summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/admin-guide/cgroup-v2.rst28
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt2
-rw-r--r--Documentation/block/inline-encryption.rst453
-rw-r--r--Documentation/block/queue-sysfs.rst33
-rw-r--r--Documentation/cdrom/cdrom-standard.rst11
-rw-r--r--Documentation/core-api/cachetlb.rst6
-rw-r--r--Documentation/core-api/mm-api.rst5
-rw-r--r--Documentation/devicetree/bindings/display/bridge/ti,sn65dsi83.yaml2
-rw-r--r--Documentation/devicetree/bindings/display/bridge/ti,sn65dsi86.yaml2
-rw-r--r--Documentation/devicetree/bindings/display/panel/ilitek,ili9341.yaml2
-rw-r--r--Documentation/devicetree/bindings/media/i2c/ovti,ov5647.yaml2
-rw-r--r--Documentation/devicetree/bindings/media/i2c/ovti,ov9282.yaml2
-rw-r--r--Documentation/devicetree/bindings/media/i2c/sony,imx335.yaml2
-rw-r--r--Documentation/devicetree/bindings/media/i2c/sony,imx412.yaml2
-rw-r--r--Documentation/devicetree/bindings/mfd/brcm,cru.yaml11
-rw-r--r--Documentation/devicetree/bindings/mmc/snps,dwcmshc-sdhci.yaml4
-rw-r--r--Documentation/devicetree/bindings/net/dsa/marvell.txt2
-rw-r--r--Documentation/devicetree/bindings/net/nxp,dwmac-imx.yaml1
-rw-r--r--Documentation/devicetree/bindings/net/snps,dwmac.yaml2
-rw-r--r--Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.yaml1
-rw-r--r--Documentation/devicetree/bindings/pinctrl/brcm,ns-pinmux.yaml33
-rw-r--r--Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.yaml2
-rw-r--r--Documentation/filesystems/fscrypt.rst83
-rw-r--r--Documentation/filesystems/index.rst1
-rw-r--r--Documentation/filesystems/locks.rst17
-rw-r--r--Documentation/filesystems/netfs_library.rst2
-rw-r--r--Documentation/filesystems/ntfs3.rst141
-rw-r--r--Documentation/gpu/amdgpu.rst4
-rw-r--r--Documentation/gpu/drm-internals.rst9
-rw-r--r--Documentation/networking/devlink/ice.rst9
-rw-r--r--Documentation/networking/mctp.rst10
-rw-r--r--Documentation/userspace-api/ioctl/cdrom.rst113
-rw-r--r--Documentation/userspace-api/ioctl/ioctl-number.rst1
-rw-r--r--Documentation/userspace-api/vduse.rst2
34 files changed, 562 insertions, 438 deletions
diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst
index babbe04c8d37..4d8c27eca96b 100644
--- a/Documentation/admin-guide/cgroup-v2.rst
+++ b/Documentation/admin-guide/cgroup-v2.rst
@@ -1226,7 +1226,7 @@ PAGE_SIZE multiple when read back.
Note that all fields in this file are hierarchical and the
file modified event can be generated due to an event down the
- hierarchy. For for the local events at the cgroup level see
+ hierarchy. For the local events at the cgroup level see
memory.events.local.
low
@@ -2170,19 +2170,19 @@ existing device files.
Cgroup v2 device controller has no interface files and is implemented
on top of cgroup BPF. To control access to device files, a user may
-create bpf programs of the BPF_CGROUP_DEVICE type and attach them
-to cgroups. On an attempt to access a device file, corresponding
-BPF programs will be executed, and depending on the return value
-the attempt will succeed or fail with -EPERM.
-
-A BPF_CGROUP_DEVICE program takes a pointer to the bpf_cgroup_dev_ctx
-structure, which describes the device access attempt: access type
-(mknod/read/write) and device (type, major and minor numbers).
-If the program returns 0, the attempt fails with -EPERM, otherwise
-it succeeds.
-
-An example of BPF_CGROUP_DEVICE program may be found in the kernel
-source tree in the tools/testing/selftests/bpf/progs/dev_cgroup.c file.
+create bpf programs of type BPF_PROG_TYPE_CGROUP_DEVICE and attach
+them to cgroups with BPF_CGROUP_DEVICE flag. On an attempt to access a
+device file, corresponding BPF programs will be executed, and depending
+on the return value the attempt will succeed or fail with -EPERM.
+
+A BPF_PROG_TYPE_CGROUP_DEVICE program takes a pointer to the
+bpf_cgroup_dev_ctx structure, which describes the device access attempt:
+access type (mknod/read/write) and device (type, major and minor numbers).
+If the program returns 0, the attempt fails with -EPERM, otherwise it
+succeeds.
+
+An example of BPF_PROG_TYPE_CGROUP_DEVICE program may be found in
+tools/testing/selftests/bpf/progs/dev_cgroup.c in the kernel source tree.
RDMA
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 91ba391f9b32..43dc35fe5bc0 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -1266,7 +1266,7 @@
The VGA and EFI output is eventually overwritten by
the real console.
- The xen output can only be used by Xen PV guests.
+ The xen option can only be used in Xen domains.
The sclp output can only be used on s390.
diff --git a/Documentation/block/inline-encryption.rst b/Documentation/block/inline-encryption.rst
index 7f9b40d6b416..4d151fbe2058 100644
--- a/Documentation/block/inline-encryption.rst
+++ b/Documentation/block/inline-encryption.rst
@@ -1,5 +1,7 @@
.. SPDX-License-Identifier: GPL-2.0
+.. _inline_encryption:
+
=================
Inline Encryption
=================
@@ -7,230 +9,269 @@ Inline Encryption
Background
==========
-Inline encryption hardware sits logically between memory and the disk, and can
-en/decrypt data as it goes in/out of the disk. Inline encryption hardware has a
-fixed number of "keyslots" - slots into which encryption contexts (i.e. the
-encryption key, encryption algorithm, data unit size) can be programmed by the
-kernel at any time. Each request sent to the disk can be tagged with the index
-of a keyslot (and also a data unit number to act as an encryption tweak), and
-the inline encryption hardware will en/decrypt the data in the request with the
-encryption context programmed into that keyslot. This is very different from
-full disk encryption solutions like self encrypting drives/TCG OPAL/ATA
-Security standards, since with inline encryption, any block on disk could be
-encrypted with any encryption context the kernel chooses.
-
+Inline encryption hardware sits logically between memory and disk, and can
+en/decrypt data as it goes in/out of the disk. For each I/O request, software
+can control exactly how the inline encryption hardware will en/decrypt the data
+in terms of key, algorithm, data unit size (the granularity of en/decryption),
+and data unit number (a value that determines the initialization vector(s)).
