode will list the mux function +required and what pin group it will use. Each subnode will also configure the +drive strength and bias pullup of the pin group. If either of these options is +not set, its actual value will be unspecified. + + +Required subnode-properties: +- function: Function to mux. +- groups: Name of the pin group to use for the function above. + + Available functions and groups (function: group0, group1...): + gpio: cpuclkoutgrp0, udlclkoutgrp0, i2c1grp0, i2c2grp0, + i2c3grp0, i2s0grp0, i2s1grp0, i2srefclkgrp0, spi0grp0, + spi1grp0, pciedebuggrp0, uart0grp0, uart0grp1, uart1grp0, + uart2grp0, uart2grp1, uart3grp0, uart4grp0, uart5grp0 + cpuclkout: cpuclkoutgrp0 + udlclkout: udlclkoutgrp0 + i2c1: i2c1grp0 + i2c2: i2c2grp0 + i2c3: i2c3grp0 + i2s0: i2s0grp0 + i2s1: i2s1grp0 + i2srefclk: i2srefclkgrp0 + spi0: spi0grp0 + spi1: spi1grp0 + pciedebug: pciedebuggrp0 + uart0: uart0grp0, uart0grp1 + uart1: uart1grp0 + uart2: uart2grp0, uart2grp1 + uart3: uart3grp0 + uart4: uart4grp0 + uart5: uart5grp0 + nand: nandgrp0 + sdio0: sdio0grp0 + sdio1: sdio1grp0 + ethernet: ethernetgrp0 + + +Optional subnode-properties (see pinctrl-bindings.txt): +- drive-strength: 4, 6, 8, 9 mA. For SD and NAND pins, this is for 3.3V VCCQ3. +- bias-pull-up +- bias-disable + +Examples: +pinctrl@f801d000 { + compatible = "axis,artpec6-pinctrl"; + reg = <0xf801d000 0x400>; + + pinctrl_uart0: uart0grp { + function = "uart0"; + groups = "uart0grp0"; + drive-strength = <4>; + bias-pull-up; + }; + pinctrl_uart3: uart3grp { + function = "uart3"; + groups = "uart3grp0"; + }; +}; +uart0: uart@f8036000 { + compatible = "arm,pl011", "arm,primecell"; + reg = <0xf8036000 0x1000>; + interrupts = <0 104 IRQ_TYPE_LEVEL_HIGH>; + clocks = <&pll2div24>, <&apb_pclk>; + clock-names = "uart_clk", "apb_pclk"; + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart0>; +}; +uart3: uart@f8039000 { + compatible = "arm,pl011", "arm,primecell"; + reg = <0xf8039000 0x1000>; + interrupts = <0 128 IRQ_TYPE_LEVEL_HIGH>; + clocks = <&pll2div24>, <&apb_pclk>; + clock-names = "uart_clk", "apb_pclk"; + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_uart3>; +}; diff --git a/Documentation/devicetree/bindings/pinctrl/marvell,armada-37xx-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/marvell,armada-37xx-pinctrl.txt new file mode 100644 index 000000000000..f64060908d5a --- /dev/null +++ b/Documentation/devicetree/bindings/pinctrl/marvell,armada-37xx-pinctrl.txt @@ -0,0 +1,183 @@ +* Marvell Armada 37xx SoC pin and gpio controller + +Each Armada 37xx SoC come with two pin and gpio controller one for the +south bridge and the other for the north bridge. + +Inside this set of register the gpio latch allows exposing some +configuration of the SoC and especially the clock frequency of the +xtal. Hence, this node is a represent as syscon allowing sharing the +register between multiple hardware block. + +GPIO and pin controller: +------------------------ + +Main node: + +Refer to pinctrl-bindings.txt in this directory for details of the +common pinctrl bindings used by client devices, including the meaning +of the phrase "pin configuration node". + +Required properties for pinctrl driver: + +- compatible: "marvell,armada3710-sb-pinctrl", "syscon, "simple-mfd" + for the south bridge + "marvell,armada3710-nb-pinctrl", "syscon, "simple-mfd" + for the north bridge +- reg: The first set of register are for pinctrl/gpio and the second + set for the interrupt controller +- interrupts: list of the interrupt use by the gpio + +Available groups and functions for the North bridge: + +group: jtag + - pins 20-24 + - functions jtag, gpio + +group sdio0 + - pins 8-10 + - functions sdio, gpio + +group emmc_nb + - pins 27-35 + - functions emmc, gpio + +group pwm0 + - pin 11 (GPIO1-11) + - functions pwm, gpio + +group pwm1 + - pin 12 + - functions pwm, gpio + +group pwm2 + - pin 13 + - functions pwm, gpio + +group pwm3 + - pin 14 + - functions pwm, gpio + +group pmic1 + - pin 17 + - functions pmic, gpio + +group pmic0 + - pin 16 + - functions pmic, gpio + +group i2c2 + - pins 2-3 + - functions i2c, gpio + +group i2c1 + - pins 0-1 + - functions i2c, gpio + +group spi_cs1 + - pin 17 + - functions spi, gpio + +group spi_cs2 + - pin 18 + - functions spi, gpio + +group spi_cs3 + - pin 19 + - functions spi, gpio + +group onewire + - pin 4 + - functions onewire, gpio + +group uart1 + - pins 25-26 + - functions uart, gpio + +group spi_quad + - pins 15-16 + - functions spi, gpio + +group uart_2 + - pins 9-10 + - functions uart, gpio + +Available groups and functions for the South bridge: + +group usb32_drvvbus0 + - pin 36 + - functions drvbus, gpio + +group usb2_drvvbus1 + - pin 37 + - functions drvbus, gpio + +group sdio_sb + - pins 60-64 + - functions sdio, gpio + +group rgmii + - pins 42-55 + - functions mii, gpio + +group pcie1 + - pins 39-40 + - functions pcie, gpio + +group ptp + - pins 56-58 + - functions ptp, gpio + +group ptp_clk + - pin 57 + - functions ptp, mii + +group ptp_trig + - pin 58 + - functions ptp, mii + +group mii_col + - pin 59 + - functions mii, mii_err + +GPIO subnode: + +Please refer to gpio.txt in this directory for details of gpio-ranges property +and the common GPIO bindings used by client devices. + +Required properties for gpio driver under the gpio subnode: +- interrupts: List of interrupt specifier for the controllers interrupt. +- gpio-controller: Marks the device node as a gpio controller. +- #gpio-cells: Should be 2. The first cell is the GPIO number and the + second cell specifies GPIO flags, as defined in + <dt-bindings/gpio/gpio.h>. Only the GPIO_ACTIVE_HIGH and + GPIO_ACTIVE_LOW flags are supported. +- gpio-ranges: Range of pins managed by the GPIO controller. + +Xtal Clock bindings for Marvell Armada 37xx SoCs +------------------------------------------------ + +see Documentation/devicetree/bindings/clock/armada3700-xtal-clock.txt + + +Example: +pinctrl_sb: pinctrl-sb@18800 { + compatible = "marvell,armada3710-sb-pinctrl", "syscon", "simple-mfd"; + reg = <0x18800 0x100>, <0x18C00 0x20>; + gpio { + #gpio-cells = <2>; + gpio-ranges = <&pinctrl_sb 0 0 29>; + gpio-controller; + interrupts = + <GIC_SPI 160 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 159 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 158 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 157 IRQ_TYPE_LEVEL_HIGH>, + <GIC_SPI 156 IRQ_TYPE_LEVEL_HIGH>; + }; + + rgmii_pins: mii-pins { + groups = "rgmii"; + function = "mii"; + }; + +}; diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt index b98e6f030da8..ca01710ee29a 100644 --- a/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt +++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-aspeed.txt @@ -34,13 +34,28 @@ Documentation/devicetree/bindings/mfd/syscon.txt Subnode Format ============== -The required properties of child nodes are (as defined in pinctrl-bindings): -- function -- groups +The required properties of pinmux child nodes are: +- function: the mux function to select +- groups : the list of groups to select with this function -Each function has only one associated pin group. Each group is named by its -function. The following values for the function and groups properties are -supported: +Required properties of pinconf child nodes are: +- groups: A list of groups to select (either this or "pins" must be + specified) +- pins : A list of ball names as strings, eg "D14" (either this or "groups" + must be specified) + +Optional properties of pinconf child nodes are: +- bias-disable : disable any pin bias +- bias-pull-down: pull down the pin +- drive-strength: sink or source at most X mA + +Definitions are as specified in +Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt, with any +further limitations as described above. + +For pinmux, each mux function has only one associated pin group. Each group is +named by its function. The following values for the function and groups +properties are supported: aspeed,ast2400-pinctrl, aspeed,g4-pinctrl: @@ -90,6 +105,11 @@ syscon: scu@1e6e2000 { function = "I2C3"; groups = "I2C3"; }; + + pinctrl_gpioh0_unbiased_default: gpioh0 { + pins = "A8"; + bias-disable; + }; }; }; @@ -110,6 +130,11 @@ ahb { function = "I2C3"; groups = "I2C3"; }; + + pinctrl_gpioh0_unbiased_default: gpioh0 { + pins = "A18"; + bias-disable; + }; }; }; @@ -143,6 +168,3 @@ ahb { }; }; }; - -Please refer to pinctrl-bindings.txt in this directory for details of the -common pinctrl bindings used by client devices. diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt index bf3f7b014724..71a3c134af1b 100644 --- a/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt +++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-bindings.txt @@ -162,8 +162,8 @@ state_2_node_a { pins = "mfio29", "mfio30"; }; -Optionally an altenative binding can be used if more suitable depending on the -pin controller hardware. For hardaware where there is a large number of identical +Optionally an alternative binding can be used if more suitable depending on the +pin controller hardware. For hardware where there is a large number of identical pin controller instances, naming each pin and function can easily become unmaintainable. This is especially the case if the same controller is used for different pins and functions depending on the SoC revision and packaging. @@ -198,6 +198,28 @@ registers, and must not be a virtual index of pin instances. The reason for this is to avoid mapping of the index in the dts files and the pin controller driver as it can change. +For hardware where pin multiplexing configurations have to be specified for +each single pin the number of required sub-nodes containing "pin" and +"function" properties can quickly escalate and become hard to write and +maintain. + +For cases like this, the pin controller driver may use the pinmux helper +property, where the pin identifier is packed with mux configuration settings +in a single integer. + +The pinmux property accepts an array of integers, each of them describing +a single pin multiplexing configuration. + +pincontroller { + state_0_node_a { + pinmux = <PIN_ID_AND_MUX>, <PIN_ID_AND_MUX>, ...; + }; +}; + +Each individual pin controller driver bindings documentation shall specify +how those values (pin IDs and pin multiplexing configuration) are defined and +assembled together. + == Generic pin configuration node content == Many data items that are represented in a pin configuration node are common @@ -210,18 +232,22 @@ structure of the DT nodes that contain these properties. Supported generic properties are: pins - the list of pins that properties in the node - apply to (either this or "group" has to be + apply to (either this, "group" or "pinmux" has to be specified) group - the group to apply the properties to, if the driver supports configuration of whole groups rather than - individual pins (either this or "pins" has to be - specified) + individual pins (either this, "pins" or "pinmux" has + to be specified) +pinmux - the list of numeric pin ids and their mux settings + that properties in the node apply to (either this, + "pins" or "groups" have to be specified) bias-disable - disable any pin bias bias-high-impedance - high impedance mode ("third-state", "floating") bias-bus-hold - latch weakly bias-pull-up - pull up the pin bias-pull-down - pull down the pin bias-pull-pin-default - use pin-default pull state +bi-directional - pin supports simultaneous input/output operations drive-push-pull - drive actively high and low drive-open-drain - drive with open drain drive-open-source - drive with open source @@ -234,6 +260,7 @@ input-debounce - debounce mode with debound time X power-source - select between different power supplies low-power-enable - enable low power mode low-power-disable - disable low power mode +output-enable - enable output on pin regardless of output value output-low - set the pin to output mode with low level output-high - set the pin to output mode with high level slew-rate - set the slew rate @@ -258,6 +285,12 @@ state_2_node_a { bias-pull-up; }; }; +state_3_node_a { + mux { + pinmux = <GPIOx_PINm_MUXn>, <GPIOx_PINj_MUXk)>; + input-enable; + }; +}; Some of the generic properties take arguments. For those that do, the arguments are described below. @@ -266,6 +299,11 @@ arguments are described below. binding for the hardware defines: - Whether the entries are integers or strings, and their meaning. +- pinmux takes a list of pin IDs and mux settings as required argument. The + specific bindings for the hardware defines: + - How pin IDs and mux settings are defined and assembled together in a single + integer. + - bias-pull-up, -down and -pin-default take as optional argument on hardware supporting it the pull strength in Ohm. bias-disable will disable the pull. diff --git a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt index 4722bc61a1a2..ee01ab58224d 100644 --- a/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt +++ b/Documentation/devicetree/bindings/pinctrl/rockchip,pinctrl.txt @@ -19,11 +19,18 @@ The pins are grouped into up to 5 individual pin banks which need to be defined as gpio sub-nodes of the pinmux controller. Required properties for iomux controller: - - compatible: one of "rockchip,rk1108-pinctrl", "rockchip,rk2928-pinctrl" - "rockchip,rk3066a-pinctrl", "rockchip,rk3066b-pinctrl" - "rockchip,rk3188-pinctrl", "rockchip,rk3228-pinctrl" - "rockchip,rk3288-pinctrl", "rockchip,rk3368-pinctrl" - "rockchip,rk3399-pinctrl" + - compatible: should be + "rockchip,rv1108-pinctrl": for Rockchip RV1108 + "rockchip,rk2928-pinctrl": for Rockchip RK2928 + "rockchip,rk3066a-pinctrl": for Rockchip RK3066a + "rockchip,rk3066b-pinctrl": for Rockchip RK3066b + "rockchip,rk3188-pinctrl": for Rockchip RK3188 + "rockchip,rk3228-pinctrl": for Rockchip RK3228 + "rockchip,rk3288-pinctrl": for Rockchip RK3288 + "rockchip,rk3328-pinctrl": for Rockchip RK3328 + "rockchip,rk3368-pinctrl": for Rockchip RK3368 + "rockchip,rk3399-pinctrl": for Rockchip RK3399 + - rockchip,grf: phandle referencing a syscon providing the "general register files" diff --git a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt index eac20aa33907..d907a74f8dc0 100644 --- a/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt +++ b/Documentation/devicetree/bindings/pinctrl/st,stm32-pinctrl.txt @@ -9,6 +9,7 @@ Pin controller node: Required properies: - compatible: value should be one of the following: "st,stm32f429-pinctrl" + "st,stm32f469-pinctrl" "st,stm32f746-pinctrl" "st,stm32h743-pinctrl" - #address-cells: The value of this property must be 1 @@ -38,8 +39,6 @@ Optional properties: - st,syscfg: Should be phandle/offset pair. The phandle to the syscon node which includes IRQ mux selection register, and the offset of the IRQ mux selection register. - - ngpios: Number of gpios in a bank (to use if bank gpio numbers is less - than 16). - gpio-ranges: Define a dedicated mapping between a pin-controller and a gpio controller. Format is <&phandle a b c> with: -(phandle): phandle of pin-controller. diff --git a/Documentation/devicetree/bindings/power/power_domain.txt b/Documentation/devicetree/bindings/power/power_domain.txt index 723e1ad937da..940707d095cc 100644 --- a/Documentation/devicetree/bindings/power/power_domain.txt +++ b/Documentation/devicetree/bindings/power/power_domain.txt @@ -31,7 +31,9 @@ Optional properties: - domain-idle-states : A phandle of an idle-state that shall be soaked into a generic domain power state. The idle state definitions are - compatible with domain-idle-state specified in [1]. + compatible with domain-idle-state specified in [1]. phandles + that are not compatible with domain-idle-state will be + ignored. The domain-idle-state property reflects the idle state of this PM domain and not the idle states of the devices or sub-domains in the PM domain. Devices and sub-domains have their own idle-states independent of the parent diff --git a/Documentation/devicetree/bindings/power/reset/gemini-poweroff.txt b/Documentation/devicetree/bindings/power/reset/gemini-poweroff.txt new file mode 100644 index 000000000000..7fec3e100214 --- /dev/null +++ b/Documentation/devicetree/bindings/power/reset/gemini-poweroff.txt @@ -0,0 +1,17 @@ +* Device-Tree bindings for Cortina Systems Gemini Poweroff + +This is a special IP block in the Cortina Gemini SoC that only +deals with different ways to power the system down. + +Required properties: +- compatible: should be "cortina,gemini-power-controller" +- reg: should contain the physical memory base and size +- interrupts: should contain the power management interrupt + +Example: + +power-controller@4b000000 { + compatible = "cortina,gemini-power-controller"; + reg = <0x4b000000 0x100>; + interrupts = <26 IRQ_TYPE_EDGE_FALLING>; +}; diff --git a/Documentation/devicetree/bindings/power/reset/syscon-poweroff.txt b/Documentation/devicetree/bindings/power/reset/syscon-poweroff.txt index 1e2546f8b08a..022ed1f3bc80 100644 --- a/Documentation/devicetree/bindings/power/reset/syscon-poweroff.txt +++ b/Documentation/devicetree/bindings/power/reset/syscon-poweroff.txt @@ -3,13 +3,20 @@ Generic SYSCON mapped register poweroff driver This is a generic poweroff driver using syscon to map the poweroff register. The poweroff is generally performed with a write to the poweroff register defined by the register map pointed by syscon reference plus the offset -with the mask defined in the poweroff node. +with the value and mask defined in the poweroff node. Required properties: - compatible: should contain "syscon-poweroff" - regmap: this is phandle to the register map node - offset: offset in the register map for the poweroff register (in bytes) -- mask: the poweroff value written to the poweroff register (32 bit access) +- value: the poweroff value written to the poweroff register (32 bit access) + +Optional properties: +- mask: update only the register bits defined by the mask (32 bit) + +Legacy usage: +If a node doesn't contain a value property but contains a mask property, the +mask property is used as the value. Default will be little endian mode, 32 bit access only. diff --git a/Documentation/devicetree/bindings/power/rockchip-io-domain.txt b/Documentation/devicetree/bindings/power/rockchip-io-domain.txt index d23dc002a87e..d3a5a93a65cd 100644 --- a/Documentation/devicetree/bindings/power/rockchip-io-domain.txt +++ b/Documentation/devicetree/bindings/power/rockchip-io-domain.txt @@ -33,6 +33,7 @@ Required properties: - compatible: should be one of: - "rockchip,rk3188-io-voltage-domain" for rk3188 - "rockchip,rk3288-io-voltage-domain" for rk3288 + - "rockchip,rk3328-io-voltage-domain" for rk3328 - "rockchip,rk3368-io-voltage-domain" for rk3368 - "rockchip,rk3368-pmu-io-voltage-domain" for rk3368 pmu-domains - "rockchip,rk3399-io-voltage-domain" for rk3399 diff --git a/Documentation/devicetree/bindings/power/supply/cpcap-charger.txt b/Documentation/devicetree/bindings/power/supply/cpcap-charger.txt new file mode 100644 index 000000000000..80bd873c3b1d --- /dev/null +++ b/Documentation/devicetree/bindings/power/supply/cpcap-charger.txt @@ -0,0 +1,37 @@ +Motorola CPCAP PMIC battery charger binding + +Required properties: +- compatible: Shall be "motorola,mapphone-cpcap-charger" +- interrupts: Interrupt specifier for each name in interrupt-names +- interrupt-names: Should contain the following entries: + "chrg_det", "rvrs_chrg", "chrg_se1b", "se0conn", + "rvrs_mode", "chrgcurr1", "vbusvld", "battdetb" +- io-channels: IIO ADC channel specifier for each name in io-channel-names +- io-channel-names: Should contain the following entries: + "battdetb", "battp", "vbus", "chg_isense", "batti" + +Optional properties: +- mode-gpios: Optionally CPCAP charger can have a companion wireless + charge controller that is controlled with two GPIOs + that are active low. + +Example: + +cpcap_charger: charger { + compatible = "motorola,mapphone-cpcap-charger"; + interrupts-extended = < + &cpcap 13 0 &cpcap 12 0 &cpcap 29 0 &cpcap 28 0 + &cpcap 22 0 &cpcap 20 0 &cpcap 19 0 &cpcap 54 0 + >; + interrupt-names = + "chrg_det", "rvrs_chrg", "chrg_se1b", "se0conn", + "rvrs_mode", "chrgcurr1", "vbusvld", "battdetb"; + mode-gpios = <&gpio3 29 GPIO_ACTIVE_LOW + &gpio3 23 GPIO_ACTIVE_LOW>; + io-channels = <&cpcap_adc 0 &cpcap_adc 1 + &cpcap_adc 2 &cpcap_adc 5 + &cpcap_adc 6>; + io-channel-names = "battdetb", "battp", + "vbus", "chg_isense", + "batti"; +}; diff --git a/Documentation/devicetree/bindings/power/supply/lego_ev3_battery.txt b/Documentation/devicetree/bindings/power/supply/lego_ev3_battery.txt new file mode 100644 index 000000000000..5485633b1faa --- /dev/null +++ b/Documentation/devicetree/bindings/power/supply/lego_ev3_battery.txt @@ -0,0 +1,21 @@ +LEGO MINDSTORMS EV3 Battery +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +LEGO MINDSTORMS EV3 has some built-in capability for monitoring the battery. +It uses 6 AA batteries or a special Li-ion rechargeable battery pack that is +detected by a key switch in the battery compartment. + +Required properties: + - compatible: Must be "lego,ev3-battery" + - io-channels: phandles to analog inputs for reading voltage and current + - io-channel-names: Must be "voltage", "current" + - rechargeable-gpios: phandle to the rechargeable battery indication gpio + +Example: + + battery { + compatible = "lego,ev3-battery"; + io-channels = <&adc 4>, <&adc 3>; + io-channel-names = "voltage", "current"; + rechargeable-gpios = <&gpio 136 GPIO_ACTIVE_LOW>; + }; diff --git a/Documentation/devicetree/bindings/power/supply/ltc2941.txt b/Documentation/devicetree/bindings/power/supply/ltc2941.txt index ea42ae12d924..a9d7aa60558b 100644 --- a/Documentation/devicetree/bindings/power/supply/ltc2941.txt +++ b/Documentation/devicetree/bindings/power/supply/ltc2941.txt @@ -6,8 +6,8 @@ temperature monitoring, and uses a slightly different conversion formula for the charge counter. Required properties: -- compatible: Should contain "ltc2941" or "ltc2943" which also indicates the - type of I2C chip attached. +- compatible: Should contain "lltc,ltc2941" or "lltc,ltc2943" which also + indicates the type of I2C chip attached. - reg: The 7-bit I2C address. - lltc,resistor-sense: The sense resistor value in milli-ohms. Can be a 32-bit negative value when the battery has been connected to the wrong end of the @@ -20,7 +20,7 @@ Required properties: Example from the Topic Miami Florida board: fuelgauge: ltc2943@64 { - compatible = "ltc2943"; + compatible = "lltc,ltc2943"; reg = <0x64>; lltc,resistor-sense = <15>; lltc,prescaler-exponent = <5>; /* 2^(2*5) = 1024 */ diff --git a/Documentation/devicetree/bindings/power/supply/max8925_batter.txt b/Documentation/devicetree/bindings/power/supply/max8925_battery.txt index d7e3e0c0f71d..d7e3e0c0f71d 100644 --- a/Documentation/devicetree/bindings/power/supply/max8925_batter.txt +++ b/Documentation/devicetree/bindings/power/supply/max8925_battery.txt diff --git a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt index 712baf6c3e24..44b842b6ca15 100644 --- a/Documentation/devicetree/bindings/powerpc/4xx/emac.txt +++ b/Documentation/devicetree/bindings/powerpc/4xx/emac.txt @@ -71,6 +71,9 @@ For Axon it can be absent, though my current driver doesn't handle phy-address yet so for now, keep 0x00ffffff in it. + - phy-handle : Used to describe configurations where a external PHY + is used. Please refer to: + Documentation/devicetree/bindings/net/ethernet.txt - rx-fifo-size-gige : 1 cell, Rx fifo size in bytes for 1000 Mb/sec operations (if absent the value is the same as rx-fifo-size). For Axon, either absent or 2048. @@ -81,8 +84,22 @@ offload, phandle of the TAH device node. - tah-channel : 1 cell, optional. If appropriate, channel used on the TAH engine. + - fixed-link : Fixed-link subnode describing a link to a non-MDIO + managed entity. See + Documentation/devicetree/bindings/net/fixed-link.txt + for details. + - mdio subnode : When the EMAC has a phy connected to its local + mdio, which us supported by the kernel's network + PHY library in drivers/net/phy, there must be device + tree subnode with the following required properties: + - #address-cells: Must be <1>. + - #size-cells: Must be <0>. - Example: + For PHY definitions: Please refer to + Documentation/devicetree/bindings/net/phy.txt and + Documentation/devicetree/bindings/net/ethernet.txt + + Examples: EMAC0: ethernet@40000800 { device_type = "network"; @@ -104,6 +121,48 @@ zmii-channel = <0>; }; + EMAC1: ethernet@ef600c00 { + device_type = "network"; + compatible = "ibm,emac-apm821xx", "ibm,emac4sync"; + interrupt-parent = <&EMAC1>; + interrupts = <0 1>; + #interrupt-cells = <1>; + #address-cells = <0>; + #size-cells = <0>; + interrupt-map = <0 &UIC2 0x10 IRQ_TYPE_LEVEL_HIGH /* Status */ + 1 &UIC2 0x14 IRQ_TYPE_LEVEL_HIGH /* Wake */>; + reg = <0xef600c00 0x000000c4>; + local-mac-address = [000000000000]; /* Filled in by U-Boot */ + mal-device = <&MAL0>; + mal-tx-channel = <0>; + mal-rx-channel = <0>; + cell-index = <0>; + max-frame-size = <9000>; + rx-fifo-size = <16384>; + tx-fifo-size = <2048>; + fifo-entry-size = <10>; + phy-mode = "rgmii"; + phy-handle = <&phy0>; + phy-map = <0x00000000>; + rgmii-device = <&RGMII0>; + rgmii-channel = <0>; + tah-device = <&TAH0>; + tah-channel = <0>; + has-inverted-stacr-oc; + has-new-stacr-staopc; + + mdio { + #address-cells = <1>; + #size-cells = <0>; + + phy0: ethernet-phy@0 { + compatible = "ethernet-phy-ieee802.3-c22"; + reg = <0>; + }; + }; + }; + + ii) McMAL node Required properties: @@ -145,4 +204,3 @@ - revision : as provided by the RGMII new version register if available. For Axon: 0x0000012a - diff --git a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt index c3f6546ebac7..6a23ad9ac53a 100644 --- a/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt +++ b/Documentation/devicetree/bindings/regulator/ti-abb-regulator.txt @@ -45,7 +45,7 @@ Required Properties: Optional Properties: - reg-names: In addition to the required properties, the following are optional - "efuse-address" - Contains efuse base address used to pick up ABB info. - - "ldo-address" - Contains address of ABB LDO overide register address. + - "ldo-address" - Contains address of ABB LDO override register. "efuse-address" is required for this. - ti,ldovbb-vset-mask - Required if ldo-address is set, mask for LDO override register to provide override vset value. diff --git a/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt b/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt index 202f2d09a23f..4d403645ac9b 100644 --- a/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt +++ b/Documentation/devicetree/bindings/rng/amlogic,meson-rng.txt @@ -6,9 +6,16 @@ Required properties: - compatible : should be "amlogic,meson-rng" - reg : Specifies base physical address and size of the registers. +Optional properties: + +- clocks : phandle to the following named clocks +- clock-names: Name of core clock, must be "core" + Example: rng { - compatible = "amlogic,meson-rng"; - reg = <0x0 0xc8834000 0x0 0x4>; + compatible = "amlogic,meson-rng"; + reg = <0x0 0xc8834000 0x0 0x4>; + clocks = <&clkc CLKID_RNG0>; + clock-names = "core"; }; diff --git a/Documentation/devicetree/bindings/rng/mtk-rng.txt b/Documentation/devicetree/bindings/rng/mtk-rng.txt new file mode 100644 index 000000000000..a6d62a2abd39 --- /dev/null +++ b/Documentation/devicetree/bindings/rng/mtk-rng.txt @@ -0,0 +1,18 @@ +Device-Tree bindings for Mediatek random number generator +found in Mediatek SoC family + +Required properties: +- compatible : Should be "mediatek,mt7623-rng" +- clocks : list of clock specifiers, corresponding to + entries in clock-names property; +- clock-names : Should contain "rng" entries; +- reg : Specifies base physical address and size of the registers + +Example: + +rng: rng@1020f000 { + compatible = "mediatek,mt7623-rng"; + reg = <0 0x1020f000 0 0x1000>; + clocks = <&infracfg CLK_INFRA_TRNG>; + clock-names = "rng"; +}; diff --git a/Documentation/devicetree/bindings/rng/omap_rng.txt b/Documentation/devicetree/bindings/rng/omap_rng.txt index 471477299ece..9cf7876ab434 100644 --- a/Documentation/devicetree/bindings/rng/omap_rng.txt +++ b/Documentation/devicetree/bindings/rng/omap_rng.txt @@ -12,7 +12,8 @@ Required properties: - reg : Offset and length of the register set for the module - interrupts : the interrupt number for the RNG module. Used for "ti,omap4-rng" and "inside-secure,safexcel-eip76" -- clocks: the trng clock source +- clocks: the trng clock source. Only mandatory for the + "inside-secure,safexcel-eip76" compatible. Example: /* AM335x */ diff --git a/Documentation/devicetree/bindings/sound/cs35l35.txt b/Documentation/devicetree/bindings/sound/cs35l35.txt new file mode 100644 index 000000000000..016b768bc722 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/cs35l35.txt @@ -0,0 +1,180 @@ +CS35L35 Boosted Speaker Amplifier + +Required properties: + + - compatible : "cirrus,cs35l35" + + - reg : the I2C address of the device for I2C + + - VA-supply, VP-supply : power supplies for the device, + as covered in + Documentation/devicetree/bindings/regulator/regulator.txt. + + - interrupt-parent : Specifies the phandle of the interrupt controller to + which the IRQs from CS35L35 are delivered to. + - interrupts : IRQ line info CS35L35. + (See Documentation/devicetree/bindings/interrupt-controller/interrupts.txt + for further information relating to interrupt properties) + +Optional properties: + - reset-gpios : gpio used to reset the amplifier + + - cirrus,stereo-config : Boolean to determine if there are 2 AMPs for a + Stereo configuration + + - cirrus,audio-channel : Set Location of Audio Signal on Serial Port + 0 = Data Packet received on Left I2S Channel + 1 = Data Packet received on Right I2S Channel + + - cirrus,advisory-channel : Set Location of Advisory Signal on Serial Port + 0 = Data Packet received on Left I2S Channel + 1 = Data Packet received on Right I2S Channel + + - cirrus,shared-boost : Boolean to enable ClassH tracking of Advisory Signal + if 2 Devices share Boost BST_CTL + + - cirrus,external-boost : Boolean to specify the device is using an external + boost supply, note that sharing a boost from another cs35l35 would constitute + using an external supply for the slave device + + - cirrus,sp-drv-strength : Value for setting the Serial Port drive strength + Table 3-10 of the datasheet lists drive-strength specifications + 0 = 1x (Default) + 1 = .5x + - cirrus,sp-drv-unused : Determines how unused slots should be driven on the + Serial Port. + 0 - Hi-Z + 2 - Drive 0's (Default) + 3 - Drive 1's + + - cirrus,bst-pdn-fet-on : Boolean to determine if the Boost PDN control + powers down with a rectification FET On or Off. If VSPK is supplied + externally then FET is off. + + - cirrus,boost-ctl-millivolt : Boost Voltage Value. Configures the boost + converter's output voltage in mV. The range is from 2600mV to 9000mV with + increments of 100mV. + (Default) VP + + - cirrus,boost-peak-milliamp : Boost-converter peak current limit in mA. + Configures the peak current by monitoring the current through the boost FET. + Range starts at 1680mA and goes to a maximum of 4480mA with increments of + 110mA. + (Default) 2.46 Amps + + - cirrus,amp-gain-zc : Boolean to determine if to use Amplifier gain-change + zero-cross + +Optional H/G Algorithm sub-node: + + The cs35l35 node can have a single "cirrus,classh-internal-algo" sub-node + that will disable automatic control of the internal H/G Algorithm. + + It is strongly recommended that the Datasheet be referenced when adjusting + or using these Class H Algorithm controls over the internal Algorithm. + Serious damage can occur to the Device and surrounding components. + + - cirrus,classh-internal-algo : Sub-node for the Internal Class H Algorithm + See Section 4.3 Internal Class H Algorithm in the Datasheet. + If not used, the device manages the ClassH Algorithm internally. + +Optional properties for the "cirrus,classh-internal-algo" Sub-node + + Section 7.29 Class H Control + - cirrus,classh-bst-overide : Boolean + - cirrus,classh-bst-max-limit + - cirrus,classh-mem-depth + + Section 7.30 Class H Headroom Control + - cirrus,classh-headroom + + Section 7.31 Class H Release Rate + - cirrus,classh-release-rate + + Section 7.32 Class H Weak FET Drive Control + - cirrus,classh-wk-fet-disable + - cirrus,classh-wk-fet-delay + - cirrus,classh-wk-fet-thld + + Section 7.34 Class H VP Control + - cirrus,classh-vpch-auto + - cirrus,classh-vpch-rate + - cirrus,classh-vpch-man + +Optional Monitor Signal Format sub-node: + + The cs35l35 node can have a single "cirrus,monitor-signal-format" sub-node + for adjusting the Depth, Location and Frame of the Monitoring Signals + for Algorithms. + + See Sections 4.8.2 through 4.8.4 Serial-Port Control in the Datasheet + + -cirrus,monitor-signal-format : Sub-node for the Monitor Signaling Formating + on the I2S Port. Each of the 3 8 bit values in the array contain the settings + for depth, location, and frame. + + If not used, the defaults for the 6 monitor signals is used. + + Sections 7.44 - 7.53 lists values for the depth, location, and frame + for each monitoring signal. + + - cirrus,imon : 4 8 bit values to set the depth, location, frame and ADC + scale of the IMON monitor signal. + + - cirrus,vmon : 3 8 bit values to set the depth, location, and frame + of the VMON monitor signal. + + - cirrus,vpmon : 3 8 bit values to set the depth, location, and frame + of the VPMON monitor signal. + + - cirrus,vbstmon : 3 8 bit values to set the depth, location, and frame + of the VBSTMON monitor signal + + - cirrus,vpbrstat : 3 8 bit values to set the depth, location, and frame + of the VPBRSTAT monitor signal + + - cirrus,zerofill : 3 8 bit values to set the depth, location, and frame\ + of the ZEROFILL packet in the monitor signal + +Example: + +cs35l35: cs35l35@20 { + compatible = "cirrus,cs35l35"; + reg = <0x20>; + VA-supply = <&dummy_vreg>; + VP-supply = <&dummy_vreg>; + reset-gpios = <&axi_gpio 54 0>; + interrupt-parent = <&gpio8>; + interrupts = <3 IRQ_TYPE_LEVEL_LOW>; + cirrus,boost-ctl-millivolt = <9000>; + + cirrus,stereo-config; + cirrus,audio-channel = <0x00>; + cirrus,advisory-channel = <0x01>; + cirrus,shared-boost; + + cirrus,classh-internal-algo { + cirrus,classh-bst-overide; + cirrus,classh-bst-max-limit = <0x01>; + cirrus,classh-mem-depth = <0x01>; + cirrus,classh-release-rate = <0x08>; + cirrus,classh-headroom-millivolt = <0x0B>; + cirrus,classh-wk-fet-disable = <0x01>; + cirrus,classh-wk-fet-delay = <0x04>; + cirrus,classh-wk-fet-thld = <0x01>; + cirrus,classh-vpch-auto = <0x01>; + cirrus,classh-vpch-rate = <0x02>; + cirrus,classh-vpch-man = <0x05>; + }; + + /* Depth, Location, Frame */ + cirrus,monitor-signal-format { + cirrus,imon = /bits/ 8 <0x03 0x00 0x01>; + cirrus,vmon = /bits/ 8 <0x03 0x00 0x00>; + cirrus,vpmon = /bits/ 8 <0x03 0x04 0x00>; + cirrus,vbstmon = /bits/ 8 <0x03 0x04 0x01>; + cirrus,vpbrstat = /bits/ 8 <0x00 0x04 0x00>; + cirrus,zerofill = /bits/ 8 <0x00 0x00 0x00>; + }; + +}; diff --git a/Documentation/devicetree/bindings/sound/dioo,dio2125.txt b/Documentation/devicetree/bindings/sound/dioo,dio2125.txt new file mode 100644 index 000000000000..63dbfe0f11d0 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/dioo,dio2125.txt @@ -0,0 +1,12 @@ +DIO2125 Audio Driver + +Required properties: +- compatible : "dioo,dio2125" +- enable-gpios : the gpio connected to the enable pin of the dio2125 + +Example: + +amp: analog-amplifier { + compatible = "dioo,dio2125"; + enable-gpios = <&gpio GPIOH_3 0>; +}; diff --git a/Documentation/devicetree/bindings/sound/everest,es7134.txt b/Documentation/devicetree/bindings/sound/everest,es7134.txt new file mode 100644 index 000000000000..5495a3cb8b7b --- /dev/null +++ b/Documentation/devicetree/bindings/sound/everest,es7134.txt @@ -0,0 +1,10 @@ +ES7134 i2s DA converter + +Required properties: +- compatible : "everest,es7134" or "everest,es7144" + +Example: + +i2s_codec: external-codec { + compatible = "everest,es7134"; +}; diff --git a/Documentation/devicetree/bindings/sound/fsl,ssi.txt b/Documentation/devicetree/bindings/sound/fsl,ssi.txt index 5b76be45d18b..d415888e1316 100644 --- a/Documentation/devicetree/bindings/sound/fsl,ssi.txt +++ b/Documentation/devicetree/bindings/sound/fsl,ssi.txt @@ -20,24 +20,8 @@ Required properties: have. - interrupt-parent: The phandle for the interrupt controller that services interrupts for this device. -- fsl,playback-dma: Phandle to a node for the DMA channel to use for - playback of audio. This is typically dictated by SOC - design. See the notes below. -- fsl,capture-dma: Phandle to a node for the DMA channel to use for - capture (recording) of audio. This is typically dictated - by SOC design. See the notes below. - fsl,fifo-depth: The number of elements in the transmit and receive FIFOs. This number is the maximum allowed value for SFCSR[TFWM0]. -- fsl,ssi-asynchronous: - If specified, the SSI is to be programmed in asynchronous - mode. In this mode, pins SRCK, STCK, SRFS, and STFS must - all be connected to valid signals. In synchronous mode, - SRCK and SRFS are ignored. Asynchronous mode allows - playback and capture to use different sample sizes and - sample rates. Some drivers may require that SRCK and STCK - be connected together, and SRFS and STFS be connected - together. This would still allow different sample sizes, - but not different sample rates. - clocks: "ipg" - Required clock for the SSI unit "baud" - Required clock for SSI master mode. Otherwise this clock is not used @@ -61,6 +45,24 @@ Optional properties: - fsl,mode: The operating mode for the AC97 interface only. "ac97-slave" - AC97 mode, SSI is clock slave "ac97-master" - AC97 mode, SSI is clock master +- fsl,ssi-asynchronous: + If specified, the SSI is to be programmed in asynchronous + mode. In this mode, pins SRCK, STCK, SRFS, and STFS must + all be connected to valid signals. In synchronous mode, + SRCK and SRFS are ignored. Asynchronous mode allows + playback and capture to use different sample sizes and + sample rates. Some drivers may require that SRCK and STCK + be connected together, and SRFS and STFS be connected + together. This would still allow different sample sizes, + but not different sample rates. +- fsl,playback-dma: Phandle to a node for the DMA channel to use for + playback of audio. This is typically dictated by SOC + design. See the notes below. + Only used on Power Architecture. +- fsl,capture-dma: Phandle to a node for the DMA channel to use for + capture (recording) of audio. This is typically dictated + by SOC design. See the notes below. + Only used on Power Architecture. Child 'codec' node required properties: - compatible: Compatible list, contains the name of the codec diff --git a/Documentation/devicetree/bindings/sound/hisilicon,hi6210-i2s.txt b/Documentation/devicetree/bindings/sound/hisilicon,hi6210-i2s.txt new file mode 100644 index 000000000000..7a296784eb37 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/hisilicon,hi6210-i2s.txt @@ -0,0 +1,42 @@ +* Hisilicon 6210 i2s controller + +Required properties: + +- compatible: should be one of the following: + - "hisilicon,hi6210-i2s" +- reg: physical base address of the i2s controller unit and length of + memory mapped region. +- interrupts: should contain the i2s interrupt. +- clocks: a list of phandle + clock-specifier pairs, one for each entry + in clock-names. +- clock-names: should contain following: + - "dacodec" + - "i2s-base" +- dmas: DMA specifiers for tx dma. See the DMA client binding, + Documentation/devicetree/bindings/dma/dma.txt +- dma-names: should be "tx" and "rx" +- hisilicon,sysctrl-syscon: phandle to sysctrl syscon +- #sound-dai-cells: Should be set to 1 (for multi-dai) + - The dai cell indexes reference the following interfaces: + 0: S2 interface + (Currently that is the only one available, but more may be + supported in the future) + +Example for the hi6210 i2s controller: + +i2s0: i2s@f7118000{ + compatible = "hisilicon,hi6210-i2s"; + reg = <0x0 0xf7118000 0x0 0x8000>; /* i2s unit */ + interrupts = <GIC_SPI 123 IRQ_TYPE_LEVEL_HIGH>; /* 155 "DigACodec_intr"-32 */ + clocks = <&sys_ctrl HI6220_DACODEC_PCLK>, + <&sys_ctrl HI6220_BBPPLL0_DIV>; + clock-names = "dacodec", "i2s-base"; + dmas = <&dma0 15 &dma0 14>; + dma-names = "rx", "tx"; + hisilicon,sysctrl-syscon = <&sys_ctrl>; + #sound-dai-cells = <1>; +}; + +Then when referencing the i2s controller: + sound-dai = <&i2s0 0>; /* index 0 => S2 interface */ + diff --git a/Documentation/devicetree/bindings/sound/max98925.txt b/Documentation/devicetree/bindings/sound/max98925.txt deleted file mode 100644 index 27be63e2aa0d..000000000000 --- a/Documentation/devicetree/bindings/sound/max98925.txt +++ /dev/null @@ -1,22 +0,0 @@ -max98925 audio CODEC - -This device supports I2C. - -Required properties: - - - compatible : "maxim,max98925" - - - vmon-slot-no : slot number used to send voltage information - - - imon-slot-no : slot number used to send current information - - - reg : the I2C address of the device for I2C - -Example: - -codec: max98925@1a { - compatible = "maxim,max98925"; - vmon-slot-no = <0>; - imon-slot-no = <2>; - reg = <0x1a>; -}; diff --git a/Documentation/devicetree/bindings/sound/max98926.txt b/Documentation/devicetree/bindings/sound/max98926.txt deleted file mode 100644 index 0b7f4e4d5f9a..000000000000 --- a/Documentation/devicetree/bindings/sound/max98926.txt +++ /dev/null @@ -1,32 +0,0 @@ -max98926 audio CODEC - -This device supports I2C. - -Required properties: - - - compatible : "maxim,max98926" - - - vmon-slot-no : slot number used to send voltage information - or in inteleave mode this will be used as - interleave slot. - - - imon-slot-no : slot number used to send current information - - - interleave-mode : When using two MAX98926 in a system it is - possible to create ADC data that that will - overflow the frame size. Digital Audio Interleave - mode provides a means to output VMON and IMON data - from two devices on a single DOUT line when running - smaller frames sizes such as 32 BCLKS per LRCLK or - 48 BCLKS per LRCLK. - - - reg : the I2C address of the device for I2C - -Example: - -codec: max98926@1a { - compatible = "maxim,max98926"; - vmon-slot-no = <0>; - imon-slot-no = <2>; - reg = <0x1a>; -}; diff --git a/Documentation/devicetree/bindings/sound/max9892x.txt b/Documentation/devicetree/bindings/sound/max9892x.txt new file mode 100644 index 000000000000..f6171591ddc6 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/max9892x.txt @@ -0,0 +1,41 @@ +Maxim Integrated MAX98925/MAX98926/MAX98927 Speaker Amplifier + +This device supports I2C. + +Required properties: + + - compatible : should be one of the following + - "maxim,max98925" + - "maxim,max98926" + - "maxim,max98927" + + - vmon-slot-no : slot number used to send voltage information + or in inteleave mode this will be used as + interleave slot. + MAX98925/MAX98926 slot range : 0 ~ 30, Default : 0 + MAX98927 slot range : 0 ~ 15, Default : 0 + + - imon-slot-no : slot number used to send current information + MAX98925/MAX98926 slot range : 0 ~ 30, Default : 0 + MAX98927 slot range : 0 ~ 15, Default : 0 + + - interleave-mode : When using two MAX9892X in a system it is + possible to create ADC data that that will + overflow the frame size. Digital Audio Interleave + mode provides a means to output VMON and IMON data + from two devices on a single DOUT line when running + smaller frames sizes such as 32 BCLKS per LRCLK or + 48 BCLKS per LRCLK. + Range : 0 (off), 1 (on), Default : 0 + + - reg : the I2C address of the device for I2C + +Example: + +codec: max98927@3a { + compatible = "maxim,max98927"; + vmon-slot-no = <0>; + imon-slot-no = <1>; + interleave-mode = <0>; + reg = <0x3a>; +}; diff --git a/Documentation/devicetree/bindings/sound/mt2701-wm8960.txt b/Documentation/devicetree/bindings/sound/mt2701-wm8960.txt new file mode 100644 index 000000000000..809b609ea9d0 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/mt2701-wm8960.txt @@ -0,0 +1,24 @@ +MT2701 with WM8960 CODEC + +Required properties: +- compatible: "mediatek,mt2701-wm8960-machine" +- mediatek,platform: the phandle of MT2701 ASoC platform +- audio-routing: a list of the connections between audio +- mediatek,audio-codec: the phandles of wm8960 codec +- pinctrl-names: Should contain only one value - "default" +- pinctrl-0: Should specify pin control groups used for this controller. + +Example: + + sound:sound { + compatible = "mediatek,mt2701-wm8960-machine"; + mediatek,platform = <&afe>; + audio-routing = + "Headphone", "HP_L", + "Headphone", "HP_R", + "LINPUT1", "AMIC", + "RINPUT1", "AMIC"; + mediatek,audio-codec = <&wm8960>; + pinctrl-names = "default"; + pinctrl-0 = <&aud_pins_default>; + }; diff --git a/Documentation/devicetree/bindings/sound/nau8824.txt b/Documentation/devicetree/bindings/sound/nau8824.txt new file mode 100644 index 000000000000..e0058b97e49a --- /dev/null +++ b/Documentation/devicetree/bindings/sound/nau8824.txt @@ -0,0 +1,88 @@ +Nuvoton NAU8824 audio codec + +This device supports I2C only. + +Required properties: + - compatible : Must be "nuvoton,nau8824" + + - reg : the I2C address of the device. This is either 0x1a (CSB=0) or 0x1b (CSB=1). + +Optional properties: + - nuvoton,jkdet-polarity: JKDET pin polarity. 0 - active high, 1 - active low. + + - nuvoton,vref-impedance: VREF Impedance selection + 0 - Open + 1 - 25 kOhm + 2 - 125 kOhm + 3 - 2.5 kOhm + + - nuvoton,micbias-voltage: Micbias voltage level. + 0 - VDDA + 1 - VDDA + 2 - VDDA * 1.1 + 3 - VDDA * 1.2 + 4 - VDDA * 1.3 + 5 - VDDA * 1.4 + 6 - VDDA * 1.53 + 7 - VDDA * 1.53 + + - nuvoton,sar-threshold-num: Number of buttons supported + - nuvoton,sar-threshold: Impedance threshold for each button. Array that contains up to 8 buttons configuration. SAR value is calculated as + SAR = 255 * MICBIAS / SAR_VOLTAGE * R / (2000 + R) + where MICBIAS is configured by 'nuvoton,micbias-voltage', SAR_VOLTAGE is configured by 'nuvoton,sar-voltage', R - button impedance. + Refer datasheet section 10.2 for more information about threshold calculation. + + - nuvoton,sar-hysteresis: Button impedance measurement hysteresis. + + - nuvoton,sar-voltage: Reference voltage for button impedance measurement. + 0 - VDDA + 1 - VDDA + 2 - VDDA * 1.1 + 3 - VDDA * 1.2 + 4 - VDDA * 1.3 + 5 - VDDA * 1.4 + 6 - VDDA * 1.53 + 7 - VDDA * 1.53 + + - nuvoton,sar-compare-time: SAR compare time + 0 - 500 ns + 1 - 1 us + 2 - 2 us + 3 - 4 us + + - nuvoton,sar-sampling-time: SAR sampling time + 0 - 2 us + 1 - 4 us + 2 - 8 us + 3 - 16 us + + - nuvoton,short-key-debounce: Button short key press debounce time. + 0 - 30 ms + 1 - 50 ms + 2 - 100 ms + + - nuvoton,jack-eject-debounce: Jack ejection debounce time. + 0 - 0 ms + 1 - 1 ms + 2 - 10 ms + + +Example: + + headset: nau8824@1a { + compatible = "nuvoton,nau8824"; + reg = <0x1a>; + interrupt-parent = <&gpio>; + interrupts = <TEGRA_GPIO(E, 6) IRQ_TYPE_LEVEL_LOW>; + nuvoton,vref-impedance = <2>; + nuvoton,micbias-voltage = <6>; + // Setup 4 buttons impedance according to Android specification + nuvoton,sar-threshold-num = <4>; + nuvoton,sar-threshold = <0xc 0x1e 0x38 0x60>; + nuvoton,sar-hysteresis = <0>; + nuvoton,sar-voltage = <6>; + nuvoton,sar-compare-time = <1>; + nuvoton,sar-sampling-time = <1>; + nuvoton,short-key-debounce = <0>; + nuvoton,jack-eject-debounce = <1>; + }; diff --git a/Documentation/devicetree/bindings/sound/rockchip-i2s.txt b/Documentation/devicetree/bindings/sound/rockchip-i2s.txt index a6600f6dea64..206aba1b34bb 100644 --- a/Documentation/devicetree/bindings/sound/rockchip-i2s.txt +++ b/Documentation/devicetree/bindings/sound/rockchip-i2s.txt @@ -9,6 +9,7 @@ Required properties: - "rockchip,rk3066-i2s": for rk3066 - "rockchip,rk3188-i2s", "rockchip,rk3066-i2s": for rk3188 - "rockchip,rk3288-i2s", "rockchip,rk3066-i2s": for rk3288 + - "rockchip,rk3368-i2s", "rockchip,rk3066-i2s": for rk3368 - "rockchip,rk3399-i2s", "rockchip,rk3066-i2s": for rk3399 - reg: physical base address of the controller and length of memory mapped region. diff --git a/Documentation/devicetree/bindings/sound/samsung,odroid.txt b/Documentation/devicetree/bindings/sound/samsung,odroid.txt new file mode 100644 index 000000000000..c1ac70cb0afb --- /dev/null +++ b/Documentation/devicetree/bindings/sound/samsung,odroid.txt @@ -0,0 +1,57 @@ +Samsung Exynos Odroid XU3/XU4 audio complex with MAX98090 codec + +Required properties: + + - compatible - "samsung,odroidxu3-audio" - for Odroid XU3 board, + "samsung,odroidxu4-audio" - for Odroid XU4 board + - model - the user-visible name of this sound complex + - 'cpu' subnode with a 'sound-dai' property containing the phandle of the I2S + controller + - 'codec' subnode with a 'sound-dai' property containing list of phandles + to the CODEC nodes, first entry must be corresponding to the MAX98090 + CODEC and the second entry must be the phandle of the HDMI IP block node + - clocks - should contain entries matching clock names in the clock-names + property + - clock-names - should contain following entries: + - "epll" - indicating the EPLL output clock + - "i2s_rclk" - indicating the RCLK (root) clock of the I2S0 controller + - samsung,audio-widgets - this property specifies off-codec audio elements + like headphones or speakers, for details see widgets.txt + - samsung,audio-routing - a list of the connections between audio + components; each entry is a pair of strings, the first being the + connection's sink, the second being the connection's source; + valid names for sources and sinks are the MAX98090's pins (as + documented in its binding), and the jacks on the board + + For Odroid X2: + "Headphone Jack", "Mic Jack", "DMIC" + + For Odroid U3, XU3: + "Headphone Jack", "Speakers" + + For Odroid XU4: + no entries + +Example: + +sound { + compatible = "samsung,odroidxu3-audio"; + samsung,cpu-dai = <&i2s0>; + samsung,codec-dai = <&max98090>; + model = "Odroid-XU3"; + samsung,audio-routing = + "Headphone Jack", "HPL", + "Headphone Jack", "HPR", + "IN1", "Mic Jack", + "Mic Jack", "MICBIAS"; + + clocks = <&clock CLK_FOUT_EPLL>, <&i2s0 CLK_I2S_RCLK_SRC>; + clock-names = "epll", "sclk_i2s"; + + cpu { + sound-dai = <&i2s0 0>; + }; + codec { + sound-dai = <&hdmi>, <&max98090>; + }; +}; diff --git a/Documentation/devicetree/bindings/sound/sgtl5000.txt b/Documentation/devicetree/bindings/sound/sgtl5000.txt index 5666da7b8605..7a73a9d62015 100644 --- a/Documentation/devicetree/bindings/sound/sgtl5000.txt +++ b/Documentation/devicetree/bindings/sound/sgtl5000.txt @@ -26,6 +26,15 @@ Optional properties: If this node is not mentioned or the value is unknown, then the value is set to 1.25V. +- lrclk-strength: the LRCLK pad strength. Possible values are: +0, 1, 2 and 3 as per the table below: + +VDDIO 1.8V 2.5V 3.3V +0 = Disable +1 = 1.66 mA 2.87 mA 4.02 mA +2 = 3.33 mA 5.74 mA 8.03 mA +3 = 4.99 mA 8.61 mA 12.05 mA + Example: codec: sgtl5000@0a { diff --git a/Documentation/devicetree/bindings/sound/st,stm32-sai.txt b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt new file mode 100644 index 000000000000..c59a3d779e06 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/st,stm32-sai.txt @@ -0,0 +1,89 @@ +STMicroelectronics STM32 Serial Audio Interface (SAI). + +The SAI interface (Serial Audio Interface) offers a wide set of audio protocols +as I2S standards, LSB or MSB-justified, PCM/DSP, TDM, and AC'97. +The SAI contains two independent audio sub-blocks. Each sub-block has +its own clock generator and I/O lines controller. + +Required properties: + - compatible: Should be "st,stm32f4-sai" + - reg: Base address and size of SAI common register set. + - clocks: Must contain phandle and clock specifier pairs for each entry + in clock-names. + - clock-names: Must contain "x8k" and "x11k" + "x8k": SAI parent clock for sampling rates multiple of 8kHz. + "x11k": SAI parent clock for sampling rates multiple of 11.025kHz. + - interrupts: cpu DAI interrupt line shared by SAI sub-blocks + +Optional properties: + - resets: Reference to a reset controller asserting the SAI + +SAI subnodes: +Two subnodes corresponding to SAI sub-block instances A et B can be defined. +Subnode can be omitted for unsused sub-block. + +SAI subnodes required properties: + - compatible: Should be "st,stm32-sai-sub-a" or "st,stm32-sai-sub-b" + for SAI sub-block A or B respectively. + - reg: Base address and size of SAI sub-block register set. + - clocks: Must contain one phandle and clock specifier pair + for sai_ck which feeds the internal clock generator. + - clock-names: Must contain "sai_ck". + - dmas: see Documentation/devicetree/bindings/dma/stm32-dma.txt + - dma-names: identifier string for each DMA request line + "tx": if sai sub-block is configured as playback DAI + "rx": if sai sub-block is configured as capture DAI + - pinctrl-names: should contain only value "default" + - pinctrl-0: see Documentation/devicetree/bindings/pinctrl/pinctrl-stm32.txt + +Example: +sound_card { + compatible = "audio-graph-card"; + dais = <&sai1b_port>; +}; + +sai1: sai1@40015800 { + compatible = "st,stm32f4-sai"; + #address-cells = <1>; + #size-cells = <1>; + ranges; + reg = <0x40015800 0x4>; + clocks = <&rcc 1 CLK_SAIQ_PDIV>, <&rcc 1 CLK_I2SQ_PDIV>; + clock-names = "x8k", "x11k"; + interrupts = <87>; + + sai1b: audio-controller@40015824 { + #sound-dai-cells = <0>; + compatible = "st,stm32-sai-sub-b"; + reg = <0x40015824 0x1C>; + clocks = <&rcc 1 CLK_SAI2>; + clock-names = "sai_ck"; + dmas = <&dma2 5 0 0x400 0x0>; + dma-names = "tx"; + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_sai1b>; + + ports { + #address-cells = <1>; + #size-cells = <0>; + + sai1b_port: port@0 { + reg = <0>; + cpu_endpoint: endpoint { + remote-endpoint = <&codec_endpoint>; + audio-graph-card,format = "i2s"; + audio-graph-card,bitclock-master = <&codec_endpoint>; + audio-graph-card,frame-master = <&codec_endpoint>; + }; + }; + }; + }; +}; + +audio-codec { + codec_port: port { + codec_endpoint: endpoint { + remote-endpoint = <&cpu_endpoint>; + }; + }; +}; diff --git a/Documentation/devicetree/bindings/sound/tas2552.txt b/Documentation/devicetree/bindings/sound/tas2552.txt index c49992c0b62a..2d71eb05c1d3 100644 --- a/Documentation/devicetree/bindings/sound/tas2552.txt +++ b/Documentation/devicetree/bindings/sound/tas2552.txt @@ -5,7 +5,8 @@ The tas2552 serial control bus communicates through I2C protocols Required properties: - compatible - One of: "ti,tas2552" - TAS2552 - - reg - I2C slave address + - reg - I2C slave address: it can be 0x40 if ADDR pin is 0 + or 0x41 if ADDR pin is 1. - supply-*: Required supply regulators are: "vbat" battery voltage "iovdd" I/O Voltage @@ -14,17 +15,20 @@ Required properties: Optional properties: - enable-gpio - gpio pin to enable/disable the device -tas2552 can receive it's reference clock via MCLK, BCLK, IVCLKIN pin or use the +tas2552 can receive its reference clock via MCLK, BCLK, IVCLKIN pin or use the internal 1.8MHz. This CLKIN is used by the PLL. In addition to PLL, the PDM reference clock is also selectable: PLL, IVCLKIN, BCLK or MCLK. For system integration the dt-bindings/sound/tas2552.h header file provides -defined values to selct and configure the PLL and PDM reference clocks. +defined values to select and configure the PLL and PDM reference clocks. Example: tas2552: tas2552@41 { compatible = "ti,tas2552"; reg = <0x41>; + vbat-supply = <®_vbat>; + iovdd-supply = <®_iovdd>; + avdd-supply = <®_avdd>; enable-gpio = <&gpio4 2 GPIO_ACTIVE_HIGH>; }; diff --git a/Documentation/devicetree/bindings/sound/wm8903.txt b/Documentation/devicetree/bindings/sound/wm8903.txt index 94ec32c194bb..afc51caf1137 100644 --- a/Documentation/devicetree/bindings/sound/wm8903.txt +++ b/Documentation/devicetree/bindings/sound/wm8903.txt @@ -28,6 +28,14 @@ Optional properties: performed. If any entry has the value 0xffffffff, that GPIO's configuration will not be modified. + - AVDD-supply : Analog power supply regulator on the AVDD pin. + + - CPVDD-supply : Charge pump supply regulator on the CPVDD pin. + + - DBVDD-supply : Digital buffer supply regulator for the DBVDD pin. + + - DCVDD-supply : Digital core supply regulator for the DCVDD pin. + Pins on the device (for linking into audio routes): * IN1L @@ -54,6 +62,11 @@ codec: wm8903@1a { reg = <0x1a>; interrupts = < 347 >; + AVDD-supply = <&fooreg_a>; + CPVDD-supply = <&fooreg_b>; + DBVDD-supply = <&fooreg_c>; + DCVDC-supply = <&fooreg_d>; + gpio-controller; #gpio-cells = <2>; diff --git a/Documentation/devicetree/bindings/sound/zte,tdm.txt b/Documentation/devicetree/bindings/sound/zte,tdm.txt new file mode 100644 index 000000000000..2a07ca655264 --- /dev/null +++ b/Documentation/devicetree/bindings/sound/zte,tdm.txt @@ -0,0 +1,30 @@ +ZTE TDM DAI driver + +Required properties: + +- compatible : should be one of the following. + * zte,zx296718-tdm +- reg : physical base address of the controller and length of memory mapped + region. +- clocks : Pairs of phandle and specifier referencing the controller's clocks. +- clock-names: "wclk" for the wclk. + "pclk" for the pclk. +-#clock-cells: should be 1. +- zte,tdm-dma-sysctrl : Reference to the sysctrl controller controlling + the dma. includes: + phandle of sysctrl. + register offset in sysctrl for control dma. + mask of the register that be written to sysctrl. + +Example: + + tdm: tdm@1487000 { + compatible = "zte,zx296718-tdm"; + reg = <0x01487000 0x1000>; + clocks = <&audiocrm AUDIO_TDM_WCLK>, <&audiocrm AUDIO_TDM_PCLK>; + clock-names = "wclk", "pclk"; + #clock-cells = <1>; + pinctrl-names = "default"; + pinctrl-0 = <&tdm_global_pin>; + zte,tdm-dma-sysctrl = <&sysctrl 0x10c 4>; + }; diff --git a/Documentation/devicetree/bindings/timer/cortina,gemini-timer.txt b/Documentation/devicetree/bindings/timer/cortina,gemini-timer.txt deleted file mode 100644 index 16ea1d3b2e9e..000000000000 --- a/Documentation/devicetree/bindings/timer/cortina,gemini-timer.txt +++ /dev/null @@ -1,22 +0,0 @@ -Cortina Systems Gemini timer - -This timer is embedded in the Cortina Systems Gemini SoCs. - -Required properties: - -- compatible : Must be "cortina,gemini-timer" -- reg : Should contain registers location and length -- interrupts : Should contain the three timer interrupts with - flags for rising edge -- syscon : a phandle to the global Gemini system controller - -Example: - -timer@43000000 { - compatible = "cortina,gemini-timer"; - reg = <0x43000000 0x1000>; - interrupts = <14 IRQ_TYPE_EDGE_RISING>, /* Timer 1 */ - <15 IRQ_TYPE_EDGE_RISING>, /* Timer 2 */ - <16 IRQ_TYPE_EDGE_RISING>; /* Timer 3 */ - syscon = <&syscon>; -}; diff --git a/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt b/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt new file mode 100644 index 000000000000..b73ca6cd07f8 --- /dev/null +++ b/Documentation/devicetree/bindings/timer/faraday,fttmr010.txt @@ -0,0 +1,33 @@ +Faraday Technology timer + +This timer is a generic IP block from Faraday Technology, embedded in the +Cortina Systems Gemini SoCs and other designs. + +Required properties: + +- compatible : Must be one of + "faraday,fttmr010" + "cortina,gemini-timer" +- reg : Should contain registers location and length +- interrupts : Should contain the three timer interrupts usually with + flags for falling edge + +Optionally required properties: + +- clocks : a clock to provide the tick rate for "faraday,fttmr010" +- clock-names : should be "EXTCLK" and "PCLK" for the external tick timer + and peripheral clock respectively, for "faraday,fttmr010" +- syscon : a phandle to the global Gemini system controller if the compatible + type is "cortina,gemini-timer" + +Example: + +timer@43000000 { + compatible = "faraday,fttmr010"; + reg = <0x43000000 0x1000>; + interrupts = <14 IRQ_TYPE_EDGE_FALLING>, /* Timer 1 */ + <15 IRQ_TYPE_EDGE_FALLING>, /* Timer 2 */ + <16 IRQ_TYPE_EDGE_FALLING>; /* Timer 3 */ + clocks = <&extclk>, <&pclk>; + clock-names = "EXTCLK", "PCLK"; +}; diff --git a/Documentation/devicetree/bindings/timer/rockchip,rk-timer.txt b/Documentation/devicetree/bindings/timer/rockchip,rk-timer.txt index a41b184d5538..16a5f4577a61 100644 --- a/Documentation/devicetree/bindings/timer/rockchip,rk-timer.txt +++ b/Documentation/devicetree/bindings/timer/rockchip,rk-timer.txt @@ -1,9 +1,15 @@ Rockchip rk timer Required properties: -- compatible: shall be one of: - "rockchip,rk3288-timer" - for rk3066, rk3036, rk3188, rk322x, rk3288, rk3368 - "rockchip,rk3399-timer" - for rk3399 +- compatible: should be: + "rockchip,rk3036-timer", "rockchip,rk3288-timer": for Rockchip RK3036 + "rockchip,rk3066-timer", "rockchip,rk3288-timer": for Rockchip RK3066 + "rockchip,rk3188-timer", "rockchip,rk3288-timer": for Rockchip RK3188 + "rockchip,rk3228-timer", "rockchip,rk3288-timer": for Rockchip RK3228 + "rockchip,rk3229-timer", "rockchip,rk3288-timer": for Rockchip RK3229 + "rockchip,rk3288-timer": for Rockchip RK3288 + "rockchip,rk3368-timer", "rockchip,rk3288-timer": for Rockchip RK3368 + "rockchip,rk3399-timer": for Rockchip RK3399 - reg: base address of the timer register starting with TIMERS CONTROL register - interrupts: should contain the interrupts for Timer0 - clocks : must contain an entry for each entry in clock-names diff --git a/Documentation/devicetree/bindings/usb/usb251xb.txt b/Documentation/devicetree/bindings/usb/usb251xb.txt index 0c065f77658f..3957d4edaa74 100644 --- a/Documentation/devicetree/bindings/usb/usb251xb.txt +++ b/Documentation/devicetree/bindings/usb/usb251xb.txt @@ -7,18 +7,18 @@ Required properties : - compatible : Should be "microchip,usb251xb" or one of the specific types: "microchip,usb2512b", "microchip,usb2512bi", "microchip,usb2513b", "microchip,usb2513bi", "microchip,usb2514b", "microchip,usb2514bi" - - hub-reset-gpios : Should specify the gpio for hub reset + - reset-gpios : Should specify the gpio for hub reset + - reg : I2C address on the selected bus (default is <0x2C>) Optional properties : - - reg : I2C address on the selected bus (default is <0x2C>) - skip-config : Skip Hub configuration, but only send the USB-Attach command - - vendor-id : USB Vendor ID of the hub (16 bit, default is 0x0424) - - product-id : USB Product ID of the hub (16 bit, default depends on type) - - device-id : USB Device ID of the hub (16 bit, default is 0x0bb3) - - language-id : USB Language ID (16 bit, default is 0x0000) - - manufacturer : USB Manufacturer string (max 31 characters long) - - product : USB Product string (max 31 characters long) - - serial : USB Serial string (max 31 characters long) + - vendor-id : Set USB Vendor ID of the hub (16 bit, default is 0x0424) + - product-id : Set USB Product ID of the hub (16 bit, default depends on type) + - device-id : Set USB Device ID of the hub (16 bit, default is 0x0bb3) + - language-id : Set USB Language ID (16 bit, default is 0x0000) + - manufacturer : Set USB Manufacturer string (max 31 characters long) + - product : Set USB Product string (max 31 characters long) + - serial : Set USB Serial string (max 31 characters long) - {bus,self}-powered : selects between self- and bus-powered operation (default is self-powered) - disable-hi-speed : disable USB Hi-Speed support @@ -31,8 +31,10 @@ Optional properties : (default is individual) - dynamic-power-switching : enable auto-switching from self- to bus-powered operation if the local power source is removed or unavailable - - oc-delay-{100us,4ms,8ms,16ms} : set over current timer delay (default is 8ms) - - compound-device : indicated the hub is part of a compound device + - oc-delay-us : Delay time (in microseconds) for filtering the over-current + sense inputs. Valid values are 100, 4000, 8000 (default) and 16000. If + an invalid value is given, the default is used instead. + - compound-device : indicate the hub is part of a compound device - port-mapping-mode : enable port mapping mode - string-support : enable string descriptor support (required for manufacturer, product and serial string configuration) @@ -40,34 +42,15 @@ Optional properties : device connected. - sp-disabled-ports : Specifies the ports which will be self-power disabled - bp-disabled-ports : Specifies the ports which will be bus-power disabled - - max-sp-power : Specifies the maximum current the hub consumes from an - upstream port when operating as self-powered hub including the power - consumption of a permanently attached peripheral if the hub is - configured as a compound device. The value is given in mA in a 0 - 500 - range (default is 2). - - max-bp-power : Specifies the maximum current the hub consumes from an - upstream port when operating as bus-powered hub including the power - consumption of a permanently attached peripheral if the hub is - configured as a compound device. The value is given in mA in a 0 - 500 - range (default is 100). - - max-sp-current : Specifies the maximum current the hub consumes from an - upstream port when operating as self-powered hub EXCLUDING the power - consumption of a permanently attached peripheral if the hub is - configured as a compound device. The value is given in mA in a 0 - 500 - range (default is 2). - - max-bp-current : Specifies the maximum current the hub consumes from an - upstream port when operating as bus-powered hub EXCLUDING the power - consumption of a permanently attached peripheral if the hub is - configured as a compound device. The value is given in mA in a 0 - 500 - range (default is 100). - - power-on-time : Specifies the time it takes from the time the host initiates - the power-on sequence to a port until the port has adequate power. The - value is given in ms in a 0 - 510 range (default is 100ms). + - power-on-time-ms : Specifies the time it takes from the time the host + initiates the power-on sequence to a port until the port has adequate + power. The value is given in ms in a 0 - 510 range (default is 100ms). Examples: usb2512b@2c { compatible = "microchip,usb2512b"; - hub-reset-gpios = <&gpio1 4 GPIO_ACTIVE_LOW>; + reg = <0x2c>; + reset-gpios = <&gpio1 4 GPIO_ACTIVE_LOW>; }; usb2514b@2c { diff --git a/Documentation/devicetree/bindings/vendor-prefixes.txt b/Documentation/devicetree/bindings/vendor-prefixes.txt index ec0bfb9bbebd..bbb8174405bc 100644 --- a/Documentation/devicetree/bindings/vendor-prefixes.txt +++ b/Documentation/devicetree/bindings/vendor-prefixes.txt @@ -51,6 +51,7 @@ brcm Broadcom Corporation buffalo Buffalo, Inc. calxeda Calxeda capella Capella Microsystems, Inc +cascoda Cascoda, Ltd. cavium Cavium, Inc. cdns Cadence Design Systems Inc. ceva Ceva, Inc. @@ -178,6 +179,7 @@ maxim Maxim Integrated Products mcube mCube meas Measurement Specialties mediatek MediaTek Inc. +megachips MegaChips melexis Melexis N.V. melfas MELFAS Inc. memsic MEMSIC Inc. @@ -265,6 +267,7 @@ sbs Smart Battery System schindler Schindler seagate Seagate Technology PLC semtech Semtech Corporation +sensirion Sensirion AG sgx SGX Sensortech sharp Sharp Corporation si-en Si-En Technology Ltd. @@ -335,6 +338,7 @@ wd Western Digital Corp. wetek WeTek Electronics, limited. wexler Wexler winbond Winbond Electronics corp. +winstar Winstar Display Corp. wlf Wolfson Microelectronics wm Wondermedia Technologies, Inc. x-powers X-Powers diff --git a/Documentation/doc-guide/hello.dot b/Documentation/doc-guide/hello.dot new file mode 100644 index 000000000000..504621dfc595 --- /dev/null +++ b/Documentation/doc-guide/hello.dot @@ -0,0 +1,3 @@ +graph G { + Hello -- World +} diff --git a/Documentation/doc-guide/sphinx.rst b/Documentation/doc-guide/sphinx.rst index 96fe7ccb2c67..731334de3efd 100644 --- a/Documentation/doc-guide/sphinx.rst +++ b/Documentation/doc-guide/sphinx.rst @@ -34,8 +34,9 @@ format-specific subdirectories under ``Documentation/output``. To generate documentation, Sphinx (``sphinx-build``) must obviously be installed. For prettier HTML output, the Read the Docs Sphinx theme -(``sphinx_rtd_theme``) is used if available. For PDF output, ``rst2pdf`` is also -needed. All of these are widely available and packaged in distributions. +(``sphinx_rtd_theme``) is used if available. For PDF output you'll also need +``XeLaTeX`` and ``convert(1)`` from ImageMagick (https://www.imagemagick.org). +All of these are widely available and packaged in distributions. To pass extra options to Sphinx, you can use the ``SPHINXOPTS`` make variable. For example, use ``make SPHINXOPTS=-v htmldocs`` to get more verbose @@ -73,7 +74,16 @@ Specific guidelines for the kernel documentation Here are some specific guidelines for the kernel documentation: -* Please don't go overboard with reStructuredText markup. Keep it simple. +* Please don't go overboard with reStructuredText markup. Keep it + simple. For the most part the documentation should be plain text with + just enough consistency in formatting that it can be converted to + other formats. + +* Please keep the formatting changes minimal when converting existing + documentation to reStructuredText. + +* Also update the content, not just the formatting, when converting + documentation. * Please stick to this order of heading adornments: @@ -103,6 +113,12 @@ Here are some specific guidelines for the kernel documentation: the order as encountered."), having the higher levels the same overall makes it easier to follow the documents. +* For inserting fixed width text blocks (for code examples, use case + examples, etc.), use ``::`` for anything that doesn't really benefit + from syntax highlighting, especially short snippets. Use + ``.. code-block:: <language>`` for longer code blocks that benefit + from highlighting. + the C domain ------------ @@ -217,3 +233,96 @@ Rendered as: * .. _`last row`: - column 3 + + +Figures & Images +================ + +If you want to add an image, you should use the ``kernel-figure`` and +``kernel-image`` directives. E.g. to insert a figure with a scalable +image format use SVG (:ref:`svg_image_example`):: + + .. kernel-figure:: svg_image.svg + :alt: simple SVG image + + SVG image example + +.. _svg_image_example: + +.. kernel-figure:: svg_image.svg + :alt: simple SVG image + + SVG image example + +The kernel figure (and image) directive support **DOT** formated files, see + +* DOT: http://graphviz.org/pdf/dotguide.pdf +* Graphviz: http://www.graphviz.org/content/dot-language + +A simple example (:ref:`hello_dot_file`):: + + .. kernel-figure:: hello.dot + :alt: hello world + + DOT's hello world example + +.. _hello_dot_file: + +.. kernel-figure:: hello.dot + :alt: hello world + + DOT's hello world example + +Embed *render* markups (or languages) like Graphviz's **DOT** is provided by the +``kernel-render`` directives.:: + + .. kernel-render:: DOT + :alt: foobar digraph + :caption: Embedded **DOT** (Graphviz) code + + digraph foo { + "bar" -> "baz"; + } + +How this will be rendered depends on the installed tools. If Graphviz is +installed, you will see an vector image. If not the raw markup is inserted as +*literal-block* (:ref:`hello_dot_render`). + +.. _hello_dot_render: + +.. kernel-render:: DOT + :alt: foobar digraph + :caption: Embedded **DOT** (Graphviz) code + + digraph foo { + "bar" -> "baz"; + } + +The *render* directive has all the options known from the *figure* directive, +plus option ``caption``. If ``caption`` has a value, a *figure* node is +inserted. If not, a *image* node is inserted. A ``caption`` is also needed, if +you want to refer it (:ref:`hello_svg_render`). + +Embedded **SVG**:: + + .. kernel-render:: SVG + :caption: Embedded **SVG** markup + :alt: so-nw-arrow + + <?xml version="1.0" encoding="UTF-8"?