diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/fmc/API.txt | 47 | ||||
-rw-r--r-- | Documentation/fmc/FMC-and-SDB.txt | 88 | ||||
-rw-r--r-- | Documentation/fmc/carrier.txt | 311 | ||||
-rw-r--r-- | Documentation/fmc/fmc-chardev.txt | 64 | ||||
-rw-r--r-- | Documentation/fmc/fmc-fakedev.txt | 36 | ||||
-rw-r--r-- | Documentation/fmc/fmc-trivial.txt | 17 | ||||
-rw-r--r-- | Documentation/fmc/fmc-write-eeprom.txt | 98 | ||||
-rw-r--r-- | Documentation/fmc/identifiers.txt | 168 | ||||
-rw-r--r-- | Documentation/fmc/mezzanine.txt | 123 | ||||
-rw-r--r-- | Documentation/fmc/parameters.txt | 56 |
10 files changed, 0 insertions, 1008 deletions
diff --git a/Documentation/fmc/API.txt b/Documentation/fmc/API.txt deleted file mode 100644 index 06b06b92c794..000000000000 --- a/Documentation/fmc/API.txt +++ /dev/null @@ -1,47 +0,0 @@ -Functions Exported by fmc.ko -**************************** - -The FMC core exports the usual 4 functions that are needed for a bus to -work, and a few more: - - int fmc_driver_register(struct fmc_driver *drv); - void fmc_driver_unregister(struct fmc_driver *drv); - int fmc_device_register(struct fmc_device *fmc); - void fmc_device_unregister(struct fmc_device *fmc); - - int fmc_device_register_n(struct fmc_device **fmc, int n); - void fmc_device_unregister_n(struct fmc_device **fmc, int n); - - uint32_t fmc_readl(struct fmc_device *fmc, int offset); - void fmc_writel(struct fmc_device *fmc, uint32_t val, int off); - void *fmc_get_drvdata(struct fmc_device *fmc); - void fmc_set_drvdata(struct fmc_device *fmc, void *data); - - int fmc_reprogram(struct fmc_device *f, struct fmc_driver *d, char *gw, - int sdb_entry); - -The data structure that describe a device is detailed in *note FMC -Device::, the one that describes a driver is detailed in *note FMC -Driver::. Please note that structures of type fmc_device must be -allocated by the caller, but must not be released after unregistering. -The fmc-bus itself takes care of releasing the structure when their use -count reaches zero - actually, the device model does that in lieu of us. - -The functions to register and unregister n devices are meant to be used -by carriers that host more than one mezzanine. The devices must all be -registered at the same time because if the FPGA is reprogrammed, all -devices in the array are affected. Usually, the driver matching the -first device will reprogram the FPGA, so other devices must know they -are already driven by a reprogrammed FPGA. - -If a carrier hosts slots that are driven by different FPGA devices, it -should register as a group only mezzanines that are driven by the same -FPGA, for the reason outlined above. - -Finally, the fmc_reprogram function calls the reprogram method (see -*note The API Offered by Carriers:: and also scans the memory area for -an SDB tree. You can pass -1 as sdb_entry to disable such scan. -Otherwise, the function fails if no tree is found at the specified -entry point. The function is meant to factorize common code, and by -the time you read this it is already used by the spec-sw and fine-delay -modules. diff --git a/Documentation/fmc/FMC-and-SDB.txt b/Documentation/fmc/FMC-and-SDB.txt deleted file mode 100644 index fa14e0b24521..000000000000 --- a/Documentation/fmc/FMC-and-SDB.txt +++ /dev/null @@ -1,88 +0,0 @@ - -FMC (FPGA Mezzanine Card) is the standard we use for our I/O devices, -in the context of White Rabbit and related hardware. - -In our I/O environments we need to write drivers for each mezzanine -card, and such drivers must work regardless of the carrier being used. -To achieve this, we abstract the FMC interface. - -We have a carrier for PCI-E called SPEC and one for VME called SVEC, -but more are planned. Also, we support stand-alone devices (usually -plugged on a SPEC card), controlled through Etherbone, developed by GSI. - -Code and documentation for the FMC bus was born as part of the spec-sw -project, but now it lives in its own project. Other projects, i.e. -software support for the various carriers, should include this as a -submodule. - -The most up to date version of code and documentation is always -available from the repository you can clone from: - - git://ohwr.org/fmc-projects/fmc-bus.git (read-only) - git@ohwr.org:fmc-projects/fmc-bus.git (read-write for developers) - -Selected versions of the documentation, as well as complete tar -archives for selected revisions are placed to the Files section of the -project: `http://www.ohwr.org/projects/fmc-bus/files' - - -What is FMC -*********** - -FMC, as said, stands for "FPGA Mezzanine Card". It is a standard -developed by the VME consortium called VITA (VMEbus International Trade -Association and ratified by ANSI, the American National Standard -Institute. The official documentation is called "ANSI-VITA 57.1". - -The FMC card is an almost square PCB, around 70x75 millimeters, that is -called mezzanine in this document. It usually lives plugged into -another PCB for power supply and control; such bigger circuit board is -called carrier from now on, and a single carrier may host more than one -mezzanine. - -In the typical application the mezzanine is mostly analog while the -carrier is mostly digital, and hosts an FPGA that must be configured to -match the specific mezzanine and the desired application. Thus, you may -need to load different FPGA images to drive different instances of the -same mezzanine. - -FMC, as such, is not a bus in the usual meaning of the term, because -most carriers have only one connector, and carriers with several -connectors have completely separate electrical connections to them. -This package, however, implements a bus as a software abstraction. - - -What is SDB -*********** - -SDB (Self Describing Bus) is a set of data structures that we use for -enumerating the internal structure of an FPGA image. We also use it as -a filesystem inside the FMC EEPROM. - -SDB is not mandatory for use of this FMC kernel bus, but if you have