+
+Some inline encryption hardware accepts all encryption parameters including raw
+keys directly in low-level I/O requests. However, most inline encryption
+hardware instead has a fixed number of "keyslots" and requires that the key,
+algorithm, and data unit size first be programmed into a keyslot. Each
+low-level I/O request then just contains a keyslot index and data unit number.
+
+Note that inline encryption hardware is very different from traditional crypto
+accelerators, which are supported through the kernel crypto API. Traditional
+crypto accelerators operate on memory regions, whereas inline encryption
+hardware operates on I/O requests. Thus, inline encryption hardware needs to be
+managed by the block layer, not the kernel crypto API.
+
+Inline encryption hardware is also very different from "self-encrypting drives",
+such as those based on the TCG Opal or ATA Security standards. Self-encrypting
+drives don't provide fine-grained control of encryption and provide no way to
+verify the correctness of the resulting ciphertext. Inline encryption hardware
+provides fine-grained control of encryption, including the choice of key and
+initialization vector for each sector, and can be tested for correctness.
Objective
=========
-We want to support inline encryption (IE) in the kernel.
-To allow for testing, we also want a crypto API fallback when actual
-IE hardware is absent. We also want IE to work with layered devices
-like dm and loopback (i.e. we want to be able to use the IE hardware
-of the underlying devices if present, or else fall back to crypto API
-en/decryption).
-
+We want to support inline encryption in the kernel. To make testing easier, we
+also want support for falling back to the kernel crypto API when actual inline
+encryption hardware is absent. We also want inline encryption to work with
+layered devices like device-mapper and loopback (i.e. we want to be able to use
+the inline encryption hardware of the underlying devices if present, or else
+fall back to crypto API en/decryption).
Constraints and notes
=====================
-- IE hardware has a limited number of "keyslots" that can be programmed
- with an encryption context (key, algorithm, data unit size, etc.) at any time.
- One can specify a keyslot in a data request made to the device, and the
- device will en/decrypt the data using the encryption context programmed into
- that specified keyslot. When possible, we want to make multiple requests with
- the same encryption context share the same keyslot.
-
-- We need a way for upper layers like filesystems to specify an encryption
- context to use for en/decrypting a struct bio, and a device driver (like UFS)
- needs to be able to use that encryption context when it processes the bio.
-
-- We need a way for device drivers to expose their inline encryption
- capabilities in a unified way to the upper layers.
-
-
-Design
-======
-
-We add a struct bio_crypt_ctx to struct bio that can
-represent an encryption context, because we need to be able to pass this
-encryption context from the upper layers (like the fs layer) to the
-device driver to act upon.
-
-While IE hardware works on the notion of keyslots, the FS layer has no
-knowledge of keyslots - it simply wants to specify an encryption context to
-use while en/decrypting a bio.
-
-We introduce a keyslot manager (KSM) that handles the translation from
-encryption contexts specified by the FS to keyslots on the IE hardware.
-This KSM also serves as the way IE hardware can expose its capabilities to
-upper layers. The generic mode of operation is: each device driver that wants
-to support IE will construct a KSM and set it up in its struct request_queue.
-Upper layers that want to use IE on this device can then use this KSM in
-the device's struct request_queue to translate an encryption context into
-a keyslot. The presence of the KSM in the request queue shall be used to mean
-that the device supports IE.
-
-The KSM uses refcounts to track which keyslots are idle (either they have no
-encryption context programmed, or there are no in-flight struct bios
-referencing that keyslot). When a new encryption context needs a keyslot, it
-tries to find a keyslot that has already been programmed with the same
-encryption context, and if there is no such keyslot, it evicts the least
-recently used idle keyslot and programs the new encryption context into that
-one. If no idle keyslots are available, then the caller will sleep until there
-is at least one.
-
-
-blk-mq changes, other block layer changes and blk-crypto-fallback
-=================================================================
-
-We add a pointer to a ``bi_crypt_context`` and ``keyslot`` to
-struct request. These will be referred to as the ``crypto fields``
-for the request. This ``keyslot`` is the keyslot into which the
-``bi_crypt_context`` has been programmed in the KSM of the ``request_queue``
-that this request is being sent to.
-
-We introduce ``block/blk-crypto-fallback.c``, which allows upper layers to remain
-blissfully unaware of whether or not real inline encryption hardware is present
-underneath. When a bio is submitted with a target ``request_queue`` that doesn't
-support the encryption context specified with the bio, the block layer will
-en/decrypt the bio with the blk-crypto-fallback.
-
-If the bio is a ``WRITE`` bio, a bounce bio is allocated, and the data in the bio
-is encrypted stored in the bounce bio - blk-mq will then proceed to process the
-bounce bio as if it were not encrypted at all (except when blk-integrity is
-concerned). ``blk-crypto-fallback`` sets the bounce bio's ``bi_end_io`` to an
-internal function that cleans up the bounce bio and ends the original bio.
-
-If the bio is a ``READ`` bio, the bio's ``bi_end_io`` (and also ``bi_private``)
-is saved and overwritten by ``blk-crypto-fallback`` to
-``bio_crypto_fallback_decrypt_bio``. The bio's ``bi_crypt_context`` is also
-overwritten with ``NULL``, so that to the rest of the stack, the bio looks
-as if it was a regular bio that never had an encryption context specified.
-``bio_crypto_fallback_decrypt_bio`` will decrypt the bio, restore the original
-``bi_end_io`` (and also ``bi_private``) and end the bio again.
-
-Regardless of whether real inline encryption hardware is used or the
+- We need a way for upper layers (e.g. filesystems) to specify an encryption
+ context to use for en/decrypting a bio, and device drivers (e.g. UFSHCD) need
+ to be able to use that encryption context when they process the request.
+ Encryption contexts also introduce constraints on bio merging; the block layer
+ needs to be aware of these constraints.
+
+- Different inline encryption hardware has different supported algorithms,
+ supported data unit sizes, maximum data unit numbers, etc. We call these
+ properties the "crypto capabilities". We need a way for device drivers to
+ advertise crypto capabilities to upper layers in a generic way.
+
+- Inline encryption hardware usually (but not always) requires that keys be
+ programmed into keyslots before being used. Since programming keyslots may be
+ slow and there may not be very many keyslots, we shouldn't just program the
+ key for every I/O request, but rather keep track of which keys are in the
+ keyslots and reuse an already-programmed keyslot when possible.
+
+- Upper layers typically define a specific end-of-life for crypto keys, e.g.
+ when an encrypted directory is locked or when a crypto mapping is torn down.
+ At these times, keys are wiped from memory. We must provide a way for upper
+ layers to also evict keys from any keyslots they are present in.