> + <svg xmlns="http://www.w3.org/2000/svg" version="1.1" ...> + ... + </svg> + +.. _hello_svg_render: + +.. kernel-render:: SVG + :caption: Embedded **SVG** markup + :alt: so-nw-arrow + + <?xml version="1.0" encoding="UTF-8"?> + <svg xmlns="http://www.w3.org/2000/svg" + version="1.1" baseProfile="full" width="70px" height="40px" viewBox="0 0 700 400"> + <line x1="180" y1="370" x2="500" y2="50" stroke="black" stroke-width="15px"/> + <polygon points="585 0 525 25 585 50" transform="rotate(135 525 25)"/> + </svg> diff --git a/Documentation/doc-guide/svg_image.svg b/Documentation/doc-guide/svg_image.svg new file mode 100644 index 000000000000..5405f85b8137 --- /dev/null +++ b/Documentation/doc-guide/svg_image.svg @@ -0,0 +1,10 @@ +<?xml version="1.0" encoding="UTF-8"?> +<!-- originate: https://commons.wikimedia.org/wiki/File:Variable_Resistor.svg --> +<svg xmlns="http://www.w3.org/2000/svg" + version="1.1" baseProfile="full" + width="70px" height="40px" viewBox="0 0 700 400"> + <line x1="0" y1="200" x2="700" y2="200" stroke="black" stroke-width="20px"/> + <rect x="100" y="100" width="500" height="200" fill="white" stroke="black" stroke-width="20px"/> + <line x1="180" y1="370" x2="500" y2="50" stroke="black" stroke-width="15px"/> + <polygon points="585 0 525 25 585 50" transform="rotate(135 525 25)"/> +</svg> diff --git a/Documentation/driver-api/80211/cfg80211.rst b/Documentation/driver-api/80211/cfg80211.rst index eca534ab6172..8ffac57e1f5b 100644 --- a/Documentation/driver-api/80211/cfg80211.rst +++ b/Documentation/driver-api/80211/cfg80211.rst @@ -2,6 +2,9 @@ cfg80211 subsystem ================== +.. kernel-doc:: include/net/cfg80211.h + :doc: Introduction + Device registration =================== @@ -180,6 +183,12 @@ Actions and configuration :functions: cfg80211_ibss_joined .. kernel-doc:: include/net/cfg80211.h + :functions: cfg80211_connect_resp_params + +.. kernel-doc:: include/net/cfg80211.h + :functions: cfg80211_connect_done + +.. kernel-doc:: include/net/cfg80211.h :functions: cfg80211_connect_result .. kernel-doc:: include/net/cfg80211.h diff --git a/Documentation/driver-api/basics.rst b/Documentation/driver-api/basics.rst index 935b9b8d456c..472e7a664d13 100644 --- a/Documentation/driver-api/basics.rst +++ b/Documentation/driver-api/basics.rst @@ -7,6 +7,12 @@ Driver Entry and Exit points .. kernel-doc:: include/linux/init.h :internal: +Driver device table +------------------- + +.. kernel-doc:: include/linux/mod_devicetable.h + :internal: + Atomic and pointer manipulation ------------------------------- diff --git a/Documentation/driver-api/firmware/index.rst b/Documentation/driver-api/firmware/index.rst index 1abe01793031..29da39ec4b8a 100644 --- a/Documentation/driver-api/firmware/index.rst +++ b/Documentation/driver-api/firmware/index.rst @@ -7,6 +7,7 @@ Linux Firmware API introduction core request_firmware + other_interfaces .. only:: subproject and html diff --git a/Documentation/driver-api/firmware/other_interfaces.rst b/Documentation/driver-api/firmware/other_interfaces.rst new file mode 100644 index 000000000000..36c47b1e9824 --- /dev/null +++ b/Documentation/driver-api/firmware/other_interfaces.rst @@ -0,0 +1,15 @@ +Other Firmware Interfaces +========================= + +DMI Interfaces +-------------- + +.. kernel-doc:: drivers/firmware/dmi_scan.c + :export: + +EDD Interfaces +-------------- + +.. kernel-doc:: drivers/firmware/edd.c + :internal: + diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 60db00d1532b..8058a87c1c74 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -26,7 +26,8 @@ available subsections can be seen below. regulator iio/index input - usb + usb/index + pci spi i2c hsi @@ -36,6 +37,7 @@ available subsections can be seen below. 80211/index uio-howto firmware/index + misc_devices .. only:: subproject and html diff --git a/Documentation/driver-api/misc_devices.rst b/Documentation/driver-api/misc_devices.rst new file mode 100644 index 000000000000..c7ee7b02ba88 --- /dev/null +++ b/Documentation/driver-api/misc_devices.rst @@ -0,0 +1,5 @@ +Miscellaneous Devices +===================== + +.. kernel-doc:: drivers/char/misc.c + :export: diff --git a/Documentation/driver-api/pci.rst b/Documentation/driver-api/pci.rst new file mode 100644 index 000000000000..01a6c8b7d3a7 --- /dev/null +++ b/Documentation/driver-api/pci.rst @@ -0,0 +1,50 @@ +PCI Support Library +------------------- + +.. kernel-doc:: drivers/pci/pci.c + :export: + +.. kernel-doc:: drivers/pci/pci-driver.c + :export: + +.. kernel-doc:: drivers/pci/remove.c + :export: + +.. kernel-doc:: drivers/pci/search.c + :export: + +.. kernel-doc:: drivers/pci/msi.c + :export: + +.. kernel-doc:: drivers/pci/bus.c + :export: + +.. kernel-doc:: drivers/pci/access.c + :export: + +.. kernel-doc:: drivers/pci/irq.c + :export: + +.. kernel-doc:: drivers/pci/htirq.c + :export: + +.. kernel-doc:: drivers/pci/probe.c + :export: + +.. kernel-doc:: drivers/pci/slot.c + :export: + +.. kernel-doc:: drivers/pci/rom.c + :export: + +.. kernel-doc:: drivers/pci/iov.c + :export: + +.. kernel-doc:: drivers/pci/pci-sysfs.c + :internal: + +PCI Hotplug Support Library +--------------------------- + +.. kernel-doc:: drivers/pci/hotplug/pci_hotplug_core.c + :export: diff --git a/Documentation/usb/URB.txt b/Documentation/driver-api/usb/URB.rst index 50da0d455444..61a54da9fce9 100644 --- a/Documentation/usb/URB.txt +++ b/Documentation/driver-api/usb/URB.rst @@ -1,28 +1,37 @@ -Revised: 2000-Dec-05. -Again: 2002-Jul-06 -Again: 2005-Sep-19 +.. _usb-urb: - NOTE: +USB Request Block (URB) +~~~~~~~~~~~~~~~~~~~~~~~ - The USB subsystem now has a substantial section in "The Linux Kernel API" - guide (in Documentation/DocBook), generated from the current source - code. This particular documentation file isn't particularly current or - complete; don't rely on it except for a quick overview. +:Revised: 2000-Dec-05 +:Again: 2002-Jul-06 +:Again: 2005-Sep-19 +:Again: 2017-Mar-29 -1.1. Basic concept or 'What is an URB?' +.. note:: -The basic idea of the new driver is message passing, the message itself is -called USB Request Block, or URB for short. + The USB subsystem now has a substantial section at :ref:`usb-hostside-api` + section, generated from the current source code. + This particular documentation file isn't complete and may not be + updated to the last version; don't rely on it except for a quick + overview. -- An URB consists of all relevant information to execute any USB transaction - and deliver the data and status back. +Basic concept or 'What is an URB?' +================================== -- Execution of an URB is inherently an asynchronous operation, i.e. the - usb_submit_urb(urb) call returns immediately after it has successfully +The basic idea of the new driver is message passing, the message itself is +called USB Request Block, or URB for short. + +- An URB consists of all relevant information to execute any USB transaction + and deliver the data and status back. + +- Execution of an URB is inherently an asynchronous operation, i.e. the + :c:func:`usb_submit_urb` call returns immediately after it has successfully queued the requested action. -- Transfers for one URB can be canceled with usb_unlink_urb(urb) at any time. +- Transfers for one URB can be canceled with :c:func:`usb_unlink_urb` + at any time. - Each URB has a completion handler, which is called after the action has been successfully completed or canceled. The URB also contains a @@ -35,53 +44,55 @@ called USB Request Block, or URB for short. of data to (or from) devices when using periodic transfer modes. -1.2. The URB structure +The URB structure +================= -Some of the fields in an URB are: +Some of the fields in struct :c:type:`urb` are:: -struct urb -{ -// (IN) device and pipe specify the endpoint queue + struct urb + { + // (IN) device and pipe specify the endpoint queue struct usb_device *dev; // pointer to associated USB device unsigned int pipe; // endpoint information - unsigned int transfer_flags; // ISO_ASAP, SHORT_NOT_OK, etc. + unsigned int transfer_flags; // URB_ISO_ASAP, URB_SHORT_NOT_OK, etc. -// (IN) all urbs need completion routines + // (IN) all urbs need completion routines void *context; // context for completion routine - void (*complete)(struct urb *); // pointer to completion routine + usb_complete_t complete; // pointer to completion routine -// (OUT) status after each completion + // (OUT) status after each completion int status; // returned status -// (IN) buffer used for data transfers + // (IN) buffer used for data transfers void *transfer_buffer; // associated data buffer - int transfer_buffer_length; // data buffer length + u32 transfer_buffer_length; // data buffer length int number_of_packets; // size of iso_frame_desc -// (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used - int actual_length; // actual data buffer length + // (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used + u32 actual_length; // actual data buffer length -// (IN) setup stage for CTRL (pass a struct usb_ctrlrequest) - unsigned char* setup_packet; // setup packet (control only) + // (IN) setup stage for CTRL (pass a struct usb_ctrlrequest) + unsigned char *setup_packet; // setup packet (control only) -// Only for PERIODIC transfers (ISO, INTERRUPT) - // (IN/OUT) start_frame is set unless ISO_ASAP isn't set + // Only for PERIODIC transfers (ISO, INTERRUPT) + // (IN/OUT) start_frame is set unless URB_ISO_ASAP isn't set int start_frame; // start frame int interval; // polling interval // ISO only: packets are only "best effort"; each can have errors int error_count; // number of errors struct usb_iso_packet_descriptor iso_frame_desc[0]; -}; + }; Your driver must create the "pipe" value using values from the appropriate endpoint descriptor in an interface that it's claimed. -1.3. How to get an URB? +How to get an URB? +================== -URBs are allocated with the following call +URBs are allocated by calling :c:func:`usb_alloc_urb`:: struct urb *usb_alloc_urb(int isoframes, int mem_flags) @@ -91,7 +102,7 @@ you want to schedule. For CTRL/BULK/INT, use 0. The mem_flags parameter holds standard memory allocation flags, letting you control (among other things) whether the underlying code may block or not. -To free an URB, use +To free an URB, use :c:func:`usb_free_urb`:: void usb_free_urb(struct urb *urb) @@ -100,78 +111,84 @@ returned to you in a completion callback. It will automatically be deallocated when it is no longer in use. -1.4. What has to be filled in? +What has to be filled in? +========================= -Depending on the type of transaction, there are some inline functions -defined in <linux/usb.h> to simplify the initialization, such as -fill_control_urb() and fill_bulk_urb(). In general, they need the usb -device pointer, the pipe (usual format from usb.h), the transfer buffer, -the desired transfer length, the completion handler, and its context. -Take a look at the some existing drivers to see how they're used. +Depending on the type of transaction, there are some inline functions +defined in ``linux/usb.h`` to simplify the initialization, such as +:c:func:`usb_fill_control_urb`, :c:func:`usb_fill_bulk_urb` and +:c:func:`usb_fill_int_urb`. In general, they need the usb device pointer, +the pipe (usual format from usb.h), the transfer buffer, the desired transfer +length, the completion handler, and its context. Take a look at the some +existing drivers to see how they're used. Flags: -For ISO there are two startup behaviors: Specified start_frame or ASAP. -For ASAP set URB_ISO_ASAP in transfer_flags. -If short packets should NOT be tolerated, set URB_SHORT_NOT_OK in +- For ISO there are two startup behaviors: Specified start_frame or ASAP. +- For ASAP set ``URB_ISO_ASAP`` in transfer_flags. + +If short packets should NOT be tolerated, set ``URB_SHORT_NOT_OK`` in transfer_flags. -1.5. How to submit an URB? +How to submit an URB? +===================== -Just call +Just call :c:func:`usb_submit_urb`:: int usb_submit_urb(struct urb *urb, int mem_flags) -The mem_flags parameter, such as SLAB_ATOMIC, controls memory allocation, -such as whether the lower levels may block when memory is tight. +The ``mem_flags`` parameter, such as ``GFP_ATOMIC``, controls memory +allocation, such as whether the lower levels may block when memory is tight. It immediately returns, either with status 0 (request queued) or some error code, usually caused by the following: -- Out of memory (-ENOMEM) -- Unplugged device (-ENODEV) -- Stalled endpoint (-EPIPE) -- Too many queued ISO transfers (-EAGAIN) -- Too many requested ISO frames (-EFBIG) -- Invalid INT interval (-EINVAL) -- More than one packet for INT (-EINVAL) +- Out of memory (``-ENOMEM``) +- Unplugged device (``-ENODEV``) +- Stalled endpoint (``-EPIPE``) +- Too many queued ISO transfers (``-EAGAIN``) +- Too many requested ISO frames (``-EFBIG``) +- Invalid INT interval (``-EINVAL``) +- More than one packet for INT (``-EINVAL``) -After submission, urb->status is -EINPROGRESS; however, you should never -look at that value except in your completion callback. +After submission, ``urb->status`` is ``-EINPROGRESS``; however, you should +never look at that value except in your completion callback. For isochronous endpoints, your completion handlers should (re)submit -URBs to the same endpoint with the ISO_ASAP flag, using multi-buffering, -to get seamless ISO streaming. +URBs to the same endpoint with the ``URB_ISO_ASAP`` flag, using +multi-buffering, to get seamless ISO streaming. -1.6. How to cancel an already running URB? +How to cancel an already running URB? +===================================== There are two ways to cancel an URB you've submitted but which hasn't been returned to your driver yet. For an asynchronous cancel, call +:c:func:`usb_unlink_urb`:: int usb_unlink_urb(struct urb *urb) It removes the urb from the internal list and frees all allocated HW descriptors. The status is changed to reflect unlinking. Note -that the URB will not normally have finished when usb_unlink_urb() +that the URB will not normally have finished when :c:func:`usb_unlink_urb` returns; you must still wait for the completion handler to be called. -To cancel an URB synchronously, call +To cancel an URB synchronously, call :c:func:`usb_kill_urb`:: void usb_kill_urb(struct urb *urb) -It does everything usb_unlink_urb does, and in addition it waits +It does everything :c:func:`usb_unlink_urb` does, and in addition it waits until after the URB has been returned and the completion handler has finished. It also marks the URB as temporarily unusable, so that if the completion handler or anyone else tries to resubmit it -they will get a -EPERM error. Thus you can be sure that when -usb_kill_urb() returns, the URB is totally idle. +they will get a ``-EPERM`` error. Thus you can be sure that when +:c:func:`usb_kill_urb` returns, the URB is totally idle. There is a lifetime issue to consider. An URB may complete at any time, and the completion handler may free the URB. If this happens -while usb_unlink_urb or usb_kill_urb is running, it will cause a -memory-access violation. The driver is responsible for avoiding this, +while :c:func:`usb_unlink_urb` or :c:func:`usb_kill_urb` is running, it will +cause a memory-access violation. The driver is responsible for avoiding this, which often means some sort of lock will be needed to prevent the URB from being deallocated while it is still in use. @@ -181,24 +198,25 @@ when usb_unlink_urb is invoked. The general solution to this problem is to increment the URB's reference count while holding the lock, then drop the lock and call usb_unlink_urb or usb_kill_urb, and then decrement the URB's reference count. You increment the reference -count by calling +count by calling :c:func`usb_get_urb`:: struct urb *usb_get_urb(struct urb *urb) (ignore the return value; it is the same as the argument) and -decrement the reference count by calling usb_free_urb. Of course, +decrement the reference count by calling :c:func:`usb_free_urb`. Of course, none of this is necessary if there's no danger of the URB being freed by the completion handler. -1.7. What about the completion handler? +What about the completion handler? +================================== -The handler is of the following type: +The handler is of the following type:: typedef void (*usb_complete_t)(struct urb *) I.e., it gets the URB that caused the completion call. In the completion -handler, you should have a look at urb->status to detect any USB errors. +handler, you should have a look at ``urb->status`` to detect any USB errors. Since the context parameter is included in the URB, you can pass information to the completion handler. @@ -208,54 +226,65 @@ sixteen packets to transfer your 1KByte buffer, and ten of them might have transferred successfully before the completion was called. -NOTE: ***** WARNING ***** -NEVER SLEEP IN A COMPLETION HANDLER. These are often called in atomic -context. +.. warning:: + + NEVER SLEEP IN A COMPLETION HANDLER. + + These are often called in atomic context. In the current kernel, completion handlers run with local interrupts disabled, but in the future this will be changed, so don't assume that local IRQs are always disabled inside completion handlers. -1.8. How to do isochronous (ISO) transfers? +How to do isochronous (ISO) transfers? +====================================== + +Besides the fields present on a bulk transfer, for ISO, you also +also have to set ``urb->interval`` to say how often to make transfers; it's +often one per frame (which is once every microframe for highspeed devices). +The actual interval used will be a power of two that's no bigger than what +you specify. You can use the :c:func:`usb_fill_int_urb` macro to fill +most ISO transfer fields. -For ISO transfers you have to fill a usb_iso_packet_descriptor structure, -allocated at the end of the URB by usb_alloc_urb(n,mem_flags), for each -packet you want to schedule. You also have to set urb->interval to say -how often to make transfers; it's often one per frame (which is once -every microframe for highspeed devices). The actual interval used will -be a power of two that's no bigger than what you specify. +For ISO transfers you also have to fill a :c:type:`usb_iso_packet_descriptor` +structure, allocated at the end of the URB by :c:func:`usb_alloc_urb`, for +each packet you want to schedule. -The usb_submit_urb() call modifies urb->interval to the implemented interval -value that is less than or equal to the requested interval value. If -ISO_ASAP scheduling is used, urb->start_frame is also updated. +The :c:func:`usb_submit_urb` call modifies ``urb->interval`` to the implemented +interval value that is less than or equal to the requested interval value. If +``URB_ISO_ASAP`` scheduling is used, ``urb->start_frame`` is also updated. For each entry you have to specify the data offset for this frame (base is transfer_buffer), and the length you want to write/expect to read. -After completion, actual_length contains the actual transferred length and +After completion, actual_length contains the actual transferred length and status contains the resulting status for the ISO transfer for this frame. It is allowed to specify a varying length from frame to frame (e.g. for -audio synchronisation/adaptive transfer rates). You can also use the length +audio synchronisation/adaptive transfer rates). You can also use the length 0 to omit one or more frames (striping). -For scheduling you can choose your own start frame or ISO_ASAP. As explained -earlier, if you always keep at least one URB queued and your completion -keeps (re)submitting a later URB, you'll get smooth ISO streaming (if usb -bandwidth utilization allows). +For scheduling you can choose your own start frame or ``URB_ISO_ASAP``. As +explained earlier, if you always keep at least one URB queued and your +completion keeps (re)submitting a later URB, you'll get smooth ISO streaming +(if usb bandwidth utilization allows). If you specify your own start frame, make sure it's several frames in advance of the current frame. You might want this model if you're synchronizing ISO data with some other event stream. -1.9. How to start interrupt (INT) transfers? +How to start interrupt (INT) transfers? +======================================= Interrupt transfers, like isochronous transfers, are periodic, and happen in intervals that are powers of two (1, 2, 4 etc) units. Units are frames for full and low speed devices, and microframes for high speed ones. -The usb_submit_urb() call modifies urb->interval to the implemented interval -value that is less than or equal to the requested interval value. +You can use the :c:func:`usb_fill_int_urb` macro to fill INT transfer fields. + +The :c:func:`usb_submit_urb` call modifies ``urb->interval`` to the implemented +interval value that is less than or equal to the requested interval value. In Linux 2.6, unlike earlier versions, interrupt URBs are not automagically restarted when they complete. They end when the completion handler is called, just like other URBs. If you want an interrupt URB to be restarted, your completion handler must resubmit it. +s diff --git a/Documentation/usb/anchors.txt b/Documentation/driver-api/usb/anchors.rst index fe6a99a32bbd..4b248e691bd6 100644 --- a/Documentation/usb/anchors.txt +++ b/Documentation/driver-api/usb/anchors.rst @@ -1,3 +1,6 @@ +USB Anchors +~~~~~~~~~~~ + What is anchor? =============== @@ -13,7 +16,7 @@ Allocation and Initialisation ============================= There's no API to allocate an anchor. It is simply declared -as struct usb_anchor. init_usb_anchor() must be called to +as struct usb_anchor. :c:func:`init_usb_anchor` must be called to initialise the data structure. Deallocation @@ -26,52 +29,53 @@ Association and disassociation of URBs with anchors =================================================== An association of URBs to an anchor is made by an explicit -call to usb_anchor_urb(). The association is maintained until +call to :c:func:`usb_anchor_urb`. The association is maintained until an URB is finished by (successful) completion. Thus disassociation is automatic. A function is provided to forcibly finish (kill) all URBs associated with an anchor. -Furthermore, disassociation can be made with usb_unanchor_urb() +Furthermore, disassociation can be made with :c:func:`usb_unanchor_urb` Operations on multitudes of URBs ================================ -usb_kill_anchored_urbs() ------------------------- +:c:func:`usb_kill_anchored_urbs` +-------------------------------- This function kills all URBs associated with an anchor. The URBs are called in the reverse temporal order they were submitted. This way no data can be reordered. -usb_unlink_anchored_urbs() --------------------------- +:c:func:`usb_unlink_anchored_urbs` +---------------------------------- + This function unlinks all URBs associated with an anchor. The URBs are processed in the reverse temporal order they were submitted. -This is similar to usb_kill_anchored_urbs(), but it will not sleep. +This is similar to :c:func:`usb_kill_anchored_urbs`, but it will not sleep. Therefore no guarantee is made that the URBs have been unlinked when the call returns. They may be unlinked later but will be unlinked in finite time. -usb_scuttle_anchored_urbs() ---------------------------- +:c:func:`usb_scuttle_anchored_urbs` +----------------------------------- All URBs of an anchor are unanchored en masse. -usb_wait_anchor_empty_timeout() -------------------------------- +:c:func:`usb_wait_anchor_empty_timeout` +--------------------------------------- This function waits for all URBs associated with an anchor to finish or a timeout, whichever comes first. Its return value will tell you whether the timeout was reached. -usb_anchor_empty() ------------------- +:c:func:`usb_anchor_empty` +-------------------------- Returns true if no URBs are associated with an anchor. Locking is the caller's responsibility. -usb_get_from_anchor() ---------------------- +:c:func:`usb_get_from_anchor` +----------------------------- Returns the oldest anchored URB of an anchor. The URB is unanchored and returned with a reference. As you may mix URBs to several diff --git a/Documentation/usb/bulk-streams.txt b/Documentation/driver-api/usb/bulk-streams.rst index ffc02021863e..99b515babdeb 100644 --- a/Documentation/usb/bulk-streams.txt +++ b/Documentation/driver-api/usb/bulk-streams.rst @@ -1,3 +1,6 @@ +USB bulk streams +~~~~~~~~~~~~~~~~ + Background ========== @@ -25,7 +28,9 @@ time. Driver implications =================== -int usb_alloc_streams(struct usb_interface *interface, +:: + + int usb_alloc_streams(struct usb_interface *interface, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags); @@ -53,7 +58,7 @@ controller driver, and may change in the future. Picking new Stream IDs to use -============================ +============================= Stream ID 0 is reserved, and should not be used to communicate with devices. If usb_alloc_streams() returns with a value of N, you may use streams 1 though N. @@ -68,9 +73,9 @@ Clean up ======== If a driver wishes to stop using streams to communicate with the device, it -should call +should call:: -void usb_free_streams(struct usb_interface *interface, + void usb_free_streams(struct usb_interface *interface, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags); diff --git a/Documentation/usb/callbacks.txt b/Documentation/driver-api/usb/callbacks.rst index 9e85846bdb98..2b80cf54bcc3 100644 --- a/Documentation/usb/callbacks.txt +++ b/Documentation/driver-api/usb/callbacks.rst @@ -1,3 +1,6 @@ +USB core callbacks +~~~~~~~~~~~~~~~~~~ + What callbacks will usbcore do? =============================== @@ -5,40 +8,52 @@ Usbcore will call into a driver through callbacks defined in the driver structure and through the completion handler of URBs a driver submits. Only the former are in the scope of this document. These two kinds of callbacks are completely independent of each other. Information on the -completion callback can be found in Documentation/usb/URB.txt. +completion callback can be found in :ref:`usb-urb`. The callbacks defined in the driver structure are: 1. Hotplugging callbacks: - * @probe: Called to see if the driver is willing to manage a particular - * interface on a device. - * @disconnect: Called when the interface is no longer accessible, usually - * because its device has been (or is being) disconnected or the - * driver module is being unloaded. + - @probe: + Called to see if the driver is willing to manage a particular + interface on a device. + + - @disconnect: + Called when the interface is no longer accessible, usually + because its device has been (or is being) disconnected or the + driver module is being unloaded. 2. Odd backdoor through usbfs: - * @ioctl: Used for drivers that want to talk to userspace through - * the "usbfs" filesystem. This lets devices provide ways to - * expose information to user space regardless of where they - * do (or don't) show up otherwise in the filesystem. + - @ioctl: + Used for drivers that want to talk to userspace through + the "usbfs" filesystem. This lets devices provide ways to + expose information to user space regardless of where they + do (or don't) show up otherwise in the filesystem. 3. Power management (PM) callbacks: - * @suspend: Called when the device is going to be suspended. - * @resume: Called when the device is being resumed. - * @reset_resume: Called when the suspended device has been reset instead - * of being resumed. + - @suspend: + Called when the device is going to be suspended. + + - @resume: + Called when the device is being resumed. + + - @reset_resume: + Called when the suspended device has been reset instead + of being resumed. 4. Device level operations: - * @pre_reset: Called when the device is about to be reset. - * @post_reset: Called after the device has been reset + - @pre_reset: + Called when the device is about to be reset. + + - @post_reset: + Called after the device has been reset The ioctl interface (2) should be used only if you have a very good reason. Sysfs is preferred these days. The PM callbacks are covered -separately in Documentation/usb/power-management.txt. +separately in :ref:`usb-power-management`. Calling conventions =================== @@ -58,7 +73,9 @@ an interface. A driver's bond to an interface is exclusive. The probe() callback -------------------- -int (*probe) (struct usb_interface *intf, +:: + + int (*probe) (struct usb_interface *intf, const struct usb_device_id *id); Accept or decline an interface. If you accept the device return 0, @@ -75,7 +92,9 @@ initialisation that doesn't take too long is a good idea here. The disconnect() callback ------------------------- -void (*disconnect) (struct usb_interface *intf); +:: + + void (*disconnect) (struct usb_interface *intf); This callback is a signal to break any connection with an interface. You are not allowed any IO to a device after returning from this @@ -93,7 +112,9 @@ Device level callbacks pre_reset --------- -int (*pre_reset)(struct usb_interface *intf); +:: + + int (*pre_reset)(struct usb_interface *intf); A driver or user space is triggering a reset on the device which contains the interface passed as an argument. Cease IO, wait for all @@ -107,7 +128,9 @@ are in atomic context. post_reset ---------- -int (*post_reset)(struct usb_interface *intf); +:: + + int (*post_reset)(struct usb_interface *intf); The reset has completed. Restore any saved device state and begin using the device again. diff --git a/Documentation/usb/dma.txt b/Documentation/driver-api/usb/dma.rst index 444651e70d95..59d5aee89e37 100644 --- a/Documentation/usb/dma.txt +++ b/Documentation/driver-api/usb/dma.rst @@ -1,16 +1,19 @@ +USB DMA +~~~~~~~ + In Linux 2.5 kernels (and later), USB device drivers have additional control over how DMA may be used to perform I/O operations. The APIs are detailed in the kernel usb programming guide (kerneldoc, from the source code). - -API OVERVIEW +API overview +============ The big picture is that USB drivers can continue to ignore most DMA issues, though they still must provide DMA-ready buffers (see -Documentation/DMA-API-HOWTO.txt). That's how they've worked through -the 2.4 (and earlier) kernels. +``Documentation/DMA-API-HOWTO.txt``). That's how they've worked through +the 2.4 (and earlier) kernels, or they can now be DMA-aware. -OR: they can now be DMA-aware. +DMA-aware usb drivers: - New calls enable DMA-aware drivers, letting them allocate dma buffers and manage dma mappings for existing dma-ready buffers (see below). @@ -20,15 +23,15 @@ OR: they can now be DMA-aware. drivers must not use it.) - "usbcore" will map this DMA address, if a DMA-aware driver didn't do - it first and set URB_NO_TRANSFER_DMA_MAP. HCDs + it first and set ``URB_NO_TRANSFER_DMA_MAP``. HCDs don't manage dma mappings for URBs. - There's a new "generic DMA API", parts of which are usable by USB device drivers. Never use dma_set_mask() on any USB interface or device; that would potentially break all devices sharing that bus. - -ELIMINATING COPIES +Eliminating copies +================== It's good to avoid making CPUs copy data needlessly. The costs can add up, and effects like cache-trashing can impose subtle penalties. @@ -41,7 +44,7 @@ and effects like cache-trashing can impose subtle penalties. For those specific cases, USB has primitives to allocate less expensive memory. They work like kmalloc and kfree versions that give you the right kind of addresses to store in urb->transfer_buffer and urb->transfer_dma. - You'd also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags: + You'd also set ``URB_NO_TRANSFER_DMA_MAP`` in urb->transfer_flags:: void *usb_alloc_coherent (struct usb_device *dev, size_t size, int mem_flags, dma_addr_t *dma); @@ -49,15 +52,15 @@ and effects like cache-trashing can impose subtle penalties. void usb_free_coherent (struct usb_device *dev, size_t size, void *addr, dma_addr_t dma); - Most drivers should *NOT* be using these primitives; they don't need + Most drivers should **NOT** be using these primitives; they don't need to use this type of memory ("dma-coherent"), and memory returned from - kmalloc() will work just fine. + :c:func:`kmalloc` will work just fine. The memory buffer returned is "dma-coherent"; sometimes you might need to force a consistent memory access ordering by using memory barriers. It's not using a streaming DMA mapping, so it's good for small transfers on systems where the I/O would otherwise thrash an IOMMU mapping. (See - Documentation/DMA-API-HOWTO.txt for definitions of "coherent" and + ``Documentation/DMA-API-HOWTO.txt`` for definitions of "coherent" and "streaming" DMA mappings.) Asking for 1/Nth of a page (as well as asking for N pages) is reasonably @@ -75,15 +78,15 @@ and effects like cache-trashing can impose subtle penalties. way to expose these capabilities ... and in any case, HIGHMEM is mostly a design wart specific to x86_32. So your best bet is to ensure you never pass a highmem buffer into a USB driver. That's easy; it's the default - behavior. Just don't override it; e.g. with NETIF_F_HIGHDMA. + behavior. Just don't override it; e.g. with ``NETIF_F_HIGHDMA``. This may force your callers to do some bounce buffering, copying from high memory to "normal" DMA memory. If you can come up with a good way to fix this issue (for x86_32 machines with over 1 GByte of memory), feel free to submit patches. - -WORKING WITH EXISTING BUFFERS +Working with existing buffers +============================= Existing buffers aren't usable for DMA without first being mapped into the DMA address space of the device. However, most buffers passed to your @@ -92,7 +95,7 @@ of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?") - When you're using scatterlists, you can map everything at once. On some systems, this kicks in an IOMMU and turns the scatterlists into single - DMA transactions: + DMA transactions:: int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, struct scatterlist *sg, int nents); @@ -103,7 +106,7 @@ of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?") void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, struct scatterlist *sg, int n_hw_ents); - It's probably easier to use the new usb_sg_*() calls, which do the DMA + It's probably easier to use the new ``usb_sg_*()`` calls, which do the DMA mapping and apply other tweaks to make scatterlist i/o be fast. - Some drivers may prefer to work with the model that they're mapping large @@ -112,10 +115,10 @@ of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?") here, since it's cheaper to just synchronize the buffer than to unmap it each time an urb completes and then re-map it on during resubmission. - These calls all work with initialized urbs: urb->dev, urb->pipe, - urb->transfer_buffer, and urb->transfer_buffer_length must all be - valid when these calls are used (urb->setup_packet must be valid too - if urb is a control request): + These calls all work with initialized urbs: ``urb->dev``, ``urb->pipe``, + ``urb->transfer_buffer``, and ``urb->transfer_buffer_length`` must all be + valid when these calls are used (``urb->setup_packet`` must be valid too + if urb is a control request):: struct urb *usb_buffer_map (struct urb *urb); @@ -123,9 +126,9 @@ of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?") void usb_buffer_unmap (struct urb *urb); - The calls manage urb->transfer_dma for you, and set URB_NO_TRANSFER_DMA_MAP - so that usbcore won't map or unmap the buffer. They cannot be used for - setup_packet buffers in control requests. + The calls manage ``urb->transfer_dma`` for you, and set + ``URB_NO_TRANSFER_DMA_MAP`` so that usbcore won't map or unmap the buffer. + They cannot be used for setup_packet buffers in control requests. Note that several of those interfaces are currently commented out, since they don't have current users. See the source code. Other than the dmasync diff --git a/Documentation/driver-api/usb/error-codes.rst b/Documentation/driver-api/usb/error-codes.rst new file mode 100644 index 000000000000..a3e84bfac776 --- /dev/null +++ b/Documentation/driver-api/usb/error-codes.rst @@ -0,0 +1,207 @@ +.. _usb-error-codes: + +USB Error codes +~~~~~~~~~~~~~~~ + +:Revised: 2004-Oct-21 + +This is the documentation of (hopefully) all possible error codes (and +their interpretation) that can be returned from usbcore. + +Some of them are returned by the Host Controller Drivers (HCDs), which +device drivers only see through usbcore. As a rule, all the HCDs should +behave the same except for transfer speed dependent behaviors and the +way certain faults are reported. + + +Error codes returned by :c:func:`usb_submit_urb` +================================================ + +Non-USB-specific: + + +=============== =============================================== +0 URB submission went fine + +``-ENOMEM`` no memory for allocation of internal structures +=============== =============================================== + +USB-specific: + +======================= ======================================================= +``-EBUSY`` The URB is already active. + +``-ENODEV`` specified USB-device or bus doesn't exist + +``-ENOENT`` specified interface or endpoint does not exist or + is not enabled + +``-ENXIO`` host controller driver does not support queuing of + this type of urb. (treat as a host controller bug.) + +``-EINVAL`` a) Invalid transfer type specified (or not supported) + b) Invalid or unsupported periodic transfer interval + c) ISO: attempted to change transfer interval + d) ISO: ``number_of_packets`` is < 0 + e) various other cases + +``-EXDEV`` ISO: ``URB_ISO_ASAP`` wasn't specified and all the + frames the URB would be scheduled in have already + expired. + +``-EFBIG`` Host controller driver can't schedule that many ISO + frames. + +``-EPIPE`` The pipe type specified in the URB doesn't match the + endpoint's actual type. + +``-EMSGSIZE`` (a) endpoint maxpacket size is zero; it is not usable + in the current interface altsetting. + (b) ISO packet is larger than the endpoint maxpacket. + (c) requested data transfer length is invalid: negative + or too large for the host controller. + +``-ENOSPC`` This request would overcommit the usb bandwidth reserved + for periodic transfers (interrupt, isochronous). + +``-ESHUTDOWN`` The device or host controller has been disabled due to + some problem that could not be worked around. + +``-EPERM`` Submission failed because ``urb->reject`` was set. + +``-EHOSTUNREACH`` URB was rejected because the device is suspended. + +``-ENOEXEC`` A control URB doesn't contain a Setup packet. +======================= ======================================================= + +Error codes returned by ``in urb->status`` or in ``iso_frame_desc[n].status`` (for ISO) +======================================================================================= + +USB device drivers may only test urb status values in completion handlers. +This is because otherwise there would be a race between HCDs updating +these values on one CPU, and device drivers testing them on another CPU. + +A transfer's actual_length may be positive even when an error has been +reported. That's because transfers often involve several packets, so that +one or more packets could finish before an error stops further endpoint I/O. + +For isochronous URBs, the urb status value is non-zero only if the URB is +unlinked, the device is removed, the host controller is disabled, or the total +transferred length is less than the requested length and the +``URB_SHORT_NOT_OK`` flag is set. Completion handlers for isochronous URBs +should only see ``urb->status`` set to zero, ``-ENOENT``, ``-ECONNRESET``, +``-ESHUTDOWN``, or ``-EREMOTEIO``. Individual frame descriptor status fields +may report more status codes. + + +=============================== =============================================== +0 Transfer completed successfully + +``-ENOENT`` URB was synchronously unlinked by + :c:func:`usb_unlink_urb` + +``-EINPROGRESS`` URB still pending, no results yet + (That is, if drivers see this it's a bug.) + +``-EPROTO`` [#f1]_, [#f2]_ a) bitstuff error + b) no response packet received within the + prescribed bus turn-around time + c) unknown USB error + +``-EILSEQ`` [#f1]_, [#f2]_ a) CRC mismatch + b) no response packet received within the + prescribed bus turn-around time + c) unknown USB error + + Note that often the controller hardware does + not distinguish among cases a), b), and c), so + a driver cannot tell whether there was a + protocol error, a failure to respond (often + caused by device disconnect), or some other + fault. + +``-ETIME`` [#f2]_ No response packet received within the + prescribed bus turn-around time. This error + may instead be reported as + ``-EPROTO`` or ``-EILSEQ``. + +``-ETIMEDOUT`` Synchronous USB message functions use this code + to indicate timeout expired before the transfer + completed, and no other error was reported + by HC. + +``-EPIPE`` [#f2]_ Endpoint stalled. For non-control endpoints, + reset this status with + :c:func:`usb_clear_halt`. + +``-ECOMM`` During an IN transfer, the host controller + received data from an endpoint faster than it + could be written to system memory + +``-ENOSR`` During an OUT transfer, the host controller + could not retrieve data from system memory fast + enough to keep up with the USB data rate + +``-EOVERFLOW`` [#f1]_ The amount of data returned by the endpoint was + greater than either the max packet size of the + endpoint or the remaining buffer size. + "Babble". + +``-EREMOTEIO`` The data read from the endpoint did not fill + the specified buffer, and ``URB_SHORT_NOT_OK`` + was set in ``urb->transfer_flags``. + +``-ENODEV`` Device was removed. Often preceded by a burst + of other errors, since the hub driver doesn't + detect device removal events immediately. + +``-EXDEV`` ISO transfer only partially completed + (only set in ``iso_frame_desc[n].status``, + not ``urb->status``) + +``-EINVAL`` ISO madness, if this happens: Log off and + go home + +``-ECONNRESET`` URB was asynchronously unlinked by + :c:func:`usb_unlink_urb` + +``-ESHUTDOWN`` The device or host controller has been + disabled due to some problem that could not + be worked around, such as a physical + disconnect. +=============================== =============================================== + + +.. [#f1] + + Error codes like ``-EPROTO``, ``-EILSEQ`` and ``-EOVERFLOW`` normally + indicate hardware problems such as bad devices (including firmware) + or cables. + +.. [#f2] + + This is also one of several codes that different kinds of host + controller use to indicate a transfer has failed because of device + disconnect. In the interval before the hub driver starts disconnect + processing, devices may receive such fault reports for every request. + + + +Error codes returned by usbcore-functions +========================================= + +.. note:: expect also other submit and transfer status codes + +:c:func:`usb_register`: + +======================= =================================== +``-EINVAL`` error during registering new driver +======================= =================================== + +``usb_get_*/usb_set_*()``, +:c:func:`usb_control_msg`, +:c:func:`usb_bulk_msg()`: + +======================= ============================================== +``-ETIMEDOUT`` Timeout expired before the transfer completed. +======================= ============================================== diff --git a/Documentation/driver-api/usb/gadget.rst b/Documentation/driver-api/usb/gadget.rst new file mode 100644 index 000000000000..3e8a3809c0b8 --- /dev/null +++ b/Documentation/driver-api/usb/gadget.rst @@ -0,0 +1,510 @@ +======================== +USB Gadget API for Linux +======================== + +:Author: David Brownell +:Date: 20 August 2004 + +Introduction +============ + +This document presents a Linux-USB "Gadget" kernel mode API, for use +within peripherals and other USB devices that embed Linux. It provides +an overview of the API structure, and shows how that fits into a system +development project. This is the first such API released on Linux to +address a number of important problems, including: + +- Supports USB 2.0, for high speed devices which can stream data at + several dozen megabytes per second. + +- Handles devices with dozens of endpoints just as well as ones with + just two fixed-function ones. Gadget drivers can be written so + they're easy to port to new hardware. + +- Flexible enough to expose more complex USB device capabilities such + as multiple configurations, multiple interfaces, composite devices, + and alternate interface settings. + +- USB "On-The-Go" (OTG) support, in conjunction with updates to the + Linux-USB host side. + +- Sharing data structures and API models with the Linux-USB host side + API. This helps the OTG support, and looks forward to more-symmetric + frameworks (where the same I/O model is used by both host and device + side drivers). + +- Minimalist, so it's easier to support new device controller hardware. + I/O processing doesn't imply large demands for memory or CPU + resources. + +Most Linux developers will not be able to use this API, since they have +USB ``host`` hardware in a PC, workstation, or server. Linux users with +embedded systems are more likely to have USB peripheral hardware. To +distinguish drivers running inside such hardware from the more familiar +Linux "USB device drivers", which are host side proxies for the real USB +devices, a different term is used: the drivers inside the peripherals +are "USB gadget drivers". In USB protocol interactions, the device +driver is the master (or "client driver") and the gadget driver is the +slave (or "function driver"). + +The gadget API resembles the host side Linux-USB API in that both use +queues of request objects to package I/O buffers, and those requests may +be submitted or canceled. They share common definitions for the standard +USB *Chapter 9* messages, structures, and constants. Also, both APIs +bind and unbind drivers to devices. The APIs differ in detail, since the +host side's current URB framework exposes a number of implementation +details and assumptions that are inappropriate for a gadget API. While +the model for control transfers and configuration management is +necessarily different (one side is a hardware-neutral master, the other +is a hardware-aware slave), the endpoint I/0 API used here should also +be usable for an overhead-reduced host side API. + +Structure of Gadget Drivers +=========================== + +A system running inside a USB peripheral normally has at least three +layers inside the kernel to handle USB protocol processing, and may have +additional layers in user space code. The ``gadget`` API is used by the +middle layer to interact with the lowest level (which directly handles +hardware). + +In Linux, from the bottom up, these layers are: + +*USB Controller Driver* + This is the lowest software level. It is the only layer that talks + to hardware, through registers, fifos, dma, irqs, and the like. The + ``<linux/usb/gadget.h>`` API abstracts the peripheral controller + endpoint hardware. That hardware is exposed through endpoint + objects, which accept streams of IN/OUT buffers, and through + callbacks that interact with gadget drivers. Since normal USB + devices only have one upstream port, they only have one of these + drivers. The controller driver can support any number of different + gadget drivers, but only one of them can be used at a time. + + Examples of such controller hardware include the PCI-based NetChip + 2280 USB 2.0 high speed controller, the SA-11x0 or PXA-25x UDC + (found within many PDAs), and a variety of other products. + +*Gadget Driver* + The lower boundary of this driver implements hardware-neutral USB + functions, using calls to the controller driver. Because such + hardware varies widely in capabilities and restrictions, and is used + in embedded environments where space is at a premium, the gadget + driver is often configured at compile time to work with endpoints + supported by one particular controller. Gadget drivers may be + portable to several different controllers, using conditional + compilation. (Recent kernels substantially simplify the work + involved in supporting new hardware, by *autoconfiguring* endpoints + automatically for many bulk-oriented drivers.) Gadget driver + responsibilities include: + + - handling setup requests (ep0 protocol responses) possibly + including class-specific functionality + + - returning configuration and string descriptors + + - (re)setting configurations and interface altsettings, including + enabling and configuring endpoints + + - handling life cycle events, such as managing bindings to + hardware, USB suspend/resume, remote wakeup, and disconnection + from the USB host. + + - managing IN and OUT transfers on all currently enabled endpoints + + Such drivers may be modules of proprietary code, although that + approach is discouraged in the Linux community. + +*Upper Level* + Most gadget drivers have an upper boundary that connects to some + Linux driver or framework in Linux. Through that boundary flows the + data which the gadget driver produces and/or consumes through + protocol transfers over USB. Examples include: + + - user mode code, using generic (gadgetfs) or application specific + files in ``/dev`` + + - networking subsystem (for network gadgets, like the CDC Ethernet + Model gadget driver) + + - data capture drivers, perhaps video4Linux or a scanner driver; or + test and measurement hardware. + + - input subsystem (for HID gadgets) + + - sound subsystem (for audio gadgets) + + - file system (for PTP gadgets) + + - block i/o subsystem (for usb-storage gadgets) + + - ... and more + +*Additional Layers* + Other layers may exist. These could include kernel layers, such as + network protocol stacks, as well as user mode applications building + on standard POSIX system call APIs such as ``open()``, ``close()``, + ``read()`` and ``write()``. On newer systems, POSIX Async I/O calls may + be an option. Such user mode code will not necessarily be subject to + the GNU General Public License (GPL). + +OTG-capable systems will also need to include a standard Linux-USB host +side stack, with ``usbcore``, one or more *Host Controller Drivers* +(HCDs), *USB Device Drivers* to support the OTG "Targeted Peripheral +List", and so forth. There will also be an *OTG Controller Driver*, +which is visible to gadget and device driver developers only indirectly. +That helps the host and device side USB controllers implement the two +new OTG protocols (HNP and SRP). Roles switch (host to peripheral, or +vice versa) using HNP during USB suspend processing, and SRP can be +viewed as a more battery-friendly kind of device wakeup protocol. + +Over time, reusable utilities are evolving to help make some gadget +driver tasks simpler. For example, building configuration descriptors +from vectors of descriptors for the configurations interfaces and +endpoints is now automated, and many drivers now use autoconfiguration +to choose hardware endpoints and initialize their descriptors. A +potential example of particular interest is code implementing standard +USB-IF protocols for HID, networking, storage, or audio classes. Some +developers are interested in KDB or KGDB hooks, to let target hardware +be remotely debugged. Most such USB protocol code doesn't need to be +hardware-specific, any more than network protocols like X11, HTTP, or +NFS are. Such gadget-side interface drivers should eventually be +combined, to implement composite devices. + +Kernel Mode Gadget API +====================== + +Gadget drivers declare themselves through a struct +:c:type:`usb_gadget_driver`, which is responsible for most parts of enumeration +for a struct :c:type:`usb_gadget`. The response to a set_configuration usually +involves enabling one or more of the struct :c:type:`usb_ep` objects exposed by +the gadget, and submitting one or more struct :c:type:`usb_request` buffers to +transfer data. Understand those four data types, and their operations, +and you will understand how this API works. + +.. Note:: + + Other than the "Chapter 9" data types, most of the significant data + types and functions are described here. + + However, some relevant information is likely omitted from what you + are reading. One example of such information is endpoint + autoconfiguration. You'll have to read the header file, and use + example source code (such as that for "Gadget Zero"), to fully + understand the API. + + The part of the API implementing some basic driver capabilities is + specific to the version of the Linux kernel that's in use. The 2.6 + and upper kernel versions include a *driver model* framework that has + no analogue on earlier kernels; so those parts of the gadget API are + not fully portable. (They are implemented on 2.4 kernels, but in a + different way.) The driver model state is another part of this API that is + ignored by the kerneldoc tools. + +The core API does not expose every possible hardware feature, only the +most widely available ones. There are significant hardware features, +such as device-to-device DMA (without temporary storage in a memory +buffer) that would be added using hardware-specific APIs. + +This API allows drivers to use conditional compilation to handle +endpoint capabilities of different hardware, but doesn't require that. +Hardware tends to have arbitrary restrictions, relating to transfer +types, addressing, packet sizes, buffering, and availability. As a rule, +such differences only matter for "endpoint zero" logic that handles +device configuration and management. The API supports limited run-time +detection of capabilities, through naming conventions for endpoints. +Many drivers will be able to at least partially autoconfigure +themselves. In particular, driver init sections will often have endpoint +autoconfiguration logic that scans the hardware's list of endpoints to +find ones matching the driver requirements (relying on those +conventions), to eliminate some of the most common reasons for +conditional compilation. + +Like the Linux-USB host side API, this API exposes the "chunky" nature +of USB messages: I/O requests are in terms of one or more "packets", and +packet boundaries are visible to drivers. Compared to RS-232 serial +protocols, USB resembles synchronous protocols like HDLC (N bytes per +frame, multipoint addressing, host as the primary station and devices as +secondary stations) more than asynchronous ones (tty style: 8 data bits +per frame, no parity, one stop bit). So for example the controller +drivers won't buffer two single byte writes into a single two-byte USB +IN packet, although gadget drivers may do so when they implement +protocols where packet boundaries (and "short packets") are not +significant. + +Driver Life Cycle +----------------- + +Gadget drivers make endpoint I/O requests to hardware without needing to +know many details of the hardware, but driver setup/configuration code +needs to handle some differences. Use the API like this: + +1. Register a driver for the particular device side usb controller + hardware, such as the net2280 on PCI (USB 2.0), sa11x0 or pxa25x as + found in Linux PDAs, and so on. At this point the device is logically + in the USB ch9 initial state (``attached``), drawing no power and not + usable (since it does not yet support enumeration). Any host should + not see the device, since it's not activated the data line pullup + used by the host to detect a device, even if VBUS power is available. + +2. Register a gadget driver that implements some higher level device + function. That will then bind() to a :c:type:`usb_gadget`, which activates + the data line pullup sometime after detecting VBUS. + +3. The hardware driver can now start enumerating. The steps it handles + are to accept USB ``power`` and ``set_address`` requests. Other steps are + handled by the gadget driver. If the gadget driver module is unloaded + before the host starts to enumerate, steps before step 7 are skipped. + +4. The gadget driver's ``setup()`` call returns usb descriptors, based both + on what the bus interface hardware provides and on the functionality + being implemented. That can involve alternate settings or + configurations, unless the hardware prevents such operation. For OTG + devices, each configuration descriptor includes an OTG descriptor. + +5. The gadget driver handles the last step of enumeration, when the USB + host issues a ``set_configuration`` call. It enables all endpoints used + in that configuration, with all interfaces in their default settings. + That involves using a list of the hardware's endpoints, enabling each + endpoint according to its descriptor. It may also involve using + ``usb_gadget_vbus_draw`` to let more power be drawn from VBUS, as + allowed by that configuration. For OTG devices, setting a + configuration may also involve reporting HNP capabilities through a + user interface. + +6. Do real work and perform data transfers, possibly involving changes + to interface settings or switching to new configurations, until the + device is disconnect()ed from the host. Queue any number of transfer + requests to each endpoint. It may be suspended and resumed several + times before being disconnected. On disconnect, the drivers go back + to step 3 (above). + +7. When the gadget driver module is being unloaded, the driver unbind() + callback is issued. That lets the controller driver be unloaded. + +Drivers will normally be arranged so that just loading the gadget driver +module (or statically linking it into a Linux kernel) allows the +peripheral device to be enumerated, but some drivers will defer +enumeration until some higher level component (like a user mode daemon) +enables it. Note that at this lowest level there are no policies about +how ep0 configuration logic is implemented, except that it should obey +USB specifications. Such issues are in the domain of gadget drivers, +including knowing about implementation constraints imposed by some USB +controllers or understanding that composite devices might happen to be +built by integrating reusable components. + +Note that the lifecycle above can be slightly different for OTG devices. +Other than providing an additional OTG descriptor in each configuration, +only the HNP-related differences are particularly visible to driver +code. They involve reporting requirements during the ``SET_CONFIGURATION`` +request, and the option to invoke HNP during some suspend callbacks. +Also, SRP changes the semantics of ``usb_gadget_wakeup`` slightly. + +USB 2.0 Chapter 9 Types and Constants +------------------------------------- + +Gadget drivers rely on common USB structures and constants defined in +the :ref:`linux/usb/ch9.h <usb_chapter9>` header file, which is standard in +Linux 2.6+ kernels. These are the same types and constants used by host side +drivers (and usbcore). + +Core Objects and Methods +------------------------ + +These are declared in ``<linux/usb/gadget.h>``, and are used by gadget +drivers to interact with USB peripheral controller drivers. + +.. kernel-doc:: include/linux/usb/gadget.h + :internal: + +Optional Utilities +------------------ + +The core API is sufficient for writing a USB Gadget Driver, but some +optional utilities are provided to simplify common tasks. These +utilities include endpoint autoconfiguration. + +.. kernel-doc:: drivers/usb/gadget/usbstring.c + :export: + +.. kernel-doc:: drivers/usb/gadget/config.c + :export: + +Composite Device Framework +-------------------------- + +The core API is sufficient for writing drivers for composite USB devices +(with more than one function in a given configuration), and also +multi-configuration devices (also more than one function, but not +necessarily sharing a given configuration). There is however an optional +framework which makes it easier to reuse and combine functions. + +Devices using this framework provide a struct :c:type:`usb_composite_driver`, +which in turn provides one or more struct :c:type:`usb_configuration` +instances. Each such configuration includes at least one struct +:c:type:`usb_function`, which packages a user visible role such as "network +link" or "mass storage device". Management functions may also exist, +such as "Device Firmware Upgrade". + +.. kernel-doc:: include/linux/usb/composite.h + :internal: + +.. kernel-doc:: drivers/usb/gadget/composite.c + :export: + +Composite Device Functions +-------------------------- + +At this writing, a few of the current gadget drivers have been converted +to this framework. Near-term plans include converting all of them, +except for ``gadgetfs``. + +Peripheral Controller Drivers +============================= + +The first hardware supporting this API was the NetChip 2280 controller, +which supports USB 2.0 high speed and is based on PCI. This is the +``net2280`` driver module. The driver supports Linux kernel versions 2.4 +and 2.6; contact NetChip Technologies for development boards and product +information. + +Other hardware working in the ``gadget`` framework includes: Intel's PXA +25x and IXP42x series processors (``pxa2xx_udc``), Toshiba TC86c001 +"Goku-S" (``goku_udc``), Renesas SH7705/7727 (``sh_udc``), MediaQ 11xx +(``mq11xx_udc``), Hynix HMS30C7202 (``h7202_udc``), National 9303/4 +(``n9604_udc``), Texas Instruments OMAP (``omap_udc``), Sharp LH7A40x +(``lh7a40x_udc``), and more. Most of those are full speed controllers. + +At this writing, there are people at work on drivers in this framework +for several other USB device controllers, with plans to make many of +them be widely available. + +A partial USB simulator, the ``dummy_hcd`` driver, is available. It can +act like a net2280, a pxa25x, or an sa11x0 in terms of available +endpoints and device speeds; and it simulates control, bulk, and to some +extent interrupt transfers. That lets you develop some parts of a gadget +driver on a normal PC, without any special hardware, and perhaps with +the assistance of tools such as GDB running with User Mode Linux. At +least one person has expressed interest in adapting that approach, +hooking it up to a simulator for a microcontroller. Such simulators can +help debug subsystems where the runtime hardware is unfriendly to +software development, or is not yet available. + +Support for other controllers is expected to be developed and +contributed over time, as this driver framework evolves. + +Gadget Drivers +============== + +In addition to *Gadget Zero* (used primarily for testing and development +with drivers for usb controller hardware), other gadget drivers exist. + +There's an ``ethernet`` gadget driver, which implements one of the most +useful *Communications Device Class* (CDC) models. One of the standards +for cable modem interoperability even specifies the use of this ethernet +model as one of two mandatory options. Gadgets using this code look to a +USB host as if they're an Ethernet adapter. It provides access to a +network where the gadget's CPU is one host, which could easily be +bridging, routing, or firewalling access to other networks. Since some +hardware can't fully implement the CDC Ethernet requirements, this +driver also implements a "good parts only" subset of CDC Ethernet. (That +subset doesn't advertise itself as CDC Ethernet, to avoid creating +problems.) + +Support for Microsoft's ``RNDIS`` protocol has been contributed by +Pengutronix and Auerswald GmbH. This is like CDC Ethernet, but it runs +on more slightly USB hardware (but less than the CDC subset). However, +its main claim to fame is being able to connect directly to recent +versions of Windows, using drivers that Microsoft bundles and supports, +making it much simpler to network with Windows. + +There is also support for user mode gadget drivers, using ``gadgetfs``. +This provides a *User Mode API* that presents each endpoint as a single +file descriptor. I/O is done using normal ``read()`` and ``read()`` calls. +Familiar tools like GDB and pthreads can be used to develop and debug +user mode drivers, so that once a robust controller driver is available +many applications for it won't require new kernel mode software. Linux +2.6 *Async I/O (AIO)* support is available, so that user mode software +can stream data with only slightly more overhead than a kernel driver. + +There's a USB Mass Storage class driver, which provides a different +solution for interoperability with systems such as MS-Windows and MacOS. +That *Mass Storage* driver uses a file or block device as backing store +for a drive, like the ``loop`` driver. The USB host uses the BBB, CB, or +CBI versions of the mass storage class specification, using transparent +SCSI commands to access the data from the backing store. + +There's a "serial line" driver, useful for TTY style operation over USB. +The latest version of that driver supports CDC ACM style operation, like +a USB modem, and so on most hardware it can interoperate easily with +MS-Windows. One interesting use of that driver is in boot firmware (like +a BIOS), which can sometimes use that model with very small systems +without real serial lines. + +Support for other kinds of gadget is expected to be developed and +contributed over time, as this driver framework evolves. + +USB On-The-GO (OTG) +=================== + +USB OTG support on Linux 2.6 was initially developed by Texas +Instruments for `OMAP <http://www.omap.com>`__ 16xx and 17xx series +processors. Other OTG systems should work in similar ways, but the +hardware level details could be very different. + +Systems need specialized hardware support to implement OTG, notably +including a special *Mini-AB* jack and associated transceiver to support +*Dual-Role* operation: they can act either as a host, using the standard +Linux-USB host side driver stack, or as a peripheral, using this +``gadget`` framework. To do that, the system software relies on small +additions to those programming interfaces, and on a new internal +component (here called an "OTG Controller") affecting which driver stack +connects to the OTG port. In each role, the system can re-use the +existing pool of hardware-neutral drivers, layered on top of the +controller driver interfaces (:c:type:`usb_bus` or :c:type:`usb_gadget`). +Such drivers need at most minor changes, and most of the calls added to +support OTG can also benefit non-OTG products. + +- Gadget drivers test the ``is_otg`` flag, and use it to determine + whether or not to include an OTG descriptor in each of their + configurations. + +- Gadget drivers may need changes to support the two new OTG protocols, + exposed in new gadget attributes such as ``b_hnp_enable`` flag. HNP + support should be reported through a user interface (two LEDs could + suffice), and is triggered in some cases when the host suspends the + peripheral. SRP support can be user-initiated just like remote + wakeup, probably by pressing the same button. + +- On the host side, USB device drivers need to be taught to trigger HNP + at appropriate moments, using ``usb_suspend_device()``. That also + conserves battery power, which is useful even for non-OTG + configurations. + +- Also on the host side, a driver must support the OTG "Targeted + Peripheral List". That's just a whitelist, used to reject peripherals + not supported with a given Linux OTG host. *This whitelist is + product-specific; each product must modify* ``otg_whitelist.h`` *to + match its interoperability specification.