SDB -this package can make good use of it. SDB itself is developed in the -fpga-config-space OHWR project. The link to the repository is -`git://ohwr.org/hdl-core-lib/fpga-config-space.git' and what is used in -this project lives in the sdbfs subdirectory in there. - -SDB support for FMC is described in *note FMC Identification:: and -*note SDB Support:: - - -SDB Support -*********** - -The fmc.ko bus driver exports a few functions to help drivers taking -advantage of the SDB information that may be present in your own FPGA -memory image. - -The module exports the following functions, in the special header -<linux/fmc-sdb.h>. The linux/ prefix in the name is there because we -plan to submit it upstream in the future, and don't want to force -changes on our drivers if that happens. - - int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address); - void fmc_show_sdb_tree(struct fmc_device *fmc); - signed long fmc_find_sdb_device(struct sdb_array *tree, uint64_t vendor, - uint32_t device, unsigned long *sz); - int fmc_free_sdb_tree(struct fmc_device *fmc); diff --git a/Documentation/fmc/carrier.txt b/Documentation/fmc/carrier.txt deleted file mode 100644 index 5e4f1dd3e98b..000000000000 --- a/Documentation/fmc/carrier.txt +++ /dev/null @@ -1,311 +0,0 @@ -FMC Device -********** - -Within the Linux bus framework, the FMC device is created and -registered by the carrier driver. For example, the PCI driver for the -SPEC card fills a data structure for each SPEC that it drives, and -registers an associated FMC device for each card. The SVEC driver can -do exactly the same for the VME carrier (actually, it should do it -twice, because the SVEC carries two FMC mezzanines). Similarly, an -Etherbone driver will be able to register its own FMC devices, offering -communication primitives through frame exchange. - -The contents of the EEPROM within the FMC are used for identification -purposes, i.e. for matching the device with its own driver. For this -reason the device structure includes a complete copy of the EEPROM -(actually, the carrier driver may choose whether or not to return it - -for example we most likely won't have the whole EEPROM available for -Etherbone devices. - -The following listing shows the current structure defining a device. -Please note that all the machinery is in place but some details may -still change in the future. For this reason, there is a version field -at the beginning of the structure. As usual, the minor number will -change for compatible changes (like a new flag) and the major number -will increase when an incompatible change happens (for example, a -change in layout of some fmc data structures). Device writers should -just set it to the value FMC_VERSION, and be ready to get back -EINVAL -at registration time. - - struct fmc_device { - unsigned long version; - unsigned long flags; - struct module *owner; /* char device must pin it */ - struct fmc_fru_id id; /* for EEPROM-based match */ - struct fmc_operations *op; /* carrier-provided */ - int irq; /* according to host bus. 0 == none */ - int eeprom_len; /* Usually 8kB, may be less */ - int eeprom_addr; /* 0x50, 0x52 etc */ - uint8_t *eeprom; /* Full contents or leading part */ - char *carrier_name; /* "SPEC" or similar, for special use */ - void *carrier_data; /* "struct spec *" or equivalent */ - __iomem void *fpga_base; /* May be NULL (Etherbone) */ - __iomem void *slot_base; /* Set by the driver */ - struct fmc_device **devarray; /* Allocated by the bus */ - int slot_id; /* Index in the slot array */ - int nr_slots; /* Number of slots in this carrier */ - unsigned long memlen; /* Used for the char device */ - struct device dev; /* For Linux use */ - struct device *hwdev; /* The underlying hardware device */ - unsigned long sdbfs_entry; - struct sdb_array *sdb; - uint32_t device_id; /* Filled by the device */ - char *mezzanine_name; /* Defaults to ``fmc'' */ - void *mezzanine_data; - }; - -The meaning of most fields is summarized in the code comment above. - -The following fields must be filled by the carrier driver before -registration: - - * version: must be set to FMC_VERSION. - - * owner: set to MODULE_OWNER. - - * op: the operations to act on the device. - - * irq: number for the mezzanine; may be zero. - - * eeprom_len: length of the following array. - - * eeprom_addr: 0x50 for first mezzanine and so on. - - * eeprom: the full content of the I2C EEPROM. - - * carrier_name. - - * carrier_data: a unique pointer for the carrier. - - * fpga_base: the I/O memory address (may be NULL). - - * slot_id: the index of this slot (starting from zero). - - * memlen: if fpga_base is valid, the length of I/O memory. - - * hwdev: to be used in some dev_err() calls. - - * device_id: a slot-specific unique integer number. - - -Please note that the carrier should read its own EEPROM memory before -registering the device, as well as fill all other fields listed above. - -The following fields should not be assigned, because they are filled -later by either the bus or the device driver: - - * flags. - - * fru_id: filled by the bus, parsing the eeprom. - - * slot_base: filled and used by the driver, if useful to it. - - * devarray: an array og all mezzanines driven by a singe FPGA. - - * nr_slots: set by the core at registration time. - - * dev: used by Linux. - - * sdb: FPGA contents, scanned according to driver's directions. - - * sdbfs_entry: SDB entry point in EEPROM: autodetected. - - * mezzanine_data: available for the driver. - - * mezzanine_name: filled by fmc-bus during identification. - - -Note: mezzanine_data may be redundant, because Linux offers the drvdata -approach, so the field may be removed in later versions of this bus -implementation. - -As I write this, she SPEC carrier is already completely functional in -the fmc-bus environment, and is a good reference to look at. - - -The API Offered by Carriers -=========================== - -The carrier provides a number of methods by means