+
+- When possible, device-mapper devices must be able to pass through the inline
+ encryption support of their underlying devices. However, it doesn't make
+ sense for device-mapper devices to have keyslots themselves.
+
+Basic design
+============
+
+We introduce ``struct blk_crypto_key`` to represent an inline encryption key and
+how it will be used. This includes the actual bytes of the key; the size of the
+key; the algorithm and data unit size the key will be used with; and the number
+of bytes needed to represent the maximum data unit number the key will be used
+with.
+
+We introduce ``struct bio_crypt_ctx`` to represent an encryption context. It
+contains a data unit number and a pointer to a blk_crypto_key. We add pointers
+to a bio_crypt_ctx to ``struct bio`` and ``struct request``; this allows users
+of the block layer (e.g. filesystems) to provide an encryption context when
+creating a bio and have it be passed down the stack for processing by the block
+layer and device drivers. Note that the encryption context doesn't explicitly
+say whether to encrypt or decrypt, as that is implicit from the direction of the
+bio; WRITE means encrypt, and READ means decrypt.
+
+We also introduce ``struct blk_crypto_profile`` to contain all generic inline
+encryption-related state for a particular inline encryption device. The
+blk_crypto_profile serves as the way that drivers for inline encryption hardware
+advertise their crypto capabilities and provide certain functions (e.g.,
+functions to program and evict keys) to upper layers. Each device driver that
+wants to support inline encryption will construct a blk_crypto_profile, then
+associate it with the disk's request_queue.
+
+The blk_crypto_profile also manages the hardware's keyslots, when applicable.
+This happens in the block layer, so that users of the block layer can just
+specify encryption contexts and don't need to know about keyslots at all, nor do
+device drivers need to care about most details of keyslot management.
+
+Specifically, for each keyslot, the block layer (via the blk_crypto_profile)
+keeps track of which blk_crypto_key that keyslot contains (if any), and how many
+in-flight I/O requests are using it. When the block layer creates a
+``struct request`` for a bio that has an encryption context, it grabs a keyslot
+that already contains the key if possible. Otherwise it waits for an idle
+keyslot (a keyslot that isn't in-use by any I/O), then programs the key into the
+least-recently-used idle keyslot using the function the device driver provided.
+In both cases, the resulting keyslot is stored in the ``crypt_keyslot`` field of
+the request, where it is then accessible to device drivers and is released after
+the request completes.
+
+``struct request`` also contains a pointer to the original bio_crypt_ctx.
+Requests can be built from multiple bios, and the block layer must take the
+encryption context into account when trying to merge bios and requests. For two
+bios/requests to be merged, they must have compatible encryption contexts: both
+unencrypted, or both encrypted with the same key and contiguous data unit
+numbers. Only the encryption context for the first bio in a request is
+retained, since the remaining bios have been verified to be merge-compatible
+with the first bio.
+
+To make it possible for inline encryption to work with request_queue based
+layered devices, when a request is cloned, its encryption context is cloned as
+well. When the cloned request is submitted, it is then processed as usual; this
+includes getting a keyslot from the clone's target device if needed.
+
+blk-crypto-fallback
+===================
+
+It is desirable for the inline encryption support of upper layers (e.g.
+filesystems) to be testable without real inline encryption hardware, and
+likewise for the block layer's keyslot management logic. It is also desirable
+to allow upper layers to just always use inline encryption rather than have to
+implement encryption in multiple ways.
+
+Therefore, we also introduce *blk-crypto-fallback*, which is an implementation
+of inline encryption using the kernel crypto API. blk-crypto-fallback is built
+into the block layer, so it works on any block device without any special setup.
+Essentially, when a bio with an encryption context is submitted to a
+request_queue that doesn't support that encryption context, the block layer will
+handle en/decryption of the bio using blk-crypto-fallback.
+
+For encryption, the data cannot be encrypted in-place, as callers usually rely
+on it being unmodified. Instead, blk-crypto-fallback allocates bounce pages,
+fills a new bio with those bounce pages, encrypts the data into those bounce
+pages, and submits that "bounce" bio. When the bounce bio completes,
+blk-crypto-fallback completes the original bio. If the original bio is too
+large, multiple bounce bios may be required; see the code for details.
+
+For decryption, blk-crypto-fallback "wraps" the bio's completion callback
+(``bi_complete``) and private data (``bi_private``) with its own, unsets the
+bio's encryption context, then submits the bio. If the read completes
+successfully, blk-crypto-fallback restores the bio's original completion
+callback and private data, then decrypts the bio's data in-place using the
+kernel crypto API. Decryption happens from a workqueue, as it may sleep.
+Afterwards, blk-crypto-fallback completes the bio.
+
+In both cases, the bios that blk-crypto-fallback submits no longer have an
+encryption context. Therefore, lower layers only see standard unencrypted I/O.
+
+blk-crypto-fallback also defines its own blk_crypto_profile and has its own
+"keyslots"; its keyslots contain ``struct crypto_skcipher`` objects. The reason
+for this is twofold. First, it allows the keyslot management logic to be tested
+without actual inline encryption hardware. Second, similar to actual inline
+encryption hardware, the crypto API doesn't accept keys directly in requests but
+rather requires that keys be set ahead of time, and setting keys can be
+expensive; moreover, allocating a crypto_skcipher can't happen on the I/O path
+at all due to the locks it takes. Therefore, the concept of keyslots still
+makes sense for blk-crypto-fallback.
+
+Note that regardless of whether real inline encryption hardware or
blk-crypto-fallback is used, the ciphertext written to disk (and hence the
-on-disk format of data) will be the same (assuming the hardware's implementation
-of the algorithm being used adheres to spec and functions correctly).
-
-If a ``request queue``'s inline encryption hardware claimed to support the
-encryption context specified with a bio, then it will not be handled by the
-``blk-crypto-fallback``. We will eventually reach a point in blk-mq when a
-struct request needs to be allocated for that bio. At that point,
-blk-mq tries to program the encryption context into the ``request_queue``'s
-keyslot_manager, and obtain a keyslot, which it stores in its newly added
-``keyslot`` field. This keyslot is released when the request is completed.
-
-When the first bio is added to a request, ``blk_crypto_rq_bio_prep`` is called,
-which sets the request's ``crypt_ctx`` to a copy of the bio's
-``bi_crypt_context``. bio_crypt_do_front_merge is called whenever a subsequent
-bio is merged to the front of the request, which updates the ``crypt_ctx`` of
-the request so that it matches the newly merged bio's ``bi_crypt_context``. In particular, the request keeps a copy of the ``bi_crypt_context`` of the first
-bio in its bio-list (blk-mq needs to be careful to maintain this invariant
-during bio and request merges).