* + + Non-OTG Linux hosts, like PCs and workstations, normally have some + solution for adding drivers, so that peripherals that aren't + recognized can eventually be supported. That approach is unreasonable + for consumer products that may never have their firmware upgraded, + and where it's usually unrealistic to expect traditional + PC/workstation/server kinds of support model to work. For example, + it's often impractical to change device firmware once the product has + been distributed, so driver bugs can't normally be fixed if they're + found after shipment. + +Additional changes are needed below those hardware-neutral :c:type:`usb_bus` +and :c:type:`usb_gadget` driver interfaces; those aren't discussed here in any +detail. Those affect the hardware-specific code for each USB Host or +Peripheral controller, and how the HCD initializes (since OTG can be +active only on a single port). They also involve what may be called an +*OTG Controller Driver*, managing the OTG transceiver and the OTG state +machine logic as well as much of the root hub behavior for the OTG port. +The OTG controller driver needs to activate and deactivate USB +controllers depending on the relevant device role. Some related changes +were needed inside usbcore, so that it can identify OTG-capable devices +and respond appropriately to HNP or SRP protocols. diff --git a/Documentation/usb/hotplug.txt b/Documentation/driver-api/usb/hotplug.rst index 5b243f315b2c..79663e653ca1 100644 --- a/Documentation/usb/hotplug.txt +++ b/Documentation/driver-api/usb/hotplug.rst @@ -1,4 +1,9 @@ -LINUX HOTPLUGGING +USB hotplugging +~~~~~~~~~~~~~~~ + +Linux Hotplugging +================= + In hotpluggable busses like USB (and Cardbus PCI), end-users plug devices into the bus with power on. In most cases, users expect the devices to become @@ -30,11 +35,11 @@ Because some of those actions rely on information about drivers (metadata) that is currently available only when the drivers are dynamically linked, you get the best hotplugging when you configure a highly modular system. +Kernel Hotplug Helper (``/sbin/hotplug``) +========================================= -KERNEL HOTPLUG HELPER (/sbin/hotplug) - -There is a kernel parameter: /proc/sys/kernel/hotplug, which normally -holds the pathname "/sbin/hotplug". That parameter names a program +There is a kernel parameter: ``/proc/sys/kernel/hotplug``, which normally +holds the pathname ``/sbin/hotplug``. That parameter names a program which the kernel may invoke at various times. The /sbin/hotplug program can be invoked by any subsystem as part of its @@ -51,26 +56,26 @@ Hotplug software and other resources is available at: Mailing list information is also available at that site. --------------------------------------------------------------------------- - +USB Policy Agent +================ -USB POLICY AGENT - -The USB subsystem currently invokes /sbin/hotplug when USB devices +The USB subsystem currently invokes ``/sbin/hotplug`` when USB devices are added or removed from system. The invocation is done by the kernel hub workqueue [hub_wq], or else as part of root hub initialization (done by init, modprobe, kapmd, etc). Its single command line parameter is the string "usb", and it passes these environment variables: - ACTION ... "add", "remove" - PRODUCT ... USB vendor, product, and version codes (hex) - TYPE ... device class codes (decimal) - INTERFACE ... interface 0 class codes (decimal) +========== ============================================ +ACTION ``add``, ``remove`` +PRODUCT USB vendor, product, and version codes (hex) +TYPE device class codes (decimal) +INTERFACE interface 0 class codes (decimal) +========== ============================================ If "usbdevfs" is configured, DEVICE and DEVFS are also passed. DEVICE is the pathname of the device, and is useful for devices with multiple and/or alternate interfaces that complicate driver selection. By design, USB -hotplugging is independent of "usbdevfs": you can do most essential parts +hotplugging is independent of ``usbdevfs``: you can do most essential parts of USB device setup without using that filesystem, and without running a user mode daemon to detect changes in system configuration. @@ -79,19 +84,20 @@ modules, and can invoke driver-specific setup scripts. The newest ones leverage USB module-init-tools support. Later agents might unload drivers. -USB MODUTILS SUPPORT +USB Modutils Support +==================== -Current versions of module-init-tools will create a "modules.usbmap" file -which contains the entries from each driver's MODULE_DEVICE_TABLE. Such +Current versions of module-init-tools will create a ``modules.usbmap`` file +which contains the entries from each driver's ``MODULE_DEVICE_TABLE``. Such files can be used by various user mode policy agents to make sure all the right driver modules get loaded, either at boot time or later. -See <linux/usb.h> for full information about such table entries; or look +See ``linux/usb.h`` for full information about such table entries; or look at existing drivers. Each table entry describes one or more criteria to be used when matching a driver to a device or class of devices. The specific criteria are identified by bits set in "match_flags", paired with field values. You can construct the criteria directly, or with -macros such as these, and use driver_info to store more information. +macros such as these, and use driver_info to store more information:: USB_DEVICE (vendorId, productId) ... matching devices with specified vendor and product ids @@ -103,7 +109,7 @@ macros such as these, and use driver_info to store more information. ... matching specified device class info A short example, for a driver that supports several specific USB devices -and their quirks, might have a MODULE_DEVICE_TABLE like this: +and their quirks, might have a MODULE_DEVICE_TABLE like this:: static const struct usb_device_id mydriver_id_table[] = { { USB_DEVICE (0x9999, 0xaaaa), driver_info: QUIRK_X }, @@ -116,10 +122,10 @@ and their quirks, might have a MODULE_DEVICE_TABLE like this: Most USB device drivers should pass these tables to the USB subsystem as well as to the module management subsystem. Not all, though: some driver frameworks connect using interfaces layered over USB, and so they won't -need such a "struct usb_driver". +need such a struct :c:type:`usb_driver`. Drivers that connect directly to the USB subsystem should be declared -something like this: +something like this:: static struct usb_driver mydriver = { .name = "mydriver", @@ -138,11 +144,11 @@ something like this: When the USB subsystem knows about a driver's device ID table, it's used when choosing drivers to probe(). The thread doing new device processing checks -drivers' device ID entries from the MODULE_DEVICE_TABLE against interface and -device descriptors for the device. It will only call probe() if there is a -match, and the third argument to probe() will be the entry that matched. - -If you don't provide an id_table for your driver, then your driver may get -probed for each new device; the third parameter to probe() will be null. - - +drivers' device ID entries from the ``MODULE_DEVICE_TABLE`` against interface +and device descriptors for the device. It will only call ``probe()`` if there +is a match, and the third argument to ``probe()`` will be the entry that +matched. + +If you don't provide an ``id_table`` for your driver, then your driver may get +probed for each new device; the third parameter to ``probe()`` will be +``NULL``. diff --git a/Documentation/driver-api/usb/index.rst b/Documentation/driver-api/usb/index.rst new file mode 100644 index 000000000000..1bf64edc8c8a --- /dev/null +++ b/Documentation/driver-api/usb/index.rst @@ -0,0 +1,26 @@ +============= +Linux USB API +============= + +.. toctree:: + + usb + gadget + anchors + bulk-streams + callbacks + dma + URB + power-management + hotplug + persist + error-codes + writing_usb_driver + writing_musb_glue_layer + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/usb/persist.txt b/Documentation/driver-api/usb/persist.rst index 35d70eda9ad6..08cafc6292c1 100644 --- a/Documentation/usb/persist.txt +++ b/Documentation/driver-api/usb/persist.rst @@ -1,11 +1,14 @@ - USB device persistence during system suspend +.. _usb-persist: - Alan Stern <stern@rowland.harvard.edu> +USB device persistence during system suspend +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - September 2, 2006 (Updated February 25, 2008) +:Author: Alan Stern <stern@rowland.harvard.edu> +:Date: September 2, 2006 (Updated February 25, 2008) - What is the problem? +What is the problem? +==================== According to the USB specification, when a USB bus is suspended the bus must continue to supply suspend current (around 1-5 mA). This @@ -63,7 +66,8 @@ suspended -- but it will crash as soon as it wakes up, which isn't much better.) - What is the solution? +What is the solution? +===================== The kernel includes a feature called USB-persist. It tries to work around these issues by allowing the core USB device data structures to @@ -99,7 +103,7 @@ now a good and happy place. Note that the "USB-persist" feature will be applied only to those devices for which it is enabled. You can enable the feature by doing -(as root): +(as root):: echo 1 >/sys/bus/usb/devices/.../power/persist @@ -110,7 +114,8 @@ doesn't even exist, so you only have to worry about setting it for devices where it really matters. - Is this the best solution? +Is this the best solution? +========================== Perhaps not. Arguably, keeping track of mounted filesystems and memory mappings across device disconnects should be handled by a @@ -130,7 +135,8 @@ just mass-storage devices. It might turn out to be equally useful for other device types, such as network interfaces. - WARNING: USB-persist can be dangerous!! +WARNING: USB-persist can be dangerous!! +======================================= When recovering an interrupted power session the kernel does its best to make sure the USB device hasn't been changed; that is, the same diff --git a/Documentation/usb/power-management.txt b/Documentation/driver-api/usb/power-management.rst index 00e706997130..79beb807996b 100644 --- a/Documentation/usb/power-management.txt +++ b/Documentation/driver-api/usb/power-management.rst @@ -1,10 +1,12 @@ - Power Management for USB +.. _usb-power-management: - Alan Stern <stern@rowland.harvard.edu> - - Last-updated: February 2014 +Power Management for USB +~~~~~~~~~~~~~~~~~~~~~~~~ +:Author: Alan Stern <stern@rowland.harvard.edu> +:Date: Last-updated: February 2014 +.. Contents: --------- * What is Power Management? @@ -25,14 +27,14 @@ * Suggested Userspace Port Power Policy - What is Power Management? - ------------------------- +What is Power Management? +------------------------- Power Management (PM) is the practice of saving energy by suspending parts of a computer system when they aren't being used. While a -component is "suspended" it is in a nonfunctional low-power state; it +component is ``suspended`` it is in a nonfunctional low-power state; it might even be turned off completely. A suspended component can be -"resumed" (returned to a functional full-power state) when the kernel +``resumed`` (returned to a functional full-power state) when the kernel needs to use it. (There also are forms of PM in which components are placed in a less functional but still usable state instead of being suspended; an example would be reducing the CPU's clock rate. This @@ -44,22 +46,25 @@ device is turned off while the system as a whole remains running, we call it a "dynamic suspend" (also known as a "runtime suspend" or "selective suspend"). This document concentrates mostly on how dynamic PM is implemented in the USB subsystem, although system PM is -covered to some extent (see Documentation/power/*.txt for more +covered to some extent (see ``Documentation/power/*.txt`` for more information about system PM). -System PM support is present only if the kernel was built with CONFIG_SUSPEND -or CONFIG_HIBERNATION enabled. Dynamic PM support for USB is present whenever -the kernel was built with CONFIG_PM enabled. +System PM support is present only if the kernel was built with +``CONFIG_SUSPEND`` or ``CONFIG_HIBERNATION`` enabled. Dynamic PM support + +for USB is present whenever +the kernel was built with ``CONFIG_PM`` enabled. [Historically, dynamic PM support for USB was present only if the -kernel had been built with CONFIG_USB_SUSPEND enabled (which depended on -CONFIG_PM_RUNTIME). Starting with the 3.10 kernel release, dynamic PM support -for USB was present whenever the kernel was built with CONFIG_PM_RUNTIME -enabled. The CONFIG_USB_SUSPEND option had been eliminated.] +kernel had been built with ``CONFIG_USB_SUSPEND`` enabled (which depended on +``CONFIG_PM_RUNTIME``). Starting with the 3.10 kernel release, dynamic PM +support for USB was present whenever the kernel was built with +``CONFIG_PM_RUNTIME`` enabled. The ``CONFIG_USB_SUSPEND`` option had been +eliminated.] - What is Remote Wakeup? - ---------------------- +What is Remote Wakeup? +---------------------- When a device has been suspended, it generally doesn't resume until the computer tells it to. Likewise, if the entire computer has been @@ -76,8 +81,8 @@ event. Examples include a suspended keyboard resuming when a key is pressed, or a suspended USB hub resuming when a device is plugged in. - When is a USB device idle? - -------------------------- +When is a USB device idle? +-------------------------- A device is idle whenever the kernel thinks it's not busy doing anything important and thus is a candidate for being suspended. The @@ -92,11 +97,11 @@ If a USB device has no driver, its usbfs file isn't open, and it isn't being accessed through sysfs, then it definitely is idle. - Forms of dynamic PM - ------------------- +Forms of dynamic PM +------------------- Dynamic suspends occur when the kernel decides to suspend an idle -device. This is called "autosuspend" for short. In general, a device +device. This is called ``autosuspend`` for short. In general, a device won't be autosuspended unless it has been idle for some minimum period of time, the so-called idle-delay time. @@ -125,51 +130,51 @@ all dynamic suspend events are internal; external agents are not allowed to issue dynamic suspends. - The user interface for dynamic PM - --------------------------------- +The user interface for dynamic PM +--------------------------------- -The user interface for controlling dynamic PM is located in the power/ +The user interface for controlling dynamic PM is located in the ``power/`` subdirectory of each USB device's sysfs directory, that is, in -/sys/bus/usb/devices/.../power/ where "..." is the device's ID. The +``/sys/bus/usb/devices/.../power/`` where "..." is the device's ID. The relevant attribute files are: wakeup, control, and -autosuspend_delay_ms. (There may also be a file named "level"; this +``autosuspend_delay_ms``. (There may also be a file named ``level``; this file was deprecated as of the 2.6.35 kernel and replaced by the -"control" file. In 2.6.38 the "autosuspend" file will be deprecated -and replaced by the "autosuspend_delay_ms" file. The only difference +``control`` file. In 2.6.38 the ``autosuspend`` file will be deprecated +and replaced by the ``autosuspend_delay_ms`` file. The only difference is that the newer file expresses the delay in milliseconds whereas the older file uses seconds. Confusingly, both files are present in 2.6.37 -but only "autosuspend" works.) +but only ``autosuspend`` works.) - power/wakeup + ``power/wakeup`` This file is empty if the device does not support remote wakeup. Otherwise the file contains either the - word "enabled" or the word "disabled", and you can + word ``enabled`` or the word ``disabled``, and you can write those words to the file. The setting determines whether or not remote wakeup will be enabled when the device is next suspended. (If the setting is changed while the device is suspended, the change won't take effect until the following suspend.) - power/control + ``power/control`` - This file contains one of two words: "on" or "auto". + This file contains one of two words: ``on`` or ``auto``. You can write those words to the file to change the device's setting. - "on" means that the device should be resumed and - autosuspend is not allowed. (Of course, system - suspends are still allowed.) + - ``on`` means that the device should be resumed and + autosuspend is not allowed. (Of course, system + suspends are still allowed.) - "auto" is the normal state in which the kernel is - allowed to autosuspend and autoresume the device. + - ``auto`` is the normal state in which the kernel is + allowed to autosuspend and autoresume the device. (In kernels up to 2.6.32, you could also specify - "suspend", meaning that the device should remain + ``suspend``, meaning that the device should remain suspended and autoresume was not allowed. This setting is no longer supported.) - power/autosuspend_delay_ms + ``power/autosuspend_delay_ms`` This file contains an integer value, which is the number of milliseconds the device should remain idle @@ -180,31 +185,31 @@ but only "autosuspend" works.) number to the file to change the autosuspend idle-delay time. -Writing "-1" to power/autosuspend_delay_ms and writing "on" to -power/control do essentially the same thing -- they both prevent the +Writing ``-1`` to ``power/autosuspend_delay_ms`` and writing ``on`` to +``power/control`` do essentially the same thing -- they both prevent the device from being autosuspended. Yes, this is a redundancy in the API. -(In 2.6.21 writing "0" to power/autosuspend would prevent the device +(In 2.6.21 writing ``0`` to ``power/autosuspend`` would prevent the device from being autosuspended; the behavior was changed in 2.6.22. The -power/autosuspend attribute did not exist prior to 2.6.21, and the -power/level attribute did not exist prior to 2.6.22. power/control -was added in 2.6.34, and power/autosuspend_delay_ms was added in +``power/autosuspend`` attribute did not exist prior to 2.6.21, and the +``power/level`` attribute did not exist prior to 2.6.22. ``power/control`` +was added in 2.6.34, and ``power/autosuspend_delay_ms`` was added in 2.6.37 but did not become functional until 2.6.38.) - Changing the default idle-delay time - ------------------------------------ +Changing the default idle-delay time +------------------------------------ The default autosuspend idle-delay time (in seconds) is controlled by a module parameter in usbcore. You can specify the value when usbcore is loaded. For example, to set it to 5 seconds instead of 2 you would -do: +do:: modprobe usbcore autosuspend=5 Equivalently, you could add to a configuration file in /etc/modprobe.d -a line saying: +a line saying:: options usbcore autosuspend=5 @@ -214,14 +219,14 @@ image. To alter the parameter value you would have to rebuild that image. If usbcore is compiled into the kernel rather than built as a loadable -module, you can add +module, you can add:: usbcore.autosuspend=5 to the kernel's boot command line. Finally, the parameter value can be changed while the system is -running. If you do: +running. If you do:: echo 5 >/sys/module/usbcore/parameters/autosuspend @@ -234,8 +239,8 @@ autosuspend of any USB device. This has the benefit of allowing you then to enable autosuspend for selected devices. - Warnings - -------- +Warnings +-------- The USB specification states that all USB devices must support power management. Nevertheless, the sad fact is that many devices do not @@ -246,7 +251,7 @@ among printers and scanners, but plenty of other types of device have the same deficiency. For this reason, by default the kernel disables autosuspend (the -power/control attribute is initialized to "on") for all devices other +``power/control`` attribute is initialized to ``on``) for all devices other than hubs. Hubs, at least, appear to be reasonably well-behaved in this regard. @@ -284,30 +289,30 @@ device by suspending it at the wrong time. (Highly unlikely, but possible.) Take care. - The driver interface for Power Management - ----------------------------------------- +The driver interface for Power Management +----------------------------------------- The requirements for a USB driver to support external power management -are pretty modest; the driver need only define +are pretty modest; the driver need only define:: .suspend .resume .reset_resume -methods in its usb_driver structure, and the reset_resume method is -optional. The methods' jobs are quite simple: +methods in its :c:type:`usb_driver` structure, and the ``reset_resume`` method +is optional. The methods' jobs are quite simple: - The suspend method is called to warn the driver that the + - The ``suspend`` method is called to warn the driver that the device is going to be suspended. If the driver returns a negative error code, the suspend will be aborted. Normally the driver will return 0, in which case it must cancel all - outstanding URBs (usb_kill_urb()) and not submit any more. + outstanding URBs (:c:func:`usb_kill_urb`) and not submit any more. - The resume method is called to tell the driver that the + - The ``resume`` method is called to tell the driver that the device has been resumed and the driver can return to normal operation. URBs may once more be submitted. - The reset_resume method is called to tell the driver that + - The ``reset_resume`` method is called to tell the driver that the device has been resumed and it also has been reset. The driver should redo any necessary device initialization, since the device has probably lost most or all of its state @@ -315,22 +320,22 @@ optional. The methods' jobs are quite simple: before the suspend). If the device is disconnected or powered down while it is suspended, -the disconnect method will be called instead of the resume or -reset_resume method. This is also quite likely to happen when +the ``disconnect`` method will be called instead of the ``resume`` or +``reset_resume`` method. This is also quite likely to happen when waking up from hibernation, as many systems do not maintain suspend current to the USB host controllers during hibernation. (It's possible to work around the hibernation-forces-disconnect problem by using the USB Persist facility.) -The reset_resume method is used by the USB Persist facility (see -Documentation/usb/persist.txt) and it can also be used under certain -circumstances when CONFIG_USB_PERSIST is not enabled. Currently, if a +The ``reset_resume`` method is used by the USB Persist facility (see +:ref:`usb-persist`) and it can also be used under certain +circumstances when ``CONFIG_USB_PERSIST`` is not enabled. Currently, if a device is reset during a resume and the driver does not have a -reset_resume method, the driver won't receive any notification about -the resume. Later kernels will call the driver's disconnect method; +``reset_resume`` method, the driver won't receive any notification about +the resume. Later kernels will call the driver's ``disconnect`` method; 2.6.23 doesn't do this. -USB drivers are bound to interfaces, so their suspend and resume +USB drivers are bound to interfaces, so their ``suspend`` and ``resume`` methods get called when the interfaces are suspended or resumed. In principle one might want to suspend some interfaces on a device (i.e., force the drivers for those interface to stop all activity) without @@ -341,15 +346,15 @@ to suspend or resume some but not all of a device's interfaces. The closest you can come is to unbind the interfaces' drivers. - The driver interface for autosuspend and autoresume - --------------------------------------------------- +The driver interface for autosuspend and autoresume +--------------------------------------------------- To support autosuspend and autoresume, a driver should implement all three of the methods listed above. In addition, a driver indicates -that it supports autosuspend by setting the .supports_autosuspend flag +that it supports autosuspend by setting the ``.supports_autosuspend`` flag in its usb_driver structure. It is then responsible for informing the USB core whenever one of its interfaces becomes busy or idle. The -driver does so by calling these six functions: +driver does so by calling these six functions:: int usb_autopm_get_interface(struct usb_interface *intf); void usb_autopm_put_interface(struct usb_interface *intf); @@ -368,41 +373,41 @@ autosuspend the device. Drivers need not be concerned about balancing changes to the usage counter; the USB core will undo any remaining "get"s when a driver is unbound from its interface. As a corollary, drivers must not call -any of the usb_autopm_* functions after their disconnect() routine has -returned. +any of the ``usb_autopm_*`` functions after their ``disconnect`` +routine has returned. Drivers using the async routines are responsible for their own synchronization and mutual exclusion. - usb_autopm_get_interface() increments the usage counter and + :c:func:`usb_autopm_get_interface` increments the usage counter and does an autoresume if the device is suspended. If the autoresume fails, the counter is decremented back. - usb_autopm_put_interface() decrements the usage counter and + :c:func:`usb_autopm_put_interface` decrements the usage counter and attempts an autosuspend if the new value is = 0. - usb_autopm_get_interface_async() and - usb_autopm_put_interface_async() do almost the same things as + :c:func:`usb_autopm_get_interface_async` and + :c:func:`usb_autopm_put_interface_async` do almost the same things as their non-async counterparts. The big difference is that they use a workqueue to do the resume or suspend part of their jobs. As a result they can be called in an atomic context, such as an URB's completion handler, but when they return the device will generally not yet be in the desired state. - usb_autopm_get_interface_no_resume() and - usb_autopm_put_interface_no_suspend() merely increment or + :c:func:`usb_autopm_get_interface_no_resume` and + :c:func:`usb_autopm_put_interface_no_suspend` merely increment or decrement the usage counter; they do not attempt to carry out an autoresume or an autosuspend. Hence they can be called in an atomic context. The simplest usage pattern is that a driver calls -usb_autopm_get_interface() in its open routine and -usb_autopm_put_interface() in its close or release routine. But other +:c:func:`usb_autopm_get_interface` in its open routine and +:c:func:`usb_autopm_put_interface` in its close or release routine. But other patterns are possible. The autosuspend attempts mentioned above will often fail for one -reason or another. For example, the power/control attribute might be -set to "on", or another interface in the same device might not be +reason or another. For example, the ``power/control`` attribute might be +set to ``on``, or another interface in the same device might not be idle. This is perfectly normal. If the reason for failure was that the device hasn't been idle for long enough, a timer is scheduled to carry out the operation automatically when the autosuspend idle-delay @@ -413,37 +418,37 @@ the device is no longer present or operating properly. Unlike autosuspend, there's no idle-delay for an autoresume. - Other parts of the driver interface - ----------------------------------- +Other parts of the driver interface +----------------------------------- -Drivers can enable autosuspend for their devices by calling +Drivers can enable autosuspend for their devices by calling:: usb_enable_autosuspend(struct usb_device *udev); -in their probe() routine, if they know that the device is capable of +in their :c:func:`probe` routine, if they know that the device is capable of suspending and resuming correctly. This is exactly equivalent to -writing "auto" to the device's power/control attribute. Likewise, -drivers can disable autosuspend by calling +writing ``auto`` to the device's ``power/control`` attribute. Likewise, +drivers can disable autosuspend by calling:: usb_disable_autosuspend(struct usb_device *udev); -This is exactly the same as writing "on" to the power/control attribute. +This is exactly the same as writing ``on`` to the ``power/control`` attribute. Sometimes a driver needs to make sure that remote wakeup is enabled during autosuspend. For example, there's not much point autosuspending a keyboard if the user can't cause the keyboard to do a remote wakeup by typing on it. If the driver sets -intf->needs_remote_wakeup to 1, the kernel won't autosuspend the +``intf->needs_remote_wakeup`` to 1, the kernel won't autosuspend the device if remote wakeup isn't available. (If the device is already autosuspended, though, setting this flag won't cause the kernel to -autoresume it. Normally a driver would set this flag in its probe +autoresume it. Normally a driver would set this flag in its ``probe`` method, at which time the device is guaranteed not to be autosuspended.) If a driver does its I/O asynchronously in interrupt context, it -should call usb_autopm_get_interface_async() before starting output and -usb_autopm_put_interface_async() when the output queue drains. When -it receives an input event, it should call +should call :c:func:`usb_autopm_get_interface_async` before starting output and +:c:func:`usb_autopm_put_interface_async` when the output queue drains. When +it receives an input event, it should call:: usb_mark_last_busy(struct usb_device *udev); @@ -453,41 +458,41 @@ be pushed back. Many of the usb_autopm_* routines also make this call, so drivers need to worry only when interrupt-driven input arrives. Asynchronous operation is always subject to races. For example, a -driver may call the usb_autopm_get_interface_async() routine at a time +driver may call the :c:func:`usb_autopm_get_interface_async` routine at a time when the core has just finished deciding the device has been idle for -long enough but not yet gotten around to calling the driver's suspend -method. The suspend method must be responsible for synchronizing with +long enough but not yet gotten around to calling the driver's ``suspend`` +method. The ``suspend`` method must be responsible for synchronizing with the I/O request routine and the URB completion handler; it should cause autosuspends to fail with -EBUSY if the driver needs to use the device. External suspend calls should never be allowed to fail in this way, only autosuspend calls. The driver can tell them apart by applying -the PMSG_IS_AUTO() macro to the message argument to the suspend +the :c:func:`PMSG_IS_AUTO` macro to the message argument to the ``suspend`` method; it will return True for internal PM events (autosuspend) and False for external PM events. - Mutual exclusion - ---------------- +Mutual exclusion +---------------- For external events -- but not necessarily for autosuspend or autoresume -- the device semaphore (udev->dev.sem) will be held when a -suspend or resume method is called. This implies that external -suspend/resume events are mutually exclusive with calls to probe, -disconnect, pre_reset, and post_reset; the USB core guarantees that +``suspend`` or ``resume`` method is called. This implies that external +suspend/resume events are mutually exclusive with calls to ``probe``, +``disconnect``, ``pre_reset``, and ``post_reset``; the USB core guarantees that this is true of autosuspend/autoresume events as well. If a driver wants to block all suspend/resume calls during some critical section, the best way is to lock the device and call -usb_autopm_get_interface() (and do the reverse at the end of the +:c:func:`usb_autopm_get_interface` (and do the reverse at the end of the critical section). Holding the device semaphore will block all -external PM calls, and the usb_autopm_get_interface() will prevent any +external PM calls, and the :c:func:`usb_autopm_get_interface` will prevent any internal PM calls, even if it fails. (Exercise: Why?) - Interaction between dynamic PM and system PM - -------------------------------------------- +Interaction between dynamic PM and system PM +-------------------------------------------- Dynamic power management and system power management can interact in a couple of ways. @@ -512,8 +517,8 @@ wakeup may fail and get lost. Which outcome occurs depends on timing and on the hardware and firmware design. - xHCI hardware link PM - --------------------- +xHCI hardware link PM +--------------------- xHCI host controller provides hardware link power management to usb2.0 (xHCI 1.0 feature) and usb3.0 devices which support link PM. By @@ -522,11 +527,11 @@ lower power state(L1 for usb2.0 devices, or U1/U2 for usb3.0 devices), which state device can enter and resume very quickly. The user interface for controlling hardware LPM is located in the -power/ subdirectory of each USB device's sysfs directory, that is, in -/sys/bus/usb/devices/.../power/ where "..." is the device's ID. The -relevant attribute files are usb2_hardware_lpm and usb3_hardware_lpm. +``power/`` subdirectory of each USB device's sysfs directory, that is, in +``/sys/bus/usb/devices/.../power/`` where "..." is the device's ID. The +relevant attribute files are ``usb2_hardware_lpm`` and ``usb3_hardware_lpm``. - power/usb2_hardware_lpm + ``power/usb2_hardware_lpm`` When a USB2 device which support LPM is plugged to a xHCI host root hub which support software LPM, the @@ -537,8 +542,8 @@ relevant attribute files are usb2_hardware_lpm and usb3_hardware_lpm. can write y/Y/1 or n/N/0 to the file to enable/disable USB2 hardware LPM manually. This is for test purpose mainly. - power/usb3_hardware_lpm_u1 - power/usb3_hardware_lpm_u2 + ``power/usb3_hardware_lpm_u1`` + ``power/usb3_hardware_lpm_u2`` When a USB 3.0 lpm-capable device is plugged in to a xHCI host which supports link PM, it will check if U1 @@ -550,29 +555,31 @@ relevant attribute files are usb2_hardware_lpm and usb3_hardware_lpm. indicating whether or not USB3 hardware LPM U1 or U2 is enabled for the device. - USB Port Power Control - ---------------------- +USB Port Power Control +---------------------- In addition to suspending endpoint devices and enabling hardware controlled link power management, the USB subsystem also has the capability to disable power to ports under some conditions. Power is -controlled through Set/ClearPortFeature(PORT_POWER) requests to a hub. +controlled through ``Set/ClearPortFeature(PORT_POWER)`` requests to a hub. In the case of a root or platform-internal hub the host controller -driver translates PORT_POWER requests into platform firmware (ACPI) +driver translates ``PORT_POWER`` requests into platform firmware (ACPI) method calls to set the port power state. For more background see the -Linux Plumbers Conference 2012 slides [1] and video [2]: +Linux Plumbers Conference 2012 slides [#f1]_ and video [#f2]_: -Upon receiving a ClearPortFeature(PORT_POWER) request a USB port is -logically off, and may trigger the actual loss of VBUS to the port [3]. +Upon receiving a ``ClearPortFeature(PORT_POWER)`` request a USB port is +logically off, and may trigger the actual loss of VBUS to the port [#f3]_. VBUS may be maintained in the case where a hub gangs multiple ports into a shared power well causing power to remain until all ports in the gang are turned off. VBUS may also be maintained by hub ports configured for a charging application. In any event a logically off port will lose connection with its device, not respond to hotplug events, and not -respond to remote wakeup events*. +respond to remote wakeup events. + +.. warning:: -WARNING: turning off a port may result in the inability to hot add a device. -Please see "User Interface for Port Power Control" for details. + turning off a port may result in the inability to hot add a device. + Please see "User Interface for Port Power Control" for details. As far as the effect on the device itself it is similar to what a device goes through during system suspend, i.e. the power session is lost. Any @@ -581,38 +588,49 @@ similarly affected by a port power cycle event. For this reason the implementation shares the same device recovery path (and honors the same quirks) as the system resume path for the hub. -[1]: http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf -[2]: http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/ -[3]: USB 3.1 Section 10.12 -* wakeup note: if a device is configured to send wakeup events the port +.. [#f1] + + http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf + +.. [#f2] + + http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/ + +.. [#f3] + + USB 3.1 Section 10.12 + + wakeup note: if a device is configured to send wakeup events the port power control implementation will block poweroff attempts on that port. - User Interface for Port Power Control - ------------------------------------- +User Interface for Port Power Control +------------------------------------- The port power control mechanism uses the PM runtime system. Poweroff is -requested by clearing the power/pm_qos_no_power_off flag of the port device +requested by clearing the ``power/pm_qos_no_power_off`` flag of the port device (defaults to 1). If the port is disconnected it will immediately receive a -ClearPortFeature(PORT_POWER) request. Otherwise, it will honor the pm runtime -rules and require the attached child device and all descendants to be suspended. -This mechanism is dependent on the hub advertising port power switching in its -hub descriptor (wHubCharacteristics logical power switching mode field). +``ClearPortFeature(PORT_POWER)`` request. Otherwise, it will honor the pm +runtime rules and require the attached child device and all descendants to be +suspended. This mechanism is dependent on the hub advertising port power +switching in its hub descriptor (wHubCharacteristics logical power switching +mode field). Note, some interface devices/drivers do not support autosuspend. Userspace may -need to unbind the interface drivers before the usb_device will suspend. An -unbound interface device is suspended by default. When unbinding, be careful -to unbind interface drivers, not the driver of the parent usb device. Also, -leave hub interface drivers bound. If the driver for the usb device (not -interface) is unbound the kernel is no longer able to resume the device. If a -hub interface driver is unbound, control of its child ports is lost and all -attached child-devices will disconnect. A good rule of thumb is that if the -'driver/module' link for a device points to /sys/module/usbcore then unbinding -it will interfere with port power control. +need to unbind the interface drivers before the :c:type:`usb_device` will +suspend. An unbound interface device is suspended by default. When unbinding, +be careful to unbind interface drivers, not the driver of the parent usb +device. Also, leave hub interface drivers bound. If the driver for the usb +device (not interface) is unbound the kernel is no longer able to resume the +device. If a hub interface driver is unbound, control of its child ports is +lost and all attached child-devices will disconnect. A good rule of thumb is +that if the 'driver/module' link for a device points to +``/sys/module/usbcore`` then unbinding it will interfere with port power +control. Example of the relevant files for port power control. Note, in this example -these files are relative to a usb hub device (prefix). +these files are relative to a usb hub device (prefix):: prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1 @@ -631,10 +649,10 @@ these files are relative to a usb hub device (prefix). In addition to these files some ports may have a 'peer' link to a port on another hub. The expectation is that all superspeed ports have a -hi-speed peer. +hi-speed peer:: -$prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1 -../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1 + $prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1 + ../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1 Distinct from 'companion ports', or 'ehci/xhci shared switchover ports' peer ports are simply the hi-speed and superspeed interface pins that @@ -645,24 +663,26 @@ While a superspeed port is powered off a device may downgrade its connection and attempt to connect to the hi-speed pins. The implementation takes steps to prevent this: -1/ Port suspend is sequenced to guarantee that hi-speed ports are powered-off +1. Port suspend is sequenced to guarantee that hi-speed ports are powered-off before their superspeed peer is permitted to power-off. The implication is - that the setting pm_qos_no_power_off to zero on a superspeed port may not cause - the port to power-off until its highspeed peer has gone to its runtime suspend - state. Userspace must take care to order the suspensions if it wants to - guarantee that a superspeed port will power-off. + that the setting ``pm_qos_no_power_off`` to zero on a superspeed port may + not cause the port to power-off until its highspeed peer has gone to its + runtime suspend state. Userspace must take care to order the suspensions + if it wants to guarantee that a superspeed port will power-off. -2/ Port resume is sequenced to force a superspeed port to power-on prior to its +2. Port resume is sequenced to force a superspeed port to power-on prior to its highspeed peer. -3/ Port resume always triggers an attached child device to resume. After a +3. Port resume always triggers an attached child device to resume. After a power session is lost the device may have been removed, or need reset. Resuming the child device when the parent port regains power resolves those - states and clamps the maximum port power cycle frequency at the rate the child - device can suspend (autosuspend-delay) and resume (reset-resume latency). + states and clamps the maximum port power cycle frequency at the rate the + child device can suspend (autosuspend-delay) and resume (reset-resume + latency). Sysfs files relevant for port power control: - <hubdev-portX>/power/pm_qos_no_power_off: + + ``<hubdev-portX>/power/pm_qos_no_power_off``: This writable flag controls the state of an idle port. Once all children and descendants have suspended the port may suspend/poweroff provided that @@ -670,24 +690,24 @@ Sysfs files relevant for port power control: '1' the port will remain active/powered regardless of the stats of descendants. Defaults to 1. - <hubdev-portX>/power/runtime_status: + ``<hubdev-portX>/power/runtime_status``: This file reflects whether the port is 'active' (power is on) or 'suspended' (logically off). There is no indication to userspace whether VBUS is still supplied. - <hubdev-portX>/connect_type: + ``<hubdev-portX>/connect_type``: An advisory read-only flag to userspace indicating the location and connection type of the port. It returns one of four values 'hotplug', 'hardwired', 'not used', and 'unknown'. All values, besides unknown, are set by platform firmware. - "hotplug" indicates an externally connectable/visible + ``hotplug`` indicates an externally connectable/visible port on the platform. Typically userspace would choose to keep such a port powered to handle new device connection events. - "hardwired" refers to a port that is not visible but + ``hardwired`` refers to a port that is not visible but connectable. Examples are internal ports for USB bluetooth that can be disconnected via an external switch or a port with a hardwired USB camera. It is @@ -698,48 +718,50 @@ Sysfs files relevant for port power control: powering off, or to activate the port prior to enabling connection via a switch. - "not used" refers to an internal port that is expected + ``not used`` refers to an internal port that is expected to never have a device connected to it. These may be empty internal ports, or ports that are not physically exposed on a platform. Considered safe to be powered-off at all times. - "unknown" means platform firmware does not provide + ``unknown`` means platform firmware does not provide information for this port. Most commonly refers to external hub ports which should be considered 'hotplug' for policy decisions. - NOTE1: since we are relying on the BIOS to get this ACPI - information correct, the USB port descriptions may be - missing or wrong. + .. note:: + + - since we are relying on the BIOS to get this ACPI + information correct, the USB port descriptions may + be missing or wrong. - NOTE2: Take care in clearing pm_qos_no_power_off. Once - power is off this port will - not respond to new connect events. + - Take care in clearing ``pm_qos_no_power_off``. Once + power is off this port will + not respond to new connect events. Once a child device is attached additional constraints are applied before the port is allowed to poweroff. - <child>/power/control: - Must be 'auto', and the port will not - power down until <child>/power/runtime_status + ``<child>/power/control``: + Must be ``auto``, and the port will not + power down until ``<child>/power/runtime_status`` reflects the 'suspended' state. Default value is controlled by child device driver. - <child>/power/persist: - This defaults to '1' for most devices and indicates if + ``<child>/power/persist``: + This defaults to ``1`` for most devices and indicates if kernel can persist the device's configuration across a power session loss (suspend / port-power event). When - this value is '0' (quirky devices), port poweroff is + this value is ``0`` (quirky devices), port poweroff is disabled. - <child>/driver/unbind: + ``<child>/driver/unbind``: Wakeup capable devices will block port poweroff. At this time the only mechanism to clear the usb-internal wakeup-capability for an interface device is to unbind its driver. -Summary of poweroff pre-requisite settings relative to a port device: +Summary of poweroff pre-requisite settings relative to a port device:: echo 0 > power/pm_qos_no_power_off echo 0 > peer/power/pm_qos_no_power_off # if it exists @@ -747,14 +769,14 @@ Summary of poweroff pre-requisite settings relative to a port device: echo auto > <child>/power/control echo 1 > <child>/power/persist # this is the default value - Suggested Userspace Port Power Policy - ------------------------------------- +Suggested Userspace Port Power Policy +------------------------------------- As noted above userspace needs to be careful and deliberate about what ports are enabled for poweroff. The default configuration is that all ports start with -power/pm_qos_no_power_off set to '1' causing ports to always remain +``power/pm_qos_no_power_off`` set to ``1`` causing ports to always remain active. Given confidence in the platform firmware's description of the ports @@ -764,7 +786,7 @@ done for 'hardwired' ports provided poweroff is coordinated with any connection switch for the port. A more aggressive userspace policy is to enable USB port power off for -all ports (set <hubdev-portX>/power/pm_qos_no_power_off to '0') when +all ports (set ``<hubdev-portX>/power/pm_qos_no_power_off`` to ``0``) when some external factor indicates the user has stopped interacting with the system. For example, a distro may want to enable power off all USB ports when the screen blanks, and re-power them when the screen becomes diff --git a/Documentation/driver-api/usb.rst b/Documentation/driver-api/usb/usb.rst index 851cc40b66b5..dba0f876b36f 100644 --- a/Documentation/driver-api/usb.rst +++ b/Documentation/driver-api/usb/usb.rst @@ -1,3 +1,5 @@ +.. _usb-hostside-api: + =========================== The Linux-USB Host Side API =========================== @@ -102,16 +104,21 @@ disconnect testing (while the device is active) with each different host controller driver, to make sure drivers don't have bugs of their own as well as to make sure they aren't relying on some HCD-specific behavior. +.. _usb_chapter9: + USB-Standard Types ================== In ``<linux/usb/ch9.h>`` you will find the USB data types defined in chapter 9 of the USB specification. These data types are used throughout -USB, and in APIs including this host side API, gadget APIs, and usbfs. +USB, and in APIs including this host side API, gadget APIs, usb character +devices and debugfs interfaces. .. kernel-doc:: include/linux/usb/ch9.h :internal: +.. _usb_header: + Host-Side Data Types and Macros =============================== @@ -198,173 +205,110 @@ significantly reduce hcd-specific behaviors. .. kernel-doc:: drivers/usb/core/buffer.c :internal: -The USB Filesystem (usbfs) -========================== +The USB character device nodes +============================== -This chapter presents the Linux *usbfs*. You may prefer to avoid writing -new kernel code for your USB driver; that's the problem that usbfs set -out to solve. User mode device drivers are usually packaged as -applications or libraries, and may use usbfs through some programming -library that wraps it. Such libraries include -`libusb <http://libusb.sourceforge.net>`__ for C/C++, and -`jUSB <http://jUSB.sourceforge.net>`__ for Java. +This chapter presents the Linux character device nodes. You may prefer +to avoid writing new kernel code for your USB driver. User mode device +drivers are usually packaged as applications or libraries, and may use +character devices through some programming library that wraps it. +Such libraries include: - **Note** + - `libusb <http://libusb.sourceforge.net>`__ for C/C++, and + - `jUSB <http://jUSB.sourceforge.net>`__ for Java. - This particular documentation is incomplete, especially with respect - to the asynchronous mode. As of kernel 2.5.66 the code and this - (new) documentation need to be cross-reviewed. +Some old information about it can be seen at the "USB Device Filesystem" +section of the USB Guide. The latest copy of the USB Guide can be found +at http://www.linux-usb.org/ -Configure usbfs into Linux kernels by enabling the *USB filesystem* -option (CONFIG_USB_DEVICEFS), and you get basic support for user mode -USB device drivers. Until relatively recently it was often (confusingly) -called *usbdevfs* although it wasn't solving what *devfs* was. Every USB -device will appear in usbfs, regardless of whether or not it has a -kernel driver. +.. note:: -What files are in "usbfs"? --------------------------- + - They were used to be implemented via *usbfs*, but this is not part of + the sysfs debug interface. -Conventionally mounted at ``/proc/bus/usb``, usbfs features include: + - This particular documentation is incomplete, especially with respect + to the asynchronous mode. As of kernel 2.5.66 the code and this + (new) documentation need to be cross-reviewed. -- ``/proc/bus/usb/devices`` ... a text file showing each of the USB - devices on known to the kernel, and their configuration descriptors. - You can also poll() this to learn about new devices. +What files are in "devtmpfs"? +----------------------------- -- ``/proc/bus/usb/BBB/DDD`` ... magic files exposing the each device's +Conventionally mounted at ``/dev/bus/usb/``, usbfs features include: + +- ``/dev/bus/usb/BBB/DDD`` ... magic files exposing the each device's configuration descriptors, and supporting a series of ioctls for making device requests, including I/O to devices. (Purely for access by programs.) -Each bus is given a number (BBB) based on when it was enumerated; within -each bus, each device is given a similar number (DDD). Those BBB/DDD +Each bus is given a number (``BBB``) based on when it was enumerated; within +each bus, each device is given a similar number (``DDD``). Those ``BBB/DDD`` paths are not "stable" identifiers; expect them to change even if you always leave the devices plugged in to the same hub port. *Don't even think of saving these in application configuration files.* Stable identifiers are available, for user mode applications that want to use them. HID and networking devices expose these stable IDs, so that for example you can be sure that you told the right UPS to power down its -second server. "usbfs" doesn't (yet) expose those IDs. - -Mounting and Access Control ---------------------------- - -There are a number of mount options for usbfs, which will be of most -interest to you if you need to override the default access control -policy. That policy is that only root may read or write device files -(``/proc/bus/BBB/DDD``) although anyone may read the ``devices`` or -``drivers`` files. I/O requests to the device also need the -CAP_SYS_RAWIO capability, - -The significance of that is that by default, all user mode device -drivers need super-user privileges. You can change modes or ownership in -a driver setup when the device hotplugs, or maye just start the driver -right then, as a privileged server (or some activity within one). That's -the most secure approach for multi-user systems, but for single user -systems ("trusted" by that user) it's more convenient just to grant -everyone all access (using the *devmode=0666* option) so the driver can -start whenever it's needed. - -The mount options for usbfs, usable in /etc/fstab or in command line -invocations of *mount*, are: - -*busgid*\ =NNNNN - Controls the GID used for the /proc/bus/usb/BBB directories. - (Default: 0) - -*busmode*\ =MMM - Controls the file mode used for the /proc/bus/usb/BBB directories. - (Default: 0555) - -*busuid*\ =NNNNN - Controls the UID used for the /proc/bus/usb/BBB directories. - (Default: 0) - -*devgid*\ =NNNNN - Controls the GID used for the /proc/bus/usb/BBB/DDD files. (Default: - 0) - -*devmode*\ =MMM - Controls the file mode used for the /proc/bus/usb/BBB/DDD files. - (Default: 0644) - -*devuid*\ =NNNNN - Controls the UID used for the /proc/bus/usb/BBB/DDD files. (Default: - 0) - -*listgid*\ =NNNNN - Controls the GID used for the /proc/bus/usb/devices and drivers - files. (Default: 0) - -*listmode*\ =MMM - Controls the file mode used for the /proc/bus/usb/devices and - drivers files. (Default: 0444) +second server. Pleast note that it doesn't (yet) expose those IDs. -*listuid*\ =NNNNN - Controls the UID used for the /proc/bus/usb/devices and drivers - files. (Default: 0) - -Note that many Linux distributions hard-wire the mount options for usbfs -in their init scripts, such as ``/etc/rc.d/rc.sysinit``, rather than -making it easy to set this per-system policy in ``/etc/fstab``. - -/proc/bus/usb/devices ---------------------- - -This file is handy for status viewing tools in user mode, which can scan -the text format and ignore most of it. More detailed device status -(including class and vendor status) is available from device-specific -files. For information about the current format of this file, see the -``Documentation/usb/proc_usb_info.txt`` file in your Linux kernel -sources. - -This file, in combination with the poll() system call, can also be used -to detect when devices are added or removed: - -:: - - int fd; - struct pollfd pfd; - - fd = open("/proc/bus/usb/devices", O_RDONLY); - pfd = { fd, POLLIN, 0 }; - for (;;) { - /* The first time through, this call will return immediately. */ - poll(&pfd, 1, -1); - - /* To see what's changed, compare the file's previous and current - contents or scan the filesystem. (Scanning is more precise.) */ - } - -Note that this behavior is intended to be used for informational and -debug purposes. It would be more appropriate to use programs such as -udev or HAL to initialize a device or start a user-mode helper program, -for instance. - -/proc/bus/usb/BBB/DDD ---------------------- +/dev/bus/usb/BBB/DDD +-------------------- Use these files in one of these basic ways: -*They can be read,* producing first the device descriptor (18 bytes) and -then the descriptors for the current configuration. See the USB 2.0 spec -for details about those binary data formats. You'll need to convert most -multibyte values from little endian format to your native host byte -order, although a few of the fields in the device descriptor (both of -the BCD-encoded fields, and the vendor and product IDs) will be -byteswapped for you. Note that configuration descriptors include -descriptors for interfaces, altsettings, endpoints, and maybe additional -class descriptors. - -*Perform USB operations* using *ioctl()* requests to make endpoint I/O -requests (synchronously or asynchronously) or manage the device. These -requests need the CAP_SYS_RAWIO capability, as well as filesystem -access permissions. Only one ioctl request can be made on one of these -device files at a time. This means that if you are synchronously reading -an endpoint from one thread, you won't be able to write to a different -endpoint from another thread until the read completes. This works for -*half duplex* protocols, but otherwise you'd use asynchronous i/o -requests. +- *They can be read,* producing first the device descriptor (18 bytes) and + then the descriptors for the current configuration. See the USB 2.0 spec + for details about those binary data formats. You'll need to convert most + multibyte values from little endian format to your native host byte + order, although a few of the fields in the device descriptor (both of + the BCD-encoded fields, and the vendor and product IDs) will be + byteswapped for you. Note that configuration descriptors include + descriptors for interfaces, altsettings, endpoints, and maybe additional + class descriptors. + +- *Perform USB operations* using *ioctl()* requests to make endpoint I/O + requests (synchronously or asynchronously) or manage the device. These + requests need the ``CAP_SYS_RAWIO`` capability, as well as filesystem + access permissions. Only one ioctl request can be made on one of these + device files at a time. This means that if you are synchronously reading + an endpoint from one thread, you won't be able to write to a different + endpoint from another thread until the read completes. This works for + *half duplex* protocols, but otherwise you'd use asynchronous i/o + requests. + +Each connected USB device has one file. The ``BBB`` indicates the bus +number. The ``DDD`` indicates the device address on that bus. Both +of these numbers are assigned sequentially, and can be reused, so +you can't rely on them for stable access to devices. For example, +it's relatively common for devices to re-enumerate while they are +still connected (perhaps someone jostled their power supply, hub, +or USB cable), so a device might be ``002/027`` when you first connect +it and ``002/048`` sometime later. + +These files can be read as binary data. The binary data consists +of first the device descriptor, then the descriptors for each +configuration of the device. Multi-byte fields in the device descriptor +are converted to host endianness by the kernel. The configuration +descriptors are in bus endian format! The configuration descriptor +are wTotalLength bytes apart. If a device returns less configuration +descriptor data than indicated by wTotalLength there will be a hole in +the file for the missing bytes. This information is also shown +in text form by the ``/sys/kernel/debug/usb/devices`` file, described later. + +These files may also be used to write user-level drivers for the USB +devices. You would open the ``/dev/bus/usb/BBB/DDD`` file read/write, +read its descriptors to make sure it's the device you expect, and then +bind to an interface (or perhaps several) using an ioctl call. You +would issue more ioctls to the device to communicate to it using +control, bulk, or other kinds of USB transfers. The IOCTLs are +listed in the ``<linux/usbdevice_fs.h>`` file, and at this writing the +source code (``linux/drivers/usb/core/devio.c``) is the primary reference +for how to access devices through those files. + +Note that since by default these ``BBB/DDD`` files are writable only by +root, only root can write such user mode drivers. You can selectively +grant read/write permissions to other users by using ``chmod``. Also, +usbfs mount options such as ``devmode=0666`` may be helpful. + Life Cycle of User Mode Drivers ------------------------------- @@ -372,7 +316,7 @@ Life Cycle of User Mode Drivers Such a driver first needs to find a device file for a device it knows how to handle. Maybe it was told about it because a ``/sbin/hotplug`` event handling agent chose that driver to handle the new device. Or -maybe it's an application that scans all the /proc/bus/usb device files, +maybe it's an application that scans all the ``/dev/bus/usb`` device files, and ignores most devices. In either case, it should :c:func:`read()` all the descriptors from the device file, and check them against what it knows how to handle. It might just reject everything except a particular @@ -407,9 +351,7 @@ The ioctl() Requests -------------------- To use these ioctls, you need to include the following headers in your -userspace program: - -:: +userspace program:: #include <linux/usb.h> #include <linux/usbdevice_fs.h> @@ -422,8 +364,8 @@ header. Unless noted otherwise, the ioctl requests described here will update the modification time on the usbfs file to which they are applied (unless they fail). A return of zero indicates success; otherwise, a -standard USB error code is returned. (These are documented in -``Documentation/usb/error-codes.txt`` in your kernel sources.) +standard USB error code is returned (These are documented in +:ref:`usb-error-codes`). Each of these files multiplexes access to several I/O streams, one per endpoint. Each device has one control endpoint (endpoint zero) which @@ -458,14 +400,12 @@ USBDEVFS_CLAIMINTERFACE USBDEVFS_CONNECTINFO Says whether the device is lowspeed. The ioctl parameter points to a - structure like this: - - :: + structure like this:: - struct usbdevfs_connectinfo { - unsigned int devnum; - unsigned char slow; - }; + struct usbdevfs_connectinfo { + unsigned int devnum; + unsigned char slow; + }; File modification time is not updated by this request. @@ -477,45 +417,41 @@ USBDEVFS_CONNECTINFO USBDEVFS_GETDRIVER Returns the name of the kernel driver bound to a given interface (a string). Parameter is a pointer to this structure, which is - modified: + modified:: - :: - - struct usbdevfs_getdriver { - unsigned int interface; - char driver[USBDEVFS_MAXDRIVERNAME + 1]; - }; + struct usbdevfs_getdriver { + unsigned int interface; + char driver[USBDEVFS_MAXDRIVERNAME + 1]; + }; File modification time is not updated by this request. USBDEVFS_IOCTL Passes a request from userspace through to a kernel driver that has - an ioctl entry in the *struct usb_driver* it registered. - - :: - - struct usbdevfs_ioctl { - int ifno; - int ioctl_code; - void *data; - }; - - /* user mode call looks like this. - * 'request' becomes the driver->ioctl() 'code' parameter. - * the size of 'param' is encoded in 'request', and that data - * is copied to or from the driver->ioctl() 'buf' parameter. - */ - static int - usbdev_ioctl (int fd, int ifno, unsigned request, void *param) - { - struct usbdevfs_ioctl wrapper; - - wrapper.ifno = ifno; - wrapper.ioctl_code = request; - wrapper.data = param; - - return ioctl (fd, USBDEVFS_IOCTL, &wrapper); - } + an ioctl entry in the *struct usb_driver* it registered:: + + struct usbdevfs_ioctl { + int ifno; + int ioctl_code; + void *data; + }; + + /* user mode call looks like this. + * 'request' becomes the driver->ioctl() 'code' parameter. + * the size of 'param' is encoded in 'request', and that data + * is copied to or from the driver->ioctl() 'buf' parameter. + */ + static int + usbdev_ioctl (int fd, int ifno, unsigned request, void *param) + { + struct usbdevfs_ioctl wrapper; + + wrapper.ifno = ifno; + wrapper.ioctl_code = request; + wrapper.data = param; + + return ioctl (fd, USBDEVFS_IOCTL, &wrapper); + } File modification time is not updated by this request. @@ -534,11 +470,11 @@ USBDEVFS_RELEASEINTERFACE the number of the interface (bInterfaceNumber from descriptor); File modification time is not updated by this request. - **Warning** + .. warning:: - *No security check is made to ensure that the task which made - the claim is the one which is releasing it. This means that user - mode driver may interfere other ones.* + *No security check is made to ensure that the task which made + the claim is the one which is releasing it. This means that user + mode driver may interfere other ones.* USBDEVFS_RESETEP Resets the data toggle value for an endpoint (bulk or interrupt) to @@ -546,13 +482,13 @@ USBDEVFS_RESETEP as identified in the endpoint descriptor), with USB_DIR_IN added if the device's endpoint sends data to the host. - **Warning** + .. Warning:: - *Avoid using this request. It should probably be removed.* Using - it typically means the device and driver will lose toggle - synchronization. If you really lost synchronization, you likely - need to completely handshake with the device, using a request - like CLEAR_HALT or SET_INTERFACE. + *Avoid using this request. It should probably be removed.* Using + it typically means the device and driver will lose toggle + synchronization. If you really lost synchronization, you likely + need to completely handshake with the device, using a request + like CLEAR_HALT or SET_INTERFACE. USBDEVFS_DROP_PRIVILEGES This is used to relinquish the ability to do certain operations @@ -574,21 +510,19 @@ a time. USBDEVFS_BULK Issues a bulk read or write request to the device. The ioctl - parameter is a pointer to this structure: - - :: + parameter is a pointer to this structure:: - struct usbdevfs_bulktransfer { - unsigned int ep; - unsigned int len; - unsigned int timeout; /* in milliseconds */ - void *data; - }; + struct usbdevfs_bulktransfer { + unsigned int ep; + unsigned int len; + unsigned int timeout; /* in milliseconds */ + void *data; + }; - The "ep" value identifies a bulk endpoint number (1 to 15, as + The ``ep`` value identifies a bulk endpoint number (1 to 15, as identified in an endpoint descriptor), masked with USB_DIR_IN when referring to an endpoint which sends data to the host from the - device. The length of the data buffer is identified by "len"; Recent + device. The length of the data buffer is identified by ``len``; Recent kernels support requests up to about 128KBytes. *FIXME say how read length is returned, and how short reads are handled.