of the -`fmc_operations' structure, which currently is defined like this -(again, it is a moving target, please refer to the header rather than -this document): - - struct fmc_operations { - uint32_t (*readl)(struct fmc_device *fmc, int offset); - void (*writel)(struct fmc_device *fmc, uint32_t value, int offset); - int (*reprogram)(struct fmc_device *f, struct fmc_driver *d, char *gw); - int (*validate)(struct fmc_device *fmc, struct fmc_driver *drv); - int (*irq_request)(struct fmc_device *fmc, irq_handler_t h, - char *name, int flags); - void (*irq_ack)(struct fmc_device *fmc); - int (*irq_free)(struct fmc_device *fmc); - int (*gpio_config)(struct fmc_device *fmc, struct fmc_gpio *gpio, - int ngpio); - int (*read_ee)(struct fmc_device *fmc, int pos, void *d, int l); - int (*write_ee)(struct fmc_device *fmc, int pos, const void *d, int l); - }; - -The individual methods perform the following tasks: - -`readl' -`writel' - These functions access FPGA registers by whatever means the - carrier offers. They are not expected to fail, and most of the time - they will just make a memory access to the host bus. If the - carrier provides a fpga_base pointer, the driver may use direct - access through that pointer. For this reason the header offers the - inline functions fmc_readl and fmc_writel that access fpga_base if - the respective method is NULL. A driver that wants to be portable - and efficient should use fmc_readl and fmc_writel. For Etherbone, - or other non-local carriers, error-management is still to be - defined. - -`validate' - Module parameters are used to manage different applications for - two or more boards of the same kind. Validation is based on the - busid module parameter, if provided, and returns the matching - index in the associated array. See *note Module Parameters:: in in - doubt. If no match is found, `-ENOENT' is returned; if the user - didn't pass `busid=', all devices will pass validation. The value - returned by the validate method can be used as index into other - parameters (for example, some drivers use the `lm32=' parameter in - this way). Such "generic parameters" are documented in *note - Module Parameters::, below. The validate method is used by - `fmc-trivial.ko', described in *note fmc-trivial::. - -`reprogram' - The carrier enumerates FMC devices by loading a standard (or - golden) FPGA binary that allows EEPROM access. Each driver, then, - will need to reprogram the FPGA by calling this function. If the - name argument is NULL, the carrier should reprogram the golden - binary. If the gateware name has been overridden through module - parameters (in a carrier-specific way) the file loaded will match - the parameters. Per-device gateware names can be specified using - the `gateware=' parameter, see *note Module Parameters::. Note: - Clients should call rhe new helper, fmc_reprogram, which both - calls this method and parse the SDB tree of the FPGA. - -`irq_request' -`irq_ack' -`irq_free' - Interrupt management is carrier-specific, so it is abstracted as - operations. The interrupt number is listed in the device - structure, and for the mezzanine driver the number is only - informative. The handler will receive the fmc pointer as dev_id; - the flags argument is passed to the Linux request_irq function, - but fmc-specific flags may be added in the future. You'll most - likely want to pass the `IRQF_SHARED' flag. - -`gpio_config' - The method allows to configure a GPIO pin in the carrier, and read - its current value if it is configured as input. See *note The GPIO - Abstraction:: for details. - -`read_ee' -`write_ee' - Read or write the EEPROM. The functions are expected to be only - called before reprogramming and the carrier should refuse them - with `ENODEV' after reprogramming. The offset is expected to be - within 8kB (the current size), but addresses up to 1MB are - reserved to fit bigger I2C devices in the future. Carriers may - offer access to other internal flash memories using these same - methods: for example the SPEC driver may define that its carrier - I2C memory is seen at offset 1M and the internal SPI flash is seen - at offset 16M. This multiplexing of several flash memories in the - same address space is carrier-specific and should only be used - by a driver that has verified the `carrier_name' field. - - - -The GPIO Abstraction -==================== - -Support for GPIO pins in the fmc-bus environment is not very -straightforward and deserves special discussion. - -While the general idea of a carrier-independent driver seems to fly, -configuration of specific signals within the carrier needs at least -some knowledge of the carrier itself. For this reason, the specific -driver can request to configure carrier-specific GPIO pins, numbered -from 0 to at most 4095. Configuration is performed by passing a -pointer to an array of struct fmc_gpio items, as well as the length of -the array. This is the data structure: - - struct fmc_gpio { - char *carrier_name; - int gpio; - int _gpio; /* internal use by the carrier */ - int mode; /* GPIOF_DIR_OUT etc, from <linux/gpio.h> */ - int irqmode; /* IRQF_TRIGGER_LOW and so on */ - }; - -By specifying a carrier_name for each pin, the driver may access -different pins in different carriers. The gpio_config method is -expected to return the number of pins successfully configured, ignoring -requests for other carriers. However, if no pin is configured (because -no structure at all refers to the current carrier_name), the operation -returns an error so the caller will know that it is running under a -yet-unsupported carrier. - -So, for example, a driver that has been developed and tested on both -the SPEC and the SVEC may request configuration of two different GPIO -pins, and expect one such configuration to succeed - if none succeeds -it most likely means that the current carrier is a still-unknown one. - -If, however, your GPIO pin has a specific known role, you can pass a -special