-
-To make it possible for inline encryption to work with request queue based
-layered devices, when a request is cloned, its ``crypto fields`` are cloned as
-well. When the cloned request is submitted, blk-mq programs the
-``bi_crypt_context`` of the request into the clone's request_queue's keyslot
-manager, and stores the returned keyslot in the clone's ``keyslot``.
+on-disk format of data) will be the same (assuming that both the inline
+encryption hardware's implementation and the kernel crypto API's implementation
+of the algorithm being used adhere to spec and function correctly).
+blk-crypto-fallback is optional and is controlled by the
+``CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK`` kernel configuration option.
API presented to users of the block layer
=========================================
-``struct blk_crypto_key`` represents a crypto key (the raw key, size of the
-key, the crypto algorithm to use, the data unit size to use, and the number of
-bytes required to represent data unit numbers that will be specified with the
-``bi_crypt_context``).
-
-``blk_crypto_init_key`` allows upper layers to initialize such a
-``blk_crypto_key``.
-
-``bio_crypt_set_ctx`` should be called on any bio that a user of
-the block layer wants en/decrypted via inline encryption (or the
-blk-crypto-fallback, if hardware support isn't available for the desired
-crypto configuration). This function takes the ``blk_crypto_key`` and the
-data unit number (DUN) to use when en/decrypting the bio.
-
-``blk_crypto_config_supported`` allows upper layers to query whether or not the
-an encryption context passed to request queue can be handled by blk-crypto
-(either by real inline encryption hardware, or by the blk-crypto-fallback).
-This is useful e.g. when blk-crypto-fallback is disabled, and the upper layer
-wants to use an algorithm that may not supported by hardware - this function
-lets the upper layer know ahead of time that the algorithm isn't supported,
-and the upper layer can fallback to something else if appropriate.
-
-``blk_crypto_start_using_key`` - Upper layers must call this function on
-``blk_crypto_key`` and a ``request_queue`` before using the key with any bio
-headed for that ``request_queue``. This function ensures that either the
-hardware supports the key's crypto settings, or the crypto API fallback has
-transforms for the needed mode allocated and ready to go. Note that this
-function may allocate an ``skcipher``, and must not be called from the data
-path, since allocating ``skciphers`` from the data path can deadlock.
-
-``blk_crypto_evict_key`` *must* be called by upper layers before a
-``blk_crypto_key`` is freed. Further, it *must* only be called only once
-there are no more in-flight requests that use that ``blk_crypto_key``.
-``blk_crypto_evict_key`` will ensure that a key is removed from any keyslots in
-inline encryption hardware that the key might have been programmed into (or the blk-crypto-fallback).
+``blk_crypto_config_supported()`` allows users to check ahead of time whether
+inline encryption with particular crypto settings will work on a particular
+request_queue -- either via hardware or via blk-crypto-fallback. This function
+takes in a ``struct blk_crypto_config`` which is like blk_crypto_key, but omits
+the actual bytes of the key and instead just contains the algorithm, data unit
+size, etc. This function can be useful if blk-crypto-fallback is disabled.
+
+``blk_crypto_init_key()`` allows users to initialize a blk_crypto_key.
+
+Users must call ``blk_crypto_start_using_key()`` before actually starting to use
+a blk_crypto_key on a request_queue (even if ``blk_crypto_config_supported()``
+was called earlier). This is needed to initialize blk-crypto-fallback if it
+will be needed. This must not be called from the data path, as this may have to
+allocate resources, which may deadlock in that case.
+
+Next, to attach an encryption context to a bio, users should call
+``bio_crypt_set_ctx()``. This function allocates a bio_crypt_ctx and attaches
+it to a bio, given the blk_crypto_key and the data unit number that will be used
+for en/decryption. Users don't need to worry about freeing the bio_crypt_ctx
+later, as that happens automatically when the bio is freed or reset.
+
+Finally, when done using inline encryption with a blk_crypto_key on a
+request_queue, users must call ``blk_crypto_evict_key()``. This ensures that
+the key is evicted from all keyslots it may be programmed into and unlinked from
+any kernel data structures it may be linked into.
+
+In summary, for users of the block layer, the lifecycle of a blk_crypto_key is
+as follows:
+
+1. ``blk_crypto_config_supported()`` (optional)
+2. ``blk_crypto_init_key()``
+3. ``blk_crypto_start_using_key()``
+4. ``bio_crypt_set_ctx()`` (potentially many times)
+5. ``blk_crypto_evict_key()`` (after all I/O has completed)
+6. Zeroize the blk_crypto_key (this has no dedicated function)
+
+If a blk_crypto_key is being used on multiple request_queues, then
+``blk_crypto_config_supported()`` (if used), ``blk_crypto_start_using_key()``,
+and ``blk_crypto_evict_key()`` must be called on each request_queue.
API presented to device drivers
===============================
-A :c:type:``struct blk_keyslot_manager`` should be set up by device drivers in
-the ``request_queue`` of the device. The device driver needs to call
-``blk_ksm_init`` (or its resource-managed variant ``devm_blk_ksm_init``) on the
-``blk_keyslot_manager``, while specifying the number of keyslots supported by
-the hardware.
-
-The device driver also needs to tell the KSM how to actually manipulate the
-IE hardware in the device to do things like programming the crypto key into
-the IE hardware into a particular keyslot. All this is achieved through the
-struct blk_ksm_ll_ops field in the KSM that the device driver
-must fill up after initing the ``blk_keyslot_manager``.
-
-The KSM also handles runtime power management for the device when applicable
-(e.g. when it wants to program a crypto key into the IE hardware, the device
-must be runtime powered on) - so the device driver must also set the ``dev``
-field in the ksm to point to the `struct device` for the KSM to use for runtime
-power management.
-
-``blk_ksm_reprogram_all_keys`` can be called by device drivers if the device
-needs each and every of its keyslots to be reprogrammed with the key it
-"should have" at the point in time when the function is called. This is useful
-e.g. if a device loses all its keys on runtime power down/up.
-
-If the driver used ``blk_ksm_init`` instead of ``devm_blk_ksm_init``, then
-``blk_ksm_destroy`` should be called to free up all resources used by a
-``blk_keyslot_manager`` once it is no longer needed.
+A device driver that wants to support inline encryption must set up a
+blk_crypto_profile in the request_queue of its device. To do this, it first
+must call ``blk_crypto_profile_init()`` (or its resource-managed variant
+``devm_blk_crypto_profile_init()``), providing the number of keyslots.
+
+Next, it must advertise its crypto capabilities by setting fields in the
+blk_crypto_profile, e.g. ``modes_supported`` and ``max_dun_bytes_supported``.