*. @@ -600,31 +534,29 @@ USBDEVFS_CLEAR_HALT which sends data to the host from the device. Use this on bulk or interrupt endpoints which have stalled, - returning *-EPIPE* status to a data transfer request. Do not issue + returning ``-EPIPE`` status to a data transfer request. Do not issue the control request directly, since that could invalidate the host's record of the data toggle. USBDEVFS_CONTROL Issues a control request to the device. The ioctl parameter points - to a structure like this: - - :: - - struct usbdevfs_ctrltransfer { - __u8 bRequestType; - __u8 bRequest; - __u16 wValue; - __u16 wIndex; - __u16 wLength; - __u32 timeout; /* in milliseconds */ - void *data; - }; + to a structure like this:: + + struct usbdevfs_ctrltransfer { + __u8 bRequestType; + __u8 bRequest; + __u16 wValue; + __u16 wIndex; + __u16 wLength; + __u32 timeout; /* in milliseconds */ + void *data; + }; The first eight bytes of this structure are the contents of the SETUP packet to be sent to the device; see the USB 2.0 specification for details. The bRequestType value is composed by combining a - USB_TYPE_\* value, a USB_DIR_\* value, and a USB_RECIP_\* - value (from *<linux/usb.h>*). If wLength is nonzero, it describes + ``USB_TYPE_*`` value, a ``USB_DIR_*`` value, and a ``USB_RECIP_*`` + value (from ``linux/usb.h``). If wLength is nonzero, it describes the length of the data buffer, which is either written to the device (USB_DIR_OUT) or read from the device (USB_DIR_IN). @@ -638,22 +570,20 @@ USBDEVFS_RESET the reset, this rebinds all device interfaces. File modification time is not updated by this request. - **Warning** +.. warning:: - *Avoid using this call* until some usbcore bugs get fixed, since - it does not fully synchronize device, interface, and driver (not - just usbfs) state. + *Avoid using this call* until some usbcore bugs get fixed, since + it does not fully synchronize device, interface, and driver (not + just usbfs) state. USBDEVFS_SETINTERFACE Sets the alternate setting for an interface. The ioctl parameter is - a pointer to a structure like this: + a pointer to a structure like this:: - :: - - struct usbdevfs_setinterface { - unsigned int interface; - unsigned int altsetting; - }; + struct usbdevfs_setinterface { + unsigned int interface; + unsigned int altsetting; + }; File modification time is not updated by this request. @@ -669,11 +599,11 @@ USBDEVFS_SETCONFIGURATION configuration (bConfigurationValue from descriptor). File modification time is not updated by this request. - **Warning** +.. warning:: - *Avoid using this call* until some usbcore bugs get fixed, since - it does not fully synchronize device, interface, and driver (not - just usbfs) state. + *Avoid using this call* until some usbcore bugs get fixed, since + it does not fully synchronize device, interface, and driver (not + just usbfs) state. Asynchronous I/O Support ~~~~~~~~~~~~~~~~~~~~~~~~ @@ -688,7 +618,7 @@ the blocking is separate. These requests are packaged into a structure that resembles the URB used by kernel device drivers. (No POSIX Async I/O support here, sorry.) It -identifies the endpoint type (USBDEVFS_URB_TYPE_\*), endpoint +identifies the endpoint type (``USBDEVFS_URB_TYPE_*``), endpoint (number, masked with USB_DIR_IN as appropriate), buffer and length, and a user "context" value serving to uniquely identify each request. (It's usually a pointer to per-request data.) Flags can modify requests @@ -702,30 +632,28 @@ When usbfs returns these urbs, the status value is updated, and the buffer may have been modified. Except for isochronous transfers, the actual_length is updated to say how many bytes were transferred; if the USBDEVFS_URB_DISABLE_SPD flag is set ("short packets are not OK"), if -fewer bytes were read than were requested then you get an error report. - -:: +fewer bytes were read than were requested then you get an error report:: struct usbdevfs_iso_packet_desc { - unsigned int length; - unsigned int actual_length; - unsigned int status; + unsigned int length; + unsigned int actual_length; + unsigned int status; }; struct usbdevfs_urb { - unsigned char type; - unsigned char endpoint; - int status; - unsigned int flags; - void *buffer; - int buffer_length; - int actual_length; - int start_frame; - int number_of_packets; - int error_count; - unsigned int signr; - void *usercontext; - struct usbdevfs_iso_packet_desc iso_frame_desc[]; + unsigned char type; + unsigned char endpoint; + int status; + unsigned int flags; + void *buffer; + int buffer_length; + int actual_length; + int start_frame; + int number_of_packets; + int error_count; + unsigned int signr; + void *usercontext; + struct usbdevfs_iso_packet_desc iso_frame_desc[]; }; For these asynchronous requests, the file modification time reflects @@ -746,3 +674,374 @@ USBDEVFS_REAPURBNDELAY USBDEVFS_SUBMITURB *TBS* + +The USB devices +=============== + +The USB devices are now exported via debugfs: + +- ``/sys/kernel/debug/usb/devices`` ... a text file showing each of the USB + devices on known to the kernel, and their configuration descriptors. + You can also poll() this to learn about new devices. + +/sys/kernel/debug/usb/devices +----------------------------- + +This file is handy for status viewing tools in user mode, which can scan +the text format and ignore most of it. More detailed device status +(including class and vendor status) is available from device-specific +files. For information about the current format of this file, see the +``Documentation/usb/proc_usb_info.txt`` file in your Linux kernel +sources. + +This file, in combination with the poll() system call, can also be used +to detect when devices are added or removed:: + + int fd; + struct pollfd pfd; + + fd = open("/sys/kernel/debug/usb/devices", O_RDONLY); + pfd = { fd, POLLIN, 0 }; + for (;;) { + /* The first time through, this call will return immediately. */ + poll(&pfd, 1, -1); + + /* To see what's changed, compare the file's previous and current + contents or scan the filesystem. (Scanning is more precise.) */ + } + +Note that this behavior is intended to be used for informational and +debug purposes. It would be more appropriate to use programs such as +udev or HAL to initialize a device or start a user-mode helper program, +for instance. + +In this file, each device's output has multiple lines of ASCII output. + +I made it ASCII instead of binary on purpose, so that someone +can obtain some useful data from it without the use of an +auxiliary program. However, with an auxiliary program, the numbers +in the first 4 columns of each ``T:`` line (topology info: +Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram. + +Each line is tagged with a one-character ID for that line:: + + T = Topology (etc.) + B = Bandwidth (applies only to USB host controllers, which are + virtualized as root hubs) + D = Device descriptor info. + P = Product ID info. (from Device descriptor, but they won't fit + together on one line) + S = String descriptors. + C = Configuration descriptor info. (* = active configuration) + I = Interface descriptor info. + E = Endpoint descriptor info. + +/sys/kernel/debug/usb/devices output format +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Legend:: + d = decimal number (may have leading spaces or 0's) + x = hexadecimal number (may have leading spaces or 0's) + s = string + + + +Topology info +^^^^^^^^^^^^^ + +:: + + T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd + | | | | | | | | |__MaxChildren + | | | | | | | |__Device Speed in Mbps + | | | | | | |__DeviceNumber + | | | | | |__Count of devices at this level + | | | | |__Connector/Port on Parent for this device + | | | |__Parent DeviceNumber + | | |__Level in topology for this bus + | |__Bus number + |__Topology info tag + +Speed may be: + + ======= ====================================================== + 1.5 Mbit/s for low speed USB + 12 Mbit/s for full speed USB + 480 Mbit/s for high speed USB (added for USB 2.0); + also used for Wireless USB, which has no fixed speed + 5000 Mbit/s for SuperSpeed USB (added for USB 3.0) + ======= ====================================================== + +For reasons lost in the mists of time, the Port number is always +too low by 1. For example, a device plugged into port 4 will +show up with ``Port=03``. + +Bandwidth info +^^^^^^^^^^^^^^ + +:: + + B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd + | | | |__Number of isochronous requests + | | |__Number of interrupt requests + | |__Total Bandwidth allocated to this bus + |__Bandwidth info tag + +Bandwidth allocation is an approximation of how much of one frame +(millisecond) is in use. It reflects only periodic transfers, which +are the only transfers that reserve bandwidth. Control and bulk +transfers use all other bandwidth, including reserved bandwidth that +is not used for transfers (such as for short packets). + +The percentage is how much of the "reserved" bandwidth is scheduled by +those transfers. For a low or full speed bus (loosely, "USB 1.1"), +90% of the bus bandwidth is reserved. For a high speed bus (loosely, +"USB 2.0") 80% is reserved. + + +Device descriptor info & Product ID info +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd + P: Vendor=xxxx ProdID=xxxx Rev=xx.xx + +where:: + + D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd + | | | | | | |__NumberConfigurations + | | | | | |__MaxPacketSize of Default Endpoint + | | | | |__DeviceProtocol + | | | |__DeviceSubClass + | | |__DeviceClass + | |__Device USB version + |__Device info tag #1 + +where:: + + P: Vendor=xxxx ProdID=xxxx Rev=xx.xx + | | | |__Product revision number + | | |__Product ID code + | |__Vendor ID code + |__Device info tag #2 + + +String descriptor info +^^^^^^^^^^^^^^^^^^^^^^ +:: + + S: Manufacturer=ssss + | |__Manufacturer of this device as read from the device. + | For USB host controller drivers (virtual root hubs) this may + | be omitted, or (for newer drivers) will identify the kernel + | version and the driver which provides this hub emulation. + |__String info tag + + S: Product=ssss + | |__Product description of this device as read from the device. + | For older USB host controller drivers (virtual root hubs) this + | indicates the driver; for newer ones, it's a product (and vendor) + | description that often comes from the kernel's PCI ID database. + |__String info tag + + S: SerialNumber=ssss + | |__Serial Number of this device as read from the device. + | For USB host controller drivers (virtual root hubs) this is + | some unique ID, normally a bus ID (address or slot name) that + | can't be shared with any other device. + |__String info tag + + + +Configuration descriptor info +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA + | | | | | |__MaxPower in mA + | | | | |__Attributes + | | | |__ConfiguratioNumber + | | |__NumberOfInterfaces + | |__ "*" indicates the active configuration (others are " ") + |__Config info tag + +USB devices may have multiple configurations, each of which act +rather differently. For example, a bus-powered configuration +might be much less capable than one that is self-powered. Only +one device configuration can be active at a time; most devices +have only one configuration. + +Each configuration consists of one or more interfaces. Each +interface serves a distinct "function", which is typically bound +to a different USB device driver. One common example is a USB +speaker with an audio interface for playback, and a HID interface +for use with software volume control. + +Interface descriptor info (can be multiple per Config) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss + | | | | | | | | |__Driver name + | | | | | | | | or "(none)" + | | | | | | | |__InterfaceProtocol + | | | | | | |__InterfaceSubClass + | | | | | |__InterfaceClass + | | | | |__NumberOfEndpoints + | | | |__AlternateSettingNumber + | | |__InterfaceNumber + | |__ "*" indicates the active altsetting (others are " ") + |__Interface info tag + +A given interface may have one or more "alternate" settings. +For example, default settings may not use more than a small +amount of periodic bandwidth. To use significant fractions +of bus bandwidth, drivers must select a non-default altsetting. + +Only one setting for an interface may be active at a time, and +only one driver may bind to an interface at a time. Most devices +have only one alternate setting per interface. + + +Endpoint descriptor info (can be multiple per Interface) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:: + + E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss + | | | | |__Interval (max) between transfers + | | | |__EndpointMaxPacketSize + | | |__Attributes(EndpointType) + | |__EndpointAddress(I=In,O=Out) + |__Endpoint info tag + +The interval is nonzero for all periodic (interrupt or isochronous) +endpoints. For high speed endpoints the transfer interval may be +measured in microseconds rather than milliseconds. + +For high speed periodic endpoints, the ``EndpointMaxPacketSize`` reflects +the per-microframe data transfer size. For "high bandwidth" +endpoints, that can reflect two or three packets (for up to +3KBytes every 125 usec) per endpoint. + +With the Linux-USB stack, periodic bandwidth reservations use the +transfer intervals and sizes provided by URBs, which can be less +than those found in endpoint descriptor. + +Usage examples +~~~~~~~~~~~~~~ + +If a user or script is interested only in Topology info, for +example, use something like ``grep ^T: /sys/kernel/debug/usb/devices`` +for only the Topology lines. A command like +``grep -i ^[tdp]: /sys/kernel/debug/usb/devices`` can be used to list +only the lines that begin with the characters in square brackets, +where the valid characters are TDPCIE. With a slightly more able +script, it can display any selected lines (for example, only T, D, +and P lines) and change their output format. (The ``procusb`` +Perl script is the beginning of this idea. It will list only +selected lines [selected from TBDPSCIE] or "All" lines from +``/sys/kernel/debug/usb/devices``.) + +The Topology lines can be used to generate a graphic/pictorial +of the USB devices on a system's root hub. (See more below +on how to do this.) + +The Interface lines can be used to determine what driver is +being used for each device, and which altsetting it activated. + +The Configuration lines could be used to list maximum power +(in milliamps) that a system's USB devices are using. +For example, ``grep ^C: /sys/kernel/debug/usb/devices``. + + +Here's an example, from a system which has a UHCI root hub, +an external hub connected to the root hub, and a mouse and +a serial converter connected to the external hub. + +:: + + T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 + B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0 + D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0000 ProdID=0000 Rev= 0.00 + S: Product=USB UHCI Root Hub + S: SerialNumber=dce0 + C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms + + T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 + D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0451 ProdID=1446 Rev= 1.00 + C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms + + T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 + D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=04b4 ProdID=0001 Rev= 0.00 + C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse + E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms + + T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 + D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 + P: Vendor=0565 ProdID=0001 Rev= 1.08 + S: Manufacturer=Peracom Networks, Inc. + S: Product=Peracom USB to Serial Converter + C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA + I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial + E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms + E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms + E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms + + +Selecting only the ``T:`` and ``I:`` lines from this (for example, by using +``procusb ti``), we have + +:: + + T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 + T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 + I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub + T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 + I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse + T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 + I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial + + +Physically this looks like (or could be converted to):: + + +------------------+ + | PC/root_hub (12)| Dev# = 1 + +------------------+ (nn) is Mbps. + Level 0 | CN.0 | CN.1 | [CN = connector/port #] + +------------------+ + / + / + +-----------------------+ + Level 1 | Dev#2: 4-port hub (12)| + +-----------------------+ + |CN.0 |CN.1 |CN.2 |CN.3 | + +-----------------------+ + \ \____________________ + \_____ \ + \ \ + +--------------------+ +--------------------+ + Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)| + +--------------------+ +--------------------+ + + + +Or, in a more tree-like structure (ports [Connectors] without +connections could be omitted):: + + PC: Dev# 1, root hub, 2 ports, 12 Mbps + |_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps + |_ CN.0: Dev #3, mouse, 1.5 Mbps + |_ CN.1: + |_ CN.2: Dev #4, serial, 12 Mbps + |_ CN.3: + |_ CN.1: diff --git a/Documentation/driver-api/usb/writing_musb_glue_layer.rst b/Documentation/driver-api/usb/writing_musb_glue_layer.rst new file mode 100644 index 000000000000..e90e8fa95600 --- /dev/null +++ b/Documentation/driver-api/usb/writing_musb_glue_layer.rst @@ -0,0 +1,723 @@ +========================= +Writing a MUSB Glue Layer +========================= + +:Author: Apelete Seketeli + +Introduction +============ + +The Linux MUSB subsystem is part of the larger Linux USB subsystem. It +provides support for embedded USB Device Controllers (UDC) that do not +use Universal Host Controller Interface (UHCI) or Open Host Controller +Interface (OHCI). + +Instead, these embedded UDC rely on the USB On-the-Go (OTG) +specification which they implement at least partially. The silicon +reference design used in most cases is the Multipoint USB Highspeed +Dual-Role Controller (MUSB HDRC) found in the Mentor Graphics Inventra™ +design. + +As a self-taught exercise I have written an MUSB glue layer for the +Ingenic JZ4740 SoC, modelled after the many MUSB glue layers in the +kernel source tree. This layer can be found at +``drivers/usb/musb/jz4740.c``. In this documentation I will walk through the +basics of the ``jz4740.c`` glue layer, explaining the different pieces and +what needs to be done in order to write your own device glue layer. + +.. _musb-basics: + +Linux MUSB Basics +================= + +To get started on the topic, please read USB On-the-Go Basics (see +Resources) which provides an introduction of USB OTG operation at the +hardware level. A couple of wiki pages by Texas Instruments and Analog +Devices also provide an overview of the Linux kernel MUSB configuration, +albeit focused on some specific devices provided by these companies. +Finally, getting acquainted with the USB specification at USB home page +may come in handy, with practical instance provided through the Writing +USB Device Drivers documentation (again, see Resources). + +Linux USB stack is a layered architecture in which the MUSB controller +hardware sits at the lowest. The MUSB controller driver abstract the +MUSB controller hardware to the Linux USB stack:: + + ------------------------ + | | <------- drivers/usb/gadget + | Linux USB Core Stack | <------- drivers/usb/host + | | <------- drivers/usb/core + ------------------------ + ⬍ + -------------------------- + | | <------ drivers/usb/musb/musb_gadget.c + | MUSB Controller driver | <------ drivers/usb/musb/musb_host.c + | | <------ drivers/usb/musb/musb_core.c + -------------------------- + ⬍ + --------------------------------- + | MUSB Platform Specific Driver | + | | <-- drivers/usb/musb/jz4740.c + | aka "Glue Layer" | + --------------------------------- + ⬍ + --------------------------------- + | MUSB Controller Hardware | + --------------------------------- + +As outlined above, the glue layer is actually the platform specific code +sitting in between the controller driver and the controller hardware. + +Just like a Linux USB driver needs to register itself with the Linux USB +subsystem, the MUSB glue layer needs first to register itself with the +MUSB controller driver. This will allow the controller driver to know +about which device the glue layer supports and which functions to call +when a supported device is detected or released; remember we are talking +about an embedded controller chip here, so no insertion or removal at +run-time. + +All of this information is passed to the MUSB controller driver through +a :c:type:`platform_driver` structure defined in the glue layer as:: + + static struct platform_driver jz4740_driver = { + .probe = jz4740_probe, + .remove = jz4740_remove, + .driver = { + .name = "musb-jz4740", + }, + }; + +The probe and remove function pointers are called when a matching device +is detected and, respectively, released. The name string describes the +device supported by this glue layer. In the current case it matches a +platform_device structure declared in ``arch/mips/jz4740/platform.c``. Note +that we are not using device tree bindings here. + +In order to register itself to the controller driver, the glue layer +goes through a few steps, basically allocating the controller hardware +resources and initialising a couple of circuits. To do so, it needs to +keep track of the information used throughout these steps. This is done +by defining a private ``jz4740_glue`` structure:: + + struct jz4740_glue { + struct device *dev; + struct platform_device *musb; + struct clk *clk; + }; + + +The dev and musb members are both device structure variables. The first +one holds generic information about the device, since it's the basic +device structure, and the latter holds information more closely related +to the subsystem the device is registered to. The clk variable keeps +information related to the device clock operation. + +Let's go through the steps of the probe function that leads the glue +layer to register itself to the controller driver. + +.. note:: + + For the sake of readability each function will be split in logical + parts, each part being shown as if it was independent from the others. + +.. code-block:: c + :emphasize-lines: 8,12,18 + + static int jz4740_probe(struct platform_device *pdev) + { + struct platform_device *musb; + struct jz4740_glue *glue; + struct clk *clk; + int ret; + + glue = devm_kzalloc(&pdev->dev, sizeof(*glue), GFP_KERNEL); + if (!glue) + return -ENOMEM; + + musb = platform_device_alloc("musb-hdrc", PLATFORM_DEVID_AUTO); + if (!musb) { + dev_err(&pdev->dev, "failed to allocate musb device\n"); + return -ENOMEM; + } + + clk = devm_clk_get(&pdev->dev, "udc"); + if (IS_ERR(clk)) { + dev_err(&pdev->dev, "failed to get clock\n"); + ret = PTR_ERR(clk); + goto err_platform_device_put; + } + + ret = clk_prepare_enable(clk); + if (ret) { + dev_err(&pdev->dev, "failed to enable clock\n"); + goto err_platform_device_put; + } + + musb->dev.parent = &pdev->dev; + + glue->dev = &pdev->dev; + glue->musb = musb; + glue->clk = clk; + + return 0; + + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +The first few lines of the probe function allocate and assign the glue, +musb and clk variables. The ``GFP_KERNEL`` flag (line 8) allows the +allocation process to sleep and wait for memory, thus being usable in a +locking situation. The ``PLATFORM_DEVID_AUTO`` flag (line 12) allows +automatic allocation and management of device IDs in order to avoid +device namespace collisions with explicit IDs. With :c:func:`devm_clk_get` +(line 18) the glue layer allocates the clock -- the ``devm_`` prefix +indicates that :c:func:`clk_get` is managed: it automatically frees the +allocated clock resource data when the device is released -- and enable +it. + + + +Then comes the registration steps: + +.. code-block:: c + :emphasize-lines: 3,5,7,9,16 + + static int jz4740_probe(struct platform_device *pdev) + { + struct musb_hdrc_platform_data *pdata = &jz4740_musb_platform_data; + + pdata->platform_ops = &jz4740_musb_ops; + + platform_set_drvdata(pdev, glue); + + ret = platform_device_add_resources(musb, pdev->resource, + pdev->num_resources); + if (ret) { + dev_err(&pdev->dev, "failed to add resources\n"); + goto err_clk_disable; + } + + ret = platform_device_add_data(musb, pdata, sizeof(*pdata)); + if (ret) { + dev_err(&pdev->dev, "failed to add platform_data\n"); + goto err_clk_disable; + } + + return 0; + + err_clk_disable: + clk_disable_unprepare(clk); + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +The first step is to pass the device data privately held by the glue +layer on to the controller driver through :c:func:`platform_set_drvdata` +(line 7). Next is passing on the device resources information, also privately +held at that point, through :c:func:`platform_device_add_resources` (line 9). + +Finally comes passing on the platform specific data to the controller +driver (line 16). Platform data will be discussed in +:ref:`musb-dev-platform-data`, but here we are looking at the +``platform_ops`` function pointer (line 5) in ``musb_hdrc_platform_data`` +structure (line 3). This function pointer allows the MUSB controller +driver to know which function to call for device operation:: + + static const struct musb_platform_ops jz4740_musb_ops = { + .init = jz4740_musb_init, + .exit = jz4740_musb_exit, + }; + +Here we have the minimal case where only init and exit functions are +called by the controller driver when needed. Fact is the JZ4740 MUSB +controller is a basic controller, lacking some features found in other +controllers, otherwise we may also have pointers to a few other +functions like a power management function or a function to switch +between OTG and non-OTG modes, for instance. + +At that point of the registration process, the controller driver +actually calls the init function: + + .. code-block:: c + :emphasize-lines: 12,14 + + static int jz4740_musb_init(struct musb *musb) + { + musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); + if (!musb->xceiv) { + pr_err("HS UDC: no transceiver configured\n"); + return -ENODEV; + } + + /* Silicon does not implement ConfigData register. + * Set dyn_fifo to avoid reading EP config from hardware. + */ + musb->dyn_fifo = true; + + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +The goal of ``jz4740_musb_init()`` is to get hold of the transceiver +driver data of the MUSB controller hardware and pass it on to the MUSB +controller driver, as usual. The transceiver is the circuitry inside the +controller hardware responsible for sending/receiving the USB data. +Since it is an implementation of the physical layer of the OSI model, +the transceiver is also referred to as PHY. + +Getting hold of the ``MUSB PHY`` driver data is done with ``usb_get_phy()`` +which returns a pointer to the structure containing the driver instance +data. The next couple of instructions (line 12 and 14) are used as a +quirk and to setup IRQ handling respectively. Quirks and IRQ handling +will be discussed later in :ref:`musb-dev-quirks` and +:ref:`musb-handling-irqs`\ :: + + static int jz4740_musb_exit(struct musb *musb) + { + usb_put_phy(musb->xceiv); + + return 0; + } + +Acting as the counterpart of init, the exit function releases the MUSB +PHY driver when the controller hardware itself is about to be released. + +Again, note that init and exit are fairly simple in this case due to the +basic set of features of the JZ4740 controller hardware. When writing an +musb glue layer for a more complex controller hardware, you might need +to take care of more processing in those two functions. + +Returning from the init function, the MUSB controller driver jumps back +into the probe function:: + + static int jz4740_probe(struct platform_device *pdev) + { + ret = platform_device_add(musb); + if (ret) { + dev_err(&pdev->dev, "failed to register musb device\n"); + goto err_clk_disable; + } + + return 0; + + err_clk_disable: + clk_disable_unprepare(clk); + err_platform_device_put: + platform_device_put(musb); + return ret; + } + +This is the last part of the device registration process where the glue +layer adds the controller hardware device to Linux kernel device +hierarchy: at this stage, all known information about the device is +passed on to the Linux USB core stack: + + .. code-block:: c + :emphasize-lines: 5,6 + + static int jz4740_remove(struct platform_device *pdev) + { + struct jz4740_glue *glue = platform_get_drvdata(pdev); + + platform_device_unregister(glue->musb); + clk_disable_unprepare(glue->clk); + + return 0; + } + +Acting as the counterpart of probe, the remove function unregister the +MUSB controller hardware (line 5) and disable the clock (line 6), +allowing it to be gated. + +.. _musb-handling-irqs: + +Handling IRQs +============= + +Additionally to the MUSB controller hardware basic setup and +registration, the glue layer is also responsible for handling the IRQs: + + .. code-block:: c + :emphasize-lines: 7,9-11,14,24 + + static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) + { + unsigned long flags; + irqreturn_t retval = IRQ_NONE; + struct musb *musb = __hci; + + spin_lock_irqsave(&musb->lock, flags); + + musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); + musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); + musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); + + /* + * The controller is gadget only, the state of the host mode IRQ bits is + * undefined. Mask them to make sure that the musb driver core will + * never see them set + */ + musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | + MUSB_INTR_RESET | MUSB_INTR_SOF; + + if (musb->int_usb || musb->int_tx || musb->int_rx) + retval = musb_interrupt(musb); + + spin_unlock_irqrestore(&musb->lock, flags); + + return retval; + } + +Here the glue layer mostly has to read the relevant hardware registers +and pass their values on to the controller driver which will handle the +actual event that triggered the IRQ. + +The interrupt handler critical section is protected by the +:c:func:`spin_lock_irqsave` and counterpart :c:func:`spin_unlock_irqrestore` +functions (line 7 and 24 respectively), which prevent the interrupt +handler code to be run by two different threads at the same time. + +Then the relevant interrupt registers are read (line 9 to 11): + +- ``MUSB_INTRUSB``: indicates which USB interrupts are currently active, + +- ``MUSB_INTRTX``: indicates which of the interrupts for TX endpoints are + currently active, + +- ``MUSB_INTRRX``: indicates which of the interrupts for TX endpoints are + currently active. + +Note that :c:func:`musb_readb` is used to read 8-bit registers at most, while +:c:func:`musb_readw` allows us to read at most 16-bit registers. There are +other functions that can be used depending on the size of your device +registers. See ``musb_io.h`` for more information. + +Instruction on line 18 is another quirk specific to the JZ4740 USB +device controller, which will be discussed later in :ref:`musb-dev-quirks`. + +The glue layer still needs to register the IRQ handler though. Remember +the instruction on line 14 of the init function:: + + static int jz4740_musb_init(struct musb *musb) + { + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +This instruction sets a pointer to the glue layer IRQ handler function, +in order for the controller hardware to call the handler back when an +IRQ comes from the controller hardware. The interrupt handler is now +implemented and registered. + +.. _musb-dev-platform-data: + +Device Platform Data +==================== + +In order to write an MUSB glue layer, you need to have some data +describing the hardware capabilities of your controller hardware, which +is called the platform data. + +Platform data is specific to your hardware, though it may cover a broad +range of devices, and is generally found somewhere in the ``arch/`` +directory, depending on your device architecture. + +For instance, platform data for the JZ4740 SoC is found in +``arch/mips/jz4740/platform.c``. In the ``platform.c`` file each device of the +JZ4740 SoC is described through a set of structures. + +Here is the part of ``arch/mips/jz4740/platform.c`` that covers the USB +Device Controller (UDC): + + .. code-block:: c + :emphasize-lines: 2,7,14-17,21,22,25,26,28,29 + + /* USB Device Controller */ + struct platform_device jz4740_udc_xceiv_device = { + .name = "usb_phy_gen_xceiv", + .id = 0, + }; + + static struct resource jz4740_udc_resources[] = { + [0] = { + .start = JZ4740_UDC_BASE_ADDR, + .end = JZ4740_UDC_BASE_ADDR + 0x10000 - 1, + .flags = IORESOURCE_MEM, + }, + [1] = { + .start = JZ4740_IRQ_UDC, + .end = JZ4740_IRQ_UDC, + .flags = IORESOURCE_IRQ, + .name = "mc", + }, + }; + + struct platform_device jz4740_udc_device = { + .name = "musb-jz4740", + .id = -1, + .dev = { + .dma_mask = &jz4740_udc_device.dev.coherent_dma_mask, + .coherent_dma_mask = DMA_BIT_MASK(32), + }, + .num_resources = ARRAY_SIZE(jz4740_udc_resources), + .resource = jz4740_udc_resources, + }; + +The ``jz4740_udc_xceiv_device`` platform device structure (line 2) +describes the UDC transceiver with a name and id number. + +At the time of this writing, note that ``usb_phy_gen_xceiv`` is the +specific name to be used for all transceivers that are either built-in +with reference USB IP or autonomous and doesn't require any PHY +programming. You will need to set ``CONFIG_NOP_USB_XCEIV=y`` in the +kernel configuration to make use of the corresponding transceiver +driver. The id field could be set to -1 (equivalent to +``PLATFORM_DEVID_NONE``), -2 (equivalent to ``PLATFORM_DEVID_AUTO``) or +start with 0 for the first device of this kind if we want a specific id +number. + +The ``jz4740_udc_resources`` resource structure (line 7) defines the UDC +registers base addresses. + +The first array (line 9 to 11) defines the UDC registers base memory +addresses: start points to the first register memory address, end points +to the last register memory address and the flags member defines the +type of resource we are dealing with. So ``IORESOURCE_MEM`` is used to +define the registers memory addresses. The second array (line 14 to 17) +defines the UDC IRQ registers addresses. Since there is only one IRQ +register available for the JZ4740 UDC, start and end point at the same +address. The ``IORESOURCE_IRQ`` flag tells that we are dealing with IRQ +resources, and the name ``mc`` is in fact hard-coded in the MUSB core in +order for the controller driver to retrieve this IRQ resource by +querying it by its name. + +Finally, the ``jz4740_udc_device`` platform device structure (line 21) +describes the UDC itself. + +The ``musb-jz4740`` name (line 22) defines the MUSB driver that is used +for this device; remember this is in fact the name that we used in the +``jz4740_driver`` platform driver structure in :ref:`musb-basics`. +The id field (line 23) is set to -1 (equivalent to ``PLATFORM_DEVID_NONE``) +since we do not need an id for the device: the MUSB controller driver was +already set to allocate an automatic id in :ref:`musb-basics`. In the dev field +we care for DMA related information here. The ``dma_mask`` field (line 25) +defines the width of the DMA mask that is going to be used, and +``coherent_dma_mask`` (line 26) has the same purpose but for the +``alloc_coherent`` DMA mappings: in both cases we are using a 32 bits mask. +Then the resource field (line 29) is simply a pointer to the resource +structure defined before, while the ``num_resources`` field (line 28) keeps +track of the number of arrays defined in the resource structure (in this +case there were two resource arrays defined before). + +With this quick overview of the UDC platform data at the ``arch/`` level now +done, let's get back to the MUSB glue layer specific platform data in +``drivers/usb/musb/jz4740.c``: + + .. code-block:: c + :emphasize-lines: 3,5,7-9,11 + + static struct musb_hdrc_config jz4740_musb_config = { + /* Silicon does not implement USB OTG. */ + .multipoint = 0, + /* Max EPs scanned, driver will decide which EP can be used. */ + .num_eps = 4, + /* RAMbits needed to configure EPs from table */ + .ram_bits = 9, + .fifo_cfg = jz4740_musb_fifo_cfg, + .fifo_cfg_size = ARRAY_SIZE(jz4740_musb_fifo_cfg), + }; + + static struct musb_hdrc_platform_data jz4740_musb_platform_data = { + .mode = MUSB_PERIPHERAL, + .config = &jz4740_musb_config, + }; + +First the glue layer configures some aspects of the controller driver +operation related to the controller hardware specifics. This is done +through the ``jz4740_musb_config`` :c:type:`musb_hdrc_config` structure. + +Defining the OTG capability of the controller hardware, the multipoint +member (line 3) is set to 0 (equivalent to false) since the JZ4740 UDC +is not OTG compatible. Then ``num_eps`` (line 5) defines the number of USB +endpoints of the controller hardware, including endpoint 0: here we have +3 endpoints + endpoint 0. Next is ``ram_bits`` (line 7) which is the width +of the RAM address bus for the MUSB controller hardware. This +information is needed when the controller driver cannot automatically +configure endpoints by reading the relevant controller hardware +registers. This issue will be discussed when we get to device quirks in +:ref:`musb-dev-quirks`. Last two fields (line 8 and 9) are also +about device quirks: ``fifo_cfg`` points to the USB endpoints configuration +table and ``fifo_cfg_size`` keeps track of the size of the number of +entries in that configuration table. More on that later in +:ref:`musb-dev-quirks`. + +Then this configuration is embedded inside ``jz4740_musb_platform_data`` +:c:type:`musb_hdrc_platform_data` structure (line 11): config is a pointer to +the configuration structure itself, and mode tells the controller driver +if the controller hardware may be used as ``MUSB_HOST`` only, +``MUSB_PERIPHERAL`` only or ``MUSB_OTG`` which is a dual mode. + +Remember that ``jz4740_musb_platform_data`` is then used to convey +platform data information as we have seen in the probe function in +:ref:`musb-basics`. + +.. _musb-dev-quirks: + +Device Quirks +============= + +Completing the platform data specific to your device, you may also need +to write some code in the glue layer to work around some device specific +limitations. These quirks may be due to some hardware bugs, or simply be +the result of an incomplete implementation of the USB On-the-Go +specification. + +The JZ4740 UDC exhibits such quirks, some of which we will discuss here +for the sake of insight even though these might not be found in the +controller hardware you are working on. + +Let's get back to the init function first: + + .. code-block:: c + :emphasize-lines: 12 + + static int jz4740_musb_init(struct musb *musb) + { + musb->xceiv = usb_get_phy(USB_PHY_TYPE_USB2); + if (!musb->xceiv) { + pr_err("HS UDC: no transceiver configured\n"); + return -ENODEV; + } + + /* Silicon does not implement ConfigData register. + * Set dyn_fifo to avoid reading EP config from hardware. + */ + musb->dyn_fifo = true; + + musb->isr = jz4740_musb_interrupt; + + return 0; + } + +Instruction on line 12 helps the MUSB controller driver to work around +the fact that the controller hardware is missing registers that are used +for USB endpoints configuration. + +Without these registers, the controller driver is unable to read the +endpoints configuration from the hardware, so we use line 12 instruction +to bypass reading the configuration from silicon, and rely on a +hard-coded table that describes the endpoints configuration instead:: + + static struct musb_fifo_cfg jz4740_musb_fifo_cfg[] = { + { .hw_ep_num = 1, .style = FIFO_TX, .maxpacket = 512, }, + { .hw_ep_num = 1, .style = FIFO_RX, .maxpacket = 512, }, + { .hw_ep_num = 2, .style = FIFO_TX, .maxpacket = 64, }, + }; + +Looking at the configuration table above, we see that each endpoints is +described by three fields: ``hw_ep_num`` is the endpoint number, style is +its direction (either ``FIFO_TX`` for the controller driver to send packets +in the controller hardware, or ``FIFO_RX`` to receive packets from +hardware), and maxpacket defines the maximum size of each data packet +that can be transmitted over that endpoint. Reading from the table, the +controller driver knows that endpoint 1 can be used to send and receive +USB data packets of 512 bytes at once (this is in fact a bulk in/out +endpoint), and endpoint 2 can be used to send data packets of 64 bytes +at once (this is in fact an interrupt endpoint). + +Note that there is no information about endpoint 0 here: that one is +implemented by default in every silicon design, with a predefined +configuration according to the USB specification. For more examples of +endpoint configuration tables, see ``musb_core.c``. + +Let's now get back to the interrupt handler function: + + .. code-block:: c + :emphasize-lines: 18-19 + + static irqreturn_t jz4740_musb_interrupt(int irq, void *__hci) + { + unsigned long flags; + irqreturn_t retval = IRQ_NONE; + struct musb *musb = __hci; + + spin_lock_irqsave(&musb->lock, flags); + + musb->int_usb = musb_readb(musb->mregs, MUSB_INTRUSB); + musb->int_tx = musb_readw(musb->mregs, MUSB_INTRTX); + musb->int_rx = musb_readw(musb->mregs, MUSB_INTRRX); + + /* + * The controller is gadget only, the state of the host mode IRQ bits is + * undefined. Mask them to make sure that the musb driver core will + * never see them set + */ + musb->int_usb &= MUSB_INTR_SUSPEND | MUSB_INTR_RESUME | + MUSB_INTR_RESET | MUSB_INTR_SOF; + + if (musb->int_usb || musb->int_tx || musb->int_rx) + retval = musb_interrupt(musb); + + spin_unlock_irqrestore(&musb->lock, flags); + + return retval; + } + +Instruction on line 18 above is a way for the controller driver to work +around the fact that some interrupt bits used for USB host mode +operation are missing in the ``MUSB_INTRUSB`` register, thus left in an +undefined hardware state, since this MUSB controller hardware is used in +peripheral mode only. As a consequence, the glue layer masks these +missing bits out to avoid parasite interrupts by doing a logical AND +operation between the value read from ``MUSB_INTRUSB`` and the bits that +are actually implemented in the register. + +These are only a couple of the quirks found in the JZ4740 USB device +controller. Some others were directly addressed in the MUSB core since +the fixes were generic enough to provide a better handling of the issues +for others controller hardware eventually. + +Conclusion +========== + +Writing a Linux MUSB glue layer should be a more accessible task, as +this documentation tries to show the ins and outs of this exercise. + +The JZ4740 USB device controller being fairly simple, I hope its glue +layer serves as a good example for the curious mind. Used with the +current MUSB glue layers, this documentation should provide enough +guidance to get started; should anything gets out of hand, the linux-usb +mailing list archive is another helpful resource to browse through. + +Acknowledgements +================ + +Many thanks to Lars-Peter Clausen and Maarten ter Huurne for answering +my questions while I was writing the JZ4740 glue layer and for helping +me out getting the code in good shape. + +I would also like to thank the Qi-Hardware community at large for its +cheerful guidance and support. + +Resources +========= + +USB Home Page: http://www.usb.org + +linux-usb Mailing List Archives: http://marc.info/?l=linux-usb + +USB On-the-Go Basics: +http://www.maximintegrated.com/app-notes/index.mvp/id/1822 + +:ref:`Writing USB Device Drivers <writing-usb-driver>` + +Texas Instruments USB Configuration Wiki Page: +http://processors.wiki.ti.com/index.php/Usbgeneralpage + +Analog Devices Blackfin MUSB Configuration: +http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers:musb diff --git a/Documentation/driver-api/usb/writing_usb_driver.rst b/Documentation/driver-api/usb/writing_usb_driver.rst new file mode 100644 index 000000000000..69f077dcdb78 --- /dev/null +++ b/Documentation/driver-api/usb/writing_usb_driver.rst @@ -0,0 +1,326 @@ +.. _writing-usb-driver: + +========================== +Writing USB Device Drivers +========================== + +:Author: Greg Kroah-Hartman + +Introduction +============ + +The Linux USB subsystem has grown from supporting only two different +types of devices in the 2.2.7 kernel (mice and keyboards), to over 20 +different types of devices in the 2.4 kernel. Linux currently supports +almost all USB class devices (standard types of devices like keyboards, +mice, modems, printers and speakers) and an ever-growing number of +vendor-specific devices (such as USB to serial converters, digital +cameras, Ethernet devices and MP3 players). For a full list of the +different USB devices currently supported, see Resources. + +The remaining kinds of USB devices that do not have support on Linux are +almost all vendor-specific devices. Each vendor decides to implement a +custom protocol to talk to their device, so a custom driver usually +needs to be created. Some vendors are open with their USB protocols and +help with the creation of Linux drivers, while others do not publish +them, and developers are forced to reverse-engineer. See Resources for +some links to handy reverse-engineering tools. + +Because each different protocol causes a new driver to be created, I +have written a generic USB driver skeleton, modelled after the +pci-skeleton.c file in the kernel source tree upon which many PCI +network drivers have been based. This USB skeleton can be found at +drivers/usb/usb-skeleton.c in the kernel source tree. In this article I +will walk through the basics of the skeleton driver, explaining the +different pieces and what needs to be done to customize it to your +specific device. + +Linux USB Basics +================ + +If you are going to write a Linux USB driver, please become familiar +with the USB protocol specification. It can be found, along with many +other useful documents, at the USB home page (see Resources). An +excellent introduction to the Linux USB subsystem can be found at the +USB Working Devices List (see Resources). It explains how the Linux USB +subsystem is structured and introduces the reader to the concept of USB +urbs (USB Request Blocks), which are essential to USB drivers. + +The first thing a Linux USB driver needs to do is register itself with +the Linux USB subsystem, giving it some information about which devices +the driver supports and which functions to call when a device supported +by the driver is inserted or removed from the system. All of this +information is passed to the USB subsystem in the :c:type:`usb_driver` +structure. The skeleton driver declares a :c:type:`usb_driver` as:: + + static struct usb_driver skel_driver = { + .name = "skeleton", + .probe = skel_probe, + .disconnect = skel_disconnect, + .fops = &skel_fops, + .minor = USB_SKEL_MINOR_BASE, + .id_table = skel_table, + }; + + +The variable name is a string that describes the driver. It is used in +informational messages printed to the system log. The probe and +disconnect function pointers are called when a device that matches the +information provided in the ``id_table`` variable is either seen or +removed. + +The fops and minor variables are optional. Most USB drivers hook into +another kernel subsystem, such as the SCSI, network or TTY subsystem. +These types of drivers register themselves with the other kernel +subsystem, and any user-space interactions are provided through that +interface. But for drivers that do not have a matching kernel subsystem, +such as MP3 players or scanners, a method of interacting with user space +is needed. The USB subsystem provides a way to register a minor device +number and a set of :c:type:`file_operations` function pointers that enable +this user-space interaction. The skeleton driver needs this kind of +interface, so it provides a minor starting number and a pointer to its +:c:type:`file_operations` functions. + +The USB driver is then registered with a call to :c:func:`usb_register`, +usually in the driver's init function, as shown here:: + + static int __init usb_skel_init(void) + { + int result; + + /* register this driver with the USB subsystem */ + result = usb_register(&skel_driver); + if (result < 0) { + err("usb_register failed for the "__FILE__ "driver." + "Error number %d", result); + return -1; + } + + return 0; + } + module_init(usb_skel_init); + + +When the driver is unloaded from the system, it needs to deregister +itself with the USB subsystem. This is done with the :c:func:`usb_deregister` +function:: + + static void __exit usb_skel_exit(void) + { + /* deregister this driver with the USB subsystem */ + usb_deregister(&skel_driver); + } + module_exit(usb_skel_exit); + + +To enable the linux-hotplug system to load the driver automatically when +the device is plugged in, you need to create a ``MODULE_DEVICE_TABLE``. +The following code tells the hotplug scripts that this module supports a +single device with a specific vendor and product ID:: + + /* table of devices that work with this driver */ + static struct usb_device_id skel_table [] = { + { USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID) }, + { } /* Terminating entry */ + }; + MODULE_DEVICE_TABLE (usb, skel_table); + + +There are other macros that can be used in describing a struct +:c:type:`usb_device_id` for drivers that support a whole class of USB +drivers. See :ref:`usb.h <usb_header>` for more information on this. + +Device operation +================ + +When a device is plugged into the USB bus that matches the device ID +pattern that your driver registered with the USB core, the probe +function is called. The :c:type:`usb_device` structure, interface number and +the interface ID are passed to the function:: + + static int skel_probe(struct usb_interface *interface, + const struct usb_device_id *id) + + +The driver now needs to verify that this device is actually one that it +can accept. If so, it returns 0. If not, or if any error occurs during +initialization, an errorcode (such as ``-ENOMEM`` or ``-ENODEV``) is +returned from the probe function. + +In the skeleton driver, we determine what end points are marked as +bulk-in and bulk-out. We create buffers to hold the data that will be +sent and received from the device, and a USB urb to write data to the +device is initialized. + +Conversely, when the device is removed from the USB bus, the disconnect +function is called with the device pointer. The driver needs to clean +any private data that has been allocated at this time and to shut down +any pending urbs that are in the USB system. + +Now that the device is plugged into the system and the driver is bound +to the device, any of the functions in the :c:type:`file_operations` structure +that were passed to the USB subsystem will be called from a user program +trying to talk to the device. The first function called will be open, as +the program tries to open the device for I/O. We increment our private +usage count and save a pointer to our internal structure in the file +structure. This is done so that future calls to file operations will +enable the driver to determine which device the user is addressing. All +of this is done with the following code:: + + /* increment our usage count for the module */ + ++skel->open_count; + + /* save our object in the file's private structure */ + file->private_data = dev; + + +After the open function is called, the read and write functions are +called to receive and send data to the device. In the ``skel_write`` +function, we receive a pointer to some data that the user wants to send +to the device and the size of the data. The function determines how much +data it can send to the device based on the size of the write urb it has +created (this size depends on the size of the bulk out end point that +the device has). Then it copies the data from user space to kernel +space, points the urb to the data and submits the urb to the USB +subsystem. This can be seen in the following code:: + + /* we can only write as much as 1 urb will hold */ + bytes_written = (count > skel->bulk_out_size) ? skel->bulk_out_size : count; + + /* copy the data from user space into our urb */ + copy_from_user(skel->write_urb->transfer_buffer, buffer, bytes_written); + + /* set up our urb */ + usb_fill_bulk_urb(skel->write_urb, + skel->dev, + usb_sndbulkpipe(skel->dev, skel->bulk_out_endpointAddr), + skel->write_urb->transfer_buffer, + bytes_written, + skel_write_bulk_callback, + skel); + + /* send the data out the bulk port */ + result = usb_submit_urb(skel->write_urb); + if (result) { + err("Failed submitting write urb, error %d", result); + } + + +When the write urb is filled up with the proper information using the +:c:func:`usb_fill_bulk_urb` function, we point the urb's completion callback +to call our own ``skel_write_bulk_callback`` function. This function is +called when the urb is finished by the USB subsystem. The callback +function is called in interrupt context, so caution must be taken not to +do very much processing at that time. Our implementation of +``skel_write_bulk_callback`` merely reports if the urb was completed +successfully or not and then returns. + +The read function works a bit differently from the write function in +that we do not use an urb to transfer data from the device to the +driver. Instead we call the :c:func:`usb_bulk_msg` function, which can be used +to send or receive data from a device without having to create urbs and +handle urb completion callback functions. We call the :c:func:`usb_bulk_msg` +function, giving it a buffer into which to place any data received from +the device and a timeout value. If the timeout period expires without +receiving any data from the device, the function will fail and return an +error message. This can be shown with the following code:: + + /* do an immediate bulk read to get data from the device */ + retval = usb_bulk_msg (skel->dev, + usb_rcvbulkpipe (skel->dev, + skel->bulk_in_endpointAddr), + skel->bulk_in_buffer, + skel->bulk_in_size, + &count, HZ*10); + /* if the read was successful, copy the data to user space */ + if (!retval) { + if (copy_to_user (buffer, skel->bulk_in_buffer, count)) + retval = -EFAULT; + else + retval = count; + } + + +The :c:func:`usb_bulk_msg` function can be very useful for doing single reads +or writes to a device; however, if you need to read or write constantly to +a device, it is recommended to set up your own urbs and submit them to +the USB subsystem. + +When the user program releases the file handle that it has been using to +talk to the device, the release function in the driver is called. In +this function we decrement our private usage count and wait for possible +pending writes:: + + /* decrement our usage count for the device */ + --skel->open_count; + + +One of the more difficult problems that USB drivers must be able to +handle smoothly is the fact that the USB device may be removed from the +system at any point in time, even if a program is currently talking to +it. It needs to be able to shut down any current reads and writes and +notify the user-space programs that the device is no longer there. The +following code (function ``skel_delete``) is an example of how to do +this:: + + static inline void skel_delete (struct usb_skel *dev) + { + kfree (dev->bulk_in_buffer); + if (dev->bulk_out_buffer != NULL) + usb_free_coherent (dev->udev, dev->bulk_out_size, + dev->bulk_out_buffer, + dev->write_urb->transfer_dma); + usb_free_urb (dev->write_urb); + kfree (dev); + } + + +If a program currently has an open handle to the device, we reset the +flag ``device_present``. For every read, write, release and other +functions that expect a device to be present, the driver first checks +this flag to see if the device is still present. If not, it releases +that the device has disappeared, and a ``-ENODEV`` error is returned to the +user-space program. When the release function is eventually called, it +determines if there is no device and if not, it does the cleanup that +the ``skel_disconnect`` function normally does if there are no open files +on the device (see Listing 5). + +Isochronous Data +================ + +This usb-skeleton driver does not have any examples of interrupt or +isochronous data being sent to or from the device. Interrupt data is +sent almost exactly as bulk data is, with a few minor exceptions. +Isochronous data works differently with continuous streams of data being +sent to or from the device. The audio and video camera drivers are very +good examples of drivers that handle isochronous data and will be useful +if you also need to do this. + +Conclusion +========== + +Writing Linux USB device drivers is not a difficult task as the +usb-skeleton driver shows. This driver, combined with the other current +USB drivers, should provide enough examples to help a beginning author +create a working driver in a minimal amount of time. The linux-usb-devel +mailing list archives also contain a lot of helpful information. + +Resources +========= + +The Linux USB Project: +http://www.linux-usb.org/ + +Linux Hotplug Project: +http://linux-hotplug.sourceforge.net/ + +Linux USB Working Devices List: +http://www.qbik.ch/usb/devices/ + +linux-usb-devel Mailing List Archives: +http://marc.theaimsgroup.com/?l=linux-usb-devel + +Programming Guide for Linux USB Device Drivers: +http://usb.cs.tum.edu/usbdoc + +USB Home Page: http://www.usb.org diff --git a/Documentation/early-userspace/README b/Documentation/early-userspace/README index 93e63a9af30b..2c00b072a4c8 100644 --- a/Documentation/early-userspace/README +++ b/Documentation/early-userspace/README @@ -86,7 +86,7 @@ early userspace useful. The klibc distribution is currently maintained separately from the kernel. You can obtain somewhat infrequent snapshots of klibc from -ftp://ftp.kernel.org/pub/linux/libs/klibc/ +https://www.kernel.org/pub/linux/libs/klibc/ For active users, you are better off using the klibc git repository, at http://git.kernel.org/?p=libs/klibc/klibc.git diff --git a/Documentation/extcon/intel-int3496.txt b/Documentation/extcon/intel-int3496.txt index af0b366c25b7..8155dbc7fad3 100644 --- a/Documentation/extcon/intel-int3496.txt +++ b/Documentation/extcon/intel-int3496.txt @@ -20,3 +20,8 @@ Index 1: The output gpio for enabling Vbus output from the device to the otg Index 2: The output gpio for muxing of the data pins between the USB host and the USB peripheral controller, write 1 to mux to the peripheral controller + +There is a mapping between indices and GPIO connection IDs as follows + id index 0 + vbus index 1 + mux index 2 diff --git a/Documentation/features/core/BPF-JIT/arch-support.txt b/Documentation/features/core/BPF-JIT/arch-support.txt index c1b4f917238f..5575d2d09625 100644 --- a/Documentation/features/core/BPF-JIT/arch-support.txt +++ b/Documentation/features/core/BPF-JIT/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/core/generic-idle-thread/arch-support.txt b/Documentation/features/core/generic-idle-thread/arch-support.txt index 6d930fcbe519..abb5f271a792 100644 --- a/Documentation/features/core/generic-idle-thread/arch-support.txt +++ b/Documentation/features/core/generic-idle-thread/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | ok | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/core/jump-labels/arch-support.txt b/Documentation/features/core/jump-labels/arch-support.txt index 136868b636e6..dbdaffcc5110 100644 --- a/Documentation/features/core/jump-labels/arch-support.txt +++ b/Documentation/features/core/jump-labels/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/core/tracehook/arch-support.txt b/Documentation/features/core/tracehook/arch-support.txt index 728061d763b1..5e97a89420ef 100644 --- a/Documentation/features/core/tracehook/arch-support.txt +++ b/Documentation/features/core/tracehook/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | ok | | c6x: | ok | | cris: | TODO | diff --git a/Documentation/features/debug/KASAN/arch-support.txt b/Documentation/features/debug/KASAN/arch-support.txt index 703f5784bc90..76bbd7fe27b3 100644 --- a/Documentation/features/debug/KASAN/arch-support.txt +++ b/Documentation/features/debug/KASAN/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/gcov-profile-all/arch-support.txt b/Documentation/features/debug/gcov-profile-all/arch-support.txt index 38dea8eeba0a..830dbe801aaf 100644 --- a/Documentation/features/debug/gcov-profile-all/arch-support.txt +++ b/Documentation/features/debug/gcov-profile-all/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/kgdb/arch-support.txt b/Documentation/features/debug/kgdb/arch-support.txt index 862e15d6f79e..0217bf6e942d 100644 --- a/Documentation/features/debug/kgdb/arch-support.txt +++ b/Documentation/features/debug/kgdb/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | ok | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt b/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt index 40f44d041fb4..f9133a921d5a 100644 --- a/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt +++ b/Documentation/features/debug/kprobes-on-ftrace/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/kprobes/arch-support.txt b/Documentation/features/debug/kprobes/arch-support.txt index a44bfff6940b..529f66eda679 100644 --- a/Documentation/features/debug/kprobes/arch-support.txt +++ b/Documentation/features/debug/kprobes/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | TODO | - | avr32: | ok | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/kretprobes/arch-support.txt b/Documentation/features/debug/kretprobes/arch-support.txt index d87c1ce24204..43353242e439 100644 --- a/Documentation/features/debug/kretprobes/arch-support.txt +++ b/Documentation/features/debug/kretprobes/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/optprobes/arch-support.txt b/Documentation/features/debug/optprobes/arch-support.txt index b8999d8544ca..f559f1ba5416 100644 --- a/Documentation/features/debug/optprobes/arch-support.txt +++ b/Documentation/features/debug/optprobes/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/stackprotector/arch-support.txt b/Documentation/features/debug/stackprotector/arch-support.txt index 0fa423313409..d7acd7bd3619 100644 --- a/Documentation/features/debug/stackprotector/arch-support.txt +++ b/Documentation/features/debug/stackprotector/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/uprobes/arch-support.txt b/Documentation/features/debug/uprobes/arch-support.txt index d605c3fc38fd..53ed42b0e7e5 100644 --- a/Documentation/features/debug/uprobes/arch-support.txt +++ b/Documentation/features/debug/uprobes/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/debug/user-ret-profiler/arch-support.txt b/Documentation/features/debug/user-ret-profiler/arch-support.txt index 44cc1ff3f603..149443936de9 100644 --- a/Documentation/features/debug/user-ret-profiler/arch-support.txt +++ b/Documentation/features/debug/user-ret-profiler/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/io/dma-api-debug/arch-support.txt b/Documentation/features/io/dma-api-debug/arch-support.txt index ffa522a9bdfd..6be920643be6 100644 --- a/Documentation/features/io/dma-api-debug/arch-support.txt +++ b/Documentation/features/io/dma-api-debug/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | ok | | cris: | TODO | diff --git a/Documentation/features/io/dma-contiguous/arch-support.txt b/Documentation/features/io/dma-contiguous/arch-support.txt index 83d2cf989ea3..0eb08e1e32b8 100644 --- a/Documentation/features/io/dma-contiguous/arch-support.txt +++ b/Documentation/features/io/dma-contiguous/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/io/sg-chain/arch-support.txt b/Documentation/features/io/sg-chain/arch-support.txt index 6ca98f9911bb..514ad3468aa5 100644 --- a/Documentation/features/io/sg-chain/arch-support.txt +++ b/Documentation/features/io/sg-chain/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/lib/strncasecmp/arch-support.txt b/Documentation/features/lib/strncasecmp/arch-support.txt index 12b1c9358e57..532c6f0fc15c 100644 --- a/Documentation/features/lib/strncasecmp/arch-support.txt +++ b/Documentation/features/lib/strncasecmp/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/locking/cmpxchg-local/arch-support.txt b/Documentation/features/locking/cmpxchg-local/arch-support.txt index d9c310889bc1..f3eec26c8cf8 100644 --- a/Documentation/features/locking/cmpxchg-local/arch-support.txt +++ b/Documentation/features/locking/cmpxchg-local/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/locking/lockdep/arch-support.txt b/Documentation/features/locking/lockdep/arch-support.txt index cf90635bdcbb..9756abc680a7 100644 --- a/Documentation/features/locking/lockdep/arch-support.txt +++ b/Documentation/features/locking/lockdep/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | ok | | blackfin: | ok | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/locking/queued-rwlocks/arch-support.txt b/Documentation/features/locking/queued-rwlocks/arch-support.txt index 68c3a5ddd9b9..62f4ee5c156c 100644 --- a/Documentation/features/locking/queued-rwlocks/arch-support.txt +++ b/Documentation/features/locking/queued-rwlocks/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/locking/queued-spinlocks/arch-support.txt b/Documentation/features/locking/queued-spinlocks/arch-support.txt index e973b1a9572f..321b32f6e63c 100644 --- a/Documentation/features/locking/queued-spinlocks/arch-support.txt +++ b/Documentation/features/locking/queued-spinlocks/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/locking/rwsem-optimized/arch-support.txt b/Documentation/features/locking/rwsem-optimized/arch-support.txt index ac93d7ab66c4..79bfa4d6e41f 100644 --- a/Documentation/features/locking/rwsem-optimized/arch-support.txt +++ b/Documentation/features/locking/rwsem-optimized/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/perf/kprobes-event/arch-support.txt b/Documentation/features/perf/kprobes-event/arch-support.txt index 4660bf222db1..00f1606bbf45 100644 --- a/Documentation/features/perf/kprobes-event/arch-support.txt +++ b/Documentation/features/perf/kprobes-event/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/perf/perf-regs/arch-support.txt b/Documentation/features/perf/perf-regs/arch-support.txt index f179b1fb26ef..7d516eacf7b9 100644 --- a/Documentation/features/perf/perf-regs/arch-support.txt +++ b/Documentation/features/perf/perf-regs/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/perf/perf-stackdump/arch-support.txt b/Documentation/features/perf/perf-stackdump/arch-support.txt index 85777c5c6353..f974b8df5d82 100644 --- a/Documentation/features/perf/perf-stackdump/arch-support.txt +++ b/Documentation/features/perf/perf-stackdump/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/sched/numa-balancing/arch-support.txt b/Documentation/features/sched/numa-balancing/arch-support.txt index ac7cd6b1502b..1d3c0f669152 100644 --- a/Documentation/features/sched/numa-balancing/arch-support.txt +++ b/Documentation/features/sched/numa-balancing/arch-support.txt @@ -10,7 +10,6 @@ | arc: | .. | | arm: | .. | | arm64: | .. | - | avr32: | .. | | blackfin: | .. | | c6x: | .. | | cris: | .. | diff --git a/Documentation/features/seccomp/seccomp-filter/arch-support.txt b/Documentation/features/seccomp/seccomp-filter/arch-support.txt index 4f66ec133951..a32d5b207679 100644 --- a/Documentation/features/seccomp/seccomp-filter/arch-support.txt +++ b/Documentation/features/seccomp/seccomp-filter/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/time/arch-tick-broadcast/arch-support.txt b/Documentation/features/time/arch-tick-broadcast/arch-support.txt index 8acb439a4a17..caee8f64d1bc 100644 --- a/Documentation/features/time/arch-tick-broadcast/arch-support.txt +++ b/Documentation/features/time/arch-tick-broadcast/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/time/clockevents/arch-support.txt b/Documentation/features/time/clockevents/arch-support.txt index ff670b2207f1..1cd87f6cd07d 100644 --- a/Documentation/features/time/clockevents/arch-support.txt +++ b/Documentation/features/time/clockevents/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | ok | | blackfin: | ok | | c6x: | ok | | cris: | ok | diff --git a/Documentation/features/time/context-tracking/arch-support.txt b/Documentation/features/time/context-tracking/arch-support.txt index a1e3eea7003f..e6d7c7b2253c 100644 --- a/Documentation/features/time/context-tracking/arch-support.txt +++ b/Documentation/features/time/context-tracking/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/time/irq-time-acct/arch-support.txt b/Documentation/features/time/irq-time-acct/arch-support.txt index 4199ffecc0ff..15c6071788ae 100644 --- a/Documentation/features/time/irq-time-acct/arch-support.txt +++ b/Documentation/features/time/irq-time-acct/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/time/modern-timekeeping/arch-support.txt b/Documentation/features/time/modern-timekeeping/arch-support.txt index 17f68a02e84d..baee7611ba3d 100644 --- a/Documentation/features/time/modern-timekeeping/arch-support.txt +++ b/Documentation/features/time/modern-timekeeping/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | TODO | | arm64: | ok | - | avr32: | ok | | blackfin: | TODO | | c6x: | ok | | cris: | TODO | diff --git a/Documentation/features/time/virt-cpuacct/arch-support.txt b/Documentation/features/time/virt-cpuacct/arch-support.txt index cf3c3e383d15..9129530cb73c 100644 --- a/Documentation/features/time/virt-cpuacct/arch-support.txt +++ b/Documentation/features/time/virt-cpuacct/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/vm/ELF-ASLR/arch-support.txt b/Documentation/features/vm/ELF-ASLR/arch-support.txt index ec4dd28e1297..f6829af3255f 100644 --- a/Documentation/features/vm/ELF-ASLR/arch-support.txt +++ b/Documentation/features/vm/ELF-ASLR/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/vm/PG_uncached/arch-support.txt b/Documentation/features/vm/PG_uncached/arch-support.txt index 991974275a3e..1a09ea99d486 100644 --- a/Documentation/features/vm/PG_uncached/arch-support.txt +++ b/Documentation/features/vm/PG_uncached/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/vm/THP/arch-support.txt b/Documentation/features/vm/THP/arch-support.txt index 523f8307b9cd..d170e6236503 100644 --- a/Documentation/features/vm/THP/arch-support.txt +++ b/Documentation/features/vm/THP/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | .. | | blackfin: | .. | | c6x: | .. | | cris: | .. | diff --git a/Documentation/features/vm/TLB/arch-support.txt b/Documentation/features/vm/TLB/arch-support.txt index 261b92e2fb1a..abfab4080a91 100644 --- a/Documentation/features/vm/TLB/arch-support.txt +++ b/Documentation/features/vm/TLB/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | TODO | - | avr32: | .. | | blackfin: | TODO | | c6x: | .. | | cris: | .. | diff --git a/Documentation/features/vm/huge-vmap/arch-support.txt b/Documentation/features/vm/huge-vmap/arch-support.txt index df1d1f3c9af2..f81f09b22b08 100644 --- a/Documentation/features/vm/huge-vmap/arch-support.txt +++ b/Documentation/features/vm/huge-vmap/arch-support.txt @@ -10,7 +10,6 @@ | arc: | TODO | | arm: | TODO | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/vm/ioremap_prot/arch-support.txt b/Documentation/features/vm/ioremap_prot/arch-support.txt index 90c53749fde7..0cc3e11c42e2 100644 --- a/Documentation/features/vm/ioremap_prot/arch-support.txt +++ b/Documentation/features/vm/ioremap_prot/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | TODO | | arm64: | TODO | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/features/vm/numa-memblock/arch-support.txt b/Documentation/features/vm/numa-memblock/arch-support.txt index e7c252a0c531..9a3fdac42ce1 100644 --- a/Documentation/features/vm/numa-memblock/arch-support.txt +++ b/Documentation/features/vm/numa-memblock/arch-support.txt @@ -10,7 +10,6 @@ | arc: | .. | | arm: | .. | | arm64: | .. | - | avr32: | .. | | blackfin: | .. | | c6x: | .. | | cris: | .. | diff --git a/Documentation/features/vm/pte_special/arch-support.txt b/Documentation/features/vm/pte_special/arch-support.txt index 3de5434c857c..dfaa39e664ff 100644 --- a/Documentation/features/vm/pte_special/arch-support.txt +++ b/Documentation/features/vm/pte_special/arch-support.txt @@ -10,7 +10,6 @@ | arc: | ok | | arm: | ok | | arm64: | ok | - | avr32: | TODO | | blackfin: | TODO | | c6x: | TODO | | cris: | TODO | diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index fdcfdd79682a..fe25787ff6d4 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -58,8 +58,7 @@ prototypes: int (*permission) (struct inode *, int, unsigned int); int (*get_acl)(struct inode *, int); int (*setattr) (struct dentry *, struct iattr *); - int (*getattr) (const struct path *, struct dentry *, struct kstat *, - u32, unsigned int); + int (*getattr) (const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); void (*update_time)(struct inode *, struct timespec *, int); diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt index 3698ed3146e3..5a8f7f4d2bca 100644 --- a/Documentation/filesystems/ext4.txt +++ b/Documentation/filesystems/ext4.txt @@ -25,7 +25,7 @@ Note: More extensive information for getting started with ext4 can be or - ftp://ftp.