number in the gpio field, using one of the following macros: - - #define FMC_GPIO_RAW(x) (x) /* 4096 of them */ - #define FMC_GPIO_IRQ(x) ((x) + 0x1000) /* 256 of them */ - #define FMC_GPIO_LED(x) ((x) + 0x1100) /* 256 of them */ - #define FMC_GPIO_KEY(x) ((x) + 0x1200) /* 256 of them */ - #define FMC_GPIO_TP(x) ((x) + 0x1300) /* 256 of them */ - #define FMC_GPIO_USER(x) ((x) + 0x1400) /* 256 of them */ - -Use of virtual GPIO numbers (anything but FMC_GPIO_RAW) is allowed -provided the carrier_name field in the data structure is left -unspecified (NULL). Each carrier is responsible for providing a mapping -between virtual and physical GPIO numbers. The carrier may then use the -_gpio field to cache the result of this mapping. - -All carriers must map their I/O lines to the sets above starting from -zero. The SPEC, for example, maps interrupt pins 0 and 1, and test -points 0 through 3 (even if the test points on the PCB are called -5,6,7,8). - -If, for example, a driver requires a free LED and a test point (for a -scope probe to be plugged at some point during development) it may ask -for FMC_GPIO_LED(0) and FMC_GPIO_TP(0). Each carrier will provide -suitable GPIO pins. Clearly, the person running the drivers will know -the order used by the specific carrier driver in assigning leds and -testpoints, so to make a carrier-dependent use of the diagnostic tools. - -In theory, some form of autodetection should be possible: a driver like -the wr-nic (which uses IRQ(1) on the SPEC card) should configure -IRQ(0), make a test with software-generated interrupts and configure -IRQ(1) if the test fails. This probing step should be used because even -if the wr-nic gateware is known to use IRQ1 on the SPEC, the driver -should be carrier-independent and thus use IRQ(0) as a first bet - -actually, the knowledge that IRQ0 may fail is carrier-dependent -information, but using it doesn't make the driver unsuitable for other -carriers. - -The return value of gpio_config is defined as follows: - - * If no pin in the array can be used by the carrier, `-ENODEV'. - - * If at least one virtual GPIO number cannot be mapped, `-ENOENT'. - - * On success, 0 or positive. The value returned is the number of - high input bits (if no input is configured, the value for success - is 0). - -While I admit the procedure is not completely straightforward, it -allows configuration, input and output with a single carrier operation. -Given the typical use case of FMC devices, GPIO operations are not -expected to ever by in hot paths, and GPIO access so fare has only been -used to configure the interrupt pin, mode and polarity. Especially -reading inputs is not expected to be common. If your device has GPIO -capabilities in the hot path, you should consider using the kernel's -GPIO mechanisms. diff --git a/Documentation/fmc/fmc-chardev.txt b/Documentation/fmc/fmc-chardev.txt deleted file mode 100644 index d9ccb278e597..000000000000 --- a/Documentation/fmc/fmc-chardev.txt +++ /dev/null @@ -1,64 +0,0 @@ -fmc-chardev -=========== - -This is a simple generic driver, that allows user access by means of a -character device (actually, one for each mezzanine it takes hold of). - -The char device is created as a misc device. Its name in /dev (as -created by udev) is the same name as the underlying FMC device. Thus, -the name can be a silly fmc-0000 look-alike if the device has no -identifiers nor bus_id, a more specific fmc-0400 if the device has a -bus-specific address but no associated name, or something like -fdelay-0400 if the FMC core can rely on both a mezzanine name and a bus -address. - -Currently the driver only supports read and write: you can lseek to the -desired address and read or write a register. - -The driver assumes all registers are 32-bit in size, and only accepts a -single read or write per system call. However, as a result of Unix read -and write semantics, users can simply fread or fwrite bigger areas in -order to dump or store bigger memory areas. - -There is currently no support for mmap, user-space interrupt management -and DMA buffers. They may be added in later versions, if the need -arises. - -The example below shows raw access to a SPEC card programmed with its -golden FPGA file, that features an SDB structure at offset 256 - i.e. -64 words. The mezzanine's EEPROM in this case is not programmed, so the -default name is fmc-<bus><devfn>, and there are two cards in the system: - - spusa.root# insmod fmc-chardev.ko - [ 1073.339332] spec 0000:02:00.0: Driver has no ID: matches all - [ 1073.345051] spec 0000:02:00.0: Created misc device "fmc-0200" - [ 1073.350821] spec 0000:04:00.0: Driver has no ID: matches all - [ 1073.356525] spec 0000:04:00.0: Created misc device "fmc-0400" - spusa.root# ls -l /dev/fmc* - crw------- 1 root root 10, 58 Nov 20 19:23 /dev/fmc-0200 - crw------- 1 root root 10, 57 Nov 20 19:23 /dev/fmc-0400 - spusa.root# dd bs=4 skip=64 count=1 if=/dev/fmc-0200 2> /dev/null | od -t x1z - 0000000 2d 42 44 53 >-BDS< - 0000004 - -The simple program tools/fmc-mem in this package can access an FMC char -device and read or write a word or a whole area. Actually, the program -is not specific to FMC at all, it just uses lseek, read and write. - -Its first argument is the device name, the second the offset, the third -(if any) the value to write and the optional last argument that must -begin with "+" is the number of bytes to read or write. In case of -repeated reading data is written to stdout; repeated writes read from -stdin and the value argument is ignored. - -The following examples show reading the SDB magic number and the first -SDB record from a SPEC device programmed with its golden image: - - spusa.root# ./fmc-mem /dev/fmc-0200 100 - 5344422d - spusa.root# ./fmc-mem /dev/fmc-0200 100 +40 | od -Ax -t x1z - 000000 2d 42 44 53 00 01 02 00 00 00 00 00 00 00 00 00 >-BDS............< - 000010 00 00 00 00 ff 01 00 00 00 00 00 00 51 06 00 00 >............Q...