+
+It then must set function pointers in the ``ll_ops`` field of the
+blk_crypto_profile to tell upper layers how to control the inline encryption
+hardware, e.g. how to program and evict keyslots. Most drivers will need to
+implement ``keyslot_program`` and ``keyslot_evict``. For details, see the
+comments for ``struct blk_crypto_ll_ops``.
+
+Once the driver registers a blk_crypto_profile with a request_queue, I/O
+requests the driver receives via that queue may have an encryption context. All
+encryption contexts will be compatible with the crypto capabilities declared in
+the blk_crypto_profile, so drivers don't need to worry about handling
+unsupported requests. Also, if a nonzero number of keyslots was declared in the
+blk_crypto_profile, then all I/O requests that have an encryption context will
+also have a keyslot which was already programmed with the appropriate key.
+
+If the driver implements runtime suspend and its blk_crypto_ll_ops don't work
+while the device is runtime-suspended, then the driver must also set the ``dev``
+field of the blk_crypto_profile to point to the ``struct device`` that will be
+resumed before any of the low-level operations are called.
+
+If there are situations where the inline encryption hardware loses the contents
+of its keyslots, e.g. device resets, the driver must handle reprogramming the
+keyslots. To do this, the driver may call ``blk_crypto_reprogram_all_keys()``.
+
+Finally, if the driver used ``blk_crypto_profile_init()`` instead of
+``devm_blk_crypto_profile_init()``, then it is responsible for calling
+``blk_crypto_profile_destroy()`` when the crypto profile is no longer needed.
Layered Devices
===============
-Request queue based layered devices like dm-rq that wish to support IE need to
-create their own keyslot manager for their request queue, and expose whatever
-functionality they choose. When a layered device wants to pass a clone of that
-request to another ``request_queue``, blk-crypto will initialize and prepare the
-clone as necessary - see ``blk_crypto_insert_cloned_request`` in
-``blk-crypto.c``.
-
-
-Future Optimizations for layered devices
-========================================
-
-Creating a keyslot manager for a layered device uses up memory for each
-keyslot, and in general, a layered device merely passes the request on to a
-"child" device, so the keyslots in the layered device itself are completely
-unused, and don't need any refcounting or keyslot programming. We can instead
-define a new type of KSM; the "passthrough KSM", that layered devices can use
-to advertise an unlimited number of keyslots, and support for any encryption
-algorithms they choose, while not actually using any memory for each keyslot.
-Another use case for the "passthrough KSM" is for IE devices that do not have a
-limited number of keyslots.
-
+Request queue based layered devices like dm-rq that wish to support inline
+encryption need to create their own blk_crypto_profile for their request_queue,
+and expose whatever functionality they choose. When a layered device wants to
+pass a clone of that request to another request_queue, blk-crypto will
+initialize and prepare the clone as necessary; see
+``blk_crypto_insert_cloned_request()``.
Interaction between inline encryption and blk integrity
=======================================================
@@ -257,7 +298,7 @@ Because there isn't any real hardware yet, it seems prudent to assume that
hardware implementations might not implement both features together correctly,
and disallow the combination for now. Whenever a device supports integrity, the
kernel will pretend that the device does not support hardware inline encryption
-(by essentially setting the keyslot manager in the request_queue of the device
-to NULL). When the crypto API fallback is enabled, this means that all bios with
-and encryption context will use the fallback, and IO will complete as usual.
-When the fallback is disabled, a bio with an encryption context will be failed.
+(by setting the blk_crypto_profile in the request_queue of the device to NULL).
+When the crypto API fallback is enabled, this means that all bios with and
+encryption context will use the fallback, and IO will complete as usual. When
+the fallback is disabled, a bio with an encryption context will be failed.
diff --git a/Documentation/block/queue-sysfs.rst b/Documentation/block/queue-sysfs.rst
index 4dc7f0d499a8..e8c74306f70a 100644
--- a/Documentation/block/queue-sysfs.rst
+++ b/Documentation/block/queue-sysfs.rst
@@ -4,7 +4,7 @@ Queue sysfs files
This text file will detail the queue files that are located in the sysfs tree
for each block device. Note that stacked devices typically do not export
-any settings, since their queue merely functions are a remapping target.
+any settings, since their queue merely functions as a remapping target.
These files are the ones found in the /sys/block/xxx/queue/ directory.
Files denoted with a RO postfix are readonly and the RW postfix means
@@ -286,4 +286,35 @@ sequential zones of zoned block devices (devices with a zoned attributed
that reports "host-managed" or "host-aware"). This value is always 0 for
regular block devices.
+independent_access_ranges (RO)
+------------------------------
+
+The presence of this sub-directory of the /sys/block/xxx/queue/ directory
+indicates that the device is capable of executing requests targeting
+different sector ranges in parallel. For instance, single LUN multi-actuator
+hard-disks will have an independent_access_ranges directory if the device
+correctly advertizes the sector ranges of its actuators.
+
+The independent_access_ranges directory contains one directory per access
+range, with each range described using the sector (RO) attribute file to
+indicate the first sector of the range and the nr_sectors (RO) attribute file
+to indicate the total number of sectors in the range starting from the first
+sector of the range. For example, a dual-actuator hard-disk will have the
+following independent_access_ranges entries.::
+
+ $ tree /sys/block/<device>/queue/independent_access_ranges/
+ /sys/block/<device>/queue/independent_access_ranges/
+ |-- 0
+ | |-- nr_sectors
+ | `-- sector
+ `-- 1
+ |-- nr_sectors
+ `-- sector
+
+The sector and nr_sectors attributes use 512B sector unit, regardless of
+the actual block size of the device. Independent access ranges do not
+overlap and include all sectors within the device capacity. The access
+ranges are numbered in increasing order of the range start sector,
+that is, the sector attribute of range 0 always has the value 0.
+
Jens Axboe <jens.axboe@oracle.com>, February 2009
diff --git a/Documentation/cdrom/cdrom-standard.rst b/Documentation/cdrom/cdrom-standard.rst
index 5845960ca382..52ea7b6b2fe8 100644
--- a/Documentation/cdrom/cdrom-standard.rst
+++ b/Documentation/cdrom/cdrom-standard.rst
@@ -907,6 +907,17 @@ commands can be identified by the underscores in their names.
specifies the slot for which the information is given. The special
value *CDSL_CURRENT* requests that information about the currently
selected slot be returned.
+`CDROM_TIMED_MEDIA_CHANGE`
+ Checks whether the disc has been changed since a user supplied time
+ and returns the time of the last disc change.
+
+ *arg* is a pointer to a *cdrom_timed_media_change_info* struct.
+ *arg->last_media_change* may be set by calling code to signal
+ the timestamp of the last known media change (by the caller).