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/ + https://www.kernel.org/pub/linux/kernel/people/tytso/e2fsprogs/ or grab the latest git repository from: diff --git a/Documentation/filesystems/nfs/nfs-rdma.txt b/Documentation/filesystems/nfs/nfs-rdma.txt index 1e6564545edf..22dc0dd6889c 100644 --- a/Documentation/filesystems/nfs/nfs-rdma.txt +++ b/Documentation/filesystems/nfs/nfs-rdma.txt @@ -110,10 +110,10 @@ Installation - Install a Linux kernel with NFS/RDMA The NFS/RDMA client and server are both included in the mainline Linux - kernel version 2.6.25 and later. This and other versions of the 2.6 Linux + kernel version 2.6.25 and later. This and other versions of the Linux kernel can be found at: - ftp://ftp.kernel.org/pub/linux/kernel/v2.6/ + https://www.kernel.org/pub/linux/kernel/ Download the sources and place them in an appropriate location. diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting index 95280079c0b3..5fb17f49f7a2 100644 --- a/Documentation/filesystems/porting +++ b/Documentation/filesystems/porting @@ -600,3 +600,9 @@ in your dentry operations instead. [recommended] ->readlink is optional for symlinks. Don't set, unless filesystem needs to fake something for readlink(2). +-- +[mandatory] + ->getattr() is now passed a struct path rather than a vfsmount and + dentry separately, and it now has request_mask and query_flags arguments + to specify the fields and sync type requested by statx. Filesystems not + supporting any statx-specific features may ignore the new arguments. diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index c94b4675d021..9036dbf16156 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -44,6 +44,7 @@ Table of Contents 3.8 /proc/<pid>/fdinfo/<fd> - Information about opened file 3.9 /proc/<pid>/map_files - Information about memory mapped files 3.10 /proc/<pid>/timerslack_ns - Task timerslack value + 3.11 /proc/<pid>/patch_state - Livepatch patch operation state 4 Configuring procfs 4.1 Mount options @@ -1887,6 +1888,23 @@ Valid values are from 0 - ULLONG_MAX An application setting the value must have PTRACE_MODE_ATTACH_FSCREDS level permissions on the task specified to change its timerslack_ns value. +3.11 /proc/<pid>/patch_state - Livepatch patch operation state +----------------------------------------------------------------- +When CONFIG_LIVEPATCH is enabled, this file displays the value of the +patch state for the task. + +A value of '-1' indicates that no patch is in transition. + +A value of '0' indicates that a patch is in transition and the task is +unpatched. If the patch is being enabled, then the task hasn't been +patched yet. If the patch is being disabled, then the task has already +been unpatched. + +A value of '1' indicates that a patch is in transition and the task is +patched. If the patch is being enabled, then the task has already been +patched. If the patch is being disabled, then the task hasn't been +unpatched yet. + ------------------------------------------------------------------------------ Configuring procfs diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 569211703721..94dd27ef4a76 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -382,8 +382,7 @@ struct inode_operations { int (*permission) (struct inode *, int); int (*get_acl)(struct inode *, int); int (*setattr) (struct dentry *, struct iattr *); - int (*getattr) (const struct path *, struct dentry *, struct kstat *, - u32, unsigned int); + int (*getattr) (const struct path *, struct kstat *, u32, unsigned int); ssize_t (*listxattr) (struct dentry *, char *, size_t); void (*update_time)(struct inode *, struct timespec *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, diff --git a/Documentation/gcc-plugins.txt b/Documentation/gcc-plugins.txt index 891c69464434..433eaefb4aa1 100644 --- a/Documentation/gcc-plugins.txt +++ b/Documentation/gcc-plugins.txt @@ -18,8 +18,8 @@ because gcc versions 4.5 and 4.6 are compiled by a C compiler, gcc-4.7 can be compiled by a C or a C++ compiler, and versions 4.8+ can only be compiled by a C++ compiler. -Currently the GCC plugin infrastructure supports only the x86, arm and arm64 -architectures. +Currently the GCC plugin infrastructure supports only the x86, arm, arm64 and +powerpc architectures. This infrastructure was ported from grsecurity [6] and PaX [7]. diff --git a/Documentation/gpu/bridge/dw-hdmi.rst b/Documentation/gpu/bridge/dw-hdmi.rst new file mode 100644 index 000000000000..486faadf00af --- /dev/null +++ b/Documentation/gpu/bridge/dw-hdmi.rst @@ -0,0 +1,15 @@ +======================================================= + drm/bridge/dw-hdmi Synopsys DesignWare HDMI Controller +======================================================= + +Synopsys DesignWare HDMI Controller +=================================== + +This section covers everything related to the Synopsys DesignWare HDMI +Controller implemented as a DRM bridge. + +Supported Input Formats and Encodings +------------------------------------- + +.. kernel-doc:: include/drm/bridge/dw_hdmi.h + :doc: Supported input formats and encodings diff --git a/Documentation/gpu/drm-internals.rst b/Documentation/gpu/drm-internals.rst index e35920db1f4c..babfb6143bd9 100644 --- a/Documentation/gpu/drm-internals.rst +++ b/Documentation/gpu/drm-internals.rst @@ -140,12 +140,12 @@ Device Instance and Driver Handling .. kernel-doc:: drivers/gpu/drm/drm_drv.c :doc: driver instance overview -.. kernel-doc:: drivers/gpu/drm/drm_drv.c - :export: - .. kernel-doc:: include/drm/drm_drv.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_drv.c + :export: + Driver Load ----------- @@ -240,120 +240,21 @@ drivers. .. kernel-doc:: drivers/gpu/drm/drm_pci.c :export: -.. kernel-doc:: drivers/gpu/drm/drm_platform.c - :export: - Open/Close, File Operations and IOCTLs ====================================== -Open and Close --------------- - -Open and close handlers. None of those methods are mandatory:: - - int (*firstopen) (struct drm_device *); - void (*lastclose) (struct drm_device *); - int (*open) (struct drm_device *, struct drm_file *); - void (*preclose) (struct drm_device *, struct drm_file *); - void (*postclose) (struct drm_device *, struct drm_file *); - -The firstopen method is called by the DRM core for legacy UMS (User Mode -Setting) drivers only when an application opens a device that has no -other opened file handle. UMS drivers can implement it to acquire device -resources. KMS drivers can't use the method and must acquire resources -in the load method instead. - -Similarly the lastclose method is called when the last application -holding a file handle opened on the device closes it, for both UMS and -KMS drivers. Additionally, the method is also called at module unload -time or, for hot-pluggable devices, when the device is unplugged. The -firstopen and lastclose calls can thus be unbalanced. - -The open method is called every time the device is opened by an -application. Drivers can allocate per-file private data in this method -and store them in the struct :c:type:`struct drm_file -<drm_file>` driver_priv field. Note that the open method is -called before firstopen. - -The close operation is split into preclose and postclose methods. -Drivers must stop and cleanup all per-file operations in the preclose -method. For instance pending vertical blanking and page flip events must -be cancelled. No per-file operation is allowed on the file handle after -returning from the preclose method. - -Finally the postclose method is called as the last step of the close -operation, right before calling the lastclose method if no other open -file handle exists for the device. Drivers that have allocated per-file -private data in the open method should free it here. - -The lastclose method should restore CRTC and plane properties to default -value, so that a subsequent open of the device will not inherit state -from the previous user. It can also be used to execute delayed power -switching state changes, e.g. in conjunction with the :ref:`vga_switcheroo` -infrastructure. Beyond that KMS drivers should not do any -further cleanup. Only legacy UMS drivers might need to clean up device -state so that the vga console or an independent fbdev driver could take -over. - File Operations --------------- -.. kernel-doc:: drivers/gpu/drm/drm_fops.c +.. kernel-doc:: drivers/gpu/drm/drm_file.c :doc: file operations -.. kernel-doc:: drivers/gpu/drm/drm_fops.c - :export: - -IOCTLs ------- - -struct drm_ioctl_desc \*ioctls; int num_ioctls; - Driver-specific ioctls descriptors table. - -Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls -descriptors table is indexed by the ioctl number offset from the base -value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize -the table entries. - -:: - - DRM_IOCTL_DEF_DRV(ioctl, func, flags) - -``ioctl`` is the ioctl name. Drivers must define the DRM_##ioctl and -DRM_IOCTL_##ioctl macros to the ioctl number offset from -DRM_COMMAND_BASE and the ioctl number respectively. The first macro is -private to the device while the second must be exposed to userspace in a -public header. - -``func`` is a pointer to the ioctl handler function compatible with the -``drm_ioctl_t`` type. - -:: - - typedef int drm_ioctl_t(struct drm_device *dev, void *data, - struct drm_file *file_priv); - -``flags`` is a bitmask combination of the following values. It restricts -how the ioctl is allowed to be called. - -- DRM_AUTH - Only authenticated callers allowed - -- DRM_MASTER - The ioctl can only be called on the master file handle - -- DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed - -- DRM_CONTROL_ALLOW - The ioctl can only be called on a control - device - -- DRM_UNLOCKED - The ioctl handler will be called without locking the - DRM global mutex. This is the enforced default for kms drivers (i.e. - using the DRIVER_MODESET flag) and hence shouldn't be used any more - for new drivers. +.. kernel-doc:: include/drm/drm_file.h + :internal: -.. kernel-doc:: drivers/gpu/drm/drm_ioctl.c +.. kernel-doc:: drivers/gpu/drm/drm_file.c :export: - Misc Utilities ============== diff --git a/Documentation/gpu/drm-kms-helpers.rst b/Documentation/gpu/drm-kms-helpers.rst index 03040aa14fe8..c075aadd7078 100644 --- a/Documentation/gpu/drm-kms-helpers.rst +++ b/Documentation/gpu/drm-kms-helpers.rst @@ -37,10 +37,12 @@ Modeset Helper Reference for Common Vtables =========================================== .. kernel-doc:: include/drm/drm_modeset_helper_vtables.h - :internal: + :doc: overview .. kernel-doc:: include/drm/drm_modeset_helper_vtables.h - :doc: overview + :internal: + +.. _drm_atomic_helper: Atomic Modeset Helper Functions Reference ========================================= @@ -84,27 +86,27 @@ Legacy CRTC/Modeset Helper Functions Reference Simple KMS Helper Reference =========================== +.. kernel-doc:: drivers/gpu/drm/drm_simple_kms_helper.c + :doc: overview + .. kernel-doc:: include/drm/drm_simple_kms_helper.h :internal: .. kernel-doc:: drivers/gpu/drm/drm_simple_kms_helper.c :export: -.. kernel-doc:: drivers/gpu/drm/drm_simple_kms_helper.c - :doc: overview - fbdev Helper Functions Reference ================================ .. kernel-doc:: drivers/gpu/drm/drm_fb_helper.c :doc: fbdev helpers -.. kernel-doc:: drivers/gpu/drm/drm_fb_helper.c - :export: - .. kernel-doc:: include/drm/drm_fb_helper.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_fb_helper.c + :export: + Framebuffer CMA Helper Functions Reference ========================================== @@ -114,6 +116,8 @@ Framebuffer CMA Helper Functions Reference .. kernel-doc:: drivers/gpu/drm/drm_fb_cma_helper.c :export: +.. _drm_bridges: + Bridges ======= @@ -139,18 +143,20 @@ Bridge Helper Reference .. kernel-doc:: drivers/gpu/drm/drm_bridge.c :export: +.. _drm_panel_helper: + Panel Helper Reference ====================== +.. kernel-doc:: drivers/gpu/drm/drm_panel.c + :doc: drm panel + .. kernel-doc:: include/drm/drm_panel.h :internal: .. kernel-doc:: drivers/gpu/drm/drm_panel.c :export: -.. kernel-doc:: drivers/gpu/drm/drm_panel.c - :doc: drm panel - Display Port Helper Functions Reference ======================================= @@ -217,6 +223,18 @@ EDID Helper Functions Reference .. kernel-doc:: drivers/gpu/drm/drm_edid.c :export: +SCDC Helper Functions Reference +=============================== + +.. kernel-doc:: drivers/gpu/drm/drm_scdc_helper.c + :doc: scdc helpers + +.. kernel-doc:: include/drm/drm_scdc_helper.h + :internal: + +.. kernel-doc:: drivers/gpu/drm/drm_scdc_helper.c + :export: + Rectangle Utilities Reference ============================= diff --git a/Documentation/gpu/drm-kms.rst b/Documentation/gpu/drm-kms.rst index 4d4068855ec4..bfecd21a8cdf 100644 --- a/Documentation/gpu/drm-kms.rst +++ b/Documentation/gpu/drm-kms.rst @@ -15,35 +15,271 @@ be setup by initializing the following fields. - struct drm_mode_config_funcs \*funcs; Mode setting functions. -Mode Configuration +Overview +======== + +.. kernel-render:: DOT + :alt: KMS Display Pipeline + :caption: KMS Display Pipeline Overview + + digraph "KMS" { + node [shape=box] + + subgraph cluster_static { + style=dashed + label="Static Objects" + + node [bgcolor=grey style=filled] + "drm_plane A" -> "drm_crtc" + "drm_plane B" -> "drm_crtc" + "drm_crtc" -> "drm_encoder A" + "drm_crtc" -> "drm_encoder B" + } + + subgraph cluster_user_created { + style=dashed + label="Userspace-Created" + + node [shape=oval] + "drm_framebuffer 1" -> "drm_plane A" + "drm_framebuffer 2" -> "drm_plane B" + } + + subgraph cluster_connector { + style=dashed + label="Hotpluggable" + + "drm_encoder A" -> "drm_connector A" + "drm_encoder B" -> "drm_connector B" + } + } + +The basic object structure KMS presents to userspace is fairly simple. +Framebuffers (represented by :c:type:`struct drm_framebuffer <drm_framebuffer>`, +see `Frame Buffer Abstraction`_) feed into planes. One or more (or even no) +planes feed their pixel data into a CRTC (represented by :c:type:`struct +drm_crtc <drm_crtc>`, see `CRTC Abstraction`_) for blending. The precise +blending step is explained in more detail in `Plane Composition Properties`_ and +related chapters. + +For the output routing the first step is encoders (represented by +:c:type:`struct drm_encoder <drm_encoder>`, see `Encoder Abstraction`_). Those +are really just internal artifacts of the helper libraries used to implement KMS +drivers. Besides that they make it unecessarily more complicated for userspace +to figure out which connections between a CRTC and a connector are possible, and +what kind of cloning is supported, they serve no purpose in the userspace API. +Unfortunately encoders have been exposed to userspace, hence can't remove them +at this point. Futhermore the exposed restrictions are often wrongly set by +drivers, and in many cases not powerful enough to express the real restrictions. +A CRTC can be connected to multiple encoders, and for an active CRTC there must +be at least one encoder. + +The final, and real, endpoint in the display chain is the connector (represented +by :c:type:`struct drm_connector <drm_connector>`, see `Connector +Abstraction`_). Connectors can have different possible encoders, but the kernel +driver selects which encoder to use for each connector. The use case is DVI, +which could switch between an analog and a digital encoder. Encoders can also +drive multiple different connectors. There is exactly one active connector for +every active encoder. + +Internally the output pipeline is a bit more complex and matches today's +hardware more closely: + +.. kernel-render:: DOT + :alt: KMS Output Pipeline + :caption: KMS Output Pipeline + + digraph "Output Pipeline" { + node [shape=box] + + subgraph { + "drm_crtc" [bgcolor=grey style=filled] + } + + subgraph cluster_internal { + style=dashed + label="Internal Pipeline" + { + node [bgcolor=grey style=filled] + "drm_encoder A"; + "drm_encoder B"; + "drm_encoder C"; + } + + { + node [bgcolor=grey style=filled] + "drm_encoder B" -> "drm_bridge B" + "drm_encoder C" -> "drm_bridge C1" + "drm_bridge C1" -> "drm_bridge C2"; + } + } + + "drm_crtc" -> "drm_encoder A" + "drm_crtc" -> "drm_encoder B" + "drm_crtc" -> "drm_encoder C" + + + subgraph cluster_output { + style=dashed + label="Outputs" + + "drm_encoder A" -> "drm_connector A"; + "drm_bridge B" -> "drm_connector B"; + "drm_bridge C2" -> "drm_connector C"; + + "drm_panel" + } + } + +Internally two additional helper objects come into play. First, to be able to +share code for encoders (sometimes on the same SoC, sometimes off-chip) one or +more :ref:`drm_bridges` (represented by :c:type:`struct drm_bridge +<drm_bridge>`) can be linked to an encoder. This link is static and cannot be +changed, which means the cross-bar (if there is any) needs to be mapped between +the CRTC and any encoders. Often for drivers with bridges there's no code left +at the encoder level. Atomic drivers can leave out all the encoder callbacks to +essentially only leave a dummy routing object behind, which is needed for +backwards compatibility since encoders are exposed to userspace. + +The second object is for panels, represented by :c:type:`struct drm_panel +<drm_panel>`, see :ref:`drm_panel_helper`. Panels do not have a fixed binding +point, but are generally linked to the driver private structure that embeds +:c:type:`struct drm_connector <drm_connector>`. + +Note that currently the bridge chaining and interactions with connectors and +panels are still in-flux and not really fully sorted out yet. KMS Core Structures and Functions ================================= -.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c - :export: - .. kernel-doc:: include/drm/drm_mode_config.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_mode_config.c + :export: + Modeset Base Object Abstraction =============================== +.. kernel-render:: DOT + :alt: Mode Objects and Properties + :caption: Mode Objects and Properties + + digraph { + node [shape=box] + + "drm_property A" -> "drm_mode_object A" + "drm_property A" -> "drm_mode_object B" + "drm_property B" -> "drm_mode_object A" + } + +The base structure for all KMS objects is :c:type:`struct drm_mode_object +<drm_mode_object>`. One of the base services it provides is tracking properties, +which are especially important for the atomic IOCTL (see `Atomic Mode +Setting`_). The somewhat surprising part here is that properties are not +directly instantiated on each object, but free-standing mode objects themselves, +represented by :c:type:`struct drm_property <drm_property>`, which only specify +the type and value range of a property. Any given property can be attached +multiple times to different objects using :c:func:`drm_object_attach_property() +<drm_object_attach_property>`. + .. kernel-doc:: include/drm/drm_mode_object.h :internal: .. kernel-doc:: drivers/gpu/drm/drm_mode_object.c :export: -Atomic Mode Setting Function Reference -====================================== +Atomic Mode Setting +=================== -.. kernel-doc:: drivers/gpu/drm/drm_atomic.c - :export: + +.. kernel-render:: DOT + :alt: Mode Objects and Properties + :caption: Mode Objects and Properties + + digraph { + node [shape=box] + + subgraph cluster_state { + style=dashed + label="Free-standing state" + + "drm_atomic_state" -> "duplicated drm_plane_state A" + "drm_atomic_state" -> "duplicated drm_plane_state B" + "drm_atomic_state" -> "duplicated drm_crtc_state" + "drm_atomic_state" -> "duplicated drm_connector_state" + "drm_atomic_state" -> "duplicated driver private state" + } + + subgraph cluster_current { + style=dashed + label="Current state" + + "drm_device" -> "drm_plane A" + "drm_device" -> "drm_plane B" + "drm_device" -> "drm_crtc" + "drm_device" -> "drm_connector" + "drm_device" -> "driver private object" + + "drm_plane A" -> "drm_plane_state A" + "drm_plane B" -> "drm_plane_state B" + "drm_crtc" -> "drm_crtc_state" + "drm_connector" -> "drm_connector_state" + "driver private object" -> "driver private state" + } + + "drm_atomic_state" -> "drm_device" [label="atomic_commit"] + "duplicated drm_plane_state A" -> "drm_device"[style=invis] + } + +Atomic provides transactional modeset (including planes) updates, but a +bit differently from the usual transactional approach of try-commit and +rollback: + +- Firstly, no hardware changes are allowed when the commit would fail. This + allows us to implement the DRM_MODE_ATOMIC_TEST_ONLY mode, which allows + userspace to explore whether certain configurations would work or not. + +- This would still allow setting and rollback of just the software state, + simplifying conversion of existing drivers. But auditing drivers for + correctness of the atomic_check code becomes really hard with that: Rolling + back changes in data structures all over the place is hard to get right. + +- Lastly, for backwards compatibility and to support all use-cases, atomic + updates need to be incremental and be able to execute in parallel. Hardware + doesn't always allow it, but where possible plane updates on different CRTCs + should not interfere, and not get stalled due to output routing changing on + different CRTCs. + +Taken all together there's two consequences for the atomic design: + +- The overall state is split up into per-object state structures: + :c:type:`struct drm_plane_state <drm_plane_state>` for planes, :c:type:`struct + drm_crtc_state <drm_crtc_state>` for CRTCs and :c:type:`struct + drm_connector_state <drm_connector_state>` for connectors. These are the only + objects with userspace-visible and settable state. For internal state drivers + can subclass these structures through embeddeding, or add entirely new state + structures for their globally shared hardware functions. + +- An atomic update is assembled and validated as an entirely free-standing pile + of structures within the :c:type:`drm_atomic_state <drm_atomic_state>` + container. Again drivers can subclass that container for their own state + structure tracking needs. Only when a state is committed is it applied to the + driver and modeset objects. This way rolling back an update boils down to + releasing memory and unreferencing objects like framebuffers. + +Read on in this chapter, and also in :ref:`drm_atomic_helper` for more detailed +coverage of specific topics. + +Atomic Mode Setting Function Reference +-------------------------------------- .. kernel-doc:: include/drm/drm_atomic.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_atomic.c + :export: + CRTC Abstraction ================ @@ -68,12 +304,12 @@ Frame Buffer Abstraction Frame Buffer Functions Reference -------------------------------- -.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c - :export: - .. kernel-doc:: include/drm/drm_framebuffer.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_framebuffer.c + :export: + DRM Format Handling =================== @@ -376,8 +612,8 @@ operation handler. Vertical Blanking and Interrupt Handling Functions Reference ------------------------------------------------------------ -.. kernel-doc:: drivers/gpu/drm/drm_irq.c - :export: - .. kernel-doc:: include/drm/drm_irq.h :internal: + +.. kernel-doc:: drivers/gpu/drm/drm_irq.c + :export: diff --git a/Documentation/gpu/drm-mm.rst b/Documentation/gpu/drm-mm.rst index f5760b140f13..96b9c34c21e4 100644 --- a/Documentation/gpu/drm-mm.rst +++ b/Documentation/gpu/drm-mm.rst @@ -183,14 +183,12 @@ GEM Objects Lifetime -------------------- All GEM objects are reference-counted by the GEM core. References can be -acquired and release by :c:func:`calling -drm_gem_object_reference()` and -:c:func:`drm_gem_object_unreference()` respectively. The caller -must hold the :c:type:`struct drm_device <drm_device>` -struct_mutex lock when calling -:c:func:`drm_gem_object_reference()`. As a convenience, GEM -provides :c:func:`drm_gem_object_unreference_unlocked()` -functions that can be called without holding the lock. +acquired and release by :c:func:`calling drm_gem_object_get()` and +:c:func:`drm_gem_object_put()` respectively. The caller must hold the +:c:type:`struct drm_device <drm_device>` struct_mutex lock when calling +:c:func:`drm_gem_object_get()`. As a convenience, GEM provides +:c:func:`drm_gem_object_put_unlocked()` functions that can be called without +holding the lock. When the last reference to a GEM object is released the GEM core calls the :c:type:`struct drm_driver <drm_driver>` gem_free_object @@ -367,36 +365,36 @@ from the client in libdrm. GEM Function Reference ---------------------- -.. kernel-doc:: drivers/gpu/drm/drm_gem.c - :export: - .. kernel-doc:: include/drm/drm_gem.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_gem.c + :export: + GEM CMA Helper Functions Reference ---------------------------------- .. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c :doc: cma helpers -.. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c - :export: - .. kernel-doc:: include/drm/drm_gem_cma_helper.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c + :export: + VMA Offset Manager ================== .. kernel-doc:: drivers/gpu/drm/drm_vma_manager.c :doc: vma offset manager -.. kernel-doc:: drivers/gpu/drm/drm_vma_manager.c - :export: - .. kernel-doc:: include/drm/drm_vma_manager.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_vma_manager.c + :export: + PRIME Buffer Sharing ==================== @@ -451,6 +449,9 @@ PRIME Helper Functions PRIME Function References ------------------------- +.. kernel-doc:: include/drm/drm_prime.h + :internal: + .. kernel-doc:: drivers/gpu/drm/drm_prime.c :export: @@ -472,12 +473,12 @@ LRU Scan/Eviction Support DRM MM Range Allocator Function References ------------------------------------------ -.. kernel-doc:: drivers/gpu/drm/drm_mm.c - :export: - .. kernel-doc:: include/drm/drm_mm.h :internal: +.. kernel-doc:: drivers/gpu/drm/drm_mm.c + :export: + DRM Cache Handling ================== diff --git a/Documentation/gpu/drm-uapi.rst b/Documentation/gpu/drm-uapi.rst index fcc228ef5bc4..858457567d3d 100644 --- a/Documentation/gpu/drm-uapi.rst +++ b/Documentation/gpu/drm-uapi.rst @@ -21,6 +21,8 @@ libdrm Device Lookup :doc: getunique and setversion story +.. _drm_primary_node: + Primary Nodes, DRM Master and Authentication ============================================ @@ -103,6 +105,8 @@ is already rather painful for the DRM subsystem, with multiple different uAPIs for the same thing co-existing. If we add a few more complete mistakes into the mix every year it would be entirely unmanageable. +.. _drm_render_node: + Render nodes ============ @@ -156,6 +160,20 @@ other hand, a driver requires shared state between clients which is visible to user-space and accessible beyond open-file boundaries, they cannot support render nodes. +IOCTL Support on Device Nodes +============================= + +.. kernel-doc:: drivers/gpu/drm/drm_ioctl.c + :doc: driver specific ioctls + +.. kernel-doc:: include/drm/drm_ioctl.h + :internal: + +.. kernel-doc:: drivers/gpu/drm/drm_ioctl.c + :export: + +.. kernel-doc:: drivers/gpu/drm/drm_ioc32.c + :export: Testing and validation ====================== @@ -203,6 +221,28 @@ Display CRC Support .. kernel-doc:: drivers/gpu/drm/drm_debugfs_crc.c :doc: CRC ABI +.. kernel-doc:: drivers/gpu/drm/drm_debugfs_crc.c + :export: + +Debugfs Support +--------------- + +.. kernel-doc:: include/drm/drm_debugfs.h + :internal: + +.. kernel-doc:: drivers/gpu/drm/drm_debugfs.c + :export: + +Sysfs Support +============= + +.. kernel-doc:: drivers/gpu/drm/drm_sysfs.c + :doc: overview + +.. kernel-doc:: drivers/gpu/drm/drm_sysfs.c + :export: + + VBlank event handling ===================== diff --git a/Documentation/gpu/i915.rst b/Documentation/gpu/i915.rst index b0d6709b8600..9c7ed3e3f1e9 100644 --- a/Documentation/gpu/i915.rst +++ b/Documentation/gpu/i915.rst @@ -222,6 +222,15 @@ Video BIOS Table (VBT) .. kernel-doc:: drivers/gpu/drm/i915/intel_vbt_defs.h :internal: +Display clocks +-------------- + +.. kernel-doc:: drivers/gpu/drm/i915/intel_cdclk.c + :doc: CDCLK / RAWCLK + +.. kernel-doc:: drivers/gpu/drm/i915/intel_cdclk.c + :internal: + Display PLLs ------------ diff --git a/Documentation/gpu/index.rst b/Documentation/gpu/index.rst index f81278a7c2cc..c572f092739e 100644 --- a/Documentation/gpu/index.rst +++ b/Documentation/gpu/index.rst @@ -11,9 +11,13 @@ Linux GPU Driver Developer's Guide drm-kms-helpers drm-uapi i915 + meson tinydrm + vc4 vga-switcheroo vgaarbiter + bridge/dw-hdmi + todo .. only:: subproject and html diff --git a/Documentation/gpu/introduction.rst b/Documentation/gpu/introduction.rst index eb284eb748ba..05a82bdfbca4 100644 --- a/Documentation/gpu/introduction.rst +++ b/Documentation/gpu/introduction.rst @@ -50,3 +50,38 @@ names are "Notes" with information for dangerous or tricky corner cases, and "FIXME" where the interface could be cleaned up. Also read the :ref:`guidelines for the kernel documentation at large <doc_guide>`. + +Getting Started +=============== + +Developers interested in helping out with the DRM subsystem are very welcome. +Often people will resort to sending in patches for various issues reported by +checkpatch or sparse. We welcome such contributions. + +Anyone looking to kick it up a notch can find a list of janitorial tasks on +the :ref:`TODO list <todo>`. + +Contribution Process +==================== + +Mostly the DRM subsystem works like any other kernel subsystem, see :ref:`the +main process guidelines and documentation <process_index>` for how things work. +Here we just document some of the specialities of the GPU subsystem. + +Feature Merge Deadlines +----------------------- + +All feature work must be in the linux-next tree by the -rc6 release of the +current release cycle, otherwise they must be postponed and can't reach the next +merge window. All patches must have landed in the drm-next tree by latest -rc7, +but if your branch is not in linux-next then this must have happened by -rc6 +already. + +After that point only bugfixes (like after the upstream merge window has closed +with the -rc1 release) are allowed. No new platform enabling or new drivers are +allowed. + +This means that there's a blackout-period of about one month where feature work +can't be merged. The recommended way to deal with that is having a -next tree +that's always open, but making sure to not feed it into linux-next during the +blackout period. As an example, drm-misc works like that. diff --git a/Documentation/gpu/kms-properties.csv b/Documentation/gpu/kms-properties.csv index 981873a05d14..927b65e14219 100644 --- a/Documentation/gpu/kms-properties.csv +++ b/Documentation/gpu/kms-properties.csv @@ -1,10 +1,5 @@ Owner Module/Drivers,Group,Property Name,Type,Property Values,Object attached,Description/Restrictions ,,“scaling mode”,ENUM,"{ ""None"", ""Full"", ""Center"", ""Full aspect"" }",Connector,"Supported by: amdgpu, gma500, i915, nouveau and radeon." -,Connector,“EDID”,BLOB | IMMUTABLE,0,Connector,Contains id of edid blob ptr object. -,,“DPMS”,ENUM,"{ “On”, “Standby”, “Suspend”, “Off” }",Connector,Contains DPMS operation mode value. -,,“PATH”,BLOB | IMMUTABLE,0,Connector,Contains topology path to a connector. -,,“TILE”,BLOB | IMMUTABLE,0,Connector,Contains tiling information for a connector. -,,“CRTC_ID”,OBJECT,DRM_MODE_OBJECT_CRTC,Connector,CRTC that connector is attached to (atomic) ,DVI-I,“subconnector”,ENUM,"{ “Unknown”, “DVI-D”, “DVI-A” }",Connector,TBD ,,“select subconnector”,ENUM,"{ “Automatic”, “DVI-D”, “DVI-A” }",Connector,TBD ,TV,“subconnector”,ENUM,"{ ""Unknown"", ""Composite"", ""SVIDEO"", ""Component"", ""SCART"" }",Connector,TBD diff --git a/Documentation/gpu/meson.rst b/Documentation/gpu/meson.rst new file mode 100644 index 000000000000..479f6f51a13b --- /dev/null +++ b/Documentation/gpu/meson.rst @@ -0,0 +1,61 @@ +============================================= +drm/meson AmLogic Meson Video Processing Unit +============================================= + +.. kernel-doc:: drivers/gpu/drm/meson/meson_drv.c + :doc: Video Processing Unit + +Video Processing Unit +===================== + +The Amlogic Meson Display controller is composed of several components +that are going to be documented below: + +.. code:: + + DMC|---------------VPU (Video Processing Unit)----------------|------HHI------| + | vd1 _______ _____________ _________________ | | + D |-------| |----| | | | | HDMI PLL | + D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK | + R |-------| |----| Processing | | | | | + | osd2 | | | |---| Enci ----------|----|-----VDAC------| + R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----| + A | osd1 | | | Blenders | | Encl ----------|----|---------------| + M |-------|______|----|____________| |________________| | | + ___|__________________________________________________________|_______________| + +Video Input Unit +================ + +.. kernel-doc:: drivers/gpu/drm/meson/meson_viu.c + :doc: Video Input Unit + +Video Post Processing +===================== + +.. kernel-doc:: drivers/gpu/drm/meson/meson_vpp.c + :doc: Video Post Processing + +Video Encoder +============= + +.. kernel-doc:: drivers/gpu/drm/meson/meson_venc.c + :doc: Video Encoder + +Video Canvas Management +======================= + +.. kernel-doc:: drivers/gpu/drm/meson/meson_canvas.c + :doc: Canvas + +Video Clocks +============ + +.. kernel-doc:: drivers/gpu/drm/meson/meson_vclk.c + :doc: Video Clocks + +HDMI Video Output +================= + +.. kernel-doc:: drivers/gpu/drm/meson/meson_dw_hdmi.c + :doc: HDMI Output diff --git a/Documentation/gpu/todo.rst b/Documentation/gpu/todo.rst new file mode 100644 index 000000000000..1bdb7356a310 --- /dev/null +++ b/Documentation/gpu/todo.rst @@ -0,0 +1,407 @@ +.. _todo: + +========= +TODO list +========= + +This section contains a list of smaller janitorial tasks in the kernel DRM +graphics subsystem useful as newbie projects. Or for slow rainy days. + +Subsystem-wide refactorings +=========================== + +De-midlayer drivers +------------------- + +With the recent ``drm_bus`` cleanup patches for 3.17 it is no longer required +to have a ``drm_bus`` structure set up. Drivers can directly set up the +``drm_device`` structure instead of relying on bus methods in ``drm_usb.c`` +and ``drm_pci.c``. The goal is to get rid of the driver's ``->load`` / +``->unload`` callbacks and open-code the load/unload sequence properly, using +the new two-stage ``drm_device`` setup/teardown. + +Once all existing drivers are converted we can also remove those bus support +files for USB and platform devices. + +All you need is a GPU for a non-converted driver (currently almost all of +them, but also all the virtual ones used by KVM, so everyone qualifies). + +Contact: Daniel Vetter, Thierry Reding, respective driver maintainers + +Switch from reference/unreference to get/put +-------------------------------------------- + +For some reason DRM core uses ``reference``/``unreference`` suffixes for +refcounting functions, but kernel uses ``get``/``put`` (e.g. +``kref_get``/``put()``). It would be good to switch over for consistency, and +it's shorter. Needs to be done in 3 steps for each pair of functions: + +* Create new ``get``/``put`` functions, define the old names as compatibility + wrappers +* Switch over each file/driver using a cocci-generated spatch. +* Once all users of the old names are gone, remove them. + +This way drivers/patches in the progress of getting merged won't break. + +Contact: Daniel Vetter + +Convert existing KMS drivers to atomic modesetting +-------------------------------------------------- + +3.19 has the atomic modeset interfaces and helpers, so drivers can now be +converted over. Modern compositors like Wayland or Surfaceflinger on Android +really want an atomic modeset interface, so this is all about the bright +future. + +There is a conversion guide for atomic and all you need is a GPU for a +non-converted driver (again virtual HW drivers for KVM are still all +suitable). + +As part of this drivers also need to convert to universal plane (which means +exposing primary & cursor as proper plane objects). But that's much easier to +do by directly using the new atomic helper driver callbacks. + +Contact: Daniel Vetter, respective driver maintainers + +Clean up the clipped coordination confusion around planes +--------------------------------------------------------- + +We have a helper to get this right with drm_plane_helper_check_update(), but +it's not consistently used. This should be fixed, preferrably in the atomic +helpers (and drivers then moved over to clipped coordinates). Probably the +helper should also be moved from drm_plane_helper.c to the atomic helpers, to +avoid confusion - the other helpers in that file are all deprecated legacy +helpers. + +Contact: Ville Syrjälä, Daniel Vetter, driver maintainers + +Implement deferred fbdev setup in the helper +-------------------------------------------- + +Many (especially embedded drivers) want to delay fbdev setup until there's a +real screen plugged in. This is to avoid the dreaded fallback to the low-res +fbdev default. Many drivers have a hacked-up (and often broken) version of this, +better to do it once in the shared helpers. Thierry has a patch series, but that +one needs to be rebased and final polish applied. + +Contact: Thierry Reding, Daniel Vetter, driver maintainers + +Convert early atomic drivers to async commit helpers +---------------------------------------------------- + +For the first year the atomic modeset helpers didn't support asynchronous / +nonblocking commits, and every driver had to hand-roll them. This is fixed +now, but there's still a pile of existing drivers that easily could be +converted over to the new infrastructure. + +One issue with the helpers is that they require that drivers handle completion +events for atomic commits correctly. But fixing these bugs is good anyway. + +Contact: Daniel Vetter, respective driver maintainers + +Better manual-upload support for atomic +--------------------------------------- + +This would be especially useful for tinydrm: + +- Add a struct drm_rect dirty_clip to drm_crtc_state. When duplicating the + crtc state, clear that to the max values, x/y = 0 and w/h = MAX_INT, in + __drm_atomic_helper_crtc_duplicate_state(). + +- Move tinydrm_merge_clips into drm_framebuffer.c, dropping the tinydrm_ + prefix ofc and using drm_fb_. drm_framebuffer.c makes sense since this + is a function useful to implement the fb->dirty function. + +- Create a new drm_fb_dirty function which does essentially what e.g. + mipi_dbi_fb_dirty does. You can use e.g. drm_atomic_helper_update_plane as the + template. But instead of doing a simple full-screen plane update, this new + helper also sets crtc_state->dirty_clip to the right coordinates. And of + course it needs to check whether the fb is actually active (and maybe where), + so there's some book-keeping involved. There's also some good fun involved in + scaling things appropriately. For that case we might simply give up and + declare the entire area covered by the plane as dirty. + +Contact: Noralf Trønnes, Daniel Vetter + +Fallout from atomic KMS +----------------------- + +``drm_atomic_helper.c`` provides a batch of functions which implement legacy +IOCTLs on top of the new atomic driver interface. Which is really nice for +gradual conversion of drivers, but unfortunately the semantic mismatches are +a bit too severe. So there's some follow-up work to adjust the function +interfaces to fix these issues: + +* atomic needs the lock acquire context. At the moment that's passed around + implicitly with some horrible hacks, and it's also allocate with + ``GFP_NOFAIL`` behind the scenes. All legacy paths need to start allocating + the acquire context explicitly on stack and then also pass it down into + drivers explicitly so that the legacy-on-atomic functions can use them. + +* A bunch of the vtable hooks are now in the wrong place: DRM has a split + between core vfunc tables (named ``drm_foo_funcs``), which are used to + implement the userspace ABI. And then there's the optional hooks for the + helper libraries (name ``drm_foo_helper_funcs``), which are purely for + internal use. Some of these hooks should be move from ``_funcs`` to + ``_helper_funcs`` since they are not part of the core ABI. There's a + ``FIXME`` comment in the kerneldoc for each such case in ``drm_crtc.h``. + +* There's a new helper ``drm_atomic_helper_best_encoder()`` which could be + used by all atomic drivers which don't select the encoder for a given + connector at runtime. That's almost all of them, and would allow us to get + rid of a lot of ``best_encoder`` boilerplate in drivers. + +Contact: Daniel Vetter + +Get rid of dev->struct_mutex from GEM drivers +--------------------------------------------- + +``dev->struct_mutex`` is the Big DRM Lock from legacy days and infested +everything. Nowadays in modern drivers the only bit where it's mandatory is +serializing GEM buffer object destruction. Which unfortunately means drivers +have to keep track of that lock and either call ``unreference`` or +``unreference_locked`` depending upon context. + +Core GEM doesn't have a need for ``struct_mutex`` any more since kernel 4.8, +and there's a ``gem_free_object_unlocked`` callback for any drivers which are +entirely ``struct_mutex`` free. + +For drivers that need ``struct_mutex`` it should be replaced with a driver- +private lock. The tricky part is the BO free functions, since those can't +reliably take that lock any more. Instead state needs to be protected with +suitable subordinate locks or some cleanup work pushed to a worker thread. For +performance-critical drivers it might also be better to go with a more +fine-grained per-buffer object and per-context lockings scheme. Currently the +following drivers still use ``struct_mutex``: ``msm``, ``omapdrm`` and +``udl``. + +Contact: Daniel Vetter, respective driver maintainers + +Switch to drm_connector_list_iter for any connector_list walking +---------------------------------------------------------------- + +Connectors can be hotplugged, and we now have a special list of helpers to walk +the connector_list in a race-free fashion, without incurring deadlocks on +mutexes and other fun stuff. + +Unfortunately most drivers are not converted yet. At least all those supporting +DP MST hotplug should be converted, since for those drivers the difference +matters. See drm_for_each_connector_iter() vs. drm_for_each_connector(). + +Contact: Daniel Vetter + +Core refactorings +================= + +Use new IDR deletion interface to clean up drm_gem_handle_delete() +------------------------------------------------------------------ + +See the "This is gross" comment -- apparently the IDR system now can return an +error code instead of oopsing. + +Clean up the DRM header mess +---------------------------- + +Currently the DRM subsystem has only one global header, ``drmP.h``. This is +used both for functions exported to helper libraries and drivers and functions +only used internally in the ``drm.ko`` module. The goal would be to move all +header declarations not needed outside of ``drm.ko`` into +``drivers/gpu/drm/drm_*_internal.h`` header files. ``EXPORT_SYMBOL`` also +needs to be dropped for these functions. + +This would nicely tie in with the below task to create kerneldoc after the API +is cleaned up. Or with the "hide legacy cruft better" task. + +Note that this is well in progress, but ``drmP.h`` is still huge. The updated +plan is to switch to per-file driver API headers, which will also structure +the kerneldoc better. This should also allow more fine-grained ``#include`` +directives. + +In the end no .c file should need to include ``drmP.h`` anymore. + +Contact: Daniel Vetter + +Add missing kerneldoc for exported functions +-------------------------------------------- + +The DRM reference documentation is still lacking kerneldoc in a few areas. The +task would be to clean up interfaces like moving functions around between +files to better group them and improving the interfaces like dropping return +values for functions that never fail. Then write kerneldoc for all exported +functions and an overview section and integrate it all into the drm DocBook. + +See https://dri.freedesktop.org/docs/drm/ for what's there already. + +Contact: Daniel Vetter + +Hide legacy cruft better +------------------------ + +Way back DRM supported only drivers which shadow-attached to PCI devices with +userspace or fbdev drivers setting up outputs. Modern DRM drivers take charge +of the entire device, you can spot them with the DRIVER_MODESET flag. + +Unfortunately there's still large piles of legacy code around which needs to +be hidden so that driver writers don't accidentally end up using it. And to +prevent security issues in those legacy IOCTLs from being exploited on modern +drivers. This has multiple possible subtasks: + +* Extract support code for legacy features into a ``drm-legacy.ko`` kernel + module and compile it only when one of the legacy drivers is enabled. + +This is mostly done, the only thing left is to split up ``drm_irq.c`` into +legacy cruft and the parts needed by modern KMS drivers. + +Contact: Daniel Vetter + +Make panic handling work +------------------------ + +This is a really varied tasks with lots of little bits and pieces: + +* The panic path can't be tested currently, leading to constant breaking. The + main issue here is that panics can be triggered from hardirq contexts and + hence all panic related callback can run in hardirq context. It would be + awesome if we could test at least the fbdev helper code and driver code by + e.g. trigger calls through drm debugfs files. hardirq context could be + achieved by using an IPI to the local processor. + +* There's a massive confusion of different panic handlers. DRM fbdev emulation + helpers have one, but on top of that the fbcon code itself also has one. We + need to make sure that they stop fighting over each another. + +* ``drm_can_sleep()`` is a mess. It hides real bugs in normal operations and + isn't a full solution for panic paths. We need to make sure that it only + returns true if there's a panic going on for real, and fix up all the + fallout. + +* The panic handler must never sleep, which also means it can't ever + ``mutex_lock()``. Also it can't grab any other lock unconditionally, not + even spinlocks (because NMI and hardirq can panic too). We need to either + make sure to not call such paths, or trylock everything. Really tricky. + +* For the above locking troubles reasons it's pretty much impossible to + attempt a synchronous modeset from panic handlers. The only thing we could + try to achive is an atomic ``set_base`` of the primary plane, and hope that + it shows up. Everything else probably needs to be delayed to some worker or + something else which happens later on. Otherwise it just kills the box + harder, prevent the panic from going out on e.g. netconsole. + +* There's also proposal for a simplied DRM console instead of the full-blown + fbcon and DRM fbdev emulation. Any kind of panic handling tricks should + obviously work for both console, in case we ever get kmslog merged. + +Contact: Daniel Vetter + +Clean up the debugfs support +---------------------------- + +There's a bunch of issues with it: + +- The drm_info_list ->show() function doesn't even bother to cast to the drm + structure for you. This is lazy. + +- We probably want to have some support for debugfs files on crtc/connectors and + maybe other kms objects directly in core. There's even drm_print support in + the funcs for these objects to dump kms state, so it's all there. And then the + ->show() functions should obviously give you a pointer to the right object. + +- The drm_info_list stuff is centered on drm_minor instead of drm_device. For + anything we want to print drm_device (or maybe drm_file) is the right thing. + +- The drm_driver->debugfs_init hooks we have is just an artifact of the old + midlayered load sequence. DRM debugfs should work more like sysfs, where you + can create properties/files for an object anytime you want, and the core + takes care of publishing/unpuplishing all the files at register/unregister + time. Drivers shouldn't need to worry about these technicalities, and fixing + this (together with the drm_minor->drm_device move) would allow us to remove + debugfs_init. + +Contact: Daniel Vetter + +Better Testing +============== + +Enable trinity for DRM +---------------------- + +And fix up the fallout. Should be really interesting ... + +Make KMS tests in i-g-t generic +------------------------------- + +The i915 driver team maintains an extensive testsuite for the i915 DRM driver, +including tons of testcases for corner-cases in the modesetting API. It would +be awesome if those tests (at least the ones not relying on Intel-specific GEM +features) could be made to run on any KMS driver. + +Basic work to run i-g-t tests on non-i915 is done, what's now missing is mass- +converting things over. For modeset tests we also first need a bit of +infrastructure to use dumb buffers for untiled buffers, to be able to run all +the non-i915 specific modeset tests. + +Contact: Daniel Vetter + +Create a virtual KMS driver for testing (vkms) +---------------------------------------------- + +With all the latest helpers it should be fairly simple to create a virtual KMS +driver useful for testing, or for running X or similar on headless machines +(to be able to still use the GPU). This would be similar to vgem, but aimed at +the modeset side. + +Once the basics are there there's tons of possibilities to extend it. + +Contact: Daniel Vetter + +Driver Specific +=============== + +tinydrm +------- + +Tinydrm is the helper driver for really simple fb drivers. The goal is to make +those drivers as simple as possible, so lots of room for refactoring: + +- backlight helpers, probably best to put them into a new drm_backlight.c. + This is because drivers/video is de-facto unmaintained. We could also + move drivers/video/backlight to drivers/gpu/backlight and take it all + over within drm-misc, but that's more work. + +- spi helpers, probably best put into spi core/helper code. Thierry said + the spi maintainer is fast&reactive, so shouldn't be a big issue. + +- extract the mipi-dbi helper (well, the non-tinydrm specific parts at + least) into a separate helper, like we have for mipi-dsi already. Or follow + one of the ideas for having a shared dsi/dbi helper, abstracting away the + transport details more. + +- tinydrm_lastclose could be drm_fb_helper_lastclose. Only thing we need + for that is to store the drm_fb_helper pointer somewhere in + drm_device->mode_config. And then we could roll that out to all the + drivers. + +- tinydrm_gem_cma_prime_import_sg_table should probably go into the cma + helpers, as a _vmapped variant (since not every driver needs the vmap). + And tinydrm_gem_cma_free_object could the be merged into + drm_gem_cma_free_object(). + +- tinydrm_fb_create we could move into drm_simple_pipe, only need to add + the fb_create hook to drm_simple_pipe_funcs, which would again simplify a + bunch of things (since it gives you a one-stop vfunc for simple drivers). + +- Quick aside: The unregister devm stuff is kinda getting the lifetimes of + a drm_device wrong. Doesn't matter, since everyone else gets it wrong + too :-) + +- With the fbdev pointer in dev->mode_config we could also make + suspend/resume helpers entirely generic, at least if we add a + dev->mode_config.suspend_state. We could even provide a generic pm_ops + structure with those. + +- also rework the drm_framebuffer_funcs->dirty hook wire-up, see above. + +Contact: Noralf Trønnes, Daniel Vetter + +Outside DRM +=========== diff --git a/Documentation/gpu/vc4.rst b/Documentation/gpu/vc4.rst new file mode 100644 index 000000000000..5df1d98b9544 --- /dev/null +++ b/Documentation/gpu/vc4.rst @@ -0,0 +1,89 @@ +===================================== + drm/vc4 Broadcom VC4 Graphics Driver +===================================== + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_drv.c + :doc: Broadcom VC4 Graphics Driver + +Display Hardware Handling +========================= + +This section covers everything related to the display hardware including +the mode setting infrastructure, plane, sprite and cursor handling and +display, output probing and related topics. + +Pixel Valve (DRM CRTC) +---------------------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_crtc.c + :doc: VC4 CRTC module + +HVS +--- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_hvs.c + :doc: VC4 HVS module. + +HVS planes +---------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_plane.c + :doc: VC4 plane module + +HDMI encoder +------------ + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_hdmi.c + :doc: VC4 Falcon HDMI module + +DSI encoder +----------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_dsi.c + :doc: VC4 DSI0/DSI1 module + +DPI encoder +----------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_dpi.c + :doc: VC4 DPI module + +VEC (Composite TV out) encoder +------------------------------ + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_vec.c + :doc: VC4 SDTV module + +Memory Management and 3D Command Submission +=========================================== + +This section covers the GEM implementation in the vc4 driver. + +GPU buffer object (BO) management +--------------------------------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_bo.c + :doc: VC4 GEM BO management support + +V3D binner command list (BCL) validation +---------------------------------------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_validate.c + :doc: Command list validator for VC4. + +V3D render command list (RCL) generation +---------------------------------------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_render_cl.c + :doc: Render command list generation + +Shader validator for VC4 +--------------------------- +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_validate_shaders.c + :doc: Shader validator for VC4. + +V3D Interrupts +-------------- + +.. kernel-doc:: drivers/gpu/drm/vc4/vc4_irq.c + :doc: Interrupt management for the V3D engine diff --git a/Documentation/hid/hidraw.txt b/Documentation/hid/hidraw.txt index 029e6cb9a7e8..c8436e354f44 100644 --- a/Documentation/hid/hidraw.txt +++ b/Documentation/hid/hidraw.txt @@ -81,7 +81,7 @@ of: BUS_HIL BUS_BLUETOOTH BUS_VIRTUAL -which are defined in linux/input.h. +which are defined in uapi/linux/input.h. HIDIOCGRAWNAME(len): Get Raw Name This ioctl returns a string containing the vendor and product strings of diff --git a/Documentation/hwmon/aspeed-pwm-tacho b/Documentation/hwmon/aspeed-pwm-tacho new file mode 100644 index 000000000000..7cfb34977460 --- /dev/null +++ b/Documentation/hwmon/aspeed-pwm-tacho @@ -0,0 +1,22 @@ +Kernel driver aspeed-pwm-tacho +============================== + +Supported chips: + ASPEED AST2400/2500 + +Authors: + <jaghu@google.com> + +Description: +------------ +This driver implements support for ASPEED AST2400/2500 PWM and Fan Tacho +controller. The PWM controller supports upto 8 PWM outputs. The Fan tacho +controller supports up to 16 tachometer inputs. + +The driver provides the following sensor accesses in sysfs: + +fanX_input ro provide current fan rotation value in RPM as reported + by the fan to the device. + +pwmX rw get or set PWM fan control value. This is an integer + value between 0(off) and 255(full speed). diff --git a/Documentation/hwmon/tc654 b/Documentation/hwmon/tc654 index 91a2843f5f98..47636a8077b4 100644 --- a/Documentation/hwmon/tc654 +++ b/Documentation/hwmon/tc654 @@ -2,7 +2,7 @@ Kernel driver tc654 =================== Supported chips: - * Microship TC654 and TC655 + * Microchip TC654 and TC655 Prefix: 'tc654' Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/20001734C.pdf diff --git a/Documentation/index.rst b/Documentation/index.rst index f6e641a54bbc..61306a22888d 100644 --- a/Documentation/index.rst +++ b/Documentation/index.rst @@ -24,6 +24,18 @@ trying to get it to work optimally on a given system. admin-guide/index +Application-developer documentation +----------------------------------- + +The user-space API manual gathers together documents describing aspects of +the kernel interface as seen by application developers. + +.. toctree:: + :maxdepth: 2 + + userspace-api/index + + Introduction to kernel development ---------------------------------- @@ -76,6 +88,14 @@ Chinese translations translations/zh_CN/index +Japanese translations +--------------------- + +.. toctree:: + :maxdepth: 1 + + translations/ja_JP/index + Indices and tables ================== diff --git a/Documentation/input/event-codes.txt b/Documentation/input/event-codes.txt index 36ea940e5bb9..575415f4cef0 100644 --- a/Documentation/input/event-codes.txt +++ b/Documentation/input/event-codes.txt @@ -301,7 +301,10 @@ them as any other INPUT_PROP_BUTTONPAD device. INPUT_PROP_ACCELEROMETER ------------------------- Directional axes on this device (absolute and/or relative x, y, z) represent -accelerometer data. All other axes retain their meaning. A device must not mix +accelerometer data. Some devices also report gyroscope data, which devices +can report through the rotational axes (absolute and/or relative rx, ry, rz). + +All other axes retain their meaning. A device must not mix regular directional axes and accelerometer axes on the same event node. Guidelines: diff --git a/Documentation/input/ff.txt b/Documentation/input/ff.txt index b3867bf49f8f..be742eec7aab 100644 --- a/Documentation/input/ff.txt +++ b/Documentation/input/ff.txt @@ -106,9 +106,9 @@ allocate a new effect. Effects are file descriptor specific. -See <linux/input.h> for a description of the ff_effect struct. You should also -find help in a few sketches, contained in files shape.fig and interactive.fig. -You need xfig to visualize these files. +See <uapi/linux/input.h> for a description of the ff_effect struct. You should +also find help in a few sketches, contained in files shape.fig and +interactive.fig. You need xfig to visualize these files. 3.3 Removing an effect from the device ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/Documentation/input/input-programming.txt b/Documentation/input/input-programming.txt index 7f8b9d97bc47..c3b940baba42 100644 --- a/Documentation/input/input-programming.txt +++ b/Documentation/input/input-programming.txt @@ -174,8 +174,8 @@ It's reported to the input system via: input_report_key(struct input_dev *dev, int code, int value) -See linux/input.h for the allowable values of code (from 0 to KEY_MAX). -Value is interpreted as a truth value, ie any nonzero value means key +See uapi/linux/input-event-codes.h for the allowable values of code (from 0 to +KEY_MAX). Value is interpreted as a truth value, ie any nonzero value means key pressed, zero value means key released. The input code generates events only in case the value is different from before. diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt index 08244bea5048..a77ead911956 100644 --- a/Documentation/ioctl/ioctl-number.txt +++ b/Documentation/ioctl/ioctl-number.txt @@ -212,7 +212,7 @@ Code Seq#(hex) Include File Comments 'c' 00-1F linux/chio.h conflict! 'c' 80-9F arch/s390/include/asm/chsc.h conflict! 'c' A0-AF arch/x86/include/asm/msr.h conflict! -'d' 00-FF linux/char/drm/drm/h conflict! +'d' 00-FF linux/char/drm/drm.h conflict! 'd' 02-40 pcmcia/ds.h conflict! 'd' F0-FF linux/digi1.h 'e' all linux/digi1.h conflict! diff --git a/Documentation/leds/leds-lp55xx.txt b/Documentation/leds/leds-lp55xx.txt index bcea12a0c584..e23fa91ea722 100644 --- a/Documentation/leds/leds-lp55xx.txt +++ b/Documentation/leds/leds-lp55xx.txt @@ -117,7 +117,7 @@ As soon as 'loading' is set to 0, registered callback is called. Inside the callback, the selected engine is loaded and memory is updated. To run programmed pattern, 'run_engine' attribute should be enabled. -The pattern sqeuence of LP8501 is similar to LP5523. +The pattern sequence of LP8501 is similar to LP5523. However pattern data is specific. Ex 1) Engine 1 is used echo 1 > /sys/bus/i2c/devices/xxxx/select_engine diff --git a/Documentation/lightnvm/pblk.txt b/Documentation/lightnvm/pblk.txt new file mode 100644 index 000000000000..1040ed1cec81 --- /dev/null +++ b/Documentation/lightnvm/pblk.txt @@ -0,0 +1,21 @@ +pblk: Physical Block Device Target +================================== + +pblk implements a fully associative, host-based FTL that exposes a traditional +block I/O interface. Its primary responsibilities are: + + - Map logical addresses onto physical addresses (4KB granularity) in a + logical-to-physical (L2P) table. + - Maintain the integrity and consistency of the L2P table as well as its + recovery from normal tear down and power outage. + - Deal with controller- and media-specific constrains. + - Handle I/O errors. + - Implement garbage collection. + - Maintain consistency across the I/O stack during synchronization points. + +For more information please refer to: + + http://lightnvm.io + +which maintains updated FAQs, manual pages, technical documentation, tools, +contacts, etc. diff --git a/Documentation/livepatch/livepatch.txt b/Documentation/livepatch/livepatch.txt index 9d2096c7160d..ecdb18104ab0 100644 --- a/Documentation/livepatch/livepatch.txt +++ b/Documentation/livepatch/livepatch.txt @@ -72,7 +72,8 @@ example, they add a NULL pointer or a boundary check, fix a race by adding a missing memory barrier, or add some locking around a critical section. Most of these changes are self contained and the function presents itself the same way to the rest of the system. In this case, the functions might -be updated independently one by one. +be updated independently one by one. (This can be done by setting the +'immediate' flag in the klp_patch struct.) But there are more complex fixes. For example, a patch might change ordering of locking in multiple functions at the same time. Or a patch @@ -86,20 +87,141 @@ or no data are stored in the modified structures at the moment. The theory about how to apply functions a safe way is rather complex. The aim is to define a so-called consistency model. It attempts to define conditions when the new implementation could be used so that the system -stays consistent. The theory is not yet finished. See the discussion at -https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz - -The current consistency model is very simple. It guarantees that either -the old or the new function is called. But various functions get redirected -one by one without any synchronization. - -In other words, the current implementation _never_ modifies the behavior -in the middle of the call. It is because it does _not_ rewrite the entire -function in the memory. Instead, the function gets redirected at the -very beginning. But this redirection is used immediately even when -some other functions from the same patch have not been redirected yet. - -See also the section "Limitations" below. +stays consistent. + +Livepatch has a consistency model which is a hybrid of kGraft and +kpatch: it uses kGraft's per-task consistency and syscall barrier +switching combined with kpatch's stack trace switching. There are also +a number of fallback options which make it quite flexible. + +Patches are applied on a per-task basis, when the task is deemed safe to +switch over. When a patch is enabled, livepatch enters into a +transition state where tasks are converging to the patched state. +Usually this transition state can complete in a few seconds. The same +sequence occurs when a patch is disabled, except the tasks converge from +the patched state to the unpatched state. + +An interrupt handler inherits the patched state of the task it +interrupts. The same is true for forked tasks: the child inherits the +patched state of the parent. + +Livepatch uses several complementary approaches to determine when it's +safe to patch tasks: + +1. The first and most effective approach is stack checking of sleeping + tasks. If no affected functions are on the stack of a given task, + the task is patched. In most cases this will patch most or all of + the tasks on the first try. Otherwise it'll keep trying + periodically. This option is only available if the architecture has + reliable stacks (HAVE_RELIABLE_STACKTRACE). + +2. The second approach, if needed, is kernel exit switching. A + task is switched when it returns to user space from a system call, a + user space IRQ, or a signal. It's useful in the following cases: + + a) Patching I/O-bound user tasks which are sleeping on an affected + function. In this case you have to send SIGSTOP and SIGCONT to + force it to exit the kernel and be patched. + b) Patching CPU-bound user tasks. If the task is highly CPU-bound + then it will get patched the next time it gets interrupted by an + IRQ. + c) In the future it could be useful for applying patches for + architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In + this case you would have to signal most of the tasks on the + system. However this isn't supported yet because there's + currently no way to patch kthreads without + HAVE_RELIABLE_STACKTRACE. + +3. For idle "swapper" tasks, since they don't ever exit the kernel, they + instead have a klp_update_patch_state() call in the idle loop which + allows them to be patched before the CPU enters the idle state. + + (Note there's not yet such an approach for kthreads.) + +All the above approaches may be skipped by setting the 'immediate' flag +in the 'klp_patch' struct, which will disable per-task consistency and +patch all tasks immediately. This can be useful if the patch doesn't +change any function or data semantics. Note that, even with this flag +set, it's possible that some tasks may still be running with an old +version of the function, until that function returns. + +There's also an 'immediate' flag in the 'klp_func' struct which allows +you to specify that certain functions in the patch can be applied +without per-task consistency. This might be useful if you want to patch +a common function like schedule(), and the function change doesn't need +consistency but the rest of the patch does. + +For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user +must set patch->immediate which causes all tasks to be patched +immediately. This option should be used with care, only when the patch +doesn't change any function or data semantics. + +In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE +may be allowed to use per-task consistency if we can come up with +another way to patch kthreads. + +The /sys/kernel/livepatch/<patch>/transition file shows whether a patch +is in transition. Only a single patch (the topmost patch on the stack) +can be in transition at a given time. A patch can remain in transition +indefinitely, if any of the tasks are stuck in the initial patch state. + +A transition can be reversed and effectively canceled by writing the +opposite value to the /sys/kernel/livepatch/<patch>/enabled file while +the transition is in progress. Then all the tasks will attempt to +converge back to the original patch state. + +There's also a /proc/<pid>/patch_state file which can be used to +determine which tasks are blocking completion of a patching operation. +If a patch is in transition, this file shows 0 to indicate the task is +unpatched and 1 to indicate it's patched. Otherwise, if no patch is in +transition, it shows -1. Any tasks which are blocking the transition +can be signaled with SIGSTOP and SIGCONT to force them to change their +patched state. + + +3.1 Adding consistency model support to new architectures +--------------------------------------------------------- + +For adding consistency model support to new architectures, there are a +few options: + +1) Add CONFIG_HAVE_RELIABLE_STACKTRACE. This means porting objtool, and + for non-DWARF unwinders, also making sure there's a way for the stack + tracing code to detect interrupts on the stack. + +2) Alternatively, ensure that every kthread has a call to + klp_update_patch_state() in a safe location. Kthreads are typically + in an infinite loop which does some action repeatedly. The safe + location to switch the kthread's patch state would be at a designated + point in the loop where there are no locks taken and all data + structures are in a well-defined state. + + The location is clear when using workqueues or the kthread worker + API. These kthreads process independent actions in a generic loop. + + It's much more complicated with kthreads which have a custom loop. + There the safe location must be carefully selected on a case-by-case + basis. + + In that case, arches without HAVE_RELIABLE_STACKTRACE would still be + able to use the non-stack-checking parts of the consistency model: + + a) patching user tasks when they cross the kernel/user space + boundary; and + + b) patching kthreads and idle tasks at their designated patch points. + + This option isn't as good as option 1 because it requires signaling + user tasks and waking kthreads to patch them. But it could still be + a good backup option for those architectures which don't have + reliable stack traces yet. + +In the meantime, patches for such architectures can bypass the +consistency model by setting klp_patch.immediate to true. This option +is perfectly fine for patches which don't change the semantics of the +patched functions. In practice, this is usable for ~90% of security +fixes. Use of this option also means the patch can't be unloaded after +it has been disabled. 