< - 000020 c9 42 a5 e6 02 00 00 00 11 05 12 20 2d 34 42 57 >.B......... -4BW< - 000030 73 6f 72 43 72 61 62 73 49 53 47 2d 00 20 20 20 >sorCrabsISG-. < - 000040 diff --git a/Documentation/fmc/fmc-fakedev.txt b/Documentation/fmc/fmc-fakedev.txt deleted file mode 100644 index e85b74a4ae30..000000000000 --- a/Documentation/fmc/fmc-fakedev.txt +++ /dev/null @@ -1,36 +0,0 @@ -fmc-fakedev -=========== - -This package includes a software-only device, called fmc-fakedev, which -is able to register up to 4 mezzanines (by default it registers one). -Unlike the SPEC driver, which creates an FMC device for each PCI cards -it manages, this module creates a single instance of its set of -mezzanines. - -It is meant as the simplest possible example of how a driver should be -written, and it includes a fake EEPROM image (built using the tools -described in *note FMC Identification::),, which by default is -replicated for each fake mezzanine. - -You can also use this device to verify the match algorithms, by asking -it to test your own EEPROM image. You can provide the image by means of -the eeprom= module parameter: the new EEPROM image is loaded, as usual, -by means of the firmware loader. This example shows the defaults and a -custom EEPROM image: - - spusa.root# insmod fmc-fakedev.ko - [ 99.971247] fake-fmc-carrier: mezzanine 0 - [ 99.975393] Manufacturer: fake-vendor - [ 99.979624] Product name: fake-design-for-testing - spusa.root# rmmod fmc-fakedev - spusa.root# insmod fmc-fakedev.ko eeprom=fdelay-eeprom.bin - [ 121.447464] fake-fmc-carrier: Mezzanine 0: eeprom "fdelay-eeprom.bin" - [ 121.462725] fake-fmc-carrier: mezzanine 0 - [ 121.466858] Manufacturer: CERN - [ 121.470477] Product name: FmcDelay1ns4cha - spusa.root# rmmod fmc-fakedev - -After loading the device, you can use the write_ee method do modify its -own internal fake EEPROM: whenever the image is overwritten starting at -offset 0, the module will unregister and register again the FMC device. -This is shown in fmc-write-eeprom.txt diff --git a/Documentation/fmc/fmc-trivial.txt b/Documentation/fmc/fmc-trivial.txt deleted file mode 100644 index d1910bc67159..000000000000 --- a/Documentation/fmc/fmc-trivial.txt +++ /dev/null @@ -1,17 +0,0 @@ -fmc-trivial -=========== - -The simple module fmc-trivial is just a simple client that registers an -interrupt handler. I used it to verify the basic mechanism of the FMC -bus and how interrupts worked. - -The module implements the generic FMC parameters, so it can program a -different gateware file in each card. The whole list of parameters it -accepts are: - -`busid=' -`gateware=' - Generic parameters. See mezzanine.txt - - -This driver is worth reading, in my opinion. diff --git a/Documentation/fmc/fmc-write-eeprom.txt b/Documentation/fmc/fmc-write-eeprom.txt deleted file mode 100644 index e0a9712156aa..000000000000 --- a/Documentation/fmc/fmc-write-eeprom.txt +++ /dev/null @@ -1,98 +0,0 @@ -fmc-write-eeprom -================ - -This module is designed to load a binary file from /lib/firmware and to -write it to the internal EEPROM of the mezzanine card. This driver uses -the `busid' generic parameter. - -Overwriting the EEPROM is not something you should do daily, and it is -expected to only happen during manufacturing. For this reason, the -module makes it unlikely for the random user to change a working EEPROM. - -However, since the EEPROM may include application-specific information -other than the identification, later versions of this packages added -write-support through sysfs. See *note Accessing the EEPROM::. - -To avoid damaging the EEPROM content, the module takes the following -measures: - - * It accepts a `file=' argument (within /lib/firmware) and if no - such argument is received, it doesn't write anything to EEPROM - (i.e. there is no default file name). - - * If the file name ends with `.bin' it is written verbatim starting - at offset 0. - - * If the file name ends with `.tlv' it is interpreted as - type-length-value (i.e., it allows writev(2)-like operation). - - * If the file name doesn't match any of the patterns above, it is - ignored and no write is performed. - - * Only cards listed with `busid=' are written to. If no busid is - specified, no programming is done (and the probe function of the - driver will fail). - - -Each TLV tuple is formatted in this way: the header is 5 bytes, -followed by data. The first byte is `w' for write, the next two bytes -represent the address, in little-endian byte order, and the next two -represent the data length, in little-endian order. The length does not -include the header (it is the actual number of bytes to be written). - -This is a real example: that writes 5 bytes at position 0x110: - - spusa.root# od -t x1 -Ax /lib/firmware/try.tlv - 000000 77 10 01 05 00 30 31 32 33 34 - 00000a - spusa.root# insmod /tmp/fmc-write-eeprom.ko busid=0x0200 file=try.tlv - [19983.391498] spec 0000:03:00.0: write 5 bytes at 0x0110 - [19983.414615] spec 0000:03:00.0: write_eeprom: success - -Please note that you'll most likely want to use SDBFS to build your -EEPROM image, at least if your mezzanines are being used in the White -Rabbit environment. For this reason the TLV format is not expected to -be used much and is not expected to be developed further. - -If you want to try reflashing fake EEPROM devices, you can use the -fmc-fakedev.ko module (see *note fmc-fakedev::). Whenever you change -the image starting at offset 0, it will deregister and register again -after two seconds. Please note, however, that if fmc-write-eeprom is -still loaded, the system will associate it to the new device, which -will be reprogrammed and thus will be unloaded after two seconds. The -following example removes the module after it reflashed fakedev the -first time. - - spusa.root# insmod fmc-fakedev.ko - [ 72.984733] fake-fmc: Manufacturer: fake-vendor - [ 72.989434] fake-fmc: Product name: fake-design-for-testing - spusa.root# insmod fmc-write-eeprom.ko busid=0 