+ Upon successful return, this ioctl call will set
+ *arg->last_media_change* to the latest media change timestamp (in ms)
+ known by the kernel/driver and set *arg->has_changed* to 1 if
+ that timestamp is more recent than the timestamp set by the caller.
`CDROM_DRIVE_STATUS`
Returns the status of the drive by a call to
*drive_status()*. Return values are defined in cdrom_drive_status_.
diff --git a/Documentation/core-api/cachetlb.rst b/Documentation/core-api/cachetlb.rst
index 8aed9103e48a..5c0552e78c58 100644
--- a/Documentation/core-api/cachetlb.rst
+++ b/Documentation/core-api/cachetlb.rst
@@ -326,6 +326,12 @@ maps this page at its virtual address.
dirty. Again, see sparc64 for examples of how
to deal with this.
+ ``void flush_dcache_folio(struct folio *folio)``
+ This function is called under the same circumstances as
+ flush_dcache_page(). It allows the architecture to
+ optimise for flushing the entire folio of pages instead
+ of flushing one page at a time.
+
``void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr, void *dst, void *src, int len)``
``void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
diff --git a/Documentation/core-api/mm-api.rst b/Documentation/core-api/mm-api.rst
index a42f9baddfbf..395835f9289f 100644
--- a/Documentation/core-api/mm-api.rst
+++ b/Documentation/core-api/mm-api.rst
@@ -95,6 +95,11 @@ More Memory Management Functions
.. kernel-doc:: mm/mempolicy.c
.. kernel-doc:: include/linux/mm_types.h
:internal:
+.. kernel-doc:: include/linux/mm_inline.h
+.. kernel-doc:: include/linux/page-flags.h
.. kernel-doc:: include/linux/mm.h
:internal:
+.. kernel-doc:: include/linux/page_ref.h
.. kernel-doc:: include/linux/mmzone.h
+.. kernel-doc:: mm/util.c
+ :functions: folio_mapping
diff --git a/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi83.yaml b/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi83.yaml
index 07b20383cbca..b446d0f0f1b4 100644
--- a/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi83.yaml
+++ b/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi83.yaml
@@ -50,7 +50,6 @@ properties:
data-lanes:
description: array of physical DSI data lane indexes.
minItems: 1
- maxItems: 4
items:
- const: 1
- const: 2
@@ -71,7 +70,6 @@ properties:
data-lanes:
description: array of physical DSI data lane indexes.
minItems: 1
- maxItems: 4
items:
- const: 1
- const: 2
diff --git a/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi86.yaml b/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi86.yaml
index 1c2daf7c24cc..911564468c5e 100644
--- a/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi86.yaml
+++ b/Documentation/devicetree/bindings/display/bridge/ti,sn65dsi86.yaml
@@ -18,7 +18,7 @@ properties:
const: ti,sn65dsi86
reg:
- const: 0x2d
+ enum: [ 0x2c, 0x2d ]
enable-gpios:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/display/panel/ilitek,ili9341.yaml b/Documentation/devicetree/bindings/display/panel/ilitek,ili9341.yaml
index 2ed010f91e2d..20ce88ab4b3a 100644
--- a/Documentation/devicetree/bindings/display/panel/ilitek,ili9341.yaml
+++ b/Documentation/devicetree/bindings/display/panel/ilitek,ili9341.yaml
@@ -22,7 +22,7 @@ properties:
items:
- enum:
# ili9341 240*320 Color on stm32f429-disco board
- - st,sf-tc240t-9370-t
+ - st,sf-tc240t-9370-t
- const: ilitek,ili9341
reg: true
diff --git a/Documentation/devicetree/bindings/media/i2c/ovti,ov5647.yaml b/Documentation/devicetree/bindings/media/i2c/ovti,ov5647.yaml
index 3e5d82df90a2..a2abed06a099 100644
--- a/Documentation/devicetree/bindings/media/i2c/ovti,ov5647.yaml
+++ b/Documentation/devicetree/bindings/media/i2c/ovti,ov5647.yaml
@@ -31,7 +31,7 @@ properties:
maxItems: 1
port:
- $ref: /schemas/graph.yaml#/properties/port
+ $ref: /schemas/graph.yaml#/$defs/port-base
additionalProperties: false
properties:
diff --git a/Documentation/devicetree/bindings/media/i2c/ovti,ov9282.yaml b/Documentation/devicetree/bindings/media/i2c/ovti,ov9282.yaml
index ad42992c6da3..bf115ab9d926 100644
--- a/Documentation/devicetree/bindings/media/i2c/ovti,ov9282.yaml
+++ b/Documentation/devicetree/bindings/media/i2c/ovti,ov9282.yaml
@@ -38,7 +38,7 @@ properties:
port:
additionalProperties: false
- $ref: /schemas/graph.yaml#/properties/port
+ $ref: /schemas/graph.yaml#/$defs/port-base
properties:
endpoint:
diff --git a/Documentation/devicetree/bindings/media/i2c/sony,imx335.yaml b/Documentation/devicetree/bindings/media/i2c/sony,imx335.yaml
index 881f79532501..cf2ca2702cc9 100644
--- a/Documentation/devicetree/bindings/media/i2c/sony,imx335.yaml
+++ b/Documentation/devicetree/bindings/media/i2c/sony,imx335.yaml
@@ -38,7 +38,7 @@ properties:
port:
additionalProperties: false
- $ref: /schemas/graph.yaml#/properties/port
+ $ref: /schemas/graph.yaml#/$defs/port-base
properties:
endpoint:
diff --git a/Documentation/devicetree/bindings/media/i2c/sony,imx412.yaml b/Documentation/devicetree/bindings/media/i2c/sony,imx412.yaml
index 1edeabf39e6a..afcf70947f7e 100644
--- a/Documentation/devicetree/bindings/media/i2c/sony,imx412.yaml
+++ b/Documentation/devicetree/bindings/media/i2c/sony,imx412.yaml
@@ -38,7 +38,7 @@ properties:
port:
additionalProperties: false
- $ref: /schemas/graph.yaml#/properties/port
+ $ref: /schemas/graph.yaml#/$defs/port-base
properties:
endpoint:
diff --git a/Documentation/devicetree/bindings/mfd/brcm,cru.yaml b/Documentation/devicetree/bindings/mfd/brcm,cru.yaml
index fc1317ab3226..28ac60acf4ac 100644
--- a/Documentation/devicetree/bindings/mfd/brcm,cru.yaml