4. Livepatch module @@ -134,7 +256,7 @@ Documentation/livepatch/module-elf-format.txt for more details. 4.2. Metadata ------------- +------------- The patch is described by several structures that split the information into three levels: @@ -156,6 +278,9 @@ into three levels: only for a particular object ( vmlinux or a kernel module ). Note that kallsyms allows for searching symbols according to the object name. + There's also an 'immediate' flag which, when set, patches the + function immediately, bypassing the consistency model safety checks. + + struct klp_object defines an array of patched functions (struct klp_func) in the same object. Where the object is either vmlinux (NULL) or a module name. @@ -172,10 +297,13 @@ into three levels: This structure handles all patched functions consistently and eventually, synchronously. The whole patch is applied only when all patched symbols are found. The only exception are symbols from objects - (kernel modules) that have not been loaded yet. Also if a more complex - consistency model is supported then a selected unit (thread, - kernel as a whole) will see the new code from the entire patch - only when it is in a safe state. + (kernel modules) that have not been loaded yet. + + Setting the 'immediate' flag applies the patch to all tasks + immediately, bypassing the consistency model safety checks. + + For more details on how the patch is applied on a per-task basis, + see the "Consistency model" section. 4.3. Livepatch module handling @@ -188,8 +316,15 @@ section "Livepatch life-cycle" below for more details about these two operations. Module removal is only safe when there are no users of the underlying -functions. The immediate consistency model is not able to detect this; -therefore livepatch modules cannot be removed. See "Limitations" below. +functions. The immediate consistency model is not able to detect this. The +code just redirects the functions at the very beginning and it does not +check if the functions are in use. In other words, it knows when the +functions get called but it does not know when the functions return. +Therefore it cannot be decided when the livepatch module can be safely +removed. This is solved by a hybrid consistency model. When the system is +transitioned to a new patch state (patched/unpatched) it is guaranteed that +no task sleeps or runs in the old code. + 5. Livepatch life-cycle ======================= @@ -239,9 +374,15 @@ Registered patches might be enabled either by calling klp_enable_patch() or by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will start using the new implementation of the patched functions at this stage. -In particular, if an original function is patched for the first time, a -function specific struct klp_ops is created and an universal ftrace handler -is registered. +When a patch is enabled, livepatch enters into a transition state where +tasks are converging to the patched state. This is indicated by a value +of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks have +been patched, the 'transition' value changes to '0'. For more +information about this process, see the "Consistency model" section. + +If an original function is patched for the first time, a function +specific struct klp_ops is created and an universal ftrace handler is +registered. Functions might be patched multiple times. The ftrace handler is registered only once for the given function. Further patches just add an entry to the @@ -261,6 +402,12 @@ by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage either the code from the previously enabled patch or even the original code gets used. +When a patch is disabled, livepatch enters into a transition state where +tasks are converging to the unpatched state. This is indicated by a +value of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks +have been unpatched, the 'transition' value changes to '0'. For more +information about this process, see the "Consistency model" section. + Here all the functions (struct klp_func) associated with the to-be-disabled patch are removed from the corresponding struct klp_ops. The ftrace handler is unregistered and the struct klp_ops is freed when the func_stack list @@ -329,23 +476,6 @@ The current Livepatch implementation has several limitations: by "notrace". - + Livepatch modules can not be removed. - - The current implementation just redirects the functions at the very - beginning. It does not check if the functions are in use. In other - words, it knows when the functions get called but it does not - know when the functions return. Therefore it can not decide when - the livepatch module can be safely removed. - - This will get most likely solved once a more complex consistency model - is supported. The idea is that a safe state for patching should also - mean a safe state for removing the patch. - - Note that the patch itself might get disabled by writing zero - to /sys/kernel/livepatch/<patch>/enabled. It causes that the new - code will not longer get called. But it does not guarantee - that anyone is not sleeping anywhere in the new code. - + Livepatch works reliably only when the dynamic ftrace is located at the very beginning of the function. diff --git a/Documentation/md/md-cluster.txt b/Documentation/md/md-cluster.txt index 38883276d31c..82ee51604e9a 100644 --- a/Documentation/md/md-cluster.txt +++ b/Documentation/md/md-cluster.txt @@ -77,7 +77,7 @@ There are three groups of locks for managing the device: 3.1.2 RESYNCING: informs other nodes that a resync is initiated or ended so that each node may suspend or resume the region. Each RESYNCING message identifies a range of the devices that the - sending node is about to resync. This over-rides any pervious + sending node is about to resync. This overrides any previous notification from that node: only one ranged can be resynced at a time per-node. @@ -321,4 +321,4 @@ The algorithm is: There are somethings which are not supported by cluster MD yet. -- update size and change array_sectors. +- change array_sectors. diff --git a/Documentation/md/raid5-ppl.txt b/Documentation/md/raid5-ppl.txt new file mode 100644 index 000000000000..127072b09363 --- /dev/null +++ b/Documentation/md/raid5-ppl.txt @@ -0,0 +1,44 @@ +Partial Parity Log + +Partial Parity Log (PPL) is a feature available for RAID5 arrays. The issue +addressed by PPL is that after a dirty shutdown, parity of a particular stripe +may become inconsistent with data on other member disks. If the array is also +in degraded state, there is no way to recalculate parity, because one of the +disks is missing. This can lead to silent data corruption when rebuilding the +array or using it is as degraded - data calculated from parity for array blocks +that have not been touched by a write request during the unclean shutdown can +be incorrect. Such condition is known as the RAID5 Write Hole. Because of +this, md by default does not allow starting a dirty degraded array. + +Partial parity for a write operation is the XOR of stripe data chunks not +modified by this write. It is just enough data needed for recovering from the +write hole. XORing partial parity with the modified chunks produces parity for +the stripe, consistent with its state before the write operation, regardless of +which chunk writes have completed. If one of the not modified data disks of +this stripe is missing, this updated parity can be used to recover its +contents. PPL recovery is also performed when starting an array after an +unclean shutdown and all disks are available, eliminating the need to resync +the array. Because of this, using write-intent bitmap and PPL together is not +supported. + +When handling a write request PPL writes partial parity before new data and +parity are dispatched to disks. PPL is a distributed log - it is stored on +array member drives in the metadata area, on the parity drive of a particular +stripe. It does not require a dedicated journaling drive. Write performance is +reduced by up to 30%-40% but it scales with the number of drives in the array +and the journaling drive does not become a bottleneck or a single point of +failure. + +Unlike raid5-cache, the other solution in md for closing the write hole, PPL is +not a true journal. It does not protect from losing in-flight data, only from +silent data corruption. If a dirty disk of a stripe is lost, no PPL recovery is +performed for this stripe (parity is not updated). So it is possible to have +arbitrary data in the written part of a stripe if that disk is lost. In such +case the behavior is the same as in plain raid5. + +PPL is available for md version-1 metadata and external (specifically IMSM) +metadata arrays. It can be enabled using mdadm option --consistency-policy=ppl. + +Currently, volatile write-back cache should be disabled on all member drives +when using PPL. Otherwise it cannot guarantee consistency in case of power +failure. diff --git a/Documentation/media/Makefile b/Documentation/media/Makefile index 9b3e70b2cab2..36166952d555 100644 --- a/Documentation/media/Makefile +++ b/Documentation/media/Makefile @@ -1,51 +1,6 @@ -# Rules to convert DOT and SVG to Sphinx images - -SRC_DIR=$(srctree)/Documentation/media - -DOTS = \ - uapi/v4l/pipeline.dot \ - -IMAGES = \ - typical_media_device.svg \ - uapi/dvb/dvbstb.svg \ - uapi/v4l/bayer.svg \ - uapi/v4l/constraints.svg \ - uapi/v4l/crop.svg \ - uapi/v4l/fieldseq_bt.svg \ - uapi/v4l/fieldseq_tb.svg \ - uapi/v4l/nv12mt.svg \ - uapi/v4l/nv12mt_example.svg \ - uapi/v4l/pipeline.svg \ - uapi/v4l/selection.svg \ - uapi/v4l/subdev-image-processing-full.svg \ - uapi/v4l/subdev-image-processing-scaling-multi-source.svg \ - uapi/v4l/subdev-image-processing-crop.svg \ - uapi/v4l/vbi_525.svg \ - uapi/v4l/vbi_625.svg \ - uapi/v4l/vbi_hsync.svg \ - -DOTTGT := $(patsubst %.dot,%.svg,$(DOTS)) -IMGDOT := $(patsubst %,$(SRC_DIR)/%,$(DOTTGT)) - -IMGTGT := $(patsubst %.svg,%.pdf,$(IMAGES)) -IMGPDF := $(patsubst %,$(SRC_DIR)/%,$(IMGTGT)) - -cmd = $(echo-cmd) $(cmd_$(1)) - -quiet_cmd_genpdf = GENPDF $2 - cmd_genpdf = convert $2 $3 - -quiet_cmd_gendot = DOT $2 - cmd_gendot = dot -Tsvg $2 > $3 || { rm -f $3; exit 1; } - -%.pdf: %.svg - @$(call cmd,genpdf,$<,$@) - -%.svg: %.dot - @$(call cmd,gendot,$<,$@) - # Rules to convert a .h file to inline RST documentation +SRC_DIR=$(srctree)/Documentation/media PARSER = $(srctree)/Documentation/sphinx/parse-headers.pl UAPI = $(srctree)/include/uapi/linux KAPI = $(srctree)/include/linux diff --git a/Documentation/media/intro.rst b/Documentation/media/intro.rst index 8f7490c9a8ef..9ce2e23a0236 100644 --- a/Documentation/media/intro.rst +++ b/Documentation/media/intro.rst @@ -13,9 +13,9 @@ A typical media device hardware is shown at :ref:`typical_media_device`. .. _typical_media_device: -.. figure:: typical_media_device.* - :alt: typical_media_device.pdf / typical_media_device.svg - :align: center +.. kernel-figure:: typical_media_device.svg + :alt: typical_media_device.svg + :align: center Typical Media Device diff --git a/Documentation/media/uapi/dvb/intro.rst b/Documentation/media/uapi/dvb/intro.rst index 2ed5c23102b4..652c4aacd2c6 100644 --- a/Documentation/media/uapi/dvb/intro.rst +++ b/Documentation/media/uapi/dvb/intro.rst @@ -55,9 +55,9 @@ Overview .. _stb_components: -.. figure:: dvbstb.* - :alt: dvbstb.pdf / dvbstb.svg - :align: center +.. kernel-figure:: dvbstb.svg + :alt: dvbstb.svg + :align: center Components of a DVB card/STB diff --git a/Documentation/media/uapi/v4l/crop.rst b/Documentation/media/uapi/v4l/crop.rst index be58894c9c89..182565b9ace4 100644 --- a/Documentation/media/uapi/v4l/crop.rst +++ b/Documentation/media/uapi/v4l/crop.rst @@ -53,8 +53,8 @@ Cropping Structures .. _crop-scale: -.. figure:: crop.* - :alt: crop.pdf / crop.svg +.. kernel-figure:: crop.svg + :alt: crop.svg :align: center Image Cropping, Insertion and Scaling diff --git a/Documentation/media/uapi/v4l/dev-raw-vbi.rst b/Documentation/media/uapi/v4l/dev-raw-vbi.rst index baf5f2483927..2e6878b624f6 100644 --- a/Documentation/media/uapi/v4l/dev-raw-vbi.rst +++ b/Documentation/media/uapi/v4l/dev-raw-vbi.rst @@ -221,33 +221,29 @@ and always returns default parameters as :ref:`VIDIOC_G_FMT <VIDIOC_G_FMT>` does .. _vbi-hsync: -.. figure:: vbi_hsync.* - :alt: vbi_hsync.pdf / vbi_hsync.svg - :align: center +.. kernel-figure:: vbi_hsync.svg + :alt: vbi_hsync.svg + :align: center **Figure 4.1. Line synchronization** .. _vbi-525: -.. figure:: vbi_525.* - :alt: vbi_525.pdf / vbi_525.svg - :align: center +.. kernel-figure:: vbi_525.svg + :alt: vbi_525.svg + :align: center **Figure 4.2. ITU-R 525 line numbering (M/NTSC and M/PAL)** - - .. _vbi-625: -.. figure:: vbi_625.* - :alt: vbi_625.pdf / vbi_625.svg - :align: center +.. kernel-figure:: vbi_625.svg + :alt: vbi_625.svg + :align: center **Figure 4.3. ITU-R 625 line numbering** - - Remember the VBI image format depends on the selected video standard, therefore the application must choose a new standard or query the current standard first. Attempts to read or write data ahead of format diff --git a/Documentation/media/uapi/v4l/dev-subdev.rst b/Documentation/media/uapi/v4l/dev-subdev.rst index cd2870180208..f0e762167730 100644 --- a/Documentation/media/uapi/v4l/dev-subdev.rst +++ b/Documentation/media/uapi/v4l/dev-subdev.rst @@ -99,9 +99,9 @@ the video sensor and the host image processing hardware. .. _pipeline-scaling: -.. figure:: pipeline.* - :alt: pipeline.pdf / pipeline.svg - :align: center +.. kernel-figure:: pipeline.dot + :alt: pipeline.dot + :align: center Image Format Negotiation on Pipelines @@ -404,9 +404,9 @@ selection will refer to the sink pad format dimensions instead. .. _subdev-image-processing-crop: -.. figure:: subdev-image-processing-crop.* - :alt: subdev-image-processing-crop.pdf / subdev-image-processing-crop.svg - :align: center +.. kernel-figure:: subdev-image-processing-crop.svg + :alt: subdev-image-processing-crop.svg + :align: center **Figure 4.5. Image processing in subdevs: simple crop example** @@ -421,9 +421,9 @@ pad. .. _subdev-image-processing-scaling-multi-source: -.. figure:: subdev-image-processing-scaling-multi-source.* - :alt: subdev-image-processing-scaling-multi-source.pdf / subdev-image-processing-scaling-multi-source.svg - :align: center +.. kernel-figure:: subdev-image-processing-scaling-multi-source.svg + :alt: subdev-image-processing-scaling-multi-source.svg + :align: center **Figure 4.6. Image processing in subdevs: scaling with multiple sources** @@ -437,8 +437,8 @@ an area at location specified by the source crop rectangle from it. .. _subdev-image-processing-full: -.. figure:: subdev-image-processing-full.* - :alt: subdev-image-processing-full.pdf / subdev-image-processing-full.svg +.. kernel-figure:: subdev-image-processing-full.svg + :alt: subdev-image-processing-full.svg :align: center **Figure 4.7. Image processing in subdevs: scaling and composition with multiple sinks and sources** diff --git a/Documentation/media/uapi/v4l/field-order.rst b/Documentation/media/uapi/v4l/field-order.rst index e05fb1041363..5f3f82cbfa34 100644 --- a/Documentation/media/uapi/v4l/field-order.rst +++ b/Documentation/media/uapi/v4l/field-order.rst @@ -141,17 +141,20 @@ enum v4l2_field Field Order, Top Field First Transmitted ======================================== -.. figure:: fieldseq_tb.* - :alt: fieldseq_tb.pdf / fieldseq_tb.svg +.. kernel-figure:: fieldseq_tb.svg + :alt: fieldseq_tb.svg :align: center + Field Order, Top Field First Transmitted + .. _fieldseq-bt: Field Order, Bottom Field First Transmitted =========================================== -.. figure:: fieldseq_bt.* - :alt: fieldseq_bt.pdf / fieldseq_bt.svg +.. kernel-figure:: fieldseq_bt.svg + :alt: fieldseq_bt.svg :align: center + Field Order, Bottom Field First Transmitted diff --git a/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst b/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst index 32d0c8743460..172a3825604e 100644 --- a/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst +++ b/Documentation/media/uapi/v4l/pixfmt-nv12mt.rst @@ -33,8 +33,8 @@ Layout of macroblocks in memory is presented in the following figure. .. _nv12mt: -.. figure:: nv12mt.* - :alt: nv12mt.pdf / nv12mt.svg +.. kernel-figure:: nv12mt.svg + :alt: nv12mt.svg :align: center V4L2_PIX_FMT_NV12MT macroblock Z shape memory layout @@ -50,8 +50,8 @@ interleaved. Height of the buffer is aligned to 32. .. _nv12mt_ex: -.. figure:: nv12mt_example.* - :alt: nv12mt_example.pdf / nv12mt_example.svg +.. kernel-figure:: nv12mt_example.svg + :alt: nv12mt_example.svg :align: center Example V4L2_PIX_FMT_NV12MT memory layout of macroblocks diff --git a/Documentation/media/uapi/v4l/selection-api-003.rst b/Documentation/media/uapi/v4l/selection-api-003.rst index 21686f93c38f..bf7e76dfbdf9 100644 --- a/Documentation/media/uapi/v4l/selection-api-003.rst +++ b/Documentation/media/uapi/v4l/selection-api-003.rst @@ -7,9 +7,9 @@ Selection targets .. _sel-targets-capture: -.. figure:: selection.* - :alt: selection.pdf / selection.svg - :align: center +.. kernel-figure:: selection.svg + :alt: selection.svg + :align: center Cropping and composing targets diff --git a/Documentation/media/uapi/v4l/subdev-formats.rst b/Documentation/media/uapi/v4l/subdev-formats.rst index d6152c907b8b..09e2798b4966 100644 --- a/Documentation/media/uapi/v4l/subdev-formats.rst +++ b/Documentation/media/uapi/v4l/subdev-formats.rst @@ -1258,6 +1258,319 @@ The following tables list existing packed RGB formats. - b\ :sub:`2` - b\ :sub:`1` - b\ :sub:`0` + * .. _MEDIA-BUS-FMT-RGB101010-1X30: + + - MEDIA_BUS_FMT_RGB101010_1X30 + - 0x1018 + - + - 0 + - 0 + - r\ :sub:`9` + - r\ :sub:`8` + - r\ :sub:`7` + - r\ :sub:`6` + - r\ :sub:`5` + - r\ :sub:`4` + - r\ :sub:`3` + - r\ :sub:`2` + - r\ :sub:`1` + - r\ :sub:`0` + - g\ :sub:`9` + - g\ :sub:`8` + - g\ :sub:`7` + - g\ :sub:`6` + - g\ :sub:`5` + - g\ :sub:`4` + - g\ :sub:`3` + - g\ :sub:`2` + - g\ :sub:`1` + - g\ :sub:`0` + - b\ :sub:`9` + - b\ :sub:`8` + - b\ :sub:`7` + - b\ :sub:`6` + - b\ :sub:`5` + - b\ :sub:`4` + - b\ :sub:`3` + - b\ :sub:`2` + - b\ :sub:`1` + - b\ :sub:`0` + +.. raw:: latex + + \endgroup + + +The following table list existing packed 36bit wide RGB formats. + +.. tabularcolumns:: |p{4.0cm}|p{0.7cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}| + +.. _v4l2-mbus-pixelcode-rgb-36: + +.. raw:: latex + + \begingroup + \tiny + \setlength{\tabcolsep}{2pt} + +.. flat-table:: 36bit RGB formats + :header-rows: 2 + :stub-columns: 0 + :widths: 36 7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 + + * - Identifier + - Code + - + - :cspan:`35` Data organization + * - + - + - Bit + - 35 + - 34 + - 33 + - 32 + - 31 + - 30 + - 29 + - 28 + - 27 + - 26 + - 25 + - 24 + - 23 + - 22 + - 21 + - 20 + - 19 + - 18 + - 17 + - 16 + - 15 + - 14 + - 13 + - 12 + - 11 + - 10 + - 9 + - 8 + - 7 + - 6 + - 5 + - 4 + - 3 + - 2 + - 1 + - 0 + * .. _MEDIA-BUS-FMT-RGB121212-1X36: + + - MEDIA_BUS_FMT_RGB121212_1X36 + - 0x1019 + - + - r\ :sub:`11` + - r\ :sub:`10` + - r\ :sub:`9` + - r\ :sub:`8` + - r\ :sub:`7` + - r\ :sub:`6` + - r\ :sub:`5` + - r\ :sub:`4` + - r\ :sub:`3` + - r\ :sub:`2` + - r\ :sub:`1` + - r\ :sub:`0` + - g\ :sub:`11` + - g\ :sub:`10` + - g\ :sub:`9` + - g\ :sub:`8` + - g\ :sub:`7` + - g\ :sub:`6` + - g\ :sub:`5` + - g\ :sub:`4` + - g\ :sub:`3` + - g\ :sub:`2` + - g\ :sub:`1` + - g\ :sub:`0` + - b\ :sub:`11` + - b\ :sub:`10` + - b\ :sub:`9` + - b\ :sub:`8` + - b\ :sub:`7` + - b\ :sub:`6` + - b\ :sub:`5` + - b\ :sub:`4` + - b\ :sub:`3` + - b\ :sub:`2` + - b\ :sub:`1` + - b\ :sub:`0` + +.. raw:: latex + + \endgroup + + +The following table list existing packed 48bit wide RGB formats. + +.. tabularcolumns:: |p{4.0cm}|p{0.7cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}| + +.. _v4l2-mbus-pixelcode-rgb-48: + +.. raw:: latex + + \begingroup + \tiny + \setlength{\tabcolsep}{2pt} + +.. flat-table:: 48bit RGB formats + :header-rows: 3 + :stub-columns: 0 + :widths: 36 7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 + + * - Identifier + - Code + - + - :cspan:`31` Data organization + * - + - + - Bit + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - 47 + - 46 + - 45 + - 44 + - 43 + - 42 + - 41 + - 40 + - 39 + - 38 + - 37 + - 36 + - 35 + - 34 + - 33 + - 32 + * - + - + - + - 31 + - 30 + - 29 + - 28 + - 27 + - 26 + - 25 + - 24 + - 23 + - 22 + - 21 + - 20 + - 19 + - 18 + - 17 + - 16 + - 15 + - 14 + - 13 + - 12 + - 11 + - 10 + - 9 + - 8 + - 7 + - 6 + - 5 + - 4 + - 3 + - 2 + - 1 + - 0 + * .. _MEDIA-BUS-FMT-RGB161616-1X48: + + - MEDIA_BUS_FMT_RGB161616_1X48 + - 0x101a + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - r\ :sub:`15` + - r\ :sub:`14` + - r\ :sub:`13` + - r\ :sub:`12` + - r\ :sub:`11` + - r\ :sub:`10` + - r\ :sub:`9` + - r\ :sub:`8` + - r\ :sub:`7` + - r\ :sub:`6` + - r\ :sub:`5` + - r\ :sub:`4` + - r\ :sub:`3` + - r\ :sub:`2` + - r\ :sub:`1` + - r\ :sub:`0` + * - + - + - + - g\ :sub:`15` + - g\ :sub:`14` + - g\ :sub:`13` + - g\ :sub:`12` + - g\ :sub:`11` + - g\ :sub:`10` + - g\ :sub:`9` + - g\ :sub:`8` + - g\ :sub:`7` + - g\ :sub:`6` + - g\ :sub:`5` + - g\ :sub:`4` + - g\ :sub:`3` + - g\ :sub:`2` + - g\ :sub:`1` + - g\ :sub:`0` + - b\ :sub:`15` + - b\ :sub:`14` + - b\ :sub:`13` + - b\ :sub:`12` + - b\ :sub:`11` + - b\ :sub:`10` + - b\ :sub:`9` + - b\ :sub:`8` + - b\ :sub:`7` + - b\ :sub:`6` + - b\ :sub:`5` + - b\ :sub:`4` + - b\ :sub:`3` + - b\ :sub:`2` + - b\ :sub:`1` + - b\ :sub:`0` .. raw:: latex @@ -1514,8 +1827,8 @@ be named ``MEDIA_BUS_FMT_SRGGB10_2X8_PADHI_LE``. .. _bayer-patterns: -.. figure:: bayer.* - :alt: bayer.pdf / bayer.svg +.. kernel-figure:: bayer.svg + :alt: bayer.svg :align: center **Figure 4.8 Bayer Patterns** @@ -2344,7 +2657,8 @@ The format code is made of the following information. - The number of bus samples per pixel. Pixels that are wider than the bus width must be transferred in multiple samples. Common values are - 1, 1.5 (encoded as 1_5) and 2. + 0.5 (encoded as 0_5; in this case two pixels are transferred per bus + sample), 1, 1.5 (encoded as 1_5) and 2. - The bus width. When the bus width is larger than the number of bits per pixel component, several components are packed in a single bus @@ -5962,6 +6276,78 @@ the following codes. - v\ :sub:`2` - v\ :sub:`1` - v\ :sub:`0` + * .. _MEDIA-BUS-FMT-UYYVYY8-0-5X24: + + - MEDIA_BUS_FMT_UYYVYY8_0_5X24 + - 0x2026 + - + - + - + - + - + - + - + - + - + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * - + - + - + - + - + - + - + - + - + - + - + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` * .. _MEDIA-BUS-FMT-UYVY12-1X24: - MEDIA_BUS_FMT_UYVY12_1X24 @@ -6287,6 +6673,78 @@ the following codes. - v\ :sub:`2` - v\ :sub:`1` - v\ :sub:`0` + * .. _MEDIA-BUS-FMT-UYYVYY10-0-5X30: + + - MEDIA_BUS_FMT_UYYVYY10_0_5X30 + - 0x2027 + - + - + - + - u\ :sub:`9` + - u\ :sub:`8` + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * - + - + - + - + - + - v\ :sub:`9` + - v\ :sub:`8` + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` * .. _MEDIA-BUS-FMT-AYUV8-1X32: - MEDIA_BUS_FMT_AYUV8_1X32 @@ -6330,6 +6788,506 @@ the following codes. \endgroup + +The following table list existing packed 36bit wide YUV formats. + +.. raw:: latex + + \begingroup + \tiny + \setlength{\tabcolsep}{2pt} + +.. tabularcolumns:: |p{4.0cm}|p{0.7cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}| + +.. _v4l2-mbus-pixelcode-yuv8-36bit: + +.. flat-table:: 36bit YUV Formats + :header-rows: 2 + :stub-columns: 0 + :widths: 36 7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 + + * - Identifier + - Code + - + - :cspan:`35` Data organization + * - + - + - Bit + - 35 + - 34 + - 33 + - 32 + - 31 + - 30 + - 29 + - 28 + - 27 + - 26 + - 25 + - 24 + - 23 + - 22 + - 21 + - 10 + - 19 + - 18 + - 17 + - 16 + - 15 + - 14 + - 13 + - 12 + - 11 + - 10 + - 9 + - 8 + - 7 + - 6 + - 5 + - 4 + - 3 + - 2 + - 1 + - 0 + * .. _MEDIA-BUS-FMT-UYYVYY12-0-5X36: + + - MEDIA_BUS_FMT_UYYVYY12_0_5X36 + - 0x2028 + - + - u\ :sub:`11` + - u\ :sub:`10` + - u\ :sub:`9` + - u\ :sub:`8` + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * - + - + - + - v\ :sub:`11` + - v\ :sub:`10` + - v\ :sub:`9` + - v\ :sub:`8` + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * .. _MEDIA-BUS-FMT-YUV12-1X36: + + - MEDIA_BUS_FMT_YUV12_1X36 + - 0x2029 + - + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - u\ :sub:`11` + - u\ :sub:`10` + - u\ :sub:`9` + - u\ :sub:`8` + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + - v\ :sub:`11` + - v\ :sub:`10` + - v\ :sub:`9` + - v\ :sub:`8` + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + + +.. raw:: latex + + \endgroup + + +The following table list existing packed 48bit wide YUV formats. + +.. raw:: latex + + \begingroup + \tiny + \setlength{\tabcolsep}{2pt} + +.. tabularcolumns:: |p{4.0cm}|p{0.7cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}|p{0.22cm}| + +.. _v4l2-mbus-pixelcode-yuv8-48bit: + +.. flat-table:: 48bit YUV Formats + :header-rows: 3 + :stub-columns: 0 + :widths: 36 7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 + + * - Identifier + - Code + - + - :cspan:`31` Data organization + * - + - + - Bit + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - 47 + - 46 + - 45 + - 44 + - 43 + - 42 + - 41 + - 40 + - 39 + - 38 + - 37 + - 36 + - 35 + - 34 + - 33 + - 32 + * - + - + - + - 31 + - 30 + - 29 + - 28 + - 27 + - 26 + - 25 + - 24 + - 23 + - 22 + - 21 + - 10 + - 19 + - 18 + - 17 + - 16 + - 15 + - 14 + - 13 + - 12 + - 11 + - 10 + - 9 + - 8 + - 7 + - 6 + - 5 + - 4 + - 3 + - 2 + - 1 + - 0 + * .. _MEDIA-BUS-FMT-YUV16-1X48: + + - MEDIA_BUS_FMT_YUV16_1X48 + - 0x202a + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - y\ :sub:`15` + - y\ :sub:`14` + - y\ :sub:`13` + - y\ :sub:`12` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`8` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * - + - + - + - u\ :sub:`15` + - u\ :sub:`14` + - u\ :sub:`13` + - u\ :sub:`12` + - u\ :sub:`11` + - u\ :sub:`10` + - u\ :sub:`9` + - u\ :sub:`8` + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + - v\ :sub:`15` + - v\ :sub:`14` + - v\ :sub:`13` + - v\ :sub:`12` + - v\ :sub:`11` + - v\ :sub:`10` + - v\ :sub:`9` + - v\ :sub:`8` + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + * .. _MEDIA-BUS-FMT-UYYVYY16-0-5X48: + + - MEDIA_BUS_FMT_UYYVYY16_0_5X48 + - 0x202b + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - u\ :sub:`15` + - u\ :sub:`14` + - u\ :sub:`13` + - u\ :sub:`12` + - u\ :sub:`11` + - u\ :sub:`10` + - u\ :sub:`9` + - u\ :sub:`8` + - u\ :sub:`7` + - u\ :sub:`6` + - u\ :sub:`5` + - u\ :sub:`4` + - u\ :sub:`3` + - u\ :sub:`2` + - u\ :sub:`1` + - u\ :sub:`0` + * - + - + - + - y\ :sub:`15` + - y\ :sub:`14` + - y\ :sub:`13` + - y\ :sub:`12` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`15` + - y\ :sub:`14` + - y\ :sub:`13` + - y\ :sub:`12` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`8` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + * - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - v\ :sub:`15` + - v\ :sub:`14` + - v\ :sub:`13` + - v\ :sub:`12` + - v\ :sub:`11` + - v\ :sub:`10` + - v\ :sub:`9` + - v\ :sub:`8` + - v\ :sub:`7` + - v\ :sub:`6` + - v\ :sub:`5` + - v\ :sub:`4` + - v\ :sub:`3` + - v\ :sub:`2` + - v\ :sub:`1` + - v\ :sub:`0` + * - + - + - + - y\ :sub:`15` + - y\ :sub:`14` + - y\ :sub:`13` + - y\ :sub:`12` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`9` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + - y\ :sub:`15` + - y\ :sub:`14` + - y\ :sub:`13` + - y\ :sub:`12` + - y\ :sub:`11` + - y\ :sub:`10` + - y\ :sub:`8` + - y\ :sub:`8` + - y\ :sub:`7` + - y\ :sub:`6` + - y\ :sub:`5` + - y\ :sub:`4` + - y\ :sub:`3` + - y\ :sub:`2` + - y\ :sub:`1` + - y\ :sub:`0` + + +.. raw:: latex + + \endgroup + HSV/HSL Formats ^^^^^^^^^^^^^^^ diff --git a/Documentation/media/v4l-drivers/index.rst b/Documentation/media/v4l-drivers/index.rst index a606d1cdac13..90fe22a6414a 100644 --- a/Documentation/media/v4l-drivers/index.rst +++ b/Documentation/media/v4l-drivers/index.rst @@ -45,6 +45,7 @@ For more details see the file COPYING in the source distribution of Linux. meye omap3isp omap4_camera + philips pvrusb2 pxa_camera radiotrack diff --git a/Documentation/media/v4l-drivers/philips.rst b/Documentation/media/v4l-drivers/philips.rst new file mode 100644 index 000000000000..620bcfea7af0 --- /dev/null +++ b/Documentation/media/v4l-drivers/philips.rst @@ -0,0 +1,245 @@ +Philips webcams (pwc driver) +============================ + +This file contains some additional information for the Philips and OEM webcams. +E-mail: webcam@smcc.demon.nl Last updated: 2004-01-19 +Site: http://www.smcc.demon.nl/webcam/ + +As of this moment, the following cameras are supported: + + * Philips PCA645 + * Philips PCA646 + * Philips PCVC675 + * Philips PCVC680 + * Philips PCVC690 + * Philips PCVC720/40 + * Philips PCVC730 + * Philips PCVC740 + * Philips PCVC750 + * Askey VC010 + * Creative Labs Webcam 5 + * Creative Labs Webcam Pro Ex + * Logitech QuickCam 3000 Pro + * Logitech QuickCam 4000 Pro + * Logitech QuickCam Notebook Pro + * Logitech QuickCam Zoom + * Logitech QuickCam Orbit + * Logitech QuickCam Sphere + * Samsung MPC-C10 + * Samsung MPC-C30 + * Sotec Afina Eye + * AME CU-001 + * Visionite VCS-UM100 + * Visionite VCS-UC300 + +The main webpage for the Philips driver is at the address above. It contains +a lot of extra information, a FAQ, and the binary plugin 'PWCX'. This plugin +contains decompression routines that allow you to use higher image sizes and +framerates; in addition the webcam uses less bandwidth on the USB bus (handy +if you want to run more than 1 camera simultaneously). These routines fall +under a NDA, and may therefore not be distributed as source; however, its use +is completely optional. + +You can build this code either into your kernel, or as a module. I recommend +the latter, since it makes troubleshooting a lot easier. The built-in +microphone is supported through the USB Audio class. + +When you load the module you can set some default settings for the +camera; some programs depend on a particular image-size or -format and +don't know how to set it properly in the driver. The options are: + +size + Can be one of 'sqcif', 'qsif', 'qcif', 'sif', 'cif' or + 'vga', for an image size of resp. 128x96, 160x120, 176x144, + 320x240, 352x288 and 640x480 (of course, only for those cameras that + support these resolutions). + +fps + Specifies the desired framerate. Is an integer in the range of 4-30. + +fbufs + This parameter specifies the number of internal buffers to use for storing + frames from the cam. This will help if the process that reads images from + the cam is a bit slow or momentarily busy. However, on slow machines it + only introduces lag, so choose carefully. The default is 3, which is + reasonable. You can set it between 2 and 5. + +mbufs + This is an integer between 1 and 10. It will tell the module the number of + buffers to reserve for mmap(), VIDIOCCGMBUF, VIDIOCMCAPTURE and friends. + The default is 2, which is adequate for most applications (double + buffering). + + Should you experience a lot of 'Dumping frame...' messages during + grabbing with a tool that uses mmap(), you might want to increase if. + However, it doesn't really buffer images, it just gives you a bit more + slack when your program is behind. But you need a multi-threaded or + forked program to really take advantage of these buffers. + + The absolute maximum is 10, but don't set it too high! Every buffer takes + up 460 KB of RAM, so unless you have a lot of memory setting this to + something more than 4 is an absolute waste. This memory is only + allocated during open(), so nothing is wasted when the camera is not in + use. + +power_save + When power_save is enabled (set to 1), the module will try to shut down + the cam on close() and re-activate on open(). This will save power and + turn off the LED. Not all cameras support this though (the 645 and 646 + don't have power saving at all), and some models don't work either (they + will shut down, but never wake up). Consider this experimental. By + default this option is disabled. + +compression (only useful with the plugin) + With this option you can control the compression factor that the camera + uses to squeeze the image through the USB bus. You can set the + parameter between 0 and 3:: + + 0 = prefer uncompressed images; if the requested mode is not available + in an uncompressed format, the driver will silently switch to low + compression. + 1 = low compression. + 2 = medium compression. + 3 = high compression. + + High compression takes less bandwidth of course, but it could also + introduce some unwanted artefacts. The default is 2, medium compression. + See the FAQ on the website for an overview of which modes require + compression. + + The compression parameter does not apply to the 645 and 646 cameras + and OEM models derived from those (only a few). Most cams honour this + parameter. + +leds + This settings takes 2 integers, that define the on/off time for the LED + (in milliseconds). One of the interesting things that you can do with + this is let the LED blink while the camera is in use. This:: + + leds=500,500 + + will blink the LED once every second. But with:: + + leds=0,0 + + the LED never goes on, making it suitable for silent surveillance. + + By default the camera's LED is on solid while in use, and turned off + when the camera is not used anymore. + + This parameter works only with the ToUCam range of cameras (720, 730, 740, + 750) and OEMs. For other cameras this command is silently ignored, and + the LED cannot be controlled. + + Finally: this parameters does not take effect UNTIL the first time you + open the camera device. Until then, the LED remains on. + +dev_hint + A long standing problem with USB devices is their dynamic nature: you + never know what device a camera gets assigned; it depends on module load + order, the hub configuration, the order in which devices are plugged in, + and the phase of the moon (i.e. it can be random). With this option you + can give the driver a hint as to what video device node (/dev/videoX) it + should use with a specific camera. This is also handy if you have two + cameras of the same model. + + A camera is specified by its type (the number from the camera model, + like PCA645, PCVC750VC, etc) and optionally the serial number (visible + in /proc/bus/usb/devices). A hint consists of a string with the following + format:: + + [type[.serialnumber]:]node + + The square brackets mean that both the type and the serialnumber are + optional, but a serialnumber cannot be specified without a type (which + would be rather pointless). The serialnumber is separated from the type + by a '.'; the node number by a ':'. + + This somewhat cryptic syntax is best explained by a few examples:: + + dev_hint=3,5 The first detected cam gets assigned + /dev/video3, the second /dev/video5. Any + other cameras will get the first free + available slot (see below). + + dev_hint=645:1,680:2 The PCA645 camera will get /dev/video1, + and a PCVC680 /dev/video2. + + dev_hint=645.0123:3,645.4567:0 The PCA645 camera with serialnumber + 0123 goes to /dev/video3, the same + camera model with the 4567 serial + gets /dev/video0. + + dev_hint=750:1,4,5,6 The PCVC750 camera will get /dev/video1, the + next 3 Philips cams will use /dev/video4 + through /dev/video6. + + Some points worth knowing: + + - Serialnumbers are case sensitive and must be written full, including + leading zeroes (it's treated as a string). + - If a device node is already occupied, registration will fail and + the webcam is not available. + - You can have up to 64 video devices; be sure to make enough device + nodes in /dev if you want to spread the numbers. + After /dev/video9 comes /dev/video10 (not /dev/videoA). + - If a camera does not match any dev_hint, it will simply get assigned + the first available device node, just as it used to be. + +trace + In order to better detect problems, it is now possible to turn on a + 'trace' of some of the calls the module makes; it logs all items in your + kernel log at debug level. + + The trace variable is a bitmask; each bit represents a certain feature. + If you want to trace something, look up the bit value(s) in the table + below, add the values together and supply that to the trace variable. + + ====== ======= ================================================ ======= + Value Value Description Default + (dec) (hex) + ====== ======= ================================================ ======= + 1 0x1 Module initialization; this will log messages On + while loading and unloading the module + + 2 0x2 probe() and disconnect() traces On + + 4 0x4 Trace open() and close() calls Off + + 8 0x8 read(), mmap() and associated ioctl() calls Off + + 16 0x10 Memory allocation of buffers, etc. Off + + 32 0x20 Showing underflow, overflow and Dumping frame On + messages + + 64 0x40 Show viewport and image sizes Off + + 128 0x80 PWCX debugging Off + ====== ======= ================================================ ======= + + For example, to trace the open() & read() functions, sum 8 + 4 = 12, + so you would supply trace=12 during insmod or modprobe. If + you want to turn the initialization and probing tracing off, set trace=0. + The default value for trace is 35 (0x23). + + + +Example:: + + # modprobe pwc size=cif fps=15 power_save=1 + +The fbufs, mbufs and trace parameters are global and apply to all connected +cameras. Each camera has its own set of buffers. + +size and fps only specify defaults when you open() the device; this is to +accommodate some tools that don't set the size. You can change these +settings after open() with the Video4Linux ioctl() calls. The default of +defaults is QCIF size at 10 fps. + +The compression parameter is semiglobal; it sets the initial compression +preference for all camera's, but this parameter can be set per camera with +the VIDIOCPWCSCQUAL ioctl() call. + +All parameters are optional. + diff --git a/Documentation/media/v4l-drivers/soc-camera.rst b/Documentation/media/v4l-drivers/soc-camera.rst index ba0c15dd092c..79d09e423700 100644 --- a/Documentation/media/v4l-drivers/soc-camera.rst +++ b/Documentation/media/v4l-drivers/soc-camera.rst @@ -12,7 +12,7 @@ The following terms are used in this document: control and configuration, and a parallel or a serial bus for data. - camera host - an interface, to which a camera is connected. Typically a specialised interface, present on many SoCs, e.g. PXA27x and PXA3xx, SuperH, - AVR32, i.MX27, i.MX31. + i.MX27, i.MX31. - camera host bus - a connection between a camera host and a camera. Can be parallel or serial, consists of data and control lines, e.g. clock, vertical and horizontal synchronization signals. diff --git a/Documentation/media/v4l-drivers/zr364xx.rst b/Documentation/media/v4l-drivers/zr364xx.rst index f5280e366826..3d193f01d8bb 100644 --- a/Documentation/media/v4l-drivers/zr364xx.rst +++ b/Documentation/media/v4l-drivers/zr364xx.rst @@ -30,7 +30,7 @@ You can try the experience changing the vendor/product ID values (look at the source code). You can get these values by looking at /var/log/messages when you plug -your camera, or by typing : cat /proc/bus/usb/devices. +your camera, or by typing : cat /sys/kernel/debug/usb/devices. If you manage to use your cam with this code, you can send me a mail (royale@zerezo.com) with the name of your cam and a patch if needed. diff --git a/Documentation/mmc/mmc-dev-attrs.txt b/Documentation/mmc/mmc-dev-attrs.txt index 404a0e9e92b0..4ad0bb17f343 100644 --- a/Documentation/mmc/mmc-dev-attrs.txt +++ b/Documentation/mmc/mmc-dev-attrs.txt @@ -13,7 +13,7 @@ SD and MMC Device Attributes All attributes are read-only. - cid Card Identifaction Register + cid Card Identification Register csd Card Specific Data Register scr SD Card Configuration Register (SD only) date Manufacturing Date (from CID Register) @@ -30,6 +30,7 @@ All attributes are read-only. rel_sectors Reliable write sector count ocr Operation Conditions Register dsr Driver Stage Register + cmdq_en Command Queue enabled: 1 => enabled, 0 => not enabled Note on Erase Size and Preferred Erase Size: @@ -71,6 +72,6 @@ Note on Erase Size and Preferred Erase Size: "preferred_erase_size" is in bytes. Note on raw_rpmb_size_mult: - "raw_rpmb_size_mult" is a mutliple of 128kB block. + "raw_rpmb_size_mult" is a multiple of 128kB block. RPMB size in byte is calculated by using the following equation: RPMB partition size = 128kB x raw_rpmb_size_mult diff --git a/Documentation/networking/cdc_mbim.txt b/Documentation/networking/cdc_mbim.txt index b9482ca10254..e4c376abbdad 100644 --- a/Documentation/networking/cdc_mbim.txt +++ b/Documentation/networking/cdc_mbim.txt @@ -332,7 +332,7 @@ References [5] "MBIM (Mobile Broadband Interface Model) Registry" - http://compliance.usb.org/mbim/ -[6] "/proc/bus/usb filesystem output" +[6] "/dev/bus/usb filesystem output" - Documentation/usb/proc_usb_info.txt [7] "/sys/bus/usb/devices/.../descriptors" diff --git a/Documentation/networking/e100.txt b/Documentation/networking/e100.txt index 42ddbd4b52a9..54810b82c01a 100644 --- a/Documentation/networking/e100.txt +++ b/Documentation/networking/e100.txt @@ -130,7 +130,7 @@ Additional Configurations version 1.6 or later is required for this functionality. The latest release of ethtool can be found from - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ Enabling Wake on LAN* (WoL) --------------------------- diff --git a/Documentation/networking/e1000.txt b/Documentation/networking/e1000.txt index 437b2099cced..1f6ed848363d 100644 --- a/Documentation/networking/e1000.txt +++ b/Documentation/networking/e1000.txt @@ -435,7 +435,7 @@ Additional Configurations version 1.6 or later is required for this functionality. The latest release of ethtool can be found from - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ Enabling Wake on LAN* (WoL) --------------------------- diff --git a/Documentation/networking/e1000e.txt b/Documentation/networking/e1000e.txt index ad2d9f38ce14..12089547baed 100644 --- a/Documentation/networking/e1000e.txt +++ b/Documentation/networking/e1000e.txt @@ -274,7 +274,7 @@ Additional Configurations diagnostics, as well as displaying statistical information. We strongly recommend downloading the latest version of ethtool at: - http://ftp.kernel.org/pub/software/network/ethtool/ + https://kernel.org/pub/software/network/ethtool/ NOTE: When validating enable/disable tests on some parts (82578, for example) you need to add a few seconds between tests when working with ethtool. diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.txt index 683ada5ad81d..b69b205501de 100644 --- a/Documentation/networking/filter.txt +++ b/Documentation/networking/filter.txt @@ -595,10 +595,9 @@ got from bpf_prog_create(), and 'ctx' the given context (e.g. skb pointer). All constraints and restrictions from bpf_check_classic() apply before a conversion to the new layout is being done behind the scenes! -Currently, the classic BPF format is being used for JITing on most of the -architectures. x86-64, aarch64 and s390x perform JIT compilation from eBPF -instruction set, however, future work will migrate other JIT compilers as well, -so that they will profit from the very same benefits. +Currently, the classic BPF format is being used for JITing on most 32-bit +architectures, whereas x86-64, aarch64, s390x, powerpc64, sparc64 perform JIT +compilation from eBPF instruction set. Some core changes of the new internal format: diff --git a/Documentation/networking/i40e.txt b/Documentation/networking/i40e.txt index a251bf4fe9c9..57e616ed10b0 100644 --- a/Documentation/networking/i40e.txt +++ b/Documentation/networking/i40e.txt @@ -63,6 +63,78 @@ Additional Configurations The latest release of ethtool can be found from https://www.kernel.org/pub/software/network/ethtool + + Flow Director n-ntuple traffic filters (FDir) + --------------------------------------------- + The driver utilizes the ethtool interface for configuring ntuple filters, + via "ethtool -N <device> <filter>". + + The sctp4, ip4, udp4, and tcp4 flow types are supported with the standard + fields including src-ip, dst-ip, src-port and dst-port. The driver only + supports fully enabling or fully masking the fields, so use of the mask + fields for partial matches is not supported. + + Additionally, the driver supports using the action to specify filters for a + Virtual Function. You can specify the action as a 64bit value, where the + lower 32 bits represents the queue number, while the next 8 bits represent + which VF. Note that 0 is the PF, so the VF identifier is offset by 1. For + example: + + ... action 0x800000002 ... + + Would indicate to direct traffic for Virtual Function 7 (8 minus 1) on queue + 2 of that VF. + + The driver also supports using the user-defined field to specify 2 bytes of + arbitrary data to match within the packet payload in addition to the regular + fields. The data is specified in the lower 32bits of the user-def field in + the following way: + + +----------------------------+---------------------------+ + | 31 28 24 20 16 | 15 12 8 4 0| + +----------------------------+---------------------------+ + | offset into packet payload | 2 bytes of flexible data | + +----------------------------+---------------------------+ + + As an example, + + ... user-def 0x4FFFF .... + + means to match the value 0xFFFF 4 bytes into the packet payload. Note that + the offset is based on the beginning of the payload, and not the beginning + of the packet. Thus + + flow-type tcp4 ... user-def 0x8BEAF .... + + would match TCP/IPv4 packets which have the value 0xBEAF 8bytes into the + TCP/IPv4 payload. + + For ICMP, the hardware parses the ICMP header as 4 bytes of header and 4 + bytes of payload, so if you want to match an ICMP frames payload you may need + to add 4 to the offset in order to match the data. + + Furthermore, the offset can only be up to a value of 64, as the hardware + will only read up to 64 bytes of data from the payload. It must also be even + as the flexible data is 2 bytes long and must be aligned to byte 0 of the + packet payload. + + When programming filters, the hardware is limited to using a single input + set for each flow type. This means that it is an error to program two + different filters with the same type that don't match on the same fields. + Thus the second of the following two commands will fail: + + ethtool -N <device> flow-type tcp4 src-ip 192.168.0.7 action 5 + ethtool -N <device> flow-type tcp4 dst-ip 192.168.15.18 action 1 + + This is because the first filter will be accepted and reprogram the input + set for TCPv4 filters, but the second filter will be unable to reprogram the + input set until all the conflicting TCPv4 filters are first removed. + + Note that the user-defined flexible offset is also considered part of the + input set and cannot be programmed separately for multiple filters of the + same type. However, the flexible data is not part of the input set and + multiple filters may use the same offset but match against different data. + Data Center Bridging (DCB) -------------------------- DCB configuration is not currently supported. diff --git a/Documentation/networking/igb.txt b/Documentation/networking/igb.txt index 15534fdd09a8..f90643ef39c9 100644 --- a/Documentation/networking/igb.txt +++ b/Documentation/networking/igb.txt @@ -63,7 +63,7 @@ Additional Configurations diagnostics, as well as displaying statistical information. The latest version of ethtool can be found at: - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ Enabling Wake on LAN* (WoL) --------------------------- diff --git a/Documentation/networking/igbvf.txt b/Documentation/networking/igbvf.txt index 40db17a6665b..bd404735fb46 100644 --- a/Documentation/networking/igbvf.txt +++ b/Documentation/networking/igbvf.txt @@ -62,7 +62,7 @@ Additional Configurations version 3.0 or later is required for this functionality, although we strongly recommend downloading the latest version at: - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ Support ======= diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index fc73eeb7b3b8..974ab47ae53a 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -73,6 +73,14 @@ fib_multipath_use_neigh - BOOLEAN 0 - disabled 1 - enabled +fib_multipath_hash_policy - INTEGER + Controls which hash policy to use for multipath routes. Only valid + for kernels built with CONFIG_IP_ROUTE_MULTIPATH enabled. + Default: 0 (Layer 3) + Possible values: + 0 - Layer 3 + 1 - Layer 4 + route/max_size - INTEGER Maximum number of routes allowed in the kernel. Increase this when using large numbers of interfaces and/or routes. @@ -594,6 +602,14 @@ tcp_fastopen - INTEGER Note that that additional client or server features are only effective if the basic support (0x1 and 0x2) are enabled respectively. +tcp_fastopen_blackhole_timeout_sec - INTEGER + Initial time period in second to disable Fastopen on active TCP sockets + when a TFO firewall blackhole issue happens. + This time period will grow exponentially when more blackhole issues + get detected right after Fastopen is re-enabled and will reset to + initial value when the blackhole issue goes away. + By default, it is set to 1hr. + tcp_syn_retries - INTEGER Number of times initial SYNs for an active TCP connection attempt will be retransmitted. Should not be higher than 127. Default value @@ -640,11 +656,6 @@ tcp_tso_win_divisor - INTEGER building larger TSO frames. Default: 3 -tcp_tw_recycle - BOOLEAN - Enable fast recycling TIME-WAIT sockets. Default value is 0. - It should not be changed without advice/request of technical - experts. - tcp_tw_reuse - BOOLEAN Allow to reuse TIME-WAIT sockets for new connections when it is safe from protocol viewpoint. Default value is 0. @@ -853,12 +864,21 @@ ip_dynaddr - BOOLEAN ip_early_demux - BOOLEAN Optimize input packet processing down to one demux for certain kinds of local sockets. Currently we only do this - for established TCP sockets. + for established TCP and connected UDP sockets. It may add an additional cost for pure routing workloads that reduces overall throughput, in such case you should disable it. Default: 1 +tcp_early_demux - BOOLEAN + Enable early demux for established TCP sockets. + Default: 1 + +udp_early_demux - BOOLEAN + Enable early demux for connected UDP sockets. Disable this if + your system could experience more unconnected load. + Default: 1 + icmp_echo_ignore_all - BOOLEAN If set non-zero, then the kernel will ignore all ICMP ECHO requests sent to it. @@ -1006,7 +1026,8 @@ accept_redirects - BOOLEAN FALSE (router) forwarding - BOOLEAN - Enable IP forwarding on this interface. + Enable IP forwarding on this interface. This controls whether packets + received _on_ this interface can be forwarded. mc_forwarding - BOOLEAN Do multicast routing. The kernel needs to be compiled with CONFIG_MROUTE @@ -1457,11 +1478,20 @@ accept_ra_pinfo - BOOLEAN Functional default: enabled if accept_ra is enabled. disabled if accept_ra is disabled. +accept_ra_rt_info_min_plen - INTEGER + Minimum prefix length of Route Information in RA. + + Route Information w/ prefix smaller than this variable shall + be ignored. + + Functional default: 0 if accept_ra_rtr_pref is enabled. + -1 if accept_ra_rtr_pref is disabled. + accept_ra_rt_info_max_plen - INTEGER Maximum prefix length of Route Information in RA. - Route Information w/ prefix larger than or equal to this - variable shall be ignored. + Route Information w/ prefix larger than this variable shall + be ignored. Functional default: 0 if accept_ra_rtr_pref is enabled. -1 if accept_ra_rtr_pref is disabled. diff --git a/Documentation/networking/ipvs-sysctl.txt b/Documentation/networking/ipvs-sysctl.txt index e6b1c025fdd8..056898685d40 100644 --- a/Documentation/networking/ipvs-sysctl.txt +++ b/Documentation/networking/ipvs-sysctl.txt @@ -175,6 +175,14 @@ nat_icmp_send - BOOLEAN for VS/NAT when the load balancer receives packets from real servers but the connection entries don't exist. +pmtu_disc - BOOLEAN + 0 - disabled + not 0 - enabled (default) + + By default, reject with FRAG_NEEDED all DF packets that exceed + the PMTU, irrespective of the forwarding method. For TUN method + the flag can be disabled to fragment such packets. + secure_tcp - INTEGER 0 - disabled (default) @@ -185,15 +193,59 @@ secure_tcp - INTEGER The value definition is the same as that of drop_entry and drop_packet. -sync_threshold - INTEGER - default 3 +sync_threshold - vector of 2 INTEGERs: sync_threshold, sync_period + default 3 50 + + It sets synchronization threshold, which is the minimum number + of incoming packets that a connection needs to receive before + the connection will be synchronized. A connection will be + synchronized, every time the number of its incoming packets + modulus sync_period equals the threshold. The range of the + threshold is from 0 to sync_period. + + When sync_period and sync_refresh_period are 0, send sync only + for state changes or only once when pkts matches sync_threshold + +sync_refresh_period - UNSIGNED INTEGER + default 0 + + In seconds, difference in reported connection timer that triggers + new sync message. It can be used to avoid sync messages for the + specified period (or half of the connection timeout if it is lower) + if connection state is not changed since last sync. + + This is useful for normal connections with high traffic to reduce + sync rate. Additionally, retry sync_retries times with period of + sync_refresh_period/8. + +sync_retries - INTEGER + default 0 + + Defines sync retries with period of sync_refresh_period/8. Useful + to protect against loss of sync messages. The range of the + sync_retries is from 0 to 3. + +sync_qlen_max - UNSIGNED LONG + + Hard limit for queued sync messages that are not sent yet. It + defaults to 1/32 of the memory pages but actually represents + number of messages. It will protect us from allocating large + parts of memory when the sending rate is lower than the queuing + rate. + +sync_sock_size - INTEGER + default 0 + + Configuration of SNDBUF (master) or RCVBUF (slave) socket limit. + Default value is 0 (preserve system defaults). + +sync_ports - INTEGER + default 1 - It sets synchronization threshold, which is the minimum number - of incoming packets that a connection needs to receive before - the connection will be synchronized. A connection will be - synchronized, every time the number of its incoming packets - modulus 50 equals the threshold. The range of the threshold is - from 0 to 49. + The number of threads that master and backup servers can use for + sync traffic. Every thread will use single UDP port, thread 0 will + use the default port 8848 while last thread will use port + 8848+sync_ports-1. snat_reroute - BOOLEAN 0 - disabled diff --git a/Documentation/networking/ixgb.txt b/Documentation/networking/ixgb.txt index 9b4a10a1cf50..09f71d71920a 100644 --- a/Documentation/networking/ixgb.txt +++ b/Documentation/networking/ixgb.txt @@ -313,7 +313,7 @@ Additional Configurations version 1.6 or later is required for this functionality. The latest release of ethtool can be found from - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ NOTE: The ethtool version 1.6 only supports a limited set of ethtool options. Support for a more complete ethtool feature set can be enabled by diff --git a/Documentation/networking/ixgbe.txt b/Documentation/networking/ixgbe.txt index 6f0cb57b59c6..687835415707 100644 --- a/Documentation/networking/ixgbe.txt +++ b/Documentation/networking/ixgbe.txt @@ -272,7 +272,7 @@ Additional Configurations ethtool version is required for this functionality. The latest release of ethtool can be found from - http://ftp.kernel.org/pub/software/network/ethtool/ + https://www.kernel.org/pub/software/network/ethtool/ FCoE ---- diff --git a/Documentation/networking/mpls-sysctl.txt b/Documentation/networking/mpls-sysctl.txt index 15d8d16934fd..2f24a1912a48 100644 --- a/Documentation/networking/mpls-sysctl.txt +++ b/Documentation/networking/mpls-sysctl.txt @@ -19,6 +19,25 @@ platform_labels - INTEGER Possible values: 0 - 1048575 Default: 0 +ip_ttl_propagate - BOOL + Control whether TTL is propagated from the IPv4/IPv6 header to + the MPLS header on imposing labels and propagated from the + MPLS header to the IPv4/IPv6 header on popping the last label. + + If disabled, the MPLS transport network will appear as a + single hop to transit traffic. + + 0 - disabled / RFC 3443 [Short] Pipe Model + 1 - enabled / RFC 3443 Uniform Model (default) + +default_ttl - BOOL + Default TTL value to use for MPLS packets where it cannot be + propagated from an IP header, either because one isn't present + or ip_ttl_propagate has been disabled. + + Possible values: 1 - 255 + Default: 255 + conf/<interface>/input - BOOL Control whether packets can be input on this interface. diff --git a/Documentation/networking/switchdev.txt b/Documentation/networking/switchdev.txt index 2bbac05ab9e2..3e7b946dea27 100644 --- a/Documentation/networking/switchdev.txt +++ b/Documentation/networking/switchdev.txt @@ -13,43 +13,43 @@ an example setup using a data-center-class switch ASIC chip. Other setups with SR-IOV or soft switches, such as OVS, are possible. - User-space tools - - user space | - +-------------------------------------------------------------------+ - kernel | Netlink - | - +--------------+-------------------------------+ - | Network stack | - | (Linux) | - | | - +----------------------------------------------+ - + User-space tools + + user space | + +-------------------------------------------------------------------+ + kernel | Netlink + | + +--------------+-------------------------------+ + | Network stack | + | (Linux) | + | | + +----------------------------------------------+ + sw1p2 sw1p4 sw1p6 - sw1p1 + sw1p3 + sw1p5 + eth1 - + | + | + | + - | | | | | | | - +--+----+----+----+-+--+----+---+ +-----+-----+ - | Switch driver | | mgmt | - | (this document) | | driver | - | | | | - +--------------+----------------+ +-----------+ - | - kernel | HW bus (eg PCI) - +-------------------------------------------------------------------+ - hardware | - +--------------+---+------------+ - | Switch device (sw1) | - | +----+ +--------+ - | | v offloaded data path | mgmt port - | | | | - +--|----|----+----+----+----+---+ - | | | | | | - + + + + + + + sw1p1 + sw1p3 + sw1p5 + eth1 + + | + | + | + + | | | | | | | + +--+----+----+----+-+--+----+---+ +-----+-----+ + | Switch driver | | mgmt | + | (this document) | | driver | + | | | | + +--------------+----------------+ +-----------+ + | + kernel | HW bus (eg PCI) + +-------------------------------------------------------------------+ + hardware | + +--------------+---+------------+ + | Switch device (sw1) | + | +----+ +--------+ + | | v offloaded data path | mgmt port + | | | | + +--|----|----+----+----+----+---+ + | | | | | | + + + + + + + p1 p2 p3 p4 p5 p6 - - front-panel ports - + + front-panel ports + Fig 1. diff --git a/Documentation/phy.txt b/Documentation/phy.txt index 0aa994bd9a91..383cdd863f08 100644 --- a/Documentation/phy.txt +++ b/Documentation/phy.txt @@ -97,7 +97,7 @@ should contain the phy name as given in the dt data and in the case of non-dt boot, it should contain the label of the PHY. The two devm_phy_get associates the device with the PHY using devres on successful PHY get. On driver detach, release function is invoked on -the the devres data and devres data is freed. phy_optional_get and +the devres data and devres data is freed. phy_optional_get and devm_phy_optional_get should be used when the phy is optional. These two functions will never return -ENODEV, but instead returns NULL when the phy cannot be found.Some generic drivers, such as ehci, may use multiple diff --git a/Documentation/pinctrl.txt b/Documentation/pinctrl.txt index 54bd5faa8782..f2af35f6d6b2 100644 --- a/Documentation/pinctrl.txt +++ b/Documentation/pinctrl.txt @@ -77,9 +77,15 @@ static struct pinctrl_desc foo_desc = { int __init foo_probe(void) { + int error; + struct pinctrl_dev *pctl; - return pinctrl_register_and_init(&foo_desc, <PARENT>, NULL, &pctl); + error = pinctrl_register_and_init(&foo_desc, <PARENT>, NULL, &pctl); + if (error) + return error; + + return pinctrl_enable(pctl); } To enable the pinctrl subsystem and the subgroups for PINMUX and PINCONF and diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt index 64546eb9a16a..ee69d7532172 100644 --- a/Documentation/power/runtime_pm.txt +++ b/Documentation/power/runtime_pm.txt @@ -478,15 +478,23 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h: - set the power.last_busy field to the current time void pm_runtime_use_autosuspend(struct device *dev); - - set the power.use_autosuspend flag, enabling autosuspend delays + - set the power.use_autosuspend flag, enabling autosuspend delays; call + pm_runtime_get_sync if the flag was previously cleared and + power.autosuspend_delay is negative void pm_runtime_dont_use_autosuspend(struct device *dev); - - clear the power.use_autosuspend flag, disabling autosuspend delays + - clear the power.use_autosuspend flag, disabling autosuspend delays; + decrement the device's usage counter if the flag was previously set and + power.autosuspend_delay is negative; call pm_runtime_idle void pm_runtime_set_autosuspend_delay(struct device *dev, int delay); - set the power.autosuspend_delay value to 'delay' (expressed in milliseconds); if 'delay' is negative then runtime suspends are - prevented + prevented; if power.use_autosuspend is set, pm_runtime_get_sync may be + called or the device's usage counter may be decremented and + pm_runtime_idle called depending on if power.autosuspend_delay is + changed to or from a negative value; if power.use_autosuspend is clear, + pm_runtime_idle is called unsigned long pm_runtime_autosuspend_expiration(struct device *dev); - calculate the time when the current autosuspend delay period will expire, @@ -836,9 +844,8 @@ of the non-autosuspend counterparts: Instead of: pm_runtime_put_sync use: pm_runtime_put_sync_autosuspend. Drivers may also continue to use the non-autosuspend helper functions; they -will behave normally, not taking the autosuspend delay into account. -Similarly, if the power.use_autosuspend field isn't set then the autosuspend -helper functions will behave just like the non-autosuspend counterparts. +will behave normally, which means sometimes taking the autosuspend delay into +account (see pm_runtime_idle). Under some circumstances a driver or subsystem may want to prevent a device from autosuspending immediately, even though the usage counter is zero and the diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt index 8cc17ca71813..9f2f942a01cf 100644 --- a/Documentation/power/swsusp.txt +++ b/Documentation/power/swsusp.txt @@ -406,7 +406,7 @@ Firewire, CompactFlash, MMC, external SATA, or even IDE hotplug bays) before suspending; then remount them after resuming. There is a work-around for this problem. For more information, see -Documentation/usb/persist.txt. +Documentation/driver-api/usb/persist.rst. Q: Can I suspend-to-disk using a swap partition under LVM? diff --git a/Documentation/process/4.Coding.rst b/Documentation/process/4.Coding.rst index 2a728d898fc5..6df19943dd4d 100644 --- a/Documentation/process/4.Coding.rst +++ b/Documentation/process/4.Coding.rst @@ -22,11 +22,11 @@ Coding style ************ The kernel has long had a standard coding style, described in -Documentation/process/coding-style.rst. For much of that time, the policies described -in that file were taken as being, at most, advisory. As a result, there is -a substantial amount of code in the kernel which does not meet the coding -style guidelines. The presence of that code leads to two independent -hazards for kernel developers. +:ref:`Documentation/process/coding-style.rst <codingstyle>`. For much of +that time, the policies described in that file were taken as being, at most, +advisory. As a result, there is a substantial amount of code in the kernel +which does not meet the coding style guidelines. The presence of that code +leads to two independent hazards for kernel developers. The first of these is to believe that the kernel coding standards do not matter and are not enforced. The truth of the matter is that adding new @@ -343,9 +343,10 @@ user-space developers to know what they are working with. See Documentation/ABI/README for a description of how this documentation should be formatted and what information needs to be provided. -The file Documentation/admin-guide/kernel-parameters.rst describes all of the kernel's -boot-time parameters. Any patch which adds new parameters should add the -appropriate entries to this file. +The file :ref:`Documentation/admin-guide/kernel-parameters.rst +<kernelparameters>` describes all of the kernel's boot-time parameters. +Any patch which adds new parameters should add the appropriate entries to +this file. Any new configuration options must be accompanied by help text which clearly explains the options and when the user might want to select them. diff --git a/Documentation/process/applying-patches.rst b/Documentation/process/applying-patches.rst index 87825cf96f33..a0d058cc6d25 100644 --- a/Documentation/process/applying-patches.rst +++ b/Documentation/process/applying-patches.rst @@ -250,17 +250,11 @@ specific homes. The 4.x.y (-stable) and 4.x patches live at - ftp://ftp.kernel.org/pub/linux/kernel/v4.x/ + https://www.kernel.org/pub/linux/kernel/v4.x/ The -rc patches live at - ftp://ftp.kernel.org/pub/linux/kernel/v4.x/testing/ - -In place of ``ftp.kernel.org`` you can use ``ftp.cc.kernel.org``, where cc is a -country code. This way you'll be downloading from a mirror site that's most -likely geographically closer to you, resulting in faster downloads for you, -less bandwidth used globally and less load on the main kernel.org servers -- -these are good things, so do use mirrors when possible. + https://www.kernel.org/pub/linux/kernel/v4.x/testing/ The 4.x kernels @@ -317,7 +311,7 @@ the current stable kernel. The -stable team usually do make incremental patches available as well as patches against the latest mainline release, but I only cover the non-incremental ones below. The incremental ones can be found at - ftp://ftp.kernel.org/pub/linux/kernel/v4.x/incr/ + https://www.kernel.org/pub/linux/kernel/v4.x/incr/ These patches are not incremental, meaning that for example the 4.7.3 patch does not apply on top of the 4.7.2 kernel source, but rather on top diff --git a/Documentation/process/changes.rst b/Documentation/process/changes.rst index 56ce66114665..01c5dbcd0f84 100644 --- a/Documentation/process/changes.rst +++ b/Documentation/process/changes.rst @@ -318,9 +318,10 @@ PDF outputs, it is recommended to use version 1.4.6. .. note:: Please notice that, for PDF and LaTeX output, you'll also need ``XeLaTeX`` - version 3.14159265. Depending on the distribution, you may also need - to install a series of ``texlive`` packages that provide the minimal - set of functionalities required for ``XeLaTex`` to work. + version 3.14159265. Depending on the distribution, you may also need to + install a series of ``texlive`` packages that provide the minimal set of + functionalities required for ``XeLaTex`` to work. For PDF output you'll also + need ``convert(1)`` from ImageMagick (https://www.imagemagick.org). Other tools ----------- @@ -348,7 +349,7 @@ Make Binutils -------- -- <ftp://ftp.kernel.org/pub/linux/devel/binutils/> +- <https://www.kernel.org/pub/linux/devel/binutils/> OpenSSL ------- @@ -361,17 +362,17 @@ System utilities Util-linux ---------- -- <ftp://ftp.kernel.org/pub/linux/utils/util-linux/> +- <https://www.kernel.org/pub/linux/utils/util-linux/> Ksymoops -------- -- <ftp://ftp.