file=fdelay-eeprom.bin; \ - rmmod fmc-write-eeprom - [ 130.874098] fake-fmc: Matching a generic driver (no ID) - [ 130.887845] fake-fmc: programming 6155 bytes - [ 130.894567] fake-fmc: write_eeprom: success - [ 132.895794] fake-fmc: Manufacturer: CERN - [ 132.899872] fake-fmc: Product name: FmcDelay1ns4cha - - -Accessing the EEPROM -===================== - -The bus creates a sysfs binary file called eeprom for each mezzanine it -knows about: - - spusa.root# cd /sys/bus/fmc/devices; ls -l */eeprom - -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcAdc100m14b4cha-0800/eeprom - -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDelay1ns4cha-0200/eeprom - -r--r--r-- 1 root root 8192 Feb 21 12:30 FmcDio5cha-0400/eeprom - -Everybody can read the files and the superuser can also modify it, but -the operation may on the carrier driver, if the carrier is unable to -access the I2C bus. For example, the spec driver can access the bus -only with its golden gateware: after a mezzanine driver reprogrammed -the FPGA with a custom circuit, the carrier is unable to access the -EEPROM and returns ENOTSUPP. - -An alternative way to write the EEPROM is the mezzanine driver -fmc-write-eeprom (See *note fmc-write-eeprom::), but the procedure is -more complex. diff --git a/Documentation/fmc/identifiers.txt b/Documentation/fmc/identifiers.txt deleted file mode 100644 index 3bb577ff0d52..000000000000 --- a/Documentation/fmc/identifiers.txt +++ /dev/null @@ -1,168 +0,0 @@ -FMC Identification -****************** - -The FMC standard requires every compliant mezzanine to carry -identification information in an I2C EEPROM. The information must be -laid out according to the "IPMI Platform Management FRU Information", -where IPMI is a lie I'd better not expand, and FRU means "Field -Replaceable Unit". - -The FRU information is an intricate unreadable binary blob that must -live at offset 0 of the EEPROM, and typically extends for a few hundred -bytes. The standard allows the application to use all the remaining -storage area of the EEPROM as it wants. - -This chapter explains how to create your own EEPROM image and how to -write it in your mezzanine, as well as how devices and drivers are -paired at run time. EEPROM programming uses tools that are part of this -package and SDB (part of the fpga-config-space package). - -The first sections are only interesting for manufacturers who need to -write the EEPROM. If you are just a software developer writing an FMC -device or driver, you may jump straight to *note SDB Support::. - - -Building the FRU Structure -========================== - -If you want to know the internals of the FRU structure and despair, you -can retrieve the document from -`http://download.intel.com/design/servers/ipmi/FRU1011.pdf' . The -standard is awful and difficult without reason, so we only support the -minimum mandatory subset - we create a simple structure and parse it -back at run time, but we are not able to either generate or parse more -arcane features like non-english languages and 6-bit text. If you need -more items of the FRU standard for your boards, please submit patches. - -This package includes the Python script that Matthieu Cattin wrote to -generate the FRU binary blob, based on an helper libipmi by Manohar -Vanga and Matthieu himself. I changed the test script to receive -parameters from the command line or from the environment (the command -line takes precedence) - -To make a long story short, in order to build a standard-compliant -binary file to be burned in your EEPROM, you need the following items: - - Environment Opt Official Name Default ---------------------------------------------------------------------- - FRU_VENDOR -v "Board Manufacturer" fmc-example - FRU_NAME -n "Board Product Name" mezzanine - FRU_SERIAL -s `Board Serial Number" 0001 - FRU_PART -p "Board Part Number" sample-part - FRU_OUTPUT -o not applicable /dev/stdout - -The "Official Name" above is what you find in the FRU official -documentation, chapter 11, page 7 ("Board Info Area Format"). The -output option is used to save the generated binary to a specific file -name instead of stdout. - -You can pass the items to the FRU generator either in the environment -or on the command line. This package has currently no support for -specifying power consumption or such stuff, but I plan to add it as -soon as I find some time for that. - -FIXME: consumption etc for FRU are here or in PTS? - -The following example creates a binary image for a specific board: - - ./tools/fru-generator -v CERN -n FmcAdc100m14b4cha \ - -s HCCFFIA___-CR000003 -p EDA-02063-V5-0 > eeprom.bin - -The following example shows a script that builds several binary EEPROM -images for a series of boards, changing the serial number for each of -them. The script uses a mix of environment variables and command line -options, and uses the same string patterns shown above. - - #!/bin/sh - - export FRU_VENDOR="CERN" - export FRU_NAME="FmcAdc100m14b4cha" - export FRU_PART="EDA-02063-V5-0" - - serial="HCCFFIA___-CR" - - for number in $(seq 1 50); do - # build number-string "ns" - ns="$(printf %06d $number)" - ./fru-generator -s "${serial}${ns}" > eeprom-${ns}.bin - done - - -Using SDB-FS in the EEPROM -========================== - -If you want to use SDB as a filesystem in the EEPROM device within the -mezzanine, you should create one such filesystem using gensdbfs, from -the fpga-config-space package on OHWR. - -By using an SBD filesystem you can cluster several files in a single -EEPROM, so both the host system and a soft-core running in the FPGA (if -any) can access extra production-time information. - -We chose to use SDB as a storage filesystem because the format is very -simple, and both the host system and the soft-core will likely already -include support code for such format. The SDB library offered by the -fpga-config-space is less than 1kB under LM32, so it proves quite up to -the task. - -The SDB entry point (which acts as