+++ b/Documentation/devicetree/bindings/mfd/brcm,cru.yaml
@@ -32,13 +32,13 @@ properties:
"#size-cells":
const: 1
- pinctrl:
- $ref: ../pinctrl/brcm,ns-pinmux.yaml
-
patternProperties:
'^clock-controller@[a-f0-9]+$':
$ref: ../clock/brcm,iproc-clocks.yaml
+ '^pin-controller@[a-f0-9]+$':
+ $ref: ../pinctrl/brcm,ns-pinmux.yaml
+
'^thermal@[a-f0-9]+$':
$ref: ../thermal/brcm,ns-thermal.yaml
@@ -73,9 +73,10 @@ examples:
"iprocfast", "sata1", "sata2";
};
- pinctrl {
+ pin-controller@1c0 {
compatible = "brcm,bcm4708-pinmux";
- offset = <0x1c0>;
+ reg = <0x1c0 0x24>;
+ reg-names = "cru_gpio_control";
};
thermal@2c0 {
diff --git a/Documentation/devicetree/bindings/mmc/snps,dwcmshc-sdhci.yaml b/Documentation/devicetree/bindings/mmc/snps,dwcmshc-sdhci.yaml
index e6c9a2f77cc7..f300ced4cdf3 100644
--- a/Documentation/devicetree/bindings/mmc/snps,dwcmshc-sdhci.yaml
+++ b/Documentation/devicetree/bindings/mmc/snps,dwcmshc-sdhci.yaml
@@ -20,9 +20,7 @@ properties:
- snps,dwcmshc-sdhci
reg:
- minItems: 1
- items:
- - description: Offset and length of the register set for the device
+ maxItems: 1
interrupts:
maxItems: 1
diff --git a/Documentation/devicetree/bindings/net/dsa/marvell.txt b/Documentation/devicetree/bindings/net/dsa/marvell.txt
index 30c11fea491b..2363b412410c 100644
--- a/Documentation/devicetree/bindings/net/dsa/marvell.txt
+++ b/Documentation/devicetree/bindings/net/dsa/marvell.txt
@@ -83,7 +83,7 @@ Example:
#interrupt-cells = <2>;
switch0: switch@0 {
- compatible = "marvell,mv88e6390";
+ compatible = "marvell,mv88e6190";
reg = <0>;
reset-gpios = <&gpio5 1 GPIO_ACTIVE_LOW>;
diff --git a/Documentation/devicetree/bindings/net/nxp,dwmac-imx.yaml b/Documentation/devicetree/bindings/net/nxp,dwmac-imx.yaml
index 5629b2e4ccf8..ee4afe361fac 100644
--- a/Documentation/devicetree/bindings/net/nxp,dwmac-imx.yaml
+++ b/Documentation/devicetree/bindings/net/nxp,dwmac-imx.yaml
@@ -34,7 +34,6 @@ properties:
clocks:
minItems: 3
- maxItems: 5
items:
- description: MAC host clock
- description: MAC apb clock
diff --git a/Documentation/devicetree/bindings/net/snps,dwmac.yaml b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
index 42689b7d03a2..c115c95ee584 100644
--- a/Documentation/devicetree/bindings/net/snps,dwmac.yaml
+++ b/Documentation/devicetree/bindings/net/snps,dwmac.yaml
@@ -21,6 +21,7 @@ select:
contains:
enum:
- snps,dwmac
+ - snps,dwmac-3.40a
- snps,dwmac-3.50a
- snps,dwmac-3.610
- snps,dwmac-3.70a
@@ -76,6 +77,7 @@ properties:
- rockchip,rk3399-gmac
- rockchip,rv1108-gmac
- snps,dwmac
+ - snps,dwmac-3.40a
- snps,dwmac-3.50a
- snps,dwmac-3.610
- snps,dwmac-3.70a
diff --git a/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.yaml b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.yaml
index 2911e565b260..acea1cd444fd 100644
--- a/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.yaml
+++ b/Documentation/devicetree/bindings/pci/fsl,imx6q-pcie.yaml
@@ -41,7 +41,6 @@ properties:
- description: builtin MSI controller.
interrupt-names:
- minItems: 1
items:
- const: msi
diff --git a/Documentation/devicetree/bindings/pinctrl/brcm,ns-pinmux.yaml b/Documentation/devicetree/bindings/pinctrl/brcm,ns-pinmux.yaml
index 470aff599c27..fc39e3e9f71c 100644
--- a/Documentation/devicetree/bindings/pinctrl/brcm,ns-pinmux.yaml
+++ b/Documentation/devicetree/bindings/pinctrl/brcm,ns-pinmux.yaml
@@ -17,9 +17,6 @@ description:
A list of pins varies across chipsets so few bindings are available.
- Node of the pinmux must be nested in the CRU (Central Resource Unit) "syscon"
- node.
-
properties:
compatible:
enum:
@@ -27,10 +24,11 @@ properties:
- brcm,bcm4709-pinmux
- brcm,bcm53012-pinmux
- offset:
- description: offset of pin registers in the CRU block
+ reg:
maxItems: 1
- $ref: /schemas/types.yaml#/definitions/uint32-array
+
+ reg-names:
+ const: cru_gpio_control
patternProperties:
'-pins$':
@@ -72,23 +70,20 @@ allOf:
uart1_grp ]
required:
- - offset
+ - reg
+ - reg-names
additionalProperties: false
examples:
- |
- cru@1800c100 {
- compatible = "syscon", "simple-mfd";
- reg = <0x1800c100 0x1a4>;
-
- pinctrl {
- compatible = "brcm,bcm4708-pinmux";
- offset = <0xc0>;
-
- spi-pins {
- function = "spi";
- groups = "spi_grp";
- };
+ pin-controller@1800c1c0 {
+ compatible = "brcm,bcm4708-pinmux";
+ reg = <0x1800c1c0 0x24>;
+ reg-names = "cru_gpio_control";
+
+ spi-pins {
+ function = "spi";
+ groups = "spi_grp";
};
};
diff --git a/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.yaml b/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.yaml
index ca91201a9926..d7e08b03e204 100644
--- a/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.yaml
+++ b/Documentation/devicetree/bindings/spi/snps,dw-apb-ssi.yaml
@@ -171,7 +171,7 @@ examples:
cs-gpios = <&gpio0 13 0>,
<&gpio0 14 0>;
rx-sample-delay-ns = <3>;
- spi-flash@1 {
+ flash@1 {
compatible = "spi-nand";
reg = <1>;
rx-sample-delay-ns = <7>;
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 0eb799d9d05a..4d5d50dca65c 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -77,11 +77,11 @@ Side-channel attacks
fscrypt is only resistant to side-channel attacks, such as timing or
electromagnetic attacks, to the extent that the underlying Linux
-Cryptographic API algorithms are. If a vulnerable algorithm is used,
-such as a table-based implementation of AES, it may be possible for an
-attacker to mount a side channel attack against the online system.
-Side channel attacks may also be mounted against applications
-consuming decrypted data.