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/> +- <https://www.kernel.org/pub/linux/utils/kernel/ksymoops/v2.4/> Module-Init-Tools ----------------- -- <ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/modules/> +- <https://www.kernel.org/pub/linux/utils/kernel/module-init-tools/> Mkinitrd -------- @@ -401,7 +402,7 @@ Xfsprogs Pcmciautils ----------- -- <ftp://ftp.kernel.org/pub/linux/utils/kernel/pcmcia/> +- <https://www.kernel.org/pub/linux/utils/kernel/pcmcia/> Quota-tools ----------- diff --git a/Documentation/process/index.rst b/Documentation/process/index.rst index 10aa6920709a..82fc399fcd33 100644 --- a/Documentation/process/index.rst +++ b/Documentation/process/index.rst @@ -3,6 +3,7 @@ \renewcommand\thesection* \renewcommand\thesubsection* +.. _process_index: Working with the kernel development community ============================================= diff --git a/Documentation/process/stable-kernel-rules.rst b/Documentation/process/stable-kernel-rules.rst index 11ec2d93a5e0..61e9c78bd6d1 100644 --- a/Documentation/process/stable-kernel-rules.rst +++ b/Documentation/process/stable-kernel-rules.rst @@ -124,7 +124,7 @@ specified in the following format in the sign-off area: .. code-block:: none - Cc: <stable@vger.kernel.org> # 3.3.x- + Cc: <stable@vger.kernel.org> # 3.3.x The tag has the meaning of: diff --git a/Documentation/s390/00-INDEX b/Documentation/s390/00-INDEX index 9189535f6cd2..317f0378ae01 100644 --- a/Documentation/s390/00-INDEX +++ b/Documentation/s390/00-INDEX @@ -22,5 +22,7 @@ qeth.txt - HiperSockets Bridge Port Support. s390dbf.txt - information on using the s390 debug feature. +vfio-ccw.txt + information on the vfio-ccw I/O subchannel driver. zfcpdump.txt - information on the s390 SCSI dump tool. diff --git a/Documentation/s390/vfio-ccw.txt b/Documentation/s390/vfio-ccw.txt new file mode 100644 index 000000000000..90b3dfead81b --- /dev/null +++ b/Documentation/s390/vfio-ccw.txt @@ -0,0 +1,303 @@ +vfio-ccw: the basic infrastructure +================================== + +Introduction +------------ + +Here we describe the vfio support for I/O subchannel devices for +Linux/s390. Motivation for vfio-ccw is to passthrough subchannels to a +virtual machine, while vfio is the means. + +Different than other hardware architectures, s390 has defined a unified +I/O access method, which is so called Channel I/O. It has its own access +patterns: +- Channel programs run asynchronously on a separate (co)processor. +- The channel subsystem will access any memory designated by the caller + in the channel program directly, i.e. there is no iommu involved. +Thus when we introduce vfio support for these devices, we realize it +with a mediated device (mdev) implementation. The vfio mdev will be +added to an iommu group, so as to make itself able to be managed by the +vfio framework. And we add read/write callbacks for special vfio I/O +regions to pass the channel programs from the mdev to its parent device +(the real I/O subchannel device) to do further address translation and +to perform I/O instructions. + +This document does not intend to explain the s390 I/O architecture in +every detail. More information/reference could be found here: +- A good start to know Channel I/O in general: + https://en.wikipedia.org/wiki/Channel_I/O +- s390 architecture: + s390 Principles of Operation manual (IBM Form. No. SA22-7832) +- The existing Qemu code which implements a simple emulated channel + subsystem could also be a good reference. It makes it easier to follow + the flow. + qemu/hw/s390x/css.c + +For vfio mediated device framework: +- Documentation/vfio-mediated-device.txt + +Motivation of vfio-ccw +---------------------- + +Currently, a guest virtualized via qemu/kvm on s390 only sees +paravirtualized virtio devices via the "Virtio Over Channel I/O +(virtio-ccw)" transport. This makes virtio devices discoverable via +standard operating system algorithms for handling channel devices. + +However this is not enough. On s390 for the majority of devices, which +use the standard Channel I/O based mechanism, we also need to provide +the functionality of passing through them to a Qemu virtual machine. +This includes devices that don't have a virtio counterpart (e.g. tape +drives) or that have specific characteristics which guests want to +exploit. + +For passing a device to a guest, we want to use the same interface as +everybody else, namely vfio. Thus, we would like to introduce vfio +support for channel devices. And we would like to name this new vfio +device "vfio-ccw". + +Access patterns of CCW devices +------------------------------ + +s390 architecture has implemented a so called channel subsystem, that +provides a unified view of the devices physically attached to the +systems. Though the s390 hardware platform knows about a huge variety of +different peripheral attachments like disk devices (aka. DASDs), tapes, +communication controllers, etc. They can all be accessed by a well +defined access method and they are presenting I/O completion a unified +way: I/O interruptions. + +All I/O requires the use of channel command words (CCWs). A CCW is an +instruction to a specialized I/O channel processor. A channel program is +a sequence of CCWs which are executed by the I/O channel subsystem. To +issue a channel program to the channel subsystem, it is required to +build an operation request block (ORB), which can be used to point out +the format of the CCW and other control information to the system. The +operating system signals the I/O channel subsystem to begin executing +the channel program with a SSCH (start sub-channel) instruction. The +central processor is then free to proceed with non-I/O instructions +until interrupted. The I/O completion result is received by the +interrupt handler in the form of interrupt response block (IRB). + +Back to vfio-ccw, in short: +- ORBs and channel programs are built in guest kernel (with guest + physical addresses). +- ORBs and channel programs are passed to the host kernel. +- Host kernel translates the guest physical addresses to real addresses + and starts the I/O with issuing a privileged Channel I/O instruction + (e.g SSCH). +- channel programs run asynchronously on a separate processor. +- I/O completion will be signaled to the host with I/O interruptions. + And it will be copied as IRB to user space to pass it back to the + guest. + +Physical vfio ccw device and its child mdev +------------------------------------------- + +As mentioned above, we realize vfio-ccw with a mdev implementation. + +Channel I/O does not have IOMMU hardware support, so the physical +vfio-ccw device does not have an IOMMU level translation or isolation. + +Sub-channel I/O instructions are all privileged instructions, When +handling the I/O instruction interception, vfio-ccw has the software +policing and translation how the channel program is programmed before +it gets sent to hardware. + +Within this implementation, we have two drivers for two types of +devices: +- The vfio_ccw driver for the physical subchannel device. + This is an I/O subchannel driver for the real subchannel device. It + realizes a group of callbacks and registers to the mdev framework as a + parent (physical) device. As a consequence, mdev provides vfio_ccw a + generic interface (sysfs) to create mdev devices. A vfio mdev could be + created by vfio_ccw then and added to the mediated bus. It is the vfio + device that added to an IOMMU group and a vfio group. + vfio_ccw also provides an I/O region to accept channel program + request from user space and store I/O interrupt result for user + space to retrieve. To notify user space an I/O completion, it offers + an interface to setup an eventfd fd for asynchronous signaling. + +- The vfio_mdev driver for the mediated vfio ccw device. + This is provided by the mdev framework. It is a vfio device driver for + the mdev that created by vfio_ccw. + It realize a group of vfio device driver callbacks, adds itself to a + vfio group, and registers itself to the mdev framework as a mdev + driver. + It uses a vfio iommu backend that uses the existing map and unmap + ioctls, but rather than programming them into an IOMMU for a device, + it simply stores the translations for use by later requests. This + means that a device programmed in a VM with guest physical addresses + can have the vfio kernel convert that address to process virtual + address, pin the page and program the hardware with the host physical + address in one step. + For a mdev, the vfio iommu backend will not pin the pages during the + VFIO_IOMMU_MAP_DMA ioctl. Mdev framework will only maintain a database + of the iova<->vaddr mappings in this operation. And they export a + vfio_pin_pages and a vfio_unpin_pages interfaces from the vfio iommu + backend for the physical devices to pin and unpin pages by demand. + +Below is a high Level block diagram. + + +-------------+ + | | + | +---------+ | mdev_register_driver() +--------------+ + | | Mdev | +<-----------------------+ | + | | bus | | | vfio_mdev.ko | + | | driver | +----------------------->+ |<-> VFIO user + | +---------+ | probe()/remove() +--------------+ APIs + | | + | MDEV CORE | + | MODULE | + | mdev.ko | + | +---------+ | mdev_register_device() +--------------+ + | |Physical | +<-----------------------+ | + | | device | | | vfio_ccw.ko |<-> subchannel + | |interface| +----------------------->+ | device + | +---------+ | callback +--------------+ + +-------------+ + +The process of how these work together. +1. vfio_ccw.ko drives the physical I/O subchannel, and registers the + physical device (with callbacks) to mdev framework. + When vfio_ccw probing the subchannel device, it registers device + pointer and callbacks to the mdev framework. Mdev related file nodes + under the device node in sysfs would be created for the subchannel + device, namely 'mdev_create', 'mdev_destroy' and + 'mdev_supported_types'. +2. Create a mediated vfio ccw device. + Use the 'mdev_create' sysfs file, we need to manually create one (and + only one for our case) mediated device. +3. vfio_mdev.ko drives the mediated ccw device. + vfio_mdev is also the vfio device drvier. It will probe the mdev and + add it to an iommu_group and a vfio_group. Then we could pass through + the mdev to a guest. + +vfio-ccw I/O region +------------------- + +An I/O region is used to accept channel program request from user +space and store I/O interrupt result for user space to retrieve. The +defination of the region is: + +struct ccw_io_region { +#define ORB_AREA_SIZE 12 + __u8 orb_area[ORB_AREA_SIZE]; +#define SCSW_AREA_SIZE 12 + __u8 scsw_area[SCSW_AREA_SIZE]; +#define IRB_AREA_SIZE 96 + __u8 irb_area[IRB_AREA_SIZE]; + __u32 ret_code; +} __packed; + +While starting an I/O request, orb_area should be filled with the +guest ORB, and scsw_area should be filled with the SCSW of the Virtual +Subchannel. + +irb_area stores the I/O result. + +ret_code stores a return code for each access of the region. + +vfio-ccw patches overview +------------------------- + +For now, our patches are rebased on the latest mdev implementation. +vfio-ccw follows what vfio-pci did on the s390 paltform and uses +vfio-iommu-type1 as the vfio iommu backend. It's a good start to launch +the code review for vfio-ccw. Note that the implementation is far from +complete yet; but we'd like to get feedback for the general +architecture. + +* CCW translation APIs +- Description: + These introduce a group of APIs (start with 'cp_') to do CCW + translation. The CCWs passed in by a user space program are + organized with their guest physical memory addresses. These APIs + will copy the CCWs into the kernel space, and assemble a runnable + kernel channel program by updating the guest physical addresses with + their corresponding host physical addresses. +- Patches: + vfio: ccw: introduce channel program interfaces + +* vfio_ccw device driver +- Description: + The following patches utilizes the CCW translation APIs and introduce + vfio_ccw, which is the driver for the I/O subchannel devices you want + to pass through. + vfio_ccw implements the following vfio ioctls: + VFIO_DEVICE_GET_INFO + VFIO_DEVICE_GET_IRQ_INFO + VFIO_DEVICE_GET_REGION_INFO + VFIO_DEVICE_RESET + VFIO_DEVICE_SET_IRQS + This provides an I/O region, so that the user space program can pass a + channel program to the kernel, to do further CCW translation before + issuing them to a real device. + This also provides the SET_IRQ ioctl to setup an event notifier to + notify the user space program the I/O completion in an asynchronous + way. +- Patches: + vfio: ccw: basic implementation for vfio_ccw driver + vfio: ccw: introduce ccw_io_region + vfio: ccw: realize VFIO_DEVICE_GET_REGION_INFO ioctl + vfio: ccw: realize VFIO_DEVICE_RESET ioctl + vfio: ccw: realize VFIO_DEVICE_G(S)ET_IRQ_INFO ioctls + +The user of vfio-ccw is not limited to Qemu, while Qemu is definitely a +good example to get understand how these patches work. Here is a little +bit more detail how an I/O request triggered by the Qemu guest will be +handled (without error handling). + +Explanation: +Q1-Q7: Qemu side process. +K1-K5: Kernel side process. + +Q1. Get I/O region info during initialization. +Q2. Setup event notifier and handler to handle I/O completion. + +... ... + +Q3. Intercept a ssch instruction. +Q4. Write the guest channel program and ORB to the I/O region. + K1. Copy from guest to kernel. + K2. Translate the guest channel program to a host kernel space + channel program, which becomes runnable for a real device. + K3. With the necessary information contained in the orb passed in + by Qemu, issue the ccwchain to the device. + K4. Return the ssch CC code. +Q5. Return the CC code to the guest. + +... ... + + K5. Interrupt handler gets the I/O result and write the result to + the I/O region. + K6. Signal Qemu to retrieve the result. +Q6. Get the signal and event handler reads out the result from the I/O + region. +Q7. Update the irb for the guest. + +Limitations +----------- + +The current vfio-ccw implementation focuses on supporting basic commands +needed to implement block device functionality (read/write) of DASD/ECKD +device only. Some commands may need special handling in the future, for +example, anything related to path grouping. + +DASD is a kind of storage device. While ECKD is a data recording format. +More information for DASD and ECKD could be found here: +https://en.wikipedia.org/wiki/Direct-access_storage_device +https://en.wikipedia.org/wiki/Count_key_data + +Together with the corresponding work in Qemu, we can bring the passed +through DASD/ECKD device online in a guest now and use it as a block +device. + +Reference +--------- +1. ESA/s390 Principles of Operation manual (IBM Form. No. SA22-7832) +2. ESA/390 Common I/O Device Commands manual (IBM Form. No. SA22-7204) +3. https://en.wikipedia.org/wiki/Channel_I/O +4. Documentation/s390/cds.txt +5. Documentation/vfio.txt +6. Documentation/vfio-mediated-device.txt diff --git a/Documentation/scheduler/sched-pelt.c b/Documentation/scheduler/sched-pelt.c new file mode 100644 index 000000000000..e4219139386a --- /dev/null +++ b/Documentation/scheduler/sched-pelt.c @@ -0,0 +1,108 @@ +/* + * The following program is used to generate the constants for + * computing sched averages. + * + * ============================================================== + * C program (compile with -lm) + * ============================================================== + */ + +#include <math.h> +#include <stdio.h> + +#define HALFLIFE 32 +#define SHIFT 32 + +double y; + +void calc_runnable_avg_yN_inv(void) +{ + int i; + unsigned int x; + + printf("static const u32 runnable_avg_yN_inv[] = {"); + for (i = 0; i < HALFLIFE; i++) { + x = ((1UL<<32)-1)*pow(y, i); + + if (i % 6 == 0) printf("\n\t"); + printf("0x%8x, ", x); + } + printf("\n};\n\n"); +} + +int sum = 1024; + +void calc_runnable_avg_yN_sum(void) +{ + int i; + + printf("static const u32 runnable_avg_yN_sum[] = {\n\t 0,"); + for (i = 1; i <= HALFLIFE; i++) { + if (i == 1) + sum *= y; + else + sum = sum*y + 1024*y; + + if (i % 11 == 0) + printf("\n\t"); + + printf("%5d,", sum); + } + printf("\n};\n\n"); +} + +int n = -1; +/* first period */ +long max = 1024; + +void calc_converged_max(void) +{ + long last = 0, y_inv = ((1UL<<32)-1)*y; + + for (; ; n++) { + if (n > -1) + max = ((max*y_inv)>>SHIFT) + 1024; + /* + * This is the same as: + * max = max*y + 1024; + */ + + if (last == max) + break; + + last = max; + } + n--; + printf("#define LOAD_AVG_PERIOD %d\n", HALFLIFE); + printf("#define LOAD_AVG_MAX %ld\n", max); +// printf("#define LOAD_AVG_MAX_N %d\n\n", n); +} + +void calc_accumulated_sum_32(void) +{ + int i, x = sum; + + printf("static const u32 __accumulated_sum_N32[] = {\n\t 0,"); + for (i = 1; i <= n/HALFLIFE+1; i++) { + if (i > 1) + x = x/2 + sum; + + if (i % 6 == 0) + printf("\n\t"); + + printf("%6d,", x); + } + printf("\n};\n\n"); +} + +void main(void) +{ + printf("/* Generated by Documentation/scheduler/sched-pelt; do not modify. */\n\n"); + + y = pow(0.5, 1/(double)HALFLIFE); + + calc_runnable_avg_yN_inv(); +// calc_runnable_avg_yN_sum(); + calc_converged_max(); +// calc_accumulated_sum_32(); +} diff --git a/Documentation/security/keys.txt b/Documentation/security/keys.txt index 0e03baf271bd..cd5019934d7f 100644 --- a/Documentation/security/keys.txt +++ b/Documentation/security/keys.txt @@ -827,7 +827,7 @@ The keyctl syscall functions are: long keyctl(KEYCTL_DH_COMPUTE, struct keyctl_dh_params *params, char *buffer, size_t buflen, - void *reserved); + struct keyctl_kdf_params *kdf); The params struct contains serial numbers for three keys: @@ -844,18 +844,61 @@ The keyctl syscall functions are: public key. If the base is the remote public key, the result is the shared secret. - The reserved argument must be set to NULL. + If the parameter kdf is NULL, the following applies: - The buffer length must be at least the length of the prime, or zero. + - The buffer length must be at least the length of the prime, or zero. - If the buffer length is nonzero, the length of the result is - returned when it is successfully calculated and copied in to the - buffer. When the buffer length is zero, the minimum required - buffer length is returned. + - If the buffer length is nonzero, the length of the result is + returned when it is successfully calculated and copied in to the + buffer. When the buffer length is zero, the minimum required + buffer length is returned. + + The kdf parameter allows the caller to apply a key derivation function + (KDF) on the Diffie-Hellman computation where only the result + of the KDF is returned to the caller. The KDF is characterized with + struct keyctl_kdf_params as follows: + + - char *hashname specifies the NUL terminated string identifying + the hash used from the kernel crypto API and applied for the KDF + operation. The KDF implemenation complies with SP800-56A as well + as with SP800-108 (the counter KDF). + + - char *otherinfo specifies the OtherInfo data as documented in + SP800-56A section 5.8.1.2. The length of the buffer is given with + otherinfolen. The format of OtherInfo is defined by the caller. + The otherinfo pointer may be NULL if no OtherInfo shall be used. This function will return error EOPNOTSUPP if the key type is not supported, error ENOKEY if the key could not be found, or error - EACCES if the key is not readable by the caller. + EACCES if the key is not readable by the caller. In addition, the + function will return EMSGSIZE when the parameter kdf is non-NULL + and either the buffer length or the OtherInfo length exceeds the + allowed length. + + (*) Restrict keyring linkage + + long keyctl(KEYCTL_RESTRICT_KEYRING, key_serial_t keyring, + const char *type, const char *restriction); + + An existing keyring can restrict linkage of additional keys by evaluating + the contents of the key according to a restriction scheme. + + "keyring" is the key ID for an existing keyring to apply a restriction + to. It may be empty or may already have keys linked. Existing linked keys + will remain in the keyring even if the new restriction would reject them. + + "type" is a registered key type. + + "restriction" is a string describing how key linkage is to be restricted. + The format varies depending on the key type, and the string is passed to + the lookup_restriction() function for the requested type. It may specify + a method and relevant data for the restriction such as signature + verification or constraints on key payload. If the requested key type is + later unregistered, no keys may be added to the keyring after the key type + is removed. + + To apply a keyring restriction the process must have Set Attribute + permission and the keyring must not be previously restricted. =============== KERNEL SERVICES @@ -1032,10 +1075,7 @@ payload contents" for more information. struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid, const struct cred *cred, key_perm_t perm, - int (*restrict_link)(struct key *, - const struct key_type *, - unsigned long, - const union key_payload *), + struct key_restriction *restrict_link, unsigned long flags, struct key *dest); @@ -1047,20 +1087,23 @@ payload contents" for more information. KEY_ALLOC_NOT_IN_QUOTA in flags if the keyring shouldn't be accounted towards the user's quota). Error ENOMEM can also be returned. - If restrict_link not NULL, it should point to a function that will be - called each time an attempt is made to link a key into the new keyring. - This function is called to check whether a key may be added into the keying - or not. Callers of key_create_or_update() within the kernel can pass - KEY_ALLOC_BYPASS_RESTRICTION to suppress the check. An example of using - this is to manage rings of cryptographic keys that are set up when the - kernel boots where userspace is also permitted to add keys - provided they - can be verified by a key the kernel already has. + If restrict_link is not NULL, it should point to a structure that contains + the function that will be called each time an attempt is made to link a + key into the new keyring. The structure may also contain a key pointer + and an associated key type. The function is called to check whether a key + may be added into the keyring or not. The key type is used by the garbage + collector to clean up function or data pointers in this structure if the + given key type is unregistered. Callers of key_create_or_update() within + the kernel can pass KEY_ALLOC_BYPASS_RESTRICTION to suppress the check. + An example of using this is to manage rings of cryptographic keys that are + set up when the kernel boots where userspace is also permitted to add keys + - provided they can be verified by a key the kernel already has. When called, the restriction function will be passed the keyring being - added to, the key flags value and the type and payload of the key being - added. Note that when a new key is being created, this is called between - payload preparsing and actual key creation. The function should return 0 - to allow the link or an error to reject it. + added to, the key type, the payload of the key being added, and data to be + used in the restriction check. Note that when a new key is being created, + this is called between payload preparsing and actual key creation. The + function should return 0 to allow the link or an error to reject it. A convenience function, restrict_link_reject, exists to always return -EPERM to in this case. @@ -1445,6 +1488,15 @@ The structure has a number of fields, some of which are mandatory: The authorisation key. + (*) struct key_restriction *(*lookup_restriction)(const char *params); + + This optional method is used to enable userspace configuration of keyring + restrictions. The restriction parameter string (not including the key type + name) is passed in, and this method returns a pointer to a key_restriction + structure containing the relevant functions and data to evaluate each + attempted key link operation. If there is no match, -EINVAL is returned. + + ============================ REQUEST-KEY CALLBACK SERVICE ============================ diff --git a/Documentation/sound/hd-audio/notes.rst b/Documentation/sound/hd-audio/notes.rst index 9eeb9b468706..f59c3cdbfaf4 100644 --- a/Documentation/sound/hd-audio/notes.rst +++ b/Documentation/sound/hd-audio/notes.rst @@ -494,6 +494,8 @@ add_hp_mic (bool) hp_mic_detect (bool) enable/disable the hp/mic shared input for a single built-in mic case; default true +vmaster (bool) + enable/disable the virtual Master control; default true mixer_nid (int) specifies the widget NID of the analog-loopback mixer diff --git a/Documentation/sphinx/cdomain.py b/Documentation/sphinx/cdomain.py index df0419c62096..cf13ff3a656c 100644 --- a/Documentation/sphinx/cdomain.py +++ b/Documentation/sphinx/cdomain.py @@ -44,7 +44,7 @@ from sphinx.domains.c import CDomain as Base_CDomain __version__ = '1.0' # Get Sphinx version -major, minor, patch = map(int, sphinx.__version__.split(".")) +major, minor, patch = sphinx.version_info[:3] def setup(app): diff --git a/Documentation/sphinx/kfigure.py b/Documentation/sphinx/kfigure.py new file mode 100644 index 000000000000..cef4ad19624c --- /dev/null +++ b/Documentation/sphinx/kfigure.py @@ -0,0 +1,551 @@ +# -*- coding: utf-8; mode: python -*- +# pylint: disable=C0103, R0903, R0912, R0915 +u""" + scalable figure and image handling + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + Sphinx extension which implements scalable image handling. + + :copyright: Copyright (C) 2016 Markus Heiser + :license: GPL Version 2, June 1991 see Linux/COPYING for details. + + The build for image formats depend on image's source format and output's + destination format. This extension implement methods to simplify image + handling from the author's POV. Directives like ``kernel-figure`` implement + methods *to* always get the best output-format even if some tools are not + installed. For more details take a look at ``convert_image(...)`` which is + the core of all conversions. + + * ``.. kernel-image``: for image handling / a ``.. image::`` replacement + + * ``.. kernel-figure``: for figure handling / a ``.. figure::`` replacement + + * ``.. kernel-render``: for render markup / a concept to embed *render* + markups (or languages). Supported markups (see ``RENDER_MARKUP_EXT``) + + - ``DOT``: render embedded Graphviz's **DOC** + - ``SVG``: render embedded Scalable Vector Graphics (**SVG**) + - ... *developable* + + Used tools: + + * ``dot(1)``: Graphviz (http://www.graphviz.org). If Graphviz is not + available, the DOT language is inserted as literal-block. + + * SVG to PDF: To generate PDF, you need at least one of this tools: + + - ``convert(1)``: ImageMagick (https://www.imagemagick.org) + + List of customizations: + + * generate PDF from SVG / used by PDF (LaTeX) builder + + * generate SVG (html-builder) and PDF (latex-builder) from DOT files. + DOT: see http://www.graphviz.org/content/dot-language + + """ + +import os +from os import path +import subprocess +from hashlib import sha1 +import sys + +from docutils import nodes +from docutils.statemachine import ViewList +from docutils.parsers.rst import directives +from docutils.parsers.rst.directives import images +import sphinx + +from sphinx.util.nodes import clean_astext +from six import iteritems + +PY3 = sys.version_info[0] == 3 + +if PY3: + _unicode = str +else: + _unicode = unicode + +# Get Sphinx version +major, minor, patch = sphinx.version_info[:3] +if major == 1 and minor > 3: + # patches.Figure only landed in Sphinx 1.4 + from sphinx.directives.patches import Figure # pylint: disable=C0413 +else: + Figure = images.Figure + +__version__ = '1.0.0' + +# simple helper +# ------------- + +def which(cmd): + """Searches the ``cmd`` in the ``PATH`` enviroment. + + This *which* searches the PATH for executable ``cmd`` . First match is + returned, if nothing is found, ``None` is returned. + """ + envpath = os.environ.get('PATH', None) or os.defpath + for folder in envpath.split(os.pathsep): + fname = folder + os.sep + cmd + if path.isfile(fname): + return fname + +def mkdir(folder, mode=0o775): + if not path.isdir(folder): + os.makedirs(folder, mode) + +def file2literal(fname): + with open(fname, "r") as src: + data = src.read() + node = nodes.literal_block(data, data) + return node + +def isNewer(path1, path2): + """Returns True if ``path1`` is newer than ``path2`` + + If ``path1`` exists and is newer than ``path2`` the function returns + ``True`` is returned otherwise ``False`` + """ + return (path.exists(path1) + and os.stat(path1).st_ctime > os.stat(path2).st_ctime) + +def pass_handle(self, node): # pylint: disable=W0613 + pass + +# setup conversion tools and sphinx extension +# ------------------------------------------- + +# Graphviz's dot(1) support +dot_cmd = None + +# ImageMagick' convert(1) support +convert_cmd = None + + +def setup(app): + # check toolchain first + app.connect('builder-inited', setupTools) + + # image handling + app.add_directive("kernel-image", KernelImage) + app.add_node(kernel_image, + html = (visit_kernel_image, pass_handle), + latex = (visit_kernel_image, pass_handle), + texinfo = (visit_kernel_image, pass_handle), + text = (visit_kernel_image, pass_handle), + man = (visit_kernel_image, pass_handle), ) + + # figure handling + app.add_directive("kernel-figure", KernelFigure) + app.add_node(kernel_figure, + html = (visit_kernel_figure, pass_handle), + latex = (visit_kernel_figure, pass_handle), + texinfo = (visit_kernel_figure, pass_handle), + text = (visit_kernel_figure, pass_handle), + man = (visit_kernel_figure, pass_handle), ) + + # render handling + app.add_directive('kernel-render', KernelRender) + app.add_node(kernel_render, + html = (visit_kernel_render, pass_handle), + latex = (visit_kernel_render, pass_handle), + texinfo = (visit_kernel_render, pass_handle), + text = (visit_kernel_render, pass_handle), + man = (visit_kernel_render, pass_handle), ) + + app.connect('doctree-read', add_kernel_figure_to_std_domain) + + return dict( + version = __version__, + parallel_read_safe = True, + parallel_write_safe = True + ) + + +def setupTools(app): + u""" + Check available build tools and log some *verbose* messages. + + This function is called once, when the builder is initiated. + """ + global dot_cmd, convert_cmd # pylint: disable=W0603 + app.verbose("kfigure: check installed tools ...") + + dot_cmd = which('dot') + convert_cmd = which('convert') + + if dot_cmd: + app.verbose("use dot(1) from: " + dot_cmd) + else: + app.warn("dot(1) not found, for better output quality install " + "graphviz from http://www.graphviz.org") + if convert_cmd: + app.verbose("use convert(1) from: " + convert_cmd) + else: + app.warn( + "convert(1) not found, for SVG to PDF conversion install " + "ImageMagick (https://www.imagemagick.org)") + + +# integrate conversion tools +# -------------------------- + +RENDER_MARKUP_EXT = { + # The '.ext' must be handled by convert_image(..) function's *in_ext* input. + # <name> : <.ext> + 'DOT' : '.dot', + 'SVG' : '.svg' +} + +def convert_image(img_node, translator, src_fname=None): + """Convert a image node for the builder. + + Different builder prefer different image formats, e.g. *latex* builder + prefer PDF while *html* builder prefer SVG format for images. + + This function handles output image formats in dependence of source the + format (of the image) and the translator's output format. + """ + app = translator.builder.app + + fname, in_ext = path.splitext(path.basename(img_node['uri'])) + if src_fname is None: + src_fname = path.join(translator.builder.srcdir, img_node['uri']) + if not path.exists(src_fname): + src_fname = path.join(translator.builder.outdir, img_node['uri']) + + dst_fname = None + + # in kernel builds, use 'make SPHINXOPTS=-v' to see verbose messages + + app.verbose('assert best format for: ' + img_node['uri']) + + if in_ext == '.dot': + + if not dot_cmd: + app.verbose("dot from graphviz not available / include DOT raw.") + img_node.replace_self(file2literal(src_fname)) + + elif translator.builder.format == 'latex': + dst_fname = path.join(translator.builder.outdir, fname + '.pdf') + img_node['uri'] = fname + '.pdf' + img_node['candidates'] = {'*': fname + '.pdf'} + + + elif translator.builder.format == 'html': + dst_fname = path.join( + translator.builder.outdir, + translator.builder.imagedir, + fname + '.svg') + img_node['uri'] = path.join( + translator.builder.imgpath, fname + '.svg') + img_node['candidates'] = { + '*': path.join(translator.builder.imgpath, fname + '.svg')} + + else: + # all other builder formats will include DOT as raw + img_node.replace_self(file2literal(src_fname)) + + elif in_ext == '.svg': + + if translator.builder.format == 'latex': + if convert_cmd is None: + app.verbose("no SVG to PDF conversion available / include SVG raw.") + img_node.replace_self(file2literal(src_fname)) + else: + dst_fname = path.join(translator.builder.outdir, fname + '.pdf') + img_node['uri'] = fname + '.pdf' + img_node['candidates'] = {'*': fname + '.pdf'} + + if dst_fname: + # the builder needs not to copy one more time, so pop it if exists. + translator.builder.images.pop(img_node['uri'], None) + _name = dst_fname[len(translator.builder.outdir) + 1:] + + if isNewer(dst_fname, src_fname): + app.verbose("convert: {out}/%s already exists and is newer" % _name) + + else: + ok = False + mkdir(path.dirname(dst_fname)) + + if in_ext == '.dot': + app.verbose('convert DOT to: {out}/' + _name) + ok = dot2format(app, src_fname, dst_fname) + + elif in_ext == '.svg': + app.verbose('convert SVG to: {out}/' + _name) + ok = svg2pdf(app, src_fname, dst_fname) + + if not ok: + img_node.replace_self(file2literal(src_fname)) + + +def dot2format(app, dot_fname, out_fname): + """Converts DOT file to ``out_fname`` using ``dot(1)``. + + * ``dot_fname`` pathname of the input DOT file, including extension ``.dot`` + * ``out_fname`` pathname of the output file, including format extension + + The *format extension* depends on the ``dot`` command (see ``man dot`` + option ``-Txxx``). Normally you will use one of the following extensions: + + - ``.ps`` for PostScript, + - ``.svg`` or ``svgz`` for Structured Vector Graphics, + - ``.fig`` for XFIG graphics and + - ``.png`` or ``gif`` for common bitmap graphics. + + """ + out_format = path.splitext(out_fname)[1][1:] + cmd = [dot_cmd, '-T%s' % out_format, dot_fname] + exit_code = 42 + + with open(out_fname, "w") as out: + exit_code = subprocess.call(cmd, stdout = out) + if exit_code != 0: + app.warn("Error #%d when calling: %s" % (exit_code, " ".join(cmd))) + return bool(exit_code == 0) + +def svg2pdf(app, svg_fname, pdf_fname): + """Converts SVG to PDF with ``convert(1)`` command. + + Uses ``convert(1)`` from ImageMagick (https://www.imagemagick.org) for + conversion. Returns ``True`` on success and ``False`` if an error occurred. + + * ``svg_fname`` pathname of the input SVG file with extension (``.svg``) + * ``pdf_name`` pathname of the output PDF file with extension (``.pdf``) + + """ + cmd = [convert_cmd, svg_fname, pdf_fname] + # use stdout and stderr from parent + exit_code = subprocess.call(cmd) + if exit_code != 0: + app.warn("Error #%d when calling: %s" % (exit_code, " ".join(cmd))) + return bool(exit_code == 0) + + +# image handling +# --------------------- + +def visit_kernel_image(self, node): # pylint: disable=W0613 + """Visitor of the ``kernel_image`` Node. + + Handles the ``image`` child-node with the ``convert_image(...)``. + """ + img_node = node[0] + convert_image(img_node, self) + +class kernel_image(nodes.image): + """Node for ``kernel-image`` directive.""" + pass + +class KernelImage(images.Image): + u"""KernelImage directive + + Earns everything from ``.. image::`` directive, except *remote URI* and + *glob* pattern. The KernelImage wraps a image node into a + kernel_image node. See ``visit_kernel_image``. + """ + + def run(self): + uri = self.arguments[0] + if uri.endswith('.*') or uri.find('://') != -1: + raise self.severe( + 'Error in "%s: %s": glob pattern and remote images are not allowed' + % (self.name, uri)) + result = images.Image.run(self) + if len(result) == 2 or isinstance(result[0], nodes.system_message): + return result + (image_node,) = result + # wrap image node into a kernel_image node / see visitors + node = kernel_image('', image_node) + return [node] + +# figure handling +# --------------------- + +def visit_kernel_figure(self, node): # pylint: disable=W0613 + """Visitor of the ``kernel_figure`` Node. + + Handles the ``image`` child-node with the ``convert_image(...)``. + """ + img_node = node[0][0] + convert_image(img_node, self) + +class kernel_figure(nodes.figure): + """Node for ``kernel-figure`` directive.""" + +class KernelFigure(Figure): + u"""KernelImage directive + + Earns everything from ``.. figure::`` directive, except *remote URI* and + *glob* pattern. The KernelFigure wraps a figure node into a kernel_figure + node. See ``visit_kernel_figure``. + """ + + def run(self): + uri = self.arguments[0] + if uri.endswith('.*') or uri.find('://') != -1: + raise self.severe( + 'Error in "%s: %s":' + ' glob pattern and remote images are not allowed' + % (self.name, uri)) + result = Figure.run(self) + if len(result) == 2 or isinstance(result[0], nodes.system_message): + return result + (figure_node,) = result + # wrap figure node into a kernel_figure node / see visitors + node = kernel_figure('', figure_node) + return [node] + + +# render handling +# --------------------- + +def visit_kernel_render(self, node): + """Visitor of the ``kernel_render`` Node. + + If rendering tools available, save the markup of the ``literal_block`` child + node into a file and replace the ``literal_block`` node with a new created + ``image`` node, pointing to the saved markup file. Afterwards, handle the + image child-node with the ``convert_image(...)``. + """ + app = self.builder.app + srclang = node.get('srclang') + + app.verbose('visit kernel-render node lang: "%s"' % (srclang)) + + tmp_ext = RENDER_MARKUP_EXT.get(srclang, None) + if tmp_ext is None: + app.warn('kernel-render: "%s" unknow / include raw.' % (srclang)) + return + + if not dot_cmd and tmp_ext == '.dot': + app.verbose("dot from graphviz not available / include raw.") + return + + literal_block = node[0] + + code = literal_block.astext() + hashobj = code.encode('utf-8') # str(node.attributes) + fname = path.join('%s-%s' % (srclang, sha1(hashobj).hexdigest())) + + tmp_fname = path.join( + self.builder.outdir, self.builder.imagedir, fname + tmp_ext) + + if not path.isfile(tmp_fname): + mkdir(path.dirname(tmp_fname)) + with open(tmp_fname, "w") as out: + out.write(code) + + img_node = nodes.image(node.rawsource, **node.attributes) + img_node['uri'] = path.join(self.builder.imgpath, fname + tmp_ext) + img_node['candidates'] = { + '*': path.join(self.builder.imgpath, fname + tmp_ext)} + + literal_block.replace_self(img_node) + convert_image(img_node, self, tmp_fname) + + +class kernel_render(nodes.General, nodes.Inline, nodes.Element): + """Node for ``kernel-render`` directive.""" + pass + +class KernelRender(Figure): + u"""KernelRender directive + + Render content by external tool. Has all the options known from the + *figure* directive, plus option ``caption``. If ``caption`` has a + value, a figure node with the *caption* is inserted. If not, a image node is + inserted. + + The KernelRender directive wraps the text of the directive into a + literal_block node and wraps it into a kernel_render node. See + ``visit_kernel_render``. + """ + has_content = True + required_arguments = 1 + optional_arguments = 0 + final_argument_whitespace = False + + # earn options from 'figure' + option_spec = Figure.option_spec.copy() + option_spec['caption'] = directives.unchanged + + def run(self): + return [self.build_node()] + + def build_node(self): + + srclang = self.arguments[0].strip() + if srclang not in RENDER_MARKUP_EXT.keys(): + return [self.state_machine.reporter.warning( + 'Unknow source language "%s", use one of: %s.' % ( + srclang, ",".join(RENDER_MARKUP_EXT.keys())), + line=self.lineno)] + + code = '\n'.join(self.content) + if not code.strip(): + return [self.state_machine.reporter.warning( + 'Ignoring "%s" directive without content.' % ( + self.name), + line=self.lineno)] + + node = kernel_render() + node['alt'] = self.options.get('alt','') + node['srclang'] = srclang + literal_node = nodes.literal_block(code, code) + node += literal_node + + caption = self.options.get('caption') + if caption: + # parse caption's content + parsed = nodes.Element() + self.state.nested_parse( + ViewList([caption], source=''), self.content_offset, parsed) + caption_node = nodes.caption( + parsed[0].rawsource, '', *parsed[0].children) + caption_node.source = parsed[0].source + caption_node.line = parsed[0].line + + figure_node = nodes.figure('', node) + for k,v in self.options.items(): + figure_node[k] = v + figure_node += caption_node + + node = figure_node + + return node + +def add_kernel_figure_to_std_domain(app, doctree): + """Add kernel-figure anchors to 'std' domain. + + The ``StandardDomain.process_doc(..)`` method does not know how to resolve + the caption (label) of ``kernel-figure`` directive (it only knows about + standard nodes, e.g. table, figure etc.). Without any additional handling + this will result in a 'undefined label' for kernel-figures. + + This handle adds labels of kernel-figure to the 'std' domain labels. + """ + + std = app.env.domains["std"] + docname = app.env.docname + labels = std.data["labels"] + + for name, explicit in iteritems(doctree.nametypes): + if not explicit: + continue + labelid = doctree.nameids[name] + if labelid is None: + continue + node = doctree.ids[labelid] + + if node.tagname == 'kernel_figure': + for n in node.next_node(): + if n.tagname == 'caption': + sectname = clean_astext(n) + # add label to std domain + labels[name] = docname, labelid, sectname + break diff --git a/Documentation/sphinx/tmplcvt b/Documentation/sphinx/tmplcvt index 909a73065e0a..6848f0a26fa5 100755 --- a/Documentation/sphinx/tmplcvt +++ b/Documentation/sphinx/tmplcvt @@ -7,13 +7,22 @@ # fix \_ # title line? # +set -eu + +if [ "$#" != "2" ]; then + echo "$0 <docbook file> <rst file>" + exit +fi + +DIR=$(dirname $0) in=$1 rst=$2 tmp=$rst.tmp cp $in $tmp -sed --in-place -f convert_template.sed $tmp +sed --in-place -f $DIR/convert_template.sed $tmp pandoc -s -S -f docbook -t rst -o $rst $tmp -sed --in-place -f post_convert.sed $rst +sed --in-place -f $DIR/post_convert.sed $rst rm $tmp +echo "book writen to $rst" diff --git a/Documentation/static-keys.txt b/Documentation/static-keys.txt index 32a25fad0c1b..ef419fd0897f 100644 --- a/Documentation/static-keys.txt +++ b/Documentation/static-keys.txt @@ -118,7 +118,7 @@ Or: Keys defined via DEFINE_STATIC_KEY_TRUE(), or DEFINE_STATIC_KEY_FALSE, may be used in either static_branch_likely() or static_branch_unlikely() -statemnts. +statements. Branch(es) can be set true via: diff --git a/Documentation/sync_file.txt b/Documentation/sync_file.txt index 269681a6faec..c3d033a06e8d 100644 --- a/Documentation/sync_file.txt +++ b/Documentation/sync_file.txt @@ -37,7 +37,7 @@ dma_fence_signal(), when it has finished using (or processing) that buffer. Out-fences are fences that the driver creates. On the other hand if the driver receives fence(s) through a sync_file from -userspace we call these fence(s) 'in-fences'. Receiveing in-fences means that +userspace we call these fence(s) 'in-fences'. Receiving in-fences means that we need to wait for the fence(s) to signal before using any buffer related to the in-fences. diff --git a/Documentation/sysctl/net.txt b/Documentation/sysctl/net.txt index 2ebabc93014a..14db18c970b1 100644 --- a/Documentation/sysctl/net.txt +++ b/Documentation/sysctl/net.txt @@ -188,7 +188,16 @@ netdev_budget Maximum number of packets taken from all interfaces in one polling cycle (NAPI poll). In one polling cycle interfaces which are registered to polling are -probed in a round-robin manner. +probed in a round-robin manner. Also, a polling cycle may not exceed +netdev_budget_usecs microseconds, even if netdev_budget has not been +exhausted. + +netdev_budget_usecs +--------------------- + +Maximum number of microseconds in one NAPI polling cycle. Polling +will exit when either netdev_budget_usecs have elapsed during the +poll cycle or the number of packets processed reaches netdev_budget. netdev_max_backlog ------------------ diff --git a/Documentation/thermal/intel_powerclamp.txt b/Documentation/thermal/intel_powerclamp.txt index 60073dc9f748..b5df21168fbc 100644 --- a/Documentation/thermal/intel_powerclamp.txt +++ b/Documentation/thermal/intel_powerclamp.txt @@ -268,6 +268,15 @@ cur_state:0 max_state:50 type:intel_powerclamp +cur_state allows user to set the desired idle percentage. Writing 0 to +cur_state will stop idle injection. Writing a value between 1 and +max_state will start the idle injection. Reading cur_state returns the +actual and current idle percentage. This may not be the same value +set by the user in that current idle percentage depends on workload +and includes natural idle. When idle injection is disabled, reading +cur_state returns value -1 instead of 0 which is to avoid confusing +100% busy state with the disabled state. + Example usage: - To inject 25% idle time $ sudo sh -c "echo 25 > /sys/class/thermal/cooling_device80/cur_state @@ -278,11 +287,12 @@ then the powerclamp driver will not start idle injection. Using Top will not show idle injection kernel threads. If the system is busy (spin test below) and has less than 25% natural -idle time, powerclamp kernel threads will do idle injection, which -appear running to the scheduler. But the overall system idle is still -reflected. In this example, 24.1% idle is shown. This helps the -system admin or user determine the cause of slowdown, when a -powerclamp driver is in action. +idle time, powerclamp kernel threads will do idle injection. Forced +idle time is accounted as normal idle in that common code path is +taken as the idle task. + +In this example, 24.1% idle is shown. This helps the system admin or +user determine the cause of slowdown, when a powerclamp driver is in action. Tasks: 197 total, 1 running, 196 sleeping, 0 stopped, 0 zombie diff --git a/Documentation/trace/ftrace.txt b/Documentation/trace/ftrace.txt index 006f47c7d913..94a987bd2bc5 100644 --- a/Documentation/trace/ftrace.txt +++ b/Documentation/trace/ftrace.txt @@ -1546,7 +1546,7 @@ Note, that the trace data shows the internal priority (99 - rtprio). <idle>-0 3d..3 5us : 0:120:R ==> [003] 2389: 94:R sleep -The 0:120:R means idle was running with a nice priority of 0 (120 - 20) +The 0:120:R means idle was running with a nice priority of 0 (120 - 120) and in the running state 'R'. The sleep task was scheduled in with 2389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94) and it too is in the running state. diff --git a/Documentation/trace/kprobetrace.txt b/Documentation/trace/kprobetrace.txt index e4991fb1eedc..5ea85059db3b 100644 --- a/Documentation/trace/kprobetrace.txt +++ b/Documentation/trace/kprobetrace.txt @@ -8,11 +8,12 @@ Overview -------- These events are similar to tracepoint based events. Instead of Tracepoint, this is based on kprobes (kprobe and kretprobe). So it can probe wherever -kprobes can probe (this means, all functions body except for __kprobes -functions). Unlike the Tracepoint based event, this can be added and removed +kprobes can probe (this means, all functions except those with +__kprobes/nokprobe_inline annotation and those marked NOKPROBE_SYMBOL). +Unlike the Tracepoint based event, this can be added and removed dynamically, on the fly. -To enable this feature, build your kernel with CONFIG_KPROBE_EVENT=y. +To enable this feature, build your kernel with CONFIG_KPROBE_EVENTS=y. Similar to the events tracer, this doesn't need to be activated via current_tracer. Instead of that, add probe points via diff --git a/Documentation/trace/uprobetracer.txt b/Documentation/trace/uprobetracer.txt index fa7b680ee8a0..bf526a7c5559 100644 --- a/Documentation/trace/uprobetracer.txt +++ b/Documentation/trace/uprobetracer.txt @@ -7,7 +7,7 @@ Overview -------- Uprobe based trace events are similar to kprobe based trace events. -To enable this feature, build your kernel with CONFIG_UPROBE_EVENT=y. +To enable this feature, build your kernel with CONFIG_UPROBE_EVENTS=y. Similar to the kprobe-event tracer, this doesn't need to be activated via current_tracer. Instead of that, add probe points via diff --git a/Documentation/translations/ja_JP/HOWTO b/Documentation/translations/ja_JP/howto.rst index 4ebd20750ef1..4511eed0fabb 100644 --- a/Documentation/translations/ja_JP/HOWTO +++ b/Documentation/translations/ja_JP/howto.rst @@ -1,95 +1,81 @@ NOTE: This is a version of Documentation/HOWTO translated into Japanese. This document is maintained by Tsugikazu Shibata <tshibata@ab.jp.nec.com> -and the JF Project team <www.linux.or.jp/JF>. -If you find any difference between this document and the original file -or a problem with the translation, -please contact the maintainer of this file or JF project. - -Please also note that the purpose of this file is to be easier to read -for non English (read: Japanese) speakers and is not intended as a -fork. So if you have any comments or updates for this file, please try -to update the original English file first. - -Last Updated: 2013/07/19 -================================== -これは、 -linux-3.10/Documentation/HOWTO +If you find any difference between this document and the original file or +a problem with the translation, please contact the maintainer of this file. + +Please also note that the purpose of this file is to be easier to +read for non English (read: Japanese) speakers and is not intended as +a fork. So if you have any comments or updates for this file, please +try to update the original English file first. + +---------------------------------- + +この文書は、 +Documentation/process/howto.rst の和訳です。 -翻訳団体: JF プロジェクト < http://linuxjf.sourceforge.jp/ > -翻訳日: 2013/7/19 -翻訳者: Tsugikazu Shibata <tshibata at ab dot jp dot nec dot com> -校正者: 松倉さん <nbh--mats at nifty dot com> - 小林 雅典さん (Masanori Kobayasi) <zap03216 at nifty dot ne dot jp> - 武井伸光さん、<takei at webmasters dot gr dot jp> - かねこさん (Seiji Kaneko) <skaneko at a2 dot mbn dot or dot jp> - 野口さん (Kenji Noguchi) <tokyo246 at gmail dot com> - 河内さん (Takayoshi Kochi) <t-kochi at bq dot jp dot nec dot com> - 岩本さん (iwamoto) <iwamoto.kn at ncos dot nec dot co dot jp> - 内田さん (Satoshi Uchida) <s-uchida at ap dot jp dot nec dot com> -================================== +翻訳者: Tsugikazu Shibata <tshibata@ab.jp.nec.com> + +---------------------------------- Linux カーネル開発のやり方 -------------------------------- +========================== これは上のトピック( Linux カーネル開発のやり方)の重要な事柄を網羅した -ドキュメントです。ここには Linux カーネル開発者になるための方法と -Linux カーネル開発コミュニティと共に活動するやり方を学ぶ方法が含まれて -います。カーネルプログラミングに関する技術的な項目に関することは何も含 -めないようにしていますが、カーネル開発者となるための正しい方向に向かう -手助けになります。 +ドキュメントです。ここには Linux カーネル開発者になるための方法とLinux +カーネル開発コミュニティと共に活動するやり方を学ぶ方法が含まれています。 +カーネルプログラミングに関する技術的な項目に関することは何も含めないよ +うにしていますが、カーネル開発者となるための正しい方向に向かう手助けに +なります。 -もし、このドキュメントのどこかが古くなっていた場合には、このドキュメン -トの最後にリストしたメンテナにパッチを送ってください。 +もし、このドキュメントのどこかが古くなっていた場合には、このドキュメント +の最後にリストしたメンテナにパッチを送ってください。 はじめに --------- -あなたは Linux カーネルの開発者になる方法を学びたいのでしょうか? そ -れともあなたは上司から「このデバイスの Linux ドライバを書くように」と -言われているのでしょうか? -この文書の目的は、あなたが踏むべき手順と、コミュニティと一緒にうまく働 -くヒントを書き下すことで、あなたが知るべき全てのことを教えることです。 -また、このコミュニティがなぜ今うまくまわっているのかという理由の一部も -説明しようと試みています。 - - -カーネルは 少量のアーキテクチャ依存部分がアセンブリ言語で書かれている -以外は大部分は C 言語で書かれています。C言語をよく理解していることはカー -ネル開発者には必要です。アーキテクチャ向けの低レベル部分の開発をするの -でなければ、(どんなアーキテクチャでも)アセンブリ(訳注: 言語)は必要あり -ません。以下の本は、C 言語の十分な知識や何年もの経験に取って代わるもの -ではありませんが、少なくともリファレンスとしては良い本です。 +あなたは Linux カーネルの開発者になる方法を学びたいのでしょうか? そ +れとも上司から「このデバイスの Linux ドライバを書くように」と言われた +のかもしれません。この文書の目的は、あなたが踏むべき手順と、コミュニティ +と一緒にうまく働くヒントを書き下すことで、あなたが知るべき全てのことを +教えることです。また、このコミュニティがなぜ今うまくまわっているのかと +いう理由も説明しようと試みています。 + +カーネルは少量のアーキテクチャ依存部分がアセンブリ言語で書かれている以 +外の大部分は C 言語で書かれています。C言語をよく理解していることはカー +ネル開発に必要です。低レベルのアーキテクチャ開発をするのでなければ、 +(どんなアーキテクチャでも)アセンブリ(訳注: 言語)は必要ありません。以下 +の本は、C 言語の十分な知識や何年もの経験に取って代わるものではありませ +んが、少なくともリファレンスとしては良い本です。 + - "The C Programming Language" by Kernighan and Ritchie [Prentice Hall] - -『プログラミング言語C第2版』(B.W. カーニハン/D.M. リッチー著 石田晴久訳) [共立出版] + - 『プログラミング言語C第2版』(B.W. カーニハン/D.M. リッチー著 石田晴久訳) [共立出版] - "Practical C Programming" by Steve Oualline [O'Reilly] - 『C実践プログラミング第3版』(Steve Oualline著 望月康司監訳 谷口功訳) [オライリージャパン] - "C: A Reference Manual" by Harbison and Steele [Prentice Hall] - - 『新・詳説 C 言語 H&S リファレンス』 - (サミュエル P ハービソン/ガイ L スティール共著 斉藤 信男監訳)[ソフトバンク] + - 『新・詳説 C 言語 H&S リファレンス』 (サミュエル P ハービソン/ガイ L スティール共著 斉藤 信男監訳)[ソフトバンク] カーネルは GNU C と GNU ツールチェインを使って書かれています。カーネル は ISO C89 仕様に準拠して書く一方で、標準には無い言語拡張を多く使って -います。カーネルは標準 C ライブラリとは関係がないといった、C 言語フリー -スタンディング環境です。そのため、C の標準で使えないものもあります。任 -意の long long の除算や浮動小数点は使えません。 -ときどき、カーネルがツールチェインや C 言語拡張に置いている前提がどう -なっているのかわかりにくいことがあり、また、残念なことに決定的なリファ -レンスは存在しません。情報を得るには、gcc の info ページ( info gcc )を -見てください。 +います。カーネルは標準 C ライブラリに依存しない、C 言語非依存環境です。 +そのため、C の標準の中で使えないものもあります。特に任意の long long +の除算や浮動小数点は使えません。カーネルがツールチェインや C 言語拡張 +に置いている前提がどうなっているのかわかりにくいことが時々あり、また、 +残念なことに決定的なリファレンスは存在しません。情報を得るには、gcc の +info ページ( info gcc )を見てください。 あなたは既存の開発コミュニティと一緒に作業する方法を学ぼうとしているこ -とに留意してください。そのコミュニティは、コーディング、スタイル、 -開発手順について高度な標準を持つ、多様な人の集まりです。 -地理的に分散した大規模なチームに対してもっともうまくいくとわかったこと -をベースにしながら、これらの標準は長い時間をかけて築かれてきました。 -これらはきちんと文書化されていますから、事前にこれらの標準についてでき -るだけたくさん学んでください。また皆があなたやあなたの会社のやり方に合わ -せてくれると思わないでください。 +とに思い出してください。そのコミュニティは、コーディング、スタイル、開 +発手順について高度な標準を持つ、多様な人の集まりです。地理的に分散した +大規模なチームに対してもっともうまくいくとわかったことをベースにしなが +ら、これらの標準は長い時間をかけて築かれてきました。これらはきちんと文 +書化されていますから、事前にこれらの標準について事前にできるだけたくさ +ん学んでください。また皆があなたやあなたの会社のやり方に合わせてくれる +と思わないでください。 法的問題 ------------- +-------- Linux カーネルのソースコードは GPL ライセンスの下でリリースされていま す。ライセンスの詳細については、ソースツリーのメインディレクトリに存在 @@ -98,8 +84,9 @@ Linux カーネルのソースコードは GPL ライセンスの下でリリー 法律家に相談してください。メーリングリストの人達は法律家ではなく、法的 問題については彼らの声明はあてにするべきではありません。 -GPL に関する共通の質問や回答については、以下を参照してください。 - http://www.gnu.org/licenses/gpl-faq.html +GPL に関する共通の質問や回答については、以下を参照してください- + + https://www.gnu.org/licenses/gpl-faq.html ドキュメント ------------ @@ -119,111 +106,129 @@ linux-api@vger.kernel.org に送ることを勧めます。 README このファイルは Linuxカーネルの簡単な背景とカーネルを設定(訳注 configure )し、生成(訳注 build )するために必要なことは何かが書かれ - ています。カーネルに関して初めての人はここからスタートすると良いで - しょう。 + ています。 カーネルに関して初めての人はここからスタートすると良い + でしょう。 - Documentation/Changes - このファイルはカーネルをうまく生成(訳注 build )し、走らせるのに最 - 小限のレベルで必要な数々のソフトウェアパッケージの一覧を示してい - ます。 + :ref:`Documentation/Process/changes.rst <changes>` + このファイルはカーネルをうまく生成(訳注 build )し、走らせるのに最 + 小限のレベルで必要な数々のソフトウェアパッケージの一覧を示してい + ます。 - Documentation/process/coding-style.rst + :ref:`Documentation/process/coding-style.rst <codingstyle>` これは Linux カーネルのコーディングスタイルと背景にある理由を記述 しています。全ての新しいコードはこのドキュメントにあるガイドライン に従っていることを期待されています。大部分のメンテナはこれらのルー ルに従っているものだけを受け付け、多くの人は正しいスタイルのコード だけをレビューします。 - Documentation/process/submitting-patches.rst - Documentation/process/submitting-drivers.rst - これらのファイルには、どうやってうまくパッチを作って投稿するかに - ついて非常に詳しく書かれており、以下を含みます(これだけに限らない - けれども) - - Email に含むこと - - Email の形式 - - だれに送るか - これらのルールに従えばうまくいくことを保証することではありません - が (すべてのパッチは内容とスタイルについて精査を受けるので)、 - ルールに従わなければ間違いなくうまくいかないでしょう。 - - この他にパッチを作る方法についてのよくできた記述は- - - "The Perfect Patch" + :ref:`Documentation/process/submitting-patches.rst <codingstyle>` と :ref:`Documentation/process/submitting-drivers.rst <submittingdrivers>` + これらのファイルには、どうやってうまくパッチを作って投稿するかにつ + いて非常に詳しく書かれており、以下を含みます (これだけに限らない + けれども) + + - Email に含むこと + - Email の形式 + - だれに送るか + + これらのルールに従えばうまくいくことを保証することではありません + が (すべてのパッチは内容とスタイルについて精査を受けるので)、 + ルールに従わなければ間違いなくうまくいかないでしょう。 + + この他にパッチを作る方法についてのよくできた記述は- + + "The Perfect Patch" http://www.ozlabs.org/~akpm/stuff/tpp.txt - "Linux kernel patch submission format" + "Linux kernel patch submission format" http://linux.yyz.us/patch-format.html - Documentation/process/stable-api-nonsense.rst - このファイルはカーネルの中に不変のAPIを持たないことにした意識的な - 決断の背景にある理由について書かれています。以下のようなことを含 - んでいます- - - サブシステムとの間に層を作ること(コンパチビリティのため?) - - オペレーティングシステム間のドライバの移植性 - - カーネルソースツリーの素早い変更を遅らせる(もしくは素早い変更 - を妨げる) - このドキュメントは Linux 開発の思想を理解するのに非常に重要です。 - そして、他のOSでの開発者が Linux に移る時にとても重要です。 - - Documentation/admin-guide/security-bugs.rst + :ref:`Documentation/process/stable-api-nonsense.rst <stable_api_nonsense>` + このファイルはカーネルの中に不変の API を持たないことにした意識的 + な決断の背景にある理由について書かれています。以下のようなことを含 + んでいます- + + - サブシステムとの間に層を作ること(コンパチビリティのため?) + - オペレーティングシステム間のドライバの移植性 + - カーネルソースツリーの素早い変更を遅らせる(もしくは素早い変更を妨げる) + + このドキュメントは Linux 開発の思想を理解するのに非常に重要です。 + そして、他のOSでの開発者が Linux に移る時にとても重要です。 + + :ref:`Documentation/admin-guide/security-bugs.rst <securitybugs>` もし Linux カーネルでセキュリティ問題を発見したように思ったら、こ のドキュメントのステップに従ってカーネル開発者に連絡し、問題解決を 支援してください。 - Documentation/process/management-style.rst + :ref:`Documentation/process/management-style.rst <managementstyle>` このドキュメントは Linux カーネルのメンテナ達がどう行動するか、 彼らの手法の背景にある共有されている精神について記述しています。こ れはカーネル開発の初心者なら(もしくは、単に興味があるだけの人でも) 重要です。なぜならこのドキュメントは、カーネルメンテナ達の独特な 行動についての多くの誤解や混乱を解消するからです。 - Documentation/process/stable-kernel-rules.rst + :ref:`Documentation/process/stable-kernel-rules.rst <stable_kernel_rules>` このファイルはどのように stable カーネルのリリースが行われるかのルー ルが記述されています。そしてこれらのリリースの中のどこかで変更を取 り入れてもらいたい場合に何をすれば良いかが示されています。 - Documentation/process/kernel-docs.rst - カーネル開発に付随する外部ドキュメントのリストです。もしあなたが - 探しているものがカーネル内のドキュメントでみつからなかった場合、 - このリストをあたってみてください。 + :Ref:`Documentation/process/kernel-docs.rst <kernel_docs>` + カーネル開発に付随する外部ドキュメントのリストです。もしあなたが探 + しているものがカーネル内のドキュメントでみつからなかった場合、この + リストをあたってみてください。 - Documentation/process/applying-patches.rst + :ref:`Documentation/process/applying-patches.rst <applying_patches>` パッチとはなにか、パッチをどうやって様々なカーネルの開発ブランチに 適用するのかについて正確に記述した良い入門書です。 -カーネルはソースコードから自動的に生成可能な多数のドキュメントを自分自 -身でもっています。これにはカーネル内 API のすべての記述や、どう正しく -ロックをかけるかの規則が含まれます。このドキュメントは -Documentation/DocBook/ ディレクトリに作られ、以下のように - make pdfdocs - make psdocs - make htmldocs - make mandocs -コマンドを実行するとメインカーネルのソースディレクトリから -それぞれ、PDF, Postscript, HTML, man page の形式で生成されます。 +カーネルはソースコードそのものや、このファイルのようなリストラクチャー +ドテキストマークアップ(ReST)から自動的に生成可能な多数のドキュメントを +もっています。これにはカーネル内APIの完全な記述や、正しくロックをかけ +るための規則などが含まれます。 + +これら全てのドキュメントを PDF や HTML で生成するには以下を実行します - :: + + make pdfdocs + make htmldocs + +それぞれメインカーネルのソースディレクトリから実行します。 + +ReSTマークアップを使ったドキュメントは Documentation/outputに生成され +ます。Latex とePub 形式で生成するには - :: + + make latexdocs + make epubdocs + +現在、幾つかの DocBook形式で書かれたドキュメントは ReST形式に転換中で +す。それらのドキュメントはDocumentation/DocBook ディレクトリに生成され、 +Postscript または man ページの形式を生成するには以下のようにします - :: + + make psdocs + make mandocs カーネル開発者になるには ---------------------------- +------------------------ -もしあなたが、Linux カーネル開発について何も知らないならば、 +もしあなたが、Linux カーネル開発について何も知らないのならば、 KernelNewbies プロジェクトを見るべきです - http://kernelnewbies.org + + https://kernelnewbies.org このサイトには役に立つメーリングリストがあり、基本的なカーネル開発に関 するほとんどどんな種類の質問もできます (既に回答されているようなことを -聞く前にまずはアーカイブを調べてください)。 -またここには、リアルタイムで質問を聞くことができる IRC チャネルや、Linux -カーネルの開発に関して学ぶのに便利なたくさんの役に立つドキュメントがあ -ります。 +聞く前にまずはアーカイブを調べてください)。またここには、リアルタイム +で質問を聞くことができる IRC チャネルや、Linuxカーネルの開発に関して学 +ぶのに便利なたくさんの役に立つドキュメントがあります。 -web サイトには、コードの構成、サブシステム、現在存在するプロジェクト(ツ -リーにあるもの無いものの両方)の基本的な管理情報があります。 -ここには、また、カーネルのコンパイルのやり方やパッチの当て方などの間接 -的な基本情報も記述されています。 +Web サイトには、コードの構成、サブシステム、現在存在するプロジェクト +(ツリーにあるもの無いものの両方)の基本的な管理情報があります。ここには、 +また、カーネルのコンパイルのやり方やパッチの当て方などの間接的な基本情 +報も記述されています。 あなたがどこからスタートして良いかわからないが、Linux カーネル開発コミュ -ニティに参加して何かすることをさがしている場合には、Linux kernel +ニティに参加して何かすることをさがしているのであれば、Linux kernel Janitor's プロジェクトにいけば良いでしょう - - http://kernelnewbies.org/KernelJanitors + + https://kernelnewbies.org/KernelJanitors + ここはそのようなスタートをするのにうってつけの場所です。ここには、 Linux カーネルソースツリーの中に含まれる、きれいにし、修正しなければな らない、単純な問題のリストが記述されています。このプロジェクトに関わる @@ -232,10 +237,11 @@ Linux カーネルソースツリーの中に含まれる、きれいにし、 ていない場合には、次にやる仕事の方向性が見えてくるかもしれません。 もしあなたが、すでにひとまとまりコードを書いていて、カーネルツリーに入 -れたいと思っていたり、それに関する適切な支援を求めたい場合、カーネル -メンターズプロジェクトはそのような皆さんを助けるためにできました。 -ここにはメーリングリストがあり、以下から参照できます - http://selenic.com/mailman/listinfo/kernel-mentors +れたいと思っていたり、それに関する適切な支援を求めたい場合、カーネルメ +ンターズプロジェクトはそのような皆さんを助けるためにできました。ここに +はメーリングリストがあり、以下から参照できます - + + https://selenic.com/mailman/listinfo/kernel-mentors 実際に Linux カーネルのコードについて修正を加える前に、どうやってその コードが動作するのかを理解することが必要です。そのためには、特別なツー @@ -244,27 +250,29 @@ Linux カーネルソースツリーの中に含まれる、きれいにし、 特におすすめなのは、Linux クロスリファレンスプロジェクトです。これは、 自己参照方式で、索引がついた web 形式で、ソースコードを参照することが できます。この最新の素晴しいカーネルコードのリポジトリは以下で見つかり -ます- +ます - + http://lxr.free-electrons.com/ 開発プロセス ------------------------ +------------ Linux カーネルの開発プロセスは現在幾つかの異なるメインカーネル「ブラン -チ」と多数のサブシステム毎のカーネルブランチから構成されます。 -これらのブランチとは- - - メインの 3.x カーネルツリー - - 3.x.y -stable カーネルツリー - - 3.x -git カーネルパッチ +チ」と多数のサブシステム毎のカーネルブランチから構成されます。これらの +ブランチとは - + + - メインの 4.x カーネルツリー + - 4.x.y -stable カーネルツリー + - 4.x -git カーネルパッチ - サブシステム毎のカーネルツリーとパッチ - - 統合テストのための 3.x -next カーネルツリー + - 統合テストのための 4.x -next カーネルツリー -3.x カーネルツリー ------------------ +4.x カーネルツリー +~~~~~~~~~~~~~~~~~~ -3.x カーネルは Linus Torvalds によってメンテナンスされ、kernel.org -の pub/linux/kernel/v3.x/ ディレクトリに存在します。この開発プロセスは -以下のとおり- +4.x カーネルは Linus Torvalds によってメンテナンスされ、 +https://kernel.org の pub/linux/kernel/v4.x/ ディレクトリに存在します。 +この開発プロセスは以下のとおり - - 新しいカーネルがリリースされた直後に、2週間の特別期間が設けられ、 この期間中に、メンテナ達は Linus に大きな差分を送ることができます。 @@ -272,7 +280,6 @@ Linux カーネルの開発プロセスは現在幾つかの異なるメイン 大きな変更は git(カーネルのソース管理ツール、詳細は http://git-scm.com/ 参照) を使って送るのが好ましいやり方ですが、パッ チファイルの形式のまま送るのでも十分です。 - - 2週間後、-rc1 カーネルがリリースされ、この後にはカーネル全体の安定 性に影響をあたえるような新機能は含まない類のパッチしか取り込むこと はできません。新しいドライバ(もしくはファイルシステム)のパッチは @@ -282,44 +289,45 @@ Linux カーネルの開発プロセスは現在幾つかの異なるメイン Linus へパッチを送付するのに git を使うこともできますが、パッチは レビューのために、パブリックなメーリングリストへも同時に送る必要が あります。 - - 新しい -rc は Linus が、最新の git ツリーがテスト目的であれば十分 に安定した状態にあると判断したときにリリースされます。目標は毎週新 しい -rc カーネルをリリースすることです。 - - このプロセスはカーネルが 「準備ができた」と考えられるまで継続しま す。このプロセスはだいたい 6週間継続します。 Andrew Morton が Linux-kernel メーリングリストにカーネルリリースについ -て書いたことをここで言っておくことは価値があります- - 「カーネルがいつリリースされるかは誰も知りません。なぜなら、これは現 - 実に認識されたバグの状況によりリリースされるのであり、前もって決めら - れた計画によってリリースされるものではないからです。」 +て書いたことをここで言っておくことは価値があります - + + *「カーネルがいつリリースされるかは誰も知りません。なぜなら、 + これは現実に認識されたバグの状況によりリリースされるのであり、 + 前もって決められた計画によってリリースされるものではないから + です。」* -3.x.y -stable カーネルツリー ---------------------------- +4.x.y -stable カーネルツリー +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ バージョン番号が3つの数字に分かれているカーネルは -stable カーネルです。 -これには、3.x カーネルで見つかったセキュリティ問題や重大な後戻りに対 -する比較的小さい重要な修正が含まれます。 +これには、4.x カーネルで見つかったセキュリティ問題や重大な後戻りに対す +る比較的小さい重要な修正が含まれます。 -これは、開発/実験的バージョンのテストに協力することに興味が無く、 -最新の安定したカーネルを使いたいユーザに推奨するブランチです。 +これは、開発/実験的バージョンのテストに協力することに興味が無く、最新 +の安定したカーネルを使いたいユーザに推奨するブランチです。 -もし、3.x.y カーネルが存在しない場合には、番号が一番大きい 3.x が -最新の安定版カーネルです。 +もし、4.x.y カーネルが存在しない場合には、番号が一番大きい 4.x が最新 +の安定版カーネルです。 -3.x.y は "stable" チーム <stable@vger.kernel.org> でメンテされており、必 -要に応じてリリースされます。通常のリリース期間は 2週間毎ですが、差し迫っ -た問題がなければもう少し長くなることもあります。セキュリティ関連の問題 -の場合はこれに対してだいたいの場合、すぐにリリースがされます。 +4.x.y は "stable" チーム <stable@vger.kernel.org> でメンテされており、 +必要に応じてリリースされます。通常のリリース期間は 2週間毎ですが、差 +し迫った問題がなければもう少し長くなることもあります。セキュリティ関 +連の問題の場合はこれに対してだいたいの場合、すぐにリリースがされます。 -カーネルツリーに入っている、Documentation/process/stable-kernel-rules.rst ファ -イルにはどのような種類の変更が -stable ツリーに受け入れ可能か、またリ -リースプロセスがどう動くかが記述されています。 +カーネルツリーに入っている、 +Documentation/process/stable-kernel-rules.rst ファイルにはどのような種 +類の変更が -stable ツリーに受け入れ可能か、またリリースプロセスがどう +動くかが記述されています。 -3.x -git パッチ ------------------- +4.x -git パッチ +~~~~~~~~~~~~~~~ git リポジトリで管理されているLinus のカーネルツリーの毎日のスナップ ショットがあります。(だから -git という名前がついています)。これらのパッ @@ -328,7 +336,7 @@ git リポジトリで管理されているLinus のカーネルツリーの毎 に生成されるので、より実験的です。 サブシステム毎のカーネルツリーとパッチ -------------------------------------------- +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ それぞれのカーネルサブシステムのメンテナ達は --- そして多くのカーネル サブシステムの開発者達も --- 各自の最新の開発状況をソースリポジトリに @@ -340,42 +348,45 @@ git リポジトリで管理されているLinus のカーネルツリーの毎 大部分のこれらのリポジトリは git ツリーです。しかしその他の SCM や quilt シリーズとして公開されているパッチキューも使われています。これら のサブシステムリポジトリのアドレスは MAINTAINERS ファイルにリストされ -ています。これらの多くは http://git.kernel.org/ で参照することができま +ています。これらの多くは https://git.kernel.org/ で参照することができま す。 提案されたパッチがこのようなサブシステムツリーにコミットされる前に、メー リングリストで事前にレビューにかけられます(以下の対応するセクションを -参照)。いくつかのカーネルサブシステムでは、このレビューは patchwork -というツールによって追跡されます。Patchwork は web インターフェイスに -よってパッチ投稿の表示、パッチへのコメント付けや改訂などができ、そして -メンテナはパッチに対して、レビュー中、受付済み、拒否というようなマーク -をつけることができます。大部分のこれらの patchwork のサイトは -http://patchwork.kernel.org/ でリストされています。 - -統合テストのための 3.x -next カーネルツリー ---------------------------------------------- - -サブシステムツリーの更新内容がメインラインの 3.x ツリーにマージされ -る前に、それらは統合テストされる必要があります。この目的のため、実質的 -に全サブシステムツリーからほぼ毎日プルされてできる特別なテスト用のリ -ポジトリが存在します- - http://git.kernel.org/?p=linux/kernel/git/next/linux-next.git +参照)。いくつかのカーネルサブシステムでは、このレビューは patchworkと +いうツールによって追跡されます。Patchwork は web インターフェイスによっ +てパッチ投稿の表示、パッチへのコメント付けや改訂などができ、そしてメン +テナはパッチに対して、レビュー中、受付済み、拒否というようなマークをつ +けることができます。大部分のこれらの patchwork のサイトは +https://patchwork.kernel.org/ でリストされています。 + +統合テストのための 4.x -next カーネルツリー +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +サブシステムツリーの更新内容がメインラインの 4.x ツリーにマージされる +前に、それらは統合テストされる必要があります。この目的のため、実質的に +全サブシステムツリーからほぼ毎日プルされてできる特別なテスト用のリポジ +トリが存在します- + + https://git.kernel.org/?p=linux/kernel/git/next/linux-next.git このやり方によって、-next カーネルは次のマージ機会でどんなものがメイン -ラインカーネルにマージされるか、おおまかなの展望を提供します。-next -カーネルの実行テストを行う冒険好きなテスターは大いに歓迎されます +ラインカーネルにマージされるか、おおまかなの展望を提供します。-next カー +ネルの実行テストを行う冒険好きなテスターは大いに歓迎されます。 バグレポート ------------- -bugzilla.kernel.org は Linux カーネル開発者がカーネルのバグを追跡する -場所です。ユーザは見つけたバグの全てをこのツールで報告すべきです。 -どう kernel bugzilla を使うかの詳細は、以下を参照してください- - http://bugzilla.kernel.org/page.cgi?id=faq.html -メインカーネルソースディレクトリにあるファイル admin-guide/reporting-bugs.rst はカーネ -ルバグらしいものについてどうレポートするかの良いテンプレートであり、問 -題の追跡を助けるためにカーネル開発者にとってどんな情報が必要なのかの詳 -細が書かれています。 +https://bugzilla.kernel.org は Linux カーネル開発者がカーネルのバグを追跡する +場所です。ユーザは見つけたバグの全てをこのツールで報告すべきです。どう +kernel bugzilla を使うかの詳細は、以下を参照してください - + + https://bugzilla.kernel.org/page.cgi?id=faq.html + +メインカーネルソースディレクトリにあるファイル +admin-guide/reporting-bugs.rstはカーネルバグらしいものについてどうレポー +トするかの良いテンプレートであり、問題の追跡を助けるためにカーネル開発 +者にとってどんな情報が必要なのかの詳細が書かれています。 バグレポートの管理 ------------------- @@ -383,74 +394,78 @@ bugzilla.kernel.org は Linux カーネル開発者がカーネルのバグを あなたのハッキングのスキルを訓練する最高の方法のひとつに、他人がレポー トしたバグを修正することがあります。あなたがカーネルをより安定化させる こに寄与するということだけでなく、あなたは 現実の問題を修正することを -学び、自分のスキルも強化でき、また他の開発者があなたの存在に気がつき -ます。バグを修正することは、多くの開発者の中から自分が功績をあげる最善 -の道です、なぜなら多くの人は他人のバグの修正に時間を浪費することを好ま -ないからです。 +学び、自分のスキルも強化でき、また他の開発者があなたの存在に気がつきま +す。バグを修正することは、多くの開発者の中から自分が功績をあげる最善の +道です、なぜなら多くの人は他人のバグの修正に時間を浪費することを好まな +いからです。 すでにレポートされたバグのために仕事をするためには、 -http://bugzilla.kernel.org に行ってください。もし今後のバグレポートに +https://bugzilla.kernel.org に行ってください。もし今後のバグレポートに ついてアドバイスを受けたいのであれば、bugme-new メーリングリスト(新し いバグレポートだけがここにメールされる) または bugme-janitor メーリン グリスト(bugzilla の変更毎にここにメールされる)を購読できます。 - http://lists.linux-foundation.org/mailman/listinfo/bugme-new - http://lists.linux-foundation.org/mailman/listinfo/bugme-janitors + https://lists.linux-foundation.org/mailman/listinfo/bugme-new + + https://lists.linux-foundation.org/mailman/listinfo/bugme-janitors メーリングリスト -------------- +---------------- 上のいくつかのドキュメントで述べていますが、コアカーネル開発者の大部分 は Linux kernel メーリングリストに参加しています。このリストの登録/脱 退の方法については以下を参照してください- + http://vger.kernel.org/vger-lists.html#linux-kernel このメーリングリストのアーカイブは web 上の多数の場所に存在します。こ れらのアーカイブを探すにはサーチエンジンを使いましょう。例えば- + http://dir.gmane.org/gmane.linux.kernel リストに投稿する前にすでにその話題がアーカイブに存在するかどうかを検索 -することを是非やってください。多数の事がすでに詳細に渡って議論されて -おり、アーカイブにのみ記録されています。 +することを是非やってください。多数の事がすでに詳細に渡って議論されてお +り、アーカイブにのみ記録されています。 大部分のカーネルサブシステムも自分の個別の開発を実施するメーリングリス トを持っています。個々のグループがどんなリストを持っているかは、 MAINTAINERS ファイルにリストがありますので参照してください。 多くのリストは kernel.org でホストされています。これらの情報は以下にあ -ります- +ります - + http://vger.kernel.org/vger-lists.html -メーリングリストを使う場合、良い行動習慣に従うようにしましょう。 -少し安っぽいが、以下の URL は上のリスト(や他のリスト)で会話する場合の -シンプルなガイドラインを示しています- +メーリングリストを使う場合、良い行動習慣に従うようにしましょう。少し安っ +ぽいが、以下の URL は上のリスト(や他のリスト)で会話する場合のシンプル +なガイドラインを示しています - + http://www.albion.com/netiquette/ もし複数の人があなたのメールに返事をした場合、CC: で受ける人のリストは -だいぶ多くなるでしょう。良い理由がない場合、CC: リストから誰かを削除を -しないように、また、メーリングリストのアドレスだけにリプライすることの -ないようにしましょう。1つは送信者から、もう1つはリストからのように、メー -ルを2回受けることになってもそれに慣れ、しゃれたメールヘッダーを追加し -てこの状態を変えようとしないように。人々はそのようなことは好みません。 +だいぶ多くなるでしょう。正当な理由がない限り、CC: リストから誰かを削除 +をしないように、また、メーリングリストのアドレスだけにリプライすること +のないようにしましょう。1つは送信者から、もう1つはリストからのように、 +メールを2回受けることになってもそれに慣れ、しゃれたメールヘッダーを追 +加してこの状態を変えようとしないように。人々はそのようなことは好みませ +ん。 今までのメールでのやりとりとその間のあなたの発言はそのまま残し、 "John Kernelhacker wrote ...:" の行をあなたのリプライの先頭行にして、 メールの先頭でなく、各引用行の間にあなたの言いたいことを追加するべきで す。 -もしパッチをメールに付ける場合は、Documentation/process/submitting-patches.rst に提 -示されているように、それは プレーンな可読テキストにすることを忘れない -ようにしましょう。カーネル開発者は 添付や圧縮したパッチを扱いたがりま -せん- -彼らはあなたのパッチの行毎にコメントを入れたいので、そのためにはそうす -るしかありません。あなたのメールプログラムが空白やタブを圧縮しないよう -に確認した方が良いです。最初の良いテストとしては、自分にメールを送って -みて、そのパッチを自分で当ててみることです。もしそれがうまく行かないな -ら、あなたのメールプログラムを直してもらうか、正しく動くように変えるべ -きです。 +もしパッチをメールに付ける場合は、 +Documentation/process/submitting-patches.rst に提示されているように、そ +れは プレーンな可読テキストにすることを忘れないようにしましょう。カー +ネル開発者は 添付や圧縮したパッチを扱いたがりません。彼らはあなたのパッ +チの行毎にコメントを入れたいので、そうするしかありません。あなたのメー +ルプログラムが空白やタブを圧縮しないように確認しましょう。最初の良いテ +ストとしては、自分にメールを送ってみて、そのパッチを自分で当ててみるこ +とです。もしそれがうまく行かないなら、あなたのメールプログラムを直して +もらうか、正しく動くように変えるべきです。 -とりわけ、他の登録者に対する尊敬を表すようにすることを覚えておいてくだ -さい。 +何をおいても、他の購読者に対する敬意を表すことを忘れないでください。 