a directory listing) cannot live at -offset zero in the flash device, because the FRU information must live -there. To avoid wasting precious storage space while still allowing -for more-than-minimal FRU structures, the fmc.ko will look for the SDB -record at address 256, 512 and 1024. - -In order to generate the complete EEPROM image you'll need a -configuration file for gensdbfs: you tell the program where to place -the sdb entry point, and you must force the FRU data file to be placed -at the beginning of the storage device. If needed, you can also place -other files at a special offset (we sometimes do it for backward -compatibility with drivers we wrote before implementing SDB for flash -memory). - -The directory tools/sdbfs of this package includes a well-commented -example that you may want to use as a starting point (the comments are -in the file called -SDB-CONFIG-). Reading documentation for gensdbfs -is a suggested first step anyways. - -This package (generic FMC bus support) only accesses two files in the -EEPROM: the FRU information, at offset zero, with a suggested filename -of IPMI-FRU and the short name for the mezzanine, in a file called -name. The IPMI-FRU name is not mandatory, but a strongly suggested -choice; the name filename is mandatory, because this is the preferred -short name used by the FMC core. For example, a name of "fdelay" may -supplement a Product Name like "FmcDelay1ns4cha" - exactly as -demonstrated in `tools/sdbfs'. - -Note: SDB access to flash memory is not yet supported, so the short -name currently in use is just the "Product Name" FRU string. - -The example in tools/sdbfs includes an extra file, that is needed by -the fine-delay driver, and must live at a known address of 0x1800. By -running gensdbfs on that directory you can output your binary EEPROM -image (here below spusa$ is the shell prompt): - - spusa$ ../fru-generator -v CERN -n FmcDelay1ns4cha -s proto-0 \ - -p EDA-02267-V3 > IPMI-FRU - spusa$ ls -l - total 16 - -rw-rw-r-- 1 rubini staff 975 Nov 19 18:08 --SDB-CONFIG-- - -rw-rw-r-- 1 rubini staff 216 Nov 19 18:13 IPMI-FRU - -rw-rw-r-- 1 rubini staff 11 Nov 19 18:04 fd-calib - -rw-rw-r-- 1 rubini staff 7 Nov 19 18:04 name - spusa$ sudo gensdbfs . /lib/firmware/fdelay-eeprom.bin - spusa$ sdb-read -l -e 0x100 /lib/firmware/fdelay-eeprom.bin - /home/rubini/wip/sdbfs/userspace/sdb-read: listing format is to be defined - 46696c6544617461:2e202020 00000100-000018ff . - 46696c6544617461:6e616d65 00000200-00000206 name - 46696c6544617461:66642d63 00001800-000018ff fd-calib - 46696c6544617461:49504d49 00000000-000000d7 IPMI-FRU - spusa$ ../fru-dump /lib/firmware/fdelay-eeprom.bin - /lib/firmware/fdelay-eeprom.bin: manufacturer: CERN - /lib/firmware/fdelay-eeprom.bin: product-name: FmcDelay1ns4cha - /lib/firmware/fdelay-eeprom.bin: serial-number: proto-0 - /lib/firmware/fdelay-eeprom.bin: part-number: EDA-02267-V3 - -As expected, the output file is both a proper sdbfs object and an IPMI -FRU information blob. The fd-calib file lives at offset 0x1800 and is -over-allocated to 256 bytes, according to the configuration file for -gensdbfs. diff --git a/Documentation/fmc/mezzanine.txt b/Documentation/fmc/mezzanine.txt deleted file mode 100644 index 87910dbfc91e..000000000000 --- a/Documentation/fmc/mezzanine.txt +++ /dev/null @@ -1,123 +0,0 @@ -FMC Driver -********** - -An FMC driver is concerned with the specific mezzanine and associated -gateware. As such, it is expected to be independent of the carrier -being used: it will perform I/O accesses only by means of -carrier-provided functions. - -The matching between device and driver is based on the content of the -EEPROM (as mandated by the FMC standard) or by the actual cores -configured in the FPGA; the latter technique is used when the FPGA is -already programmed when the device is registered to the bus core. - -In some special cases it is possible for a driver to directly access -FPGA registers, by means of the `fpga_base' field of the device -structure. This may be needed for high-bandwidth peripherals like fast -ADC cards. If the device module registered a remote device (for example -by means of Etherbone), the `fpga_base' pointer will be NULL. -Therefore, drivers must be ready to deal with NULL base pointers, and -fail gracefully. Most driver, however, are not expected to access the -pointer directly but run fmc_readl and fmc_writel instead, which will -work in any case. - -In even more special cases, the driver may access carrier-specific -functionality: the `carrier_name' string allows the driver to check -which is the current carrier and make use of the `carrier_data' -pointer. We chose to use carrier names rather than numeric identifiers -for greater flexibility, but also to avoid a central registry within -the `fmc.h' file - we hope other users will exploit our framework with -their own carriers. An example use of carrier names is in GPIO setup -(see *note The GPIO Abstraction::), although the name match is not -expected to be performed by the driver. If you depend on specific -carriers, please check the carrier name and fail gracefully if your -driver finds it is running in a yet-unknown-to-it environment. - - -ID Table -======== - -Like most other Linux drivers, and FMC driver must list all the devices -which it is able to drive. This is usually done by means of a device -table, but in FMC we can match hardware based either on the contents of -their EEPROM or on the actual FPGA cores that can be enumerated. -Therefore, we have two tables of identifiers. - -Matching of FRU information depends on two names, the manufacturer (or -vendor) and the device (see *note FMC Identification::); for -flexibility during production (i.e. before writing to the EEPROM) the -bus supports a catch-all driver that specifies NULL strings. For this -reason, the table is specified as pointer-and-length, not a a -null-terminated array - the entry with NULL names can be a valid entry. - -Matching