コミュニティと共に働くこと -------------------------- @@ -459,21 +474,22 @@ MAINTAINERS ファイルにリストがありますので参照してくださ です。あなたがパッチを受け入れてもらうために投稿した場合、それは、技術 的メリットだけがレビューされます。その際、あなたは何を予想すべきでしょ うか? + - 批判 - コメント - 変更の要求 - パッチの正当性の証明要求 - 沈黙 -思い出してください、ここはあなたのパッチをカーネルに入れる話です。あ -なたは、あなたのパッチに対する批判とコメントを受け入れるべきで、それら -を技術的レベルで評価して、パッチを再作成するか、なぜそれらの変更をすべ -きでないかを明確で簡潔な理由の説明を提供してください。 -もし、あなたのパッチに何も反応がない場合、たまにはメールの山に埋もれて -見逃され、あなたの投稿が忘れられてしまうこともあるので、数日待って再度 -投稿してください。 +思い出してください、これはあなたのパッチをカーネルに入れる話です。あな +たは、あなたのパッチに対する批判とコメントを受け入れるべきで、それらを +技術的レベルで評価して、パッチを再作成するか、なぜそれらの変更をすべき +でないかを明確で簡潔な理由の説明を提供してください。もし、あなたのパッ +チに何も反応がない場合、たまにはメールの山に埋もれて見逃され、あなたの +投稿が忘れられてしまうこともあるので、数日待って再度投稿してください。 + +あなたがやるべきでないことは? -あなたがやるべきでないものは? - 質問なしにあなたのパッチが受け入れられると想像すること - 守りに入ること - コメントを無視すること @@ -489,37 +505,37 @@ MAINTAINERS ファイルにリストがありますので参照してくださ あなたの最初のパッチに単に 1ダースもの修正を求めるリストの返答になるこ とも普通のことです。これはあなたのパッチが受け入れられないということで -は *ありません*、そしてあなた自身に反対することを意味するのでも *ありま -せん*。単に自分のパッチに対して指摘された問題を全て修正して再送すれば -良いのです。 +は **ありません**、そしてあなた自身に反対することを意味するのでも **あ +りません**。単に自分のパッチに対して指摘された問題を全て修正して再送す +れば良いのです。 カーネルコミュニティと企業組織のちがい ----------------------------------------------------------------- カーネルコミュニティは大部分の伝統的な会社の開発環境とは異ったやり方で -動いています。以下は問題を避けるためにできると良いことのリストです- +動いています。以下は問題を避けるためにできると良いことのリストです。 - あなたの提案する変更について言うときのうまい言い方: + あなたの提案する変更について言うときのうまい言い方 - - "これは複数の問題を解決します" - "これは2000行のコードを削除します" - "以下のパッチは、私が言おうとしていることを説明するものです" - "私はこれを5つの異なるアーキテクチャでテストしたのですが..." - "以下は一連の小さなパッチ群ですが..." - - "これは典型的なマシンでの性能を向上させます.." + - "これは典型的なマシンでの性能を向上させます..." - やめた方が良い悪い言い方: + やめた方が良い悪い言い方 - - - このやり方で AIX/ptx/Solaris ではできたので、できるはずだ - - 私はこれを20年もの間やってきた、だから - - これは、私の会社が金儲けをするために必要だ - - これは我々のエンタープライズ向け商品ラインのためである - - これは 私が自分のアイディアを記述した、1000ページの設計資料である - - 私はこれについて、6ケ月作業している。 - - 以下は ... に関する5000行のパッチです - - 私は現在のぐちゃぐちゃを全部書き直した、それが以下です... - - 私は〆切がある、そのためこのパッチは今すぐ適用される必要がある + - "このやり方で AIX/ptx/Solaris ではできたので、できるはずだ..." + - "私はこれを20年もの間やってきた、だから..." + - "これは私の会社が金儲けをするために必要だ" + - "これは我々のエンタープライズ向け商品ラインのためである" + - "これは私が自分のアイディアを記述した、1000ページの設計資料である" + - "私はこれについて、6ケ月作業している..." + - "以下は ... に関する5000行のパッチです" + - "私は現在のぐちゃぐちゃを全部書き直した、それが以下です..." + - "私は〆切がある、そのためこのパッチは今すぐ適用される必要がある" カーネルコミュニティが大部分の伝統的なソフトウェアエンジニアリングの労 働環境と異なるもう一つの点は、やりとりに顔を合わせないということです。 @@ -535,13 +551,13 @@ Patricia (主に女性名)や Patrick (主に男性名)の略称)。 Linux カーネルの活動をして、意見を表明したことがある大部分の女性は、前 向きな経験をもっています。 -言葉の壁は英語が得意でない一部の人には問題になります。 -メーリングリストの中できちんとアイディアを交換するには、相当うまく英語 -を操れる必要があることもあります。そのため、あなたは自分のメール -を送る前に英語で意味が通じているかをチェックすることをお薦めします。 +言葉の壁は英語が得意でない一部の人には問題になります。メーリングリスト +の中で、きちんとアイディアを交換するには、相当うまく英語を操れる必要が +あることもあります。そのため、自分のメールを送る前に英語で意味が通じて +いるかをチェックすることをお薦めします。 変更を分割する ---------------------- +-------------- Linux カーネルコミュニティは、一度に大量のコードの塊を喜んで受容するこ とはありません。変更は正確に説明される必要があり、議論され、小さい、個 @@ -555,7 +571,7 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を やってはいけません、あなたのパッチ群はいつもどんな時でもそれよりは小さ くなければなりません。 -パッチを分割する理由は以下です- +パッチを分割する理由は以下 - 1) 小さいパッチはあなたのパッチが適用される見込みを大きくします、カー ネルの人達はパッチが正しいかどうかを確認する時間や労力をかけないか @@ -571,41 +587,41 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を 2) 小さいパッチを送るだけでなく、送るまえに、書き直して、シンプルにす る(もしくは、単に順番を変えるだけでも)ことも、とても重要です。 -以下はカーネル開発者の Al Viro のたとえ話です: +以下はカーネル開発者の Al Viro のたとえ話です - - "生徒の数学の宿題を採点する先生のことを考えてみてください、先 - 生は生徒が解に到達するまでの試行錯誤を見たいとは思わないでしょ - う。先生は簡潔な最高の解を見たいのです。良い生徒はこれを知って - おり、そして最終解の前の中間作業を提出することは決してないので - す" + *"生徒の数学の宿題を採点する先生のことを考えてみてください、 + 先生は生徒が解に到達するまでの試行錯誤を見たいとは思わないでし + ょう。先生は簡潔な最高の解を見たいのです。良い生徒はこれを知っ + ており、そして最終解の前の中間作業を提出することは決してないの + です* - カーネル開発でもこれは同じです。メンテナ達とレビューア達は、 + *カーネル開発でもこれは同じです。メンテナ達とレビューア達は、 問題を解決する解の背後になる思考プロセスを見たいとは思いません。 - 彼らは単純であざやかな解決方法を見たいのです。 + 彼らは単純であざやかな解決方法を見たいのです。"* あざやかな解を説明するのと、コミュニティと共に仕事をし、未解決の仕事を -議論することのバランスをキープするのは難しいかもしれません。 -ですから、開発プロセスの早期段階で改善のためのフィードバックをもらうよ -うにするのも良いですが、変更点を小さい部分に分割して全体ではまだ完成し -ていない仕事を(部分的に)取り込んでもらえるようにすることも良いことです。 +議論することのバランスをキープするのは難しいかもしれません。ですから、 +開発プロセスの早期段階で改善のためのフィードバックをもらうようにするの +も良いですが、変更点を小さい部分に分割して全体ではまだ完成していない仕 +事を(部分的に)取り込んでもらえるようにすることも良いことです。 また、でき上がっていないものや、"将来直す" ようなパッチを、本流に含め てもらうように送っても、それは受け付けられないことを理解してください。 あなたの変更を正当化する -------------------- +------------------------ あなたのパッチを分割するのと同時に、なぜその変更を追加しなければならな いかを Linux コミュニティに知らせることはとても重要です。新機能は必要 性と有用性で正当化されなければなりません。 -あなたの変更の説明 --------------------- +あなたの変更を説明する +---------------------- あなたのパッチを送付する場合には、メールの中のテキストで何を言うかにつ いて、特別に注意を払ってください。この情報はパッチの ChangeLog に使わ れ、いつも皆がみられるように保管されます。これは次のような項目を含め、 -パッチを完全に記述するべきです- +パッチを完全に記述するべきです - - なぜ変更が必要か - パッチ全体の設計アプローチ @@ -613,18 +629,24 @@ Linux カーネルコミュニティは、一度に大量のコードの塊を - テスト結果 これについて全てがどのようにあるべきかについての詳細は、以下のドキュメ -ントの ChangeLog セクションを見てください- +ントの ChangeLog セクションを見てください - + "The Perfect Patch" http://www.ozlabs.org/~akpm/stuff/tpp.txt -これらのどれもが、時にはとても困難です。これらの慣例を完璧に実施するに -は数年かかるかもしれません。これは継続的な改善のプロセスであり、そのた -めには多数の忍耐と決意を必要とするものです。でも、諦めないで、これは可 -能なことです。多数の人がすでにできていますし、彼らも皆最初はあなたと同 -じところからスタートしたのですから。 +これらはどれも、実行することが時にはとても困難です。これらの例を完璧に +実施するには数年かかるかもしれません。これは継続的な改善のプロセスであ +り、多くの忍耐と決意を必要とするものです。でも諦めないで、実現は可能で +す。多数の人がすでにできていますし、彼らも最初はあなたと同じところから +スタートしたのですから。 + + + + +---------- Paolo Ciarrocchi に感謝、彼は彼の書いた "Development Process" -(http://lwn.net/Articles/94386/) セクションをこのテキストの原型にする +(https://lwn.net/Articles/94386/) セクションをこのテキストの原型にする ことを許可してくれました。Rundy Dunlap と Gerrit Huizenga はメーリング リストでやるべきこととやってはいけないことのリストを提供してくれました。 以下の人々のレビュー、コメント、貢献に感謝。 @@ -634,4 +656,6 @@ Kleen, Vadim Lobanov, Jesper Juhl, Adrian Bunk, Keri Harris, Frans Pop, David A. Wheeler, Junio Hamano, Michael Kerrisk, と Alex Shepard 彼らの支援なしでは、このドキュメントはできなかったでしょう。 + + Maintainer: Greg Kroah-Hartman <greg@kroah.com> diff --git a/Documentation/translations/ja_JP/index.rst b/Documentation/translations/ja_JP/index.rst new file mode 100644 index 000000000000..2f91b895e3c2 --- /dev/null +++ b/Documentation/translations/ja_JP/index.rst @@ -0,0 +1,12 @@ +.. raw:: latex + + \renewcommand\thesection* + \renewcommand\thesubsection* + +Japanese translations +===================== + +.. toctree:: + :maxdepth: 1 + + howto diff --git a/Documentation/translations/zh_CN/sparse.txt b/Documentation/translations/zh_CN/sparse.txt index e41dc940e162..2f728962a8e2 100644 --- a/Documentation/translations/zh_CN/sparse.txt +++ b/Documentation/translations/zh_CN/sparse.txt @@ -1,4 +1,4 @@ -Chinese translated version of Documentation/sparse.txt +Chinese translated version of Documentation/dev-tools/sparse.rst If you have any comment or update to the content, please contact the original document maintainer directly. However, if you have a problem @@ -8,7 +8,7 @@ or if there is a problem with the translation. Chinese maintainer: Li Yang <leo@zh-kernel.org> --------------------------------------------------------------------- -Documentation/sparse.txt 的中文翻译 +Documentation/dev-tools/sparse.rst 的中文翻译 如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文 交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻 diff --git a/Documentation/usb/acm.txt b/Documentation/usb/acm.txt index 17f5c2e1a570..903abca10517 100644 --- a/Documentation/usb/acm.txt +++ b/Documentation/usb/acm.txt @@ -64,7 +64,7 @@ minicom, ppp and mgetty with them. 2. Verifying that it works ~~~~~~~~~~~~~~~~~~~~~~~~~~ - The first step would be to check /proc/bus/usb/devices, it should look + The first step would be to check /sys/kernel/debug/usb/devices, it should look like this: T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 diff --git a/Documentation/usb/error-codes.txt b/Documentation/usb/error-codes.txt deleted file mode 100644 index 9c3eb845ebe5..000000000000 --- a/Documentation/usb/error-codes.txt +++ /dev/null @@ -1,175 +0,0 @@ -Revised: 2004-Oct-21 - -This is the documentation of (hopefully) all possible error codes (and -their interpretation) that can be returned from usbcore. - -Some of them are returned by the Host Controller Drivers (HCDs), which -device drivers only see through usbcore. As a rule, all the HCDs should -behave the same except for transfer speed dependent behaviors and the -way certain faults are reported. - - -************************************************************************** -* Error codes returned by usb_submit_urb * -************************************************************************** - -Non-USB-specific: - -0 URB submission went fine - --ENOMEM no memory for allocation of internal structures - -USB-specific: - --EBUSY The URB is already active. - --ENODEV specified USB-device or bus doesn't exist - --ENOENT specified interface or endpoint does not exist or - is not enabled - --ENXIO host controller driver does not support queuing of this type - of urb. (treat as a host controller bug.) - --EINVAL a) Invalid transfer type specified (or not supported) - b) Invalid or unsupported periodic transfer interval - c) ISO: attempted to change transfer interval - d) ISO: number_of_packets is < 0 - e) various other cases - --EXDEV ISO: URB_ISO_ASAP wasn't specified and all the frames - the URB would be scheduled in have already expired. - --EFBIG Host controller driver can't schedule that many ISO frames. - --EPIPE The pipe type specified in the URB doesn't match the - endpoint's actual type. - --EMSGSIZE (a) endpoint maxpacket size is zero; it is not usable - in the current interface altsetting. - (b) ISO packet is larger than the endpoint maxpacket. - (c) requested data transfer length is invalid: negative - or too large for the host controller. - --ENOSPC This request would overcommit the usb bandwidth reserved - for periodic transfers (interrupt, isochronous). - --ESHUTDOWN The device or host controller has been disabled due to some - problem that could not be worked around. - --EPERM Submission failed because urb->reject was set. - --EHOSTUNREACH URB was rejected because the device is suspended. - --ENOEXEC A control URB doesn't contain a Setup packet. - - -************************************************************************** -* Error codes returned by in urb->status * -* or in iso_frame_desc[n].status (for ISO) * -************************************************************************** - -USB device drivers may only test urb status values in completion handlers. -This is because otherwise there would be a race between HCDs updating -these values on one CPU, and device drivers testing them on another CPU. - -A transfer's actual_length may be positive even when an error has been -reported. That's because transfers often involve several packets, so that -one or more packets could finish before an error stops further endpoint I/O. - -For isochronous URBs, the urb status value is non-zero only if the URB is -unlinked, the device is removed, the host controller is disabled, or the total -transferred length is less than the requested length and the URB_SHORT_NOT_OK -flag is set. Completion handlers for isochronous URBs should only see -urb->status set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO. -Individual frame descriptor status fields may report more status codes. - - -0 Transfer completed successfully - --ENOENT URB was synchronously unlinked by usb_unlink_urb - --EINPROGRESS URB still pending, no results yet - (That is, if drivers see this it's a bug.) - --EPROTO (*, **) a) bitstuff error - b) no response packet received within the - prescribed bus turn-around time - c) unknown USB error - --EILSEQ (*, **) a) CRC mismatch - b) no response packet received within the - prescribed bus turn-around time - c) unknown USB error - - Note that often the controller hardware does not - distinguish among cases a), b), and c), so a - driver cannot tell whether there was a protocol - error, a failure to respond (often caused by - device disconnect), or some other fault. - --ETIME (**) No response packet received within the prescribed - bus turn-around time. This error may instead be - reported as -EPROTO or -EILSEQ. - --ETIMEDOUT Synchronous USB message functions use this code - to indicate timeout expired before the transfer - completed, and no other error was reported by HC. - --EPIPE (**) Endpoint stalled. For non-control endpoints, - reset this status with usb_clear_halt(). - --ECOMM During an IN transfer, the host controller - received data from an endpoint faster than it - could be written to system memory - --ENOSR During an OUT transfer, the host controller - could not retrieve data from system memory fast - enough to keep up with the USB data rate - --EOVERFLOW (*) The amount of data returned by the endpoint was - greater than either the max packet size of the - endpoint or the remaining buffer size. "Babble". - --EREMOTEIO The data read from the endpoint did not fill the - specified buffer, and URB_SHORT_NOT_OK was set in - urb->transfer_flags. - --ENODEV Device was removed. Often preceded by a burst of - other errors, since the hub driver doesn't detect - device removal events immediately. - --EXDEV ISO transfer only partially completed - (only set in iso_frame_desc[n].status, not urb->status) - --EINVAL ISO madness, if this happens: Log off and go home - --ECONNRESET URB was asynchronously unlinked by usb_unlink_urb - --ESHUTDOWN The device or host controller has been disabled due - to some problem that could not be worked around, - such as a physical disconnect. - - -(*) Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate -hardware problems such as bad devices (including firmware) or cables. - -(**) This is also one of several codes that different kinds of host -controller use to indicate a transfer has failed because of device -disconnect. In the interval before the hub driver starts disconnect -processing, devices may receive such fault reports for every request. - - - -************************************************************************** -* Error codes returned by usbcore-functions * -* (expect also other submit and transfer status codes) * -************************************************************************** - -usb_register(): --EINVAL error during registering new driver - -usb_get_*/usb_set_*(): -usb_control_msg(): -usb_bulk_msg(): --ETIMEDOUT Timeout expired before the transfer completed. diff --git a/Documentation/usb/gadget_serial.txt b/Documentation/usb/gadget_serial.txt index 6b4a88a8c8e3..d1def3186782 100644 --- a/Documentation/usb/gadget_serial.txt +++ b/Documentation/usb/gadget_serial.txt @@ -189,7 +189,7 @@ Once the gadget serial driver is loaded and the USB device connected to the Linux host with a USB cable, the host system should recognize the gadget serial device. For example, the command - cat /proc/bus/usb/devices + cat /sys/kernel/debug/usb/devices should show something like this: @@ -221,7 +221,7 @@ Once the gadget serial driver is loaded and the USB device connected to the Linux host with a USB cable, the host system should recognize the gadget serial device. For example, the command - cat /proc/bus/usb/devices + cat /sys/kernel/debug/usb/devices should show something like this: diff --git a/Documentation/usb/proc_usb_info.txt b/Documentation/usb/proc_usb_info.txt deleted file mode 100644 index 98be91982677..000000000000 --- a/Documentation/usb/proc_usb_info.txt +++ /dev/null @@ -1,390 +0,0 @@ -/proc/bus/usb filesystem output -=============================== -(version 2010.09.13) - - -The usbfs filesystem for USB devices is traditionally mounted at -/proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as -the /proc/bus/usb/BBB/DDD files. - -In many modern systems the usbfs filesystem isn't used at all. Instead -USB device nodes are created under /dev/usb/ or someplace similar. The -"devices" file is available in debugfs, typically as -/sys/kernel/debug/usb/devices. - - -**NOTE**: If /proc/bus/usb appears empty, and a host controller - driver has been linked, then you need to mount the - filesystem. Issue the command (as root): - - mount -t usbfs none /proc/bus/usb - - An alternative and more permanent method would be to add - - none /proc/bus/usb usbfs defaults 0 0 - - to /etc/fstab. This will mount usbfs at each reboot. - You can then issue `cat /proc/bus/usb/devices` to extract - USB device information, and user mode drivers can use usbfs - to interact with USB devices. - - There are a number of mount options supported by usbfs. - Consult the source code (linux/drivers/usb/core/inode.c) for - information about those options. - -**NOTE**: The filesystem has been renamed from "usbdevfs" to - "usbfs", to reduce confusion with "devfs". You may - still see references to the older "usbdevfs" name. - -For more information on mounting the usbfs file system, see the -"USB Device Filesystem" section of the USB Guide. The latest copy -of the USB Guide can be found at http://www.linux-usb.org/ - - -THE /proc/bus/usb/BBB/DDD FILES: --------------------------------- -Each connected USB device has one file. The BBB indicates the bus -number. The DDD indicates the device address on that bus. Both -of these numbers are assigned sequentially, and can be reused, so -you can't rely on them for stable access to devices. For example, -it's relatively common for devices to re-enumerate while they are -still connected (perhaps someone jostled their power supply, hub, -or USB cable), so a device might be 002/027 when you first connect -it and 002/048 sometime later. - -These files can be read as binary data. The binary data consists -of first the device descriptor, then the descriptors for each -configuration of the device. Multi-byte fields in the device descriptor -are converted to host endianness by the kernel. The configuration -descriptors are in bus endian format! The configuration descriptor -are wTotalLength bytes apart. If a device returns less configuration -descriptor data than indicated by wTotalLength there will be a hole in -the file for the missing bytes. This information is also shown -in text form by the /proc/bus/usb/devices file, described later. - -These files may also be used to write user-level drivers for the USB -devices. You would open the /proc/bus/usb/BBB/DDD file read/write, -read its descriptors to make sure it's the device you expect, and then -bind to an interface (or perhaps several) using an ioctl call. You -would issue more ioctls to the device to communicate to it using -control, bulk, or other kinds of USB transfers. The IOCTLs are -listed in the <linux/usbdevice_fs.h> file, and at this writing the -source code (linux/drivers/usb/core/devio.c) is the primary reference -for how to access devices through those files. - -Note that since by default these BBB/DDD files are writable only by -root, only root can write such user mode drivers. You can selectively -grant read/write permissions to other users by using "chmod". Also, -usbfs mount options such as "devmode=0666" may be helpful. - - - -THE /proc/bus/usb/devices FILE: -------------------------------- -In /proc/bus/usb/devices, each device's output has multiple -lines of ASCII output. -I made it ASCII instead of binary on purpose, so that someone -can obtain some useful data from it without the use of an -auxiliary program. However, with an auxiliary program, the numbers -in the first 4 columns of each "T:" line (topology info: -Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram. - -Each line is tagged with a one-character ID for that line: - -T = Topology (etc.) -B = Bandwidth (applies only to USB host controllers, which are - virtualized as root hubs) -D = Device descriptor info. -P = Product ID info. (from Device descriptor, but they won't fit - together on one line) -S = String descriptors. -C = Configuration descriptor info. (* = active configuration) -I = Interface descriptor info. -E = Endpoint descriptor info. - -======================================================================= - -/proc/bus/usb/devices output format: - -Legend: - d = decimal number (may have leading spaces or 0's) - x = hexadecimal number (may have leading spaces or 0's) - s = string - - -Topology info: - -T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd -| | | | | | | | |__MaxChildren -| | | | | | | |__Device Speed in Mbps -| | | | | | |__DeviceNumber -| | | | | |__Count of devices at this level -| | | | |__Connector/Port on Parent for this device -| | | |__Parent DeviceNumber -| | |__Level in topology for this bus -| |__Bus number -|__Topology info tag - - Speed may be: - 1.5 Mbit/s for low speed USB - 12 Mbit/s for full speed USB - 480 Mbit/s for high speed USB (added for USB 2.0); - also used for Wireless USB, which has no fixed speed - 5000 Mbit/s for SuperSpeed USB (added for USB 3.0) - - For reasons lost in the mists of time, the Port number is always - too low by 1. For example, a device plugged into port 4 will - show up with "Port=03". - -Bandwidth info: -B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd -| | | |__Number of isochronous requests -| | |__Number of interrupt requests -| |__Total Bandwidth allocated to this bus -|__Bandwidth info tag - - Bandwidth allocation is an approximation of how much of one frame - (millisecond) is in use. It reflects only periodic transfers, which - are the only transfers that reserve bandwidth. Control and bulk - transfers use all other bandwidth, including reserved bandwidth that - is not used for transfers (such as for short packets). - - The percentage is how much of the "reserved" bandwidth is scheduled by - those transfers. For a low or full speed bus (loosely, "USB 1.1"), - 90% of the bus bandwidth is reserved. For a high speed bus (loosely, - "USB 2.0") 80% is reserved. - - -Device descriptor info & Product ID info: - -D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd -P: Vendor=xxxx ProdID=xxxx Rev=xx.xx - -where -D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd -| | | | | | |__NumberConfigurations -| | | | | |__MaxPacketSize of Default Endpoint -| | | | |__DeviceProtocol -| | | |__DeviceSubClass -| | |__DeviceClass -| |__Device USB version -|__Device info tag #1 - -where -P: Vendor=xxxx ProdID=xxxx Rev=xx.xx -| | | |__Product revision number -| | |__Product ID code -| |__Vendor ID code -|__Device info tag #2 - - -String descriptor info: - -S: Manufacturer=ssss -| |__Manufacturer of this device as read from the device. -| For USB host controller drivers (virtual root hubs) this may -| be omitted, or (for newer drivers) will identify the kernel -| version and the driver which provides this hub emulation. -|__String info tag - -S: Product=ssss -| |__Product description of this device as read from the device. -| For older USB host controller drivers (virtual root hubs) this -| indicates the driver; for newer ones, it's a product (and vendor) -| description that often comes from the kernel's PCI ID database. -|__String info tag - -S: SerialNumber=ssss -| |__Serial Number of this device as read from the device. -| For USB host controller drivers (virtual root hubs) this is -| some unique ID, normally a bus ID (address or slot name) that -| can't be shared with any other device. -|__String info tag - - - -Configuration descriptor info: - -C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA -| | | | | |__MaxPower in mA -| | | | |__Attributes -| | | |__ConfiguratioNumber -| | |__NumberOfInterfaces -| |__ "*" indicates the active configuration (others are " ") -|__Config info tag - - USB devices may have multiple configurations, each of which act - rather differently. For example, a bus-powered configuration - might be much less capable than one that is self-powered. Only - one device configuration can be active at a time; most devices - have only one configuration. - - Each configuration consists of one or more interfaces. Each - interface serves a distinct "function", which is typically bound - to a different USB device driver. One common example is a USB - speaker with an audio interface for playback, and a HID interface - for use with software volume control. - - -Interface descriptor info (can be multiple per Config): - -I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss -| | | | | | | | |__Driver name -| | | | | | | | or "(none)" -| | | | | | | |__InterfaceProtocol -| | | | | | |__InterfaceSubClass -| | | | | |__InterfaceClass -| | | | |__NumberOfEndpoints -| | | |__AlternateSettingNumber -| | |__InterfaceNumber -| |__ "*" indicates the active altsetting (others are " ") -|__Interface info tag - - A given interface may have one or more "alternate" settings. - For example, default settings may not use more than a small - amount of periodic bandwidth. To use significant fractions - of bus bandwidth, drivers must select a non-default altsetting. - - Only one setting for an interface may be active at a time, and - only one driver may bind to an interface at a time. Most devices - have only one alternate setting per interface. - - -Endpoint descriptor info (can be multiple per Interface): - -E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss -| | | | |__Interval (max) between transfers -| | | |__EndpointMaxPacketSize -| | |__Attributes(EndpointType) -| |__EndpointAddress(I=In,O=Out) -|__Endpoint info tag - - The interval is nonzero for all periodic (interrupt or isochronous) - endpoints. For high speed endpoints the transfer interval may be - measured in microseconds rather than milliseconds. - - For high speed periodic endpoints, the "MaxPacketSize" reflects - the per-microframe data transfer size. For "high bandwidth" - endpoints, that can reflect two or three packets (for up to - 3KBytes every 125 usec) per endpoint. - - With the Linux-USB stack, periodic bandwidth reservations use the - transfer intervals and sizes provided by URBs, which can be less - than those found in endpoint descriptor. - - -======================================================================= - - -If a user or script is interested only in Topology info, for -example, use something like "grep ^T: /proc/bus/usb/devices" -for only the Topology lines. A command like -"grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list -only the lines that begin with the characters in square brackets, -where the valid characters are TDPCIE. With a slightly more able -script, it can display any selected lines (for example, only T, D, -and P lines) and change their output format. (The "procusb" -Perl script is the beginning of this idea. It will list only -selected lines [selected from TBDPSCIE] or "All" lines from -/proc/bus/usb/devices.) - -The Topology lines can be used to generate a graphic/pictorial -of the USB devices on a system's root hub. (See more below -on how to do this.) - -The Interface lines can be used to determine what driver is -being used for each device, and which altsetting it activated. - -The Configuration lines could be used to list maximum power -(in milliamps) that a system's USB devices are using. -For example, "grep ^C: /proc/bus/usb/devices". - - -Here's an example, from a system which has a UHCI root hub, -an external hub connected to the root hub, and a mouse and -a serial converter connected to the external hub. - -T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 -B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0 -D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 -P: Vendor=0000 ProdID=0000 Rev= 0.00 -S: Product=USB UHCI Root Hub -S: SerialNumber=dce0 -C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA -I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub -E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms - -T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 -D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 -P: Vendor=0451 ProdID=1446 Rev= 1.00 -C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA -I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub -E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms - -T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 -D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 -P: Vendor=04b4 ProdID=0001 Rev= 0.00 -C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA -I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse -E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms - -T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 -D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1 -P: Vendor=0565 ProdID=0001 Rev= 1.08 -S: Manufacturer=Peracom Networks, Inc. -S: Product=Peracom USB to Serial Converter -C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA -I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial -E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms -E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms -E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms - - -Selecting only the "T:" and "I:" lines from this (for example, by using -"procusb ti"), we have: - -T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2 -T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4 -I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub -T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0 -I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse -T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0 -I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial - - -Physically this looks like (or could be converted to): - - +------------------+ - | PC/root_hub (12)| Dev# = 1 - +------------------+ (nn) is Mbps. - Level 0 | CN.0 | CN.1 | [CN = connector/port #] - +------------------+ - / - / - +-----------------------+ - Level 1 | Dev#2: 4-port hub (12)| - +-----------------------+ - |CN.0 |CN.1 |CN.2 |CN.3 | - +-----------------------+ - \ \____________________ - \_____ \ - \ \ - +--------------------+ +--------------------+ - Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)| - +--------------------+ +--------------------+ - - - -Or, in a more tree-like structure (ports [Connectors] without -connections could be omitted): - -PC: Dev# 1, root hub, 2 ports, 12 Mbps -|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps - |_ CN.0: Dev #3, mouse, 1.5 Mbps - |_ CN.1: - |_ CN.2: Dev #4, serial, 12 Mbps - |_ CN.3: -|_ CN.1: - - - ### END ### diff --git a/Documentation/usb/usb3-debug-port.rst b/Documentation/usb/usb3-debug-port.rst new file mode 100644 index 000000000000..feb1a36a65b7 --- /dev/null +++ b/Documentation/usb/usb3-debug-port.rst @@ -0,0 +1,100 @@ +=============== +USB3 debug port +=============== + +:Author: Lu Baolu <baolu.lu@linux.intel.com> +:Date: March 2017 + +GENERAL +======= + +This is a HOWTO for using the USB3 debug port on x86 systems. + +Before using any kernel debugging functionality based on USB3 +debug port, you need to:: + + 1) check whether any USB3 debug port is available in + your system; + 2) check which port is used for debugging purposes; + 3) have a USB 3.0 super-speed A-to-A debugging cable. + +INTRODUCTION +============ + +The xHCI debug capability (DbC) is an optional but standalone +functionality provided by the xHCI host controller. The xHCI +specification describes DbC in the section 7.6. + +When DbC is initialized and enabled, it will present a debug +device through the debug port (normally the first USB3 +super-speed port). The debug device is fully compliant with +the USB framework and provides the equivalent of a very high +performance full-duplex serial link between the debug target +(the system under debugging) and a debug host. + +EARLY PRINTK +============ + +DbC has been designed to log early printk messages. One use for +this feature is kernel debugging. For example, when your machine +crashes very early before the regular console code is initialized. +Other uses include simpler, lockless logging instead of a full- +blown printk console driver and klogd. + +On the debug target system, you need to customize a debugging +kernel with CONFIG_EARLY_PRINTK_USB_XDBC enabled. And, add below +kernel boot parameter:: + + "earlyprintk=xdbc" + +If there are multiple xHCI controllers in your system, you can +append a host contoller index to this kernel parameter. This +index starts from 0. + +Current design doesn't support DbC runtime suspend/resume. As +the result, you'd better disable runtime power management for +USB subsystem by adding below kernel boot parameter:: + + "usbcore.autosuspend=-1" + +Before starting the debug target, you should connect the debug +port to a USB port (root port or port of any external hub) on +the debug host. The cable used to connect these two ports +should be a USB 3.0 super-speed A-to-A debugging cable. + +During early boot of the debug target, DbC will be detected and +initialized. After initialization, the debug host should be able +to enumerate the debug device in debug target. The debug host +will then bind the debug device with the usb_debug driver module +and create the /dev/ttyUSB device. + +If the debug device enumeration goes smoothly, you should be able +to see below kernel messages on the debug host:: + + # tail -f /var/log/kern.log + [ 1815.983374] usb 4-3: new SuperSpeed USB device number 4 using xhci_hcd + [ 1815.999595] usb 4-3: LPM exit latency is zeroed, disabling LPM. + [ 1815.999899] usb 4-3: New USB device found, idVendor=1d6b, idProduct=0004 + [ 1815.999902] usb 4-3: New USB device strings: Mfr=1, Product=2, SerialNumber=3 + [ 1815.999903] usb 4-3: Product: Remote GDB + [ 1815.999904] usb 4-3: Manufacturer: Linux + [ 1815.999905] usb 4-3: SerialNumber: 0001 + [ 1816.000240] usb_debug 4-3:1.0: xhci_dbc converter detected + [ 1816.000360] usb 4-3: xhci_dbc converter now attached to ttyUSB0 + +You can use any communication program, for example minicom, to +read and view the messages. Below simple bash scripts can help +you to check the sanity of the setup. + +.. code-block:: sh + + ===== start of bash scripts ============= + #!/bin/bash + + while true ; do + while [ ! -d /sys/class/tty/ttyUSB0 ] ; do + : + done + cat /dev/ttyUSB0 + done + ===== end of bash scripts =============== diff --git a/Documentation/userspace-api/conf.py b/Documentation/userspace-api/conf.py new file mode 100644 index 000000000000..2eaf59f844e5 --- /dev/null +++ b/Documentation/userspace-api/conf.py @@ -0,0 +1,10 @@ +# -*- coding: utf-8; mode: python -*- + +project = "The Linux kernel user-space API guide" + +tags.add("subproject") + +latex_documents = [ + ('index', 'userspace-api.tex', project, + 'The kernel development community', 'manual'), +] diff --git a/Documentation/userspace-api/index.rst b/Documentation/userspace-api/index.rst new file mode 100644 index 000000000000..a9d01b44a659 --- /dev/null +++ b/Documentation/userspace-api/index.rst @@ -0,0 +1,26 @@ +===================================== +The Linux kernel user-space API guide +===================================== + +.. _man-pages: https://www.kernel.org/doc/man-pages/ + +While much of the kernel's user-space API is documented elsewhere +(particularly in the man-pages_ project), some user-space information can +also be found in the kernel tree itself. This manual is intended to be the +place where this information is gathered. + +.. class:: toc-title + + Table of contents + +.. toctree:: + :maxdepth: 2 + + unshare + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/unshare.txt b/Documentation/userspace-api/unshare.rst index a8643513a5f6..737c192cf4e7 100644 --- a/Documentation/unshare.txt +++ b/Documentation/userspace-api/unshare.rst @@ -1,17 +1,17 @@ +unshare system call +=================== -unshare system call: --------------------- -This document describes the new system call, unshare. The document +This document describes the new system call, unshare(). The document provides an overview of the feature, why it is needed, how it can be used, its interface specification, design, implementation and how it can be tested. -Change Log: ------------ +Change Log +---------- version 0.1 Initial document, Janak Desai (janak@us.ibm.com), Jan 11, 2006 -Contents: ---------- +Contents +-------- 1) Overview 2) Benefits 3) Cost @@ -24,6 +24,7 @@ Contents: 1) Overview ----------- + Most legacy operating system kernels support an abstraction of threads as multiple execution contexts within a process. These kernels provide special resources and mechanisms to maintain these "threads". The Linux @@ -38,33 +39,35 @@ threads. On Linux, at the time of thread creation using the clone system call, applications can selectively choose which resources to share between threads. -unshare system call adds a primitive to the Linux thread model that +unshare() system call adds a primitive to the Linux thread model that allows threads to selectively 'unshare' any resources that were being -shared at the time of their creation. unshare was conceptualized by +shared at the time of their creation. unshare() was conceptualized by Al Viro in the August of 2000, on the Linux-Kernel mailing list, as part -of the discussion on POSIX threads on Linux. unshare augments the +of the discussion on POSIX threads on Linux. unshare() augments the usefulness of Linux threads for applications that would like to control -shared resources without creating a new process. unshare is a natural +shared resources without creating a new process. unshare() is a natural addition to the set of available primitives on Linux that implement the concept of process/thread as a virtual machine. 2) Benefits ----------- -unshare would be useful to large application frameworks such as PAM + +unshare() would be useful to large application frameworks such as PAM where creating a new process to control sharing/unsharing of process resources is not possible. Since namespaces are shared by default -when creating a new process using fork or clone, unshare can benefit +when creating a new process using fork or clone, unshare() can benefit even non-threaded applications if they have a need to disassociate from default shared namespace. The following lists two use-cases -where unshare can be used. +where unshare() can be used. 2.1 Per-security context namespaces ------------------------------------ -unshare can be used to implement polyinstantiated directories using +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +unshare() can be used to implement polyinstantiated directories using the kernel's per-process namespace mechanism. Polyinstantiated directories, such as per-user and/or per-security context instance of /tmp, /var/tmp or per-security context instance of a user's home directory, isolate user -processes when working with these directories. Using unshare, a PAM +processes when working with these directories. Using unshare(), a PAM module can easily setup a private namespace for a user at login. Polyinstantiated directories are required for Common Criteria certification with Labeled System Protection Profile, however, with the availability @@ -74,33 +77,36 @@ polyinstantiating /tmp, /var/tmp and other directories deemed appropriate by system administrators. 2.2 unsharing of virtual memory and/or open files -------------------------------------------------- +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + Consider a client/server application where the server is processing client requests by creating processes that share resources such as -virtual memory and open files. Without unshare, the server has to +virtual memory and open files. Without unshare(), the server has to decide what needs to be shared at the time of creating the process -which services the request. unshare allows the server an ability to +which services the request. unshare() allows the server an ability to disassociate parts of the context during the servicing of the request. For large and complex middleware application frameworks, this -ability to unshare after the process was created can be very +ability to unshare() after the process was created can be very useful. 3) Cost ------- -In order to not duplicate code and to handle the fact that unshare + +In order to not duplicate code and to handle the fact that unshare() works on an active task (as opposed to clone/fork working on a newly -allocated inactive task) unshare had to make minor reorganizational +allocated inactive task) unshare() had to make minor reorganizational changes to copy_* functions utilized by clone/fork system call. There is a cost associated with altering existing, well tested and stable code to implement a new feature that may not get exercised extensively in the beginning. However, with proper design and code -review of the changes and creation of an unshare test for the LTP +review of the changes and creation of an unshare() test for the LTP the benefits of this new feature can exceed its cost. 4) Requirements --------------- -unshare reverses sharing that was done using clone(2) system call, -so unshare should have a similar interface as clone(2). That is, + +unshare() reverses sharing that was done using clone(2) system call, +so unshare() should have a similar interface as clone(2). That is, since flags in clone(int flags, void *stack) specifies what should be shared, similar flags in unshare(int flags) should specify what should be unshared. Unfortunately, this may appear to invert @@ -108,13 +114,14 @@ the meaning of the flags from the way they are used in clone(2). However, there was no easy solution that was less confusing and that allowed incremental context unsharing in future without an ABI change. -unshare interface should accommodate possible future addition of +unshare() interface should accommodate possible future addition of new context flags without requiring a rebuild of old applications. -If and when new context flags are added, unshare design should allow +If and when new context flags are added, unshare() design should allow incremental unsharing of those resources on an as needed basis. 5) Functional Specification --------------------------- + NAME unshare - disassociate parts of the process execution context @@ -124,7 +131,7 @@ SYNOPSIS int unshare(int flags); DESCRIPTION - unshare allows a process to disassociate parts of its execution + unshare() allows a process to disassociate parts of its execution context that are currently being shared with other processes. Part of execution context, such as the namespace, is shared by default when a new process is created using fork(2), while other parts, @@ -132,7 +139,7 @@ DESCRIPTION shared by explicit request to share them when creating a process using clone(2). - The main use of unshare is to allow a process to control its + The main use of unshare() is to allow a process to control its shared execution context without creating a new process. The flags argument specifies one or bitwise-or'ed of several of @@ -176,17 +183,20 @@ SEE ALSO 6) High Level Design -------------------- -Depending on the flags argument, the unshare system call allocates + +Depending on the flags argument, the unshare() system call allocates appropriate process context structures, populates it with values from the current shared version, associates newly duplicated structures with the current task structure and releases corresponding shared versions. Helper functions of clone (copy_*) could not be used -directly by unshare because of the following two reasons. +directly by unshare() because of the following two reasons. + 1) clone operates on a newly allocated not-yet-active task - structure, where as unshare operates on the current active - task. Therefore unshare has to take appropriate task_lock() + structure, where as unshare() operates on the current active + task. Therefore unshare() has to take appropriate task_lock() before associating newly duplicated context structures - 2) unshare has to allocate and duplicate all context structures + + 2) unshare() has to allocate and duplicate all context structures that are being unshared, before associating them with the current task and releasing older shared structures. Failure do so will create race conditions and/or oops when trying @@ -202,94 +212,121 @@ Therefore code from copy_* functions that allocated and duplicated current context structure was moved into new dup_* functions. Now, copy_* functions call dup_* functions to allocate and duplicate appropriate context structures and then associate them with the -task structure that is being constructed. unshare system call on +task structure that is being constructed. unshare() system call on the other hand performs the following: + 1) Check flags to force missing, but implied, flags - 2) For each context structure, call the corresponding unshare + + 2) For each context structure, call the corresponding unshare() helper function to allocate and duplicate a new context structure, if the appropriate bit is set in the flags argument. + 3) If there is no error in allocation and duplication and there are new context structures then lock the current task structure, associate new context structures with the current task structure, and release the lock on the current task structure. + 4) Appropriately release older, shared, context structures. 7) Low Level Design ------------------- -Implementation of unshare can be grouped in the following 4 different + +Implementation of unshare() can be grouped in the following 4 different items: + a) Reorganization of existing copy_* functions - b) unshare system call service function - c) unshare helper functions for each different process context + + b) unshare() system call service function + + c) unshare() helper functions for each different process context + d) Registration of system call number for different architectures - 7.1) Reorganization of copy_* functions - Each copy function such as copy_mm, copy_namespace, copy_files, - etc, had roughly two components. The first component allocated - and duplicated the appropriate structure and the second component - linked it to the task structure passed in as an argument to the copy - function. The first component was split into its own function. - These dup_* functions allocated and duplicated the appropriate - context structure. The reorganized copy_* functions invoked - their corresponding dup_* functions and then linked the newly - duplicated structures to the task structure with which the - copy function was called. - - 7.2) unshare system call service function +7.1) Reorganization of copy_* functions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Each copy function such as copy_mm, copy_namespace, copy_files, +etc, had roughly two components. The first component allocated +and duplicated the appropriate structure and the second component +linked it to the task structure passed in as an argument to the copy +function. The first component was split into its own function. +These dup_* functions allocated and duplicated the appropriate +context structure. The reorganized copy_* functions invoked +their corresponding dup_* functions and then linked the newly +duplicated structures to the task structure with which the +copy function was called. + +7.2) unshare() system call service function +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * Check flags Force implied flags. If CLONE_THREAD is set force CLONE_VM. If CLONE_VM is set, force CLONE_SIGHAND. If CLONE_SIGHAND is set and signals are also being shared, force CLONE_THREAD. If CLONE_NEWNS is set, force CLONE_FS. + * For each context flag, invoke the corresponding unshare_* helper routine with flags passed into the system call and a reference to pointer pointing the new unshared structure + * If any new structures are created by unshare_* helper functions, take the task_lock() on the current task, modify appropriate context pointers, and release the task lock. + * For all newly unshared structures, release the corresponding older, shared, structures. - 7.3) unshare_* helper functions - For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND, - and CLONE_THREAD, return -EINVAL since they are not implemented yet. - For others, check the flag value to see if the unsharing is - required for that structure. If it is, invoke the corresponding - dup_* function to allocate and duplicate the structure and return - a pointer to it. +7.3) unshare_* helper functions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 7.4) Appropriately modify architecture specific code to register the - new system call. +For unshare_* helpers corresponding to CLONE_SYSVSEM, CLONE_SIGHAND, +and CLONE_THREAD, return -EINVAL since they are not implemented yet. +For others, check the flag value to see if the unsharing is +required for that structure. If it is, invoke the corresponding +dup_* function to allocate and duplicate the structure and return +a pointer to it. + +7.4) Finally +~~~~~~~~~~~~ + +Appropriately modify architecture specific code to register the +new system call. 8) Test Specification --------------------- -The test for unshare should test the following: + +The test for unshare() should test the following: + 1) Valid flags: Test to check that clone flags for signal and - signal handlers, for which unsharing is not implemented - yet, return -EINVAL. + signal handlers, for which unsharing is not implemented + yet, return -EINVAL. + 2) Missing/implied flags: Test to make sure that if unsharing - namespace without specifying unsharing of filesystem, correctly - unshares both namespace and filesystem information. + namespace without specifying unsharing of filesystem, correctly + unshares both namespace and filesystem information. + 3) For each of the four (namespace, filesystem, files and vm) - supported unsharing, verify that the system call correctly - unshares the appropriate structure. Verify that unsharing - them individually as well as in combination with each - other works as expected. + supported unsharing, verify that the system call correctly + unshares the appropriate structure. Verify that unsharing + them individually as well as in combination with each + other works as expected. + 4) Concurrent execution: Use shared memory segments and futex on - an address in the shm segment to synchronize execution of - about 10 threads. Have a couple of threads execute execve, - a couple _exit and the rest unshare with different combination - of flags. Verify that unsharing is performed as expected and - that there are no oops or hangs. + an address in the shm segment to synchronize execution of + about 10 threads. Have a couple of threads execute execve, + a couple _exit and the rest unshare with different combination + of flags. Verify that unsharing is performed as expected and + that there are no oops or hangs. 9) Future Work -------------- -The current implementation of unshare does not allow unsharing of + +The current implementation of unshare() does not allow unsharing of signals and signal handlers. Signals are complex to begin with and to unshare signals and/or signal handlers of a currently running process is even more complex. If in the future there is a specific need to allow unsharing of signals and/or signal handlers, it can -be incrementally added to unshare without affecting legacy -applications using unshare. +be incrementally added to unshare() without affecting legacy +applications using unshare(). diff --git a/Documentation/vfio-mediated-device.txt b/Documentation/vfio-mediated-device.txt index d226c7a5ba8b..e5e57b40f8af 100644 --- a/Documentation/vfio-mediated-device.txt +++ b/Documentation/vfio-mediated-device.txt @@ -217,9 +217,9 @@ Directories and files under the sysfs for Each Physical Device * [<type-id>] - The [<type-id>] name is created by adding the the device driver string as a - prefix to the string provided by the vendor driver. This format of this name - is as follows: + The [<type-id>] name is created by adding the device driver string as a prefix + to the string provided by the vendor driver. This format of this name is as + follows: sprintf(buf, "%s-%s", dev_driver_string(parent->dev), group->name); @@ -380,7 +380,7 @@ card. /dev/ttyS1, UART: 16550A, Port: 0xc150, IRQ: 10 /dev/ttyS2, UART: 16550A, Port: 0xc158, IRQ: 10 -6. Using a minicom or any terminal enulation program, open port /dev/ttyS1 or +6. Using minicom or any terminal emulation program, open port /dev/ttyS1 or /dev/ttyS2 with hardware flow control disabled. 7. Type data on the minicom terminal or send data to the terminal emulation diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt index 069450938b79..fd106899afd1 100644 --- a/Documentation/virtual/kvm/api.txt +++ b/Documentation/virtual/kvm/api.txt @@ -951,6 +951,10 @@ This ioctl allows the user to create or modify a guest physical memory slot. When changing an existing slot, it may be moved in the guest physical memory space, or its flags may be modified. It may not be resized. Slots may not overlap in guest physical address space. +Bits 0-15 of "slot" specifies the slot id and this value should be +less than the maximum number of user memory slots supported per VM. +The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS, +if this capability is supported by the architecture. If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot" specifies the address space which is being modified. They must be @@ -3373,6 +3377,69 @@ struct kvm_ppc_resize_hpt { __u32 pad; }; +4.104 KVM_X86_GET_MCE_CAP_SUPPORTED + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: system ioctl +Parameters: u64 mce_cap (out) +Returns: 0 on success, -1 on error + +Returns supported MCE capabilities. The u64 mce_cap parameter +has the same format as the MSR_IA32_MCG_CAP register. Supported +capabilities will have the corresponding bits set. + +4.105 KVM_X86_SETUP_MCE + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: vcpu ioctl +Parameters: u64 mcg_cap (in) +Returns: 0 on success, + -EFAULT if u64 mcg_cap cannot be read, + -EINVAL if the requested number of banks is invalid, + -EINVAL if requested MCE capability is not supported. + +Initializes MCE support for use. The u64 mcg_cap parameter +has the same format as the MSR_IA32_MCG_CAP register and +specifies which capabilities should be enabled. The maximum +supported number of error-reporting banks can be retrieved when +checking for KVM_CAP_MCE. The supported capabilities can be +retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED. + +4.106 KVM_X86_SET_MCE + +Capability: KVM_CAP_MCE +Architectures: x86 +Type: vcpu ioctl +Parameters: struct kvm_x86_mce (in) +Returns: 0 on success, + -EFAULT if struct kvm_x86_mce cannot be read, + -EINVAL if the bank number is invalid, + -EINVAL if VAL bit is not set in status field. + +Inject a machine check error (MCE) into the guest. The input +parameter is: + +struct kvm_x86_mce { + __u64 status; + __u64 addr; + __u64 misc; + __u64 mcg_status; + __u8 bank; + __u8 pad1[7]; + __u64 pad2[3]; +}; + +If the MCE being reported is an uncorrected error, KVM will +inject it as an MCE exception into the guest. If the guest +MCG_STATUS register reports that an MCE is in progress, KVM +causes an KVM_EXIT_SHUTDOWN vmexit. + +Otherwise, if the MCE is a corrected error, KVM will just +store it in the corresponding bank (provided this bank is +not holding a previously reported uncorrected error). + 5. The kvm_run structure ------------------------ diff --git a/Documentation/virtual/kvm/devices/arm-vgic.txt b/Documentation/virtual/kvm/devices/arm-vgic.txt index 76e61c883347..b2f60ca8b60c 100644 --- a/Documentation/virtual/kvm/devices/arm-vgic.txt +++ b/Documentation/virtual/kvm/devices/arm-vgic.txt @@ -83,6 +83,12 @@ Groups: Bits for undefined preemption levels are RAZ/WI. + For historical reasons and to provide ABI compatibility with userspace we + export the GICC_PMR register in the format of the GICH_VMCR.VMPriMask + field in the lower 5 bits of a word, meaning that userspace must always + use the lower 5 bits to communicate with the KVM device and must shift the + value left by 3 places to obtain the actual priority mask level. + Limitations: - Priorities are not implemented, and registers are RAZ/WI - Currently only implemented for KVM_DEV_TYPE_ARM_VGIC_V2. diff --git a/Documentation/vm/userfaultfd.txt b/Documentation/vm/userfaultfd.txt index 0e5543a920e5..bb2f945f87ab 100644 --- a/Documentation/vm/userfaultfd.txt +++ b/Documentation/vm/userfaultfd.txt @@ -172,10 +172,6 @@ the same read(2) protocol as for the page fault notifications. The manager has to explicitly enable these events by setting appropriate bits in uffdio_api.features passed to UFFDIO_API ioctl: -UFFD_FEATURE_EVENT_EXIT - enable notification about exit() of the -non-cooperative process. When the monitored process exits, the uffd -manager will get UFFD_EVENT_EXIT. - UFFD_FEATURE_EVENT_FORK - enable userfaultfd hooks for fork(). When this feature is enabled, the userfaultfd context of the parent process is duplicated into the newly created process. The manager receives diff --git a/Documentation/x86/intel_rdt_ui.txt b/Documentation/x86/intel_rdt_ui.txt index 51cf6fa5591f..0f6d8477b66c 100644 --- a/Documentation/x86/intel_rdt_ui.txt +++ b/Documentation/x86/intel_rdt_ui.txt @@ -4,6 +4,7 @@ Copyright (C) 2016 Intel Corporation Fenghua Yu <fenghua.yu@intel.com> Tony Luck <tony.luck@intel.com> +Vikas Shivappa <vikas.shivappa@intel.com> This feature is enabled by the CONFIG_INTEL_RDT_A Kconfig and the X86 /proc/cpuinfo flag bits "rdt", "cat_l3" and "cdp_l3". @@ -22,19 +23,34 @@ Info directory The 'info' directory contains information about the enabled resources. Each resource has its own subdirectory. The subdirectory -names reflect the resource names. Each subdirectory contains the -following files: +names reflect the resource names. +Cache resource(L3/L2) subdirectory contains the following files: -"num_closids": The number of CLOSIDs which are valid for this - resource. The kernel uses the smallest number of - CLOSIDs of all enabled resources as limit. +"num_closids": The number of CLOSIDs which are valid for this + resource. The kernel uses the smallest number of + CLOSIDs of all enabled resources as limit. -"cbm_mask": The bitmask which is valid for this resource. This - mask is equivalent to 100%. +"cbm_mask": The bitmask which is valid for this resource. + This mask is equivalent to 100%. -"min_cbm_bits": The minimum number of consecutive bits which must be - set when writing a mask. +"min_cbm_bits": The minimum number of consecutive bits which + must be set when writing a mask. +Memory bandwitdh(MB) subdirectory contains the following files: + +"min_bandwidth": The minimum memory bandwidth percentage which + user can request. + +"bandwidth_gran": The granularity in which the memory bandwidth + percentage is allocated. The allocated + b/w percentage is rounded off to the next + control step available on the hardware. The + available bandwidth control steps are: + min_bandwidth + N * bandwidth_gran. + +"delay_linear": Indicates if the delay scale is linear or + non-linear. This field is purely informational + only. Resource groups --------------- @@ -59,6 +75,9 @@ There are three files associated with each group: given to the default (root) group. You cannot remove CPUs from the default group. +"cpus_list": One or more CPU ranges of logical CPUs assigned to this + group. Same rules apply like for the "cpus" file. + "schemata": A list of all the resources available to this group. Each resource has its own line and format - see below for details. @@ -107,6 +126,22 @@ and 0xA are not. On a system with a 20-bit mask each bit represents 5% of the capacity of the cache. You could partition the cache into four equal parts with masks: 0x1f, 0x3e0, 0x7c00, 0xf8000. +Memory bandwidth(b/w) percentage +-------------------------------- +For Memory b/w resource, user controls the resource by indicating the +percentage of total memory b/w. + +The minimum bandwidth percentage value for each cpu model is predefined +and can be looked up through "info/MB/min_bandwidth". The bandwidth +granularity that is allocated is also dependent on the cpu model and can +be looked up at "info/MB/bandwidth_gran". The available bandwidth +control steps are: min_bw + N * bw_gran. Intermediate values are rounded +to the next control step available on the hardware. + +The bandwidth throttling is a core specific mechanism on some of Intel +SKUs. Using a high bandwidth and a low bandwidth setting on two threads +sharing a core will result in both threads being throttled to use the +low bandwidth. L3 details (code and data prioritization disabled) -------------------------------------------------- @@ -129,16 +164,38 @@ schemata format is always: L2:<cache_id0>=<cbm>;<cache_id1>=<cbm>;... +Memory b/w Allocation details +----------------------------- + +Memory b/w domain is L3 cache. + + MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;... + +Reading/writing the schemata file +--------------------------------- +Reading the schemata file will show the state of all resources +on all domains. When writing you only need to specify those values +which you wish to change. E.g. + +# cat schemata +L3DATA:0=fffff;1=fffff;2=fffff;3=fffff +L3CODE:0=fffff;1=fffff;2=fffff;3=fffff +# echo "L3DATA:2=3c0;" > schemata +# cat schemata +L3DATA:0=fffff;1=fffff;2=3c0;3=fffff +L3CODE:0=fffff;1=fffff;2=fffff;3=fffff + Example 1 --------- On a two socket machine (one L3 cache per socket) with just four bits -for cache bit masks +for cache bit masks, minimum b/w of 10% with a memory bandwidth +granularity of 10% # mount -t resctrl resctrl /sys/fs/resctrl # cd /sys/fs/resctrl # mkdir p0 p1 -# echo "L3:0=3;1=c" > /sys/fs/resctrl/p0/schemata -# echo "L3:0=3;1=3" > /sys/fs/resctrl/p1/schemata +# echo "L3:0=3;1=c\nMB:0=50;1=50" > /sys/fs/resctrl/p0/schemata +# echo "L3:0=3;1=3\nMB:0=50;1=50" > /sys/fs/resctrl/p1/schemata The default resource group is unmodified, so we have access to all parts of all caches (its schemata file reads "L3:0=f;1=f"). @@ -147,6 +204,14 @@ Tasks that are under the control of group "p0" may only allocate from the "lower" 50% on cache ID 0, and the "upper" 50% of cache ID 1. Tasks in group "p1" use the "lower" 50% of cache on both sockets. +Similarly, tasks that are under the control of group "p0" may use a +maximum memory b/w of 50% on socket0 and 50% on socket 1. +Tasks in group "p1" may also use 50% memory b/w on both sockets. +Note that unlike cache masks, memory b/w cannot specify whether these +allocations can overlap or not. The allocations specifies the maximum +b/w that the group may be able to use and the system admin can configure +the b/w accordingly. + Example 2 --------- Again two sockets, but this time with a more realistic 20-bit mask. @@ -160,9 +225,10 @@ of L3 cache on socket 0. # cd /sys/fs/resctrl First we reset the schemata for the default group so that the "upper" -50% of the L3 cache on socket 0 cannot be used by ordinary tasks: +50% of the L3 cache on socket 0 and 50% of memory b/w cannot be used by +ordinary tasks: -# echo "L3:0=3ff;1=fffff" > schemata +# echo "L3:0=3ff;1=fffff\nMB:0=50;1=100" > schemata Next we make a resource group for our first real time task and give it access to the "top" 25% of the cache on socket 0. @@ -185,6 +251,20 @@ Ditto for the second real time task (with the remaining 25% of cache): # echo 5678 > p1/tasks # taskset -cp 2 5678 +For the same 2 socket system with memory b/w resource and CAT L3 the +schemata would look like(Assume min_bandwidth 10 and bandwidth_gran is +10): + +For our first real time task this would request 20% memory b/w on socket +0. + +# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata + +For our second real time task this would request an other 20% memory b/w +on socket 0. + +# echo -e "L3:0=f8000;1=fffff\nMB:0=20;1=100" > p0/schemata + Example 3 --------- @@ -198,18 +278,22 @@ the tasks. # cd /sys/fs/resctrl First we reset the schemata for the default group so that the "upper" -50% of the L3 cache on socket 0 cannot be used by ordinary tasks: +50% of the L3 cache on socket 0, and 50% of memory bandwidth on socket 0 +cannot be used by ordinary tasks: -# echo "L3:0=3ff" > schemata +# echo "L3:0=3ff\nMB:0=50" > schemata -Next we make a resource group for our real time cores and give -it access to the "top" 50% of the cache on socket 0. +Next we make a resource group for our real time cores and give it access +to the "top" 50% of the cache on socket 0 and 50% of memory bandwidth on +socket 0. # mkdir p0 -# echo "L3:0=ffc00;" > p0/schemata +# echo "L3:0=ffc00\nMB:0=50" > p0/schemata Finally we move core 4-7 over to the new group and make sure that the -kernel and the tasks running there get 50% of the cache. +kernel and the tasks running there get 50% of the cache. They should +also get 50% of memory bandwidth assuming that the cores 4-7 are SMT +siblings and only the real time threads are scheduled on the cores 4-7. # echo C0 > p0/cpus diff --git a/Documentation/x86/x86_64/mm.txt b/Documentation/x86/x86_64/mm.txt index 5724092db811..b0798e281aa6 100644 --- a/Documentation/x86/x86_64/mm.txt +++ b/Documentation/x86/x86_64/mm.txt @@ -4,7 +4,7 @@ Virtual memory map with 4 level page tables: 0000000000000000 - 00007fffffffffff (=47 bits) user space, different per mm -hole caused by [48:63] sign extension +hole caused by [47:63] sign extension ffff800000000000 - ffff87ffffffffff (=43 bits) guard hole, reserved for hypervisor ffff880000000000 - ffffc7ffffffffff (=64 TB) direct mapping of all phys. memory ffffc80000000000 - ffffc8ffffffffff (=40 bits) hole @@ -19,16 +19,43 @@ ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space ... unused hole ... ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0 +ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space (variable) +ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls +ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole + +Virtual memory map with 5 level page tables: + +0000000000000000 - 00ffffffffffffff (=56 bits) user space, different per mm +hole caused by [56:63] sign extension +ff00000000000000 - ff0fffffffffffff (=52 bits) guard hole, reserved for hypervisor +ff10000000000000 - ff8fffffffffffff (=55 bits) direct mapping of all phys. memory +ff90000000000000 - ff91ffffffffffff (=49 bits) hole +ff92000000000000 - ffd1ffffffffffff (=54 bits) vmalloc/ioremap space +ffd2000000000000 - ffd3ffffffffffff (=49 bits) hole +ffd4000000000000 - ffd5ffffffffffff (=49 bits) virtual memory map (512TB) +... unused hole ... +ffd8000000000000 - fff7ffffffffffff (=53 bits) kasan shadow memory (8PB) +... unused hole ... +ffffff0000000000 - ffffff7fffffffff (=39 bits) %esp fixup stacks +... unused hole ... +ffffffef00000000 - fffffffeffffffff (=64 GB) EFI region mapping space +... unused hole ... +ffffffff80000000 - ffffffff9fffffff (=512 MB) kernel text mapping, from phys 0 ffffffffa0000000 - ffffffffff5fffff (=1526 MB) module mapping space ffffffffff600000 - ffffffffffdfffff (=8 MB) vsyscalls ffffffffffe00000 - ffffffffffffffff (=2 MB) unused hole +Architecture defines a 64-bit virtual address. Implementations can support +less. Currently supported are 48- and 57-bit virtual addresses. Bits 63 +through to the most-significant implemented bit are set to either all ones +or all zero. This causes hole between user space and kernel addresses. + The direct mapping covers all memory in the system up to the highest memory address (this means in some cases it can also include PCI memory holes). -vmalloc space is lazily synchronized into the different PML4 pages of -the processes using the page fault handler, with init_level4_pgt as +vmalloc space is lazily synchronized into the different PML4/PML5 pages of +the processes using the page fault handler, with init_top_pgt as reference. Current X86-64 implementations support up to 46 bits of address space (64 TB), @@ -39,6 +66,9 @@ memory window (this size is arbitrary, it can be raised later if needed). The mappings are not part of any other kernel PGD and are only available during EFI runtime calls. +The module mapping space size changes based on the CONFIG requirements for the +following fixmap section. + Note that if CONFIG_RANDOMIZE_MEMORY is enabled, the direct mapping of all physical memory, vmalloc/ioremap space and virtual memory map are randomized. Their order is preserved but their base will be offset early at boot time. diff --git a/Documentation/x86/zero-page.txt b/Documentation/x86/zero-page.txt index b8527c6b7646..97b7adbceda4 100644 --- a/Documentation/x86/zero-page.txt +++ b/Documentation/x86/zero-page.txt @@ -27,7 +27,7 @@ Offset Proto Name Meaning 1C0/020 ALL efi_info EFI 32 information (struct efi_info) 1E0/004 ALL alk_mem_k Alternative mem check, in KB 1E4/004 ALL scratch Scratch field for the kernel setup code -1E8/001 ALL e820_entries Number of entries in e820_map (below) +1E8/001 ALL e820_entries Number of entries in e820_table (below) 1E9/001 ALL eddbuf_entries Number of entries in eddbuf (below) 1EA/001 ALL edd_mbr_sig_buf_entries Number of entries in edd_mbr_sig_buffer (below) @@ -35,6 +35,6 @@ Offset Proto Name Meaning 1EC/001 ALL secure_boot Secure boot is enabled in the firmware 1EF/001 ALL sentinel Used to detect broken bootloaders 290/040 ALL edd_mbr_sig_buffer EDD MBR signatures -2D0/A00 ALL e820_map E820 memory map table - (array of struct e820entry) +2D0/A00 ALL e820_table E820 memory map table + (array of struct e820_entry) D00/1EC ALL eddbuf EDD data (array of struct edd_info) diff --git a/Documentation/zorro.txt b/Documentation/zorro.txt index 90a64d52bea2..d530971beb00 100644 --- a/Documentation/zorro.txt +++ b/Documentation/zorro.txt @@ -11,7 +11,7 @@ Last revised: September 5, 2003 The Zorro bus is the bus used in the Amiga family of computers. Thanks to AutoConfig(tm), it's 100% Plug-and-Play. -There are two types of Zorro busses, Zorro II and Zorro III: +There are two types of Zorro buses, Zorro II and Zorro III: - The Zorro II address space is 24-bit and lies within the first 16 MB of the Amiga's address map. |