on FPGA cores depends on two numeric fields: the 64-bit vendor -number and the 32-bit device number. Support for matching based on -class is not yet implemented. Each device is expected to be uniquely -identified by an array of cores (it matches if all of the cores are -instantiated), and for consistency the list is passed as -pointer-and-length. Several similar devices can be driven by the same -driver, and thus the driver specifies and array of such arrays. - -The complete set of involved data structures is thus the following: - - struct fmc_fru_id { char *manufacturer; char *product_name; }; - struct fmc_sdb_one_id { uint64_t vendor; uint32_t device; }; - struct fmc_sdb_id { struct fmc_sdb_one_id *cores; int cores_nr; }; - - struct fmc_device_id { - struct fmc_fru_id *fru_id; int fru_id_nr; - struct fmc_sdb_id *sdb_id; int sdb_id_nr; - }; - -A better reference, with full explanation, is the <linux/fmc.h> header. - - -Module Parameters -================= - -Most of the FMC drivers need the same set of kernel parameters. This -package includes support to implement common parameters by means of -fields in the `fmc_driver' structure and simple macro definitions. - -The parameters are carrier-specific, in that they rely on the busid -concept, that varies among carriers. For the SPEC, the identifier is a -PCI bus and devfn number, 16 bits wide in total; drivers for other -carriers will most likely offer something similar but not identical, -and some code duplication is unavoidable. - -This is the list of parameters that are common to several modules to -see how they are actually used, please look at spec-trivial.c. - -`busid=' - This is an array of integers, listing carrier-specific - identification numbers. For PIC, for example, `0x0400' represents - bus 4, slot 0. If any such ID is specified, the driver will only - accept to drive cards that appear in the list (even if the FMC ID - matches). This is accomplished by the validate carrier method. - -`gateware=' - The argument is an array of strings. If no busid= is specified, - the first string of gateware= is used for all cards; otherwise the - identifiers and gateware names are paired one by one, in the order - specified. - -`show_sdb=' - For modules supporting it, this parameter asks to show the SDB - internal structure by means of kernel messages. It is disabled by - default because those lines tend to hide more important messages, - if you look at the system console while loading the drivers. - Note: the parameter is being obsoleted, because fmc.ko itself now - supports dump_sdb= that applies to every client driver. - - -For example, if you are using the trivial driver to load two different -gateware files to two different cards, you can use the following -parameters to load different binaries to the cards, after looking up -the PCI identifiers. This has been tested with a SPEC carrier. - - insmod fmc-trivial.ko \ - busid=0x0200,0x0400 \ - gateware=fmc/fine-delay.bin,fmc/simple-dio.bin - -Please note that not all sub-modules support all of those parameters. -You can use modinfo to check what is supported by each module. diff --git a/Documentation/fmc/parameters.txt b/Documentation/fmc/parameters.txt deleted file mode 100644 index 59edf088e3a4..000000000000 --- a/Documentation/fmc/parameters.txt +++ /dev/null @@ -1,56 +0,0 @@ -Module Parameters in fmc.ko -*************************** - -The core driver receives two module parameters, meant to help debugging -client modules. Both parameters can be modified by writing to -/sys/module/fmc/parameters/, because they are used when client drivers -are devices are registered, not when fmc.ko is loaded. - -`dump_eeprom=' - If not zero, the parameter asks the bus controller to dump the - EEPROM of any device that is registered, using printk. - -`dump_sdb=' - If not zero, the parameter prints the SDB tree of every FPGA it is - loaded by fmc_reprogram(). If greater than one, it asks to dump - the binary content of SDB records. This currently only dumps the - top-level SDB array, though. - - -EEPROM dumping avoids repeating lines, since most of the contents is -usually empty and all bits are one or zero. This is an example of the -output: - - [ 6625.850480] spec 0000:02:00.0: FPGA programming successful - [ 6626.139949] spec 0000:02:00.0: Manufacturer: CERN - [ 6626.144666] spec 0000:02:00.0: Product name: FmcDelay1ns4cha - [ 6626.150370] FMC: mezzanine 0: 0000:02:00.0 on SPEC - [ 6626.155179] FMC: dumping eeprom 0x2000 (8192) bytes - [ 6626.160087] 0000: 01 00 00 01 00 0b 00 f3 01 0a 00 a5 85 87 c4 43 - [ 6626.167069] 0010: 45 52 4e cf 46 6d 63 44 65 6c 61 79 31 6e 73 34 - [ 6626.174019] 0020: 63 68 61 c7 70 72 6f 74 6f 2d 30 cc 45 44 41 2d - [ 6626.180975] 0030: 30 32 32 36 37 2d 56 33 da 32 30 31 32 2d 31 31 - [...] - [ 6626.371366] 0200: 66 64 65 6c 61 79 0a 00 00 00 00 00 00 00 00 00 - [ 6626.378359] 0210: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 - [ 6626.385361] [...] - [ 6626.387308] 1800: 70 6c 61 63 65 68 6f 6c 64 65 72 ff ff ff ff ff - [ 6626.394259] 1810: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff - [ 6626.401250] [...] - -The dump of SDB looks like the following; the example shows the simple -golden gateware for the SPEC card, removing the leading timestamps to -fit the page: - - spec 0000:02:00.0: SDB: 00000651:e6a542c9 WB4-Crossbar-GSI - spec 0000:02:00.0: SDB: 0000ce42:ff07fc47 WR-Periph-Syscon (00000000-000000ff) - FMC: mezzanine 0: 0000:02:00.0 on SPEC - FMC: poor dump of sdb first level: - 0000: 53 44 42 2d 00 02 01 00 00 00 00 00 00 00 00 00 - 0010: 00 00 00 00 00 00 01 ff 00 00 00 00 00 00 06 51 - 0020: e6 a5 42 c9 00 00 00 02 20 12 05 11 57 42 34 2d - 0030: 43 72 6f 73 73 62 61 72 2d 47 53 49 20 20 20 00 - 0040: 00 00 01 01 00 00 00 07 00 00 00 00 00 00 00 00 - 0050: 00 00 00 00 00 00 00 ff 00 00 00 00 00 00 ce 42 - 0060: ff 07 fc 47 00 00 00 01 20 12 03 05 57 52 2d 50 - 0070: 65 72 69 70 68 2d 53 79 73 63 6f 6e 20 20 20 01 |