+Cryptographic API algorithms or inline encryption hardware are. If a
+vulnerable algorithm is used, such as a table-based implementation of
+AES, it may be possible for an attacker to mount a side channel attack
+against the online system. Side channel attacks may also be mounted
+against applications consuming decrypted data.
Unauthorized file access
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -176,11 +176,11 @@ Master Keys
Each encrypted directory tree is protected by a *master key*. Master
keys can be up to 64 bytes long, and must be at least as long as the
-greater of the key length needed by the contents and filenames
-encryption modes being used. For example, if AES-256-XTS is used for
-contents encryption, the master key must be 64 bytes (512 bits). Note
-that the XTS mode is defined to require a key twice as long as that
-required by the underlying block cipher.
+greater of the security strength of the contents and filenames
+encryption modes being used. For example, if any AES-256 mode is
+used, the master key must be at least 256 bits, i.e. 32 bytes. A
+stricter requirement applies if the key is used by a v1 encryption
+policy and AES-256-XTS is used; such keys must be 64 bytes.
To "unlock" an encrypted directory tree, userspace must provide the
appropriate master key. There can be any number of master keys, each
@@ -1135,6 +1135,50 @@ where applications may later write sensitive data. It is recommended
that systems implementing a form of "verified boot" take advantage of
this by validating all top-level encryption policies prior to access.
+Inline encryption support
+=========================
+
+By default, fscrypt uses the kernel crypto API for all cryptographic
+operations (other than HKDF, which fscrypt partially implements
+itself). The kernel crypto API supports hardware crypto accelerators,
+but only ones that work in the traditional way where all inputs and
+outputs (e.g. plaintexts and ciphertexts) are in memory. fscrypt can
+take advantage of such hardware, but the traditional acceleration
+model isn't particularly efficient and fscrypt hasn't been optimized
+for it.
+
+Instead, many newer systems (especially mobile SoCs) have *inline
+encryption hardware* that can encrypt/decrypt data while it is on its
+way to/from the storage device. Linux supports inline encryption
+through a set of extensions to the block layer called *blk-crypto*.
+blk-crypto allows filesystems to attach encryption contexts to bios
+(I/O requests) to specify how the data will be encrypted or decrypted
+in-line. For more information about blk-crypto, see
+:ref:`Documentation/block/inline-encryption.rst <inline_encryption>`.
+
+On supported filesystems (currently ext4 and f2fs), fscrypt can use
+blk-crypto instead of the kernel crypto API to encrypt/decrypt file
+contents. To enable this, set CONFIG_FS_ENCRYPTION_INLINE_CRYPT=y in
+the kernel configuration, and specify the "inlinecrypt" mount option
+when mounting the filesystem.
+
+Note that the "inlinecrypt" mount option just specifies to use inline
+encryption when possible; it doesn't force its use. fscrypt will
+still fall back to using the kernel crypto API on files where the
+inline encryption hardware doesn't have the needed crypto capabilities
+(e.g. support for the needed encryption algorithm and data unit size)
+and where blk-crypto-fallback is unusable. (For blk-crypto-fallback
+to be usable, it must be enabled in the kernel configuration with
+CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK=y.)
+
+Currently fscrypt always uses the filesystem block size (which is
+usually 4096 bytes) as the data unit size. Therefore, it can only use
+inline encryption hardware that supports that data unit size.
+
+Inline encryption doesn't affect the ciphertext or other aspects of
+the on-disk format, so users may freely switch back and forth between
+using "inlinecrypt" and not using "inlinecrypt".
+
Implementation details
======================
@@ -1184,6 +1228,13 @@ keys`_ and `DIRECT_KEY policies`_.
Data path changes
-----------------
+When inline encryption is used, filesystems just need to associate
+encryption contexts with bios to specify how the block layer or the
+inline encryption hardware will encrypt/decrypt the file contents.
+
+When inline encryption isn't used, filesystems must encrypt/decrypt
+the file contents themselves, as described below:
+
For the read path (->readpage()) of regular files, filesystems can
read the ciphertext into the page cache and decrypt it in-place. The
page lock must be held until decryption has finished, to prevent the
@@ -1197,18 +1248,6 @@ buffer. Some filesystems, such as UBIFS, already use temporary
buffers regardless of encryption. Other filesystems, such as ext4 and
F2FS, have to allocate bounce pages specially for encryption.
-Fscrypt is also able to use inline encryption hardware instead of the
-kernel crypto API for en/decryption of file contents. When possible,
-and if directed to do so (by specifying the 'inlinecrypt' mount option
-for an ext4/F2FS filesystem), it adds encryption contexts to bios and
-uses blk-crypto to perform the en/decryption instead of making use of
-the above read/write path changes. Of course, even if directed to
-make use of inline encryption, fscrypt will only be able to do so if
-either hardware inline encryption support is available for the
-selected encryption algorithm or CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK
-is selected. If neither is the case, fscrypt will fall back to using
-the above mentioned read/write path changes for en/decryption.
-
Filename hashing and encoding
-----------------------------
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index c0ad233963ae..bee63d42e5ec 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -29,7 +29,6 @@ algorithms work.
fiemap
files
locks
- mandatory-locking
mount_api
quota
seq_file
diff --git a/Documentation/filesystems/locks.rst b/Documentation/filesystems/locks.rst
index c5ae858b1aac..26429317dbbc 100644
--- a/Documentation/filesystems/locks.rst
+++ b/Documentation/filesystems/locks.rst
@@ -57,16 +57,9 @@ fcntl(), with all the problems that implies.
1.3 Mandatory Locking As A Mount Option
---------------------------------------
-Mandatory locking, as described in
-'Documentation/filesystems/mandatory-locking.rst' was prior to this release a
-general configuration option that was valid for all mounted filesystems. This
-had a number of inherent dangers, not the least of which was the ability to
-freeze an NFS server by asking it to read a file for which a mandatory lock
-existed.
-
-From this release of the kernel, mandatory locking can be turned on and off
-on a per-filesystem basis, using the mount options 'mand' and 'nomand'.
-The default is to disallow mandatory locking. The intention is that
-mandatory locking only be enabled on a local filesystem as the specific need
-arises.
+Mandatory locking was prior to this release a general configuration option
+that was valid for all mounted filesystems. This had a number of inherent
+dangers, not the least of which was the ability to freeze an NFS server by
+asking it to read a file for which a mandatory lock existed.
+Such option was dropped in Kernel v5.14.
diff --git a/Documentation/filesystems/netfs_library.rst b/Documentation/filesystems/netfs_library.rst
index 57a641847818..bb68d39f03b7 100644
--- a/Documentation/filesystems/netfs_library.rst
+++ b/Documentation/filesystems/netfs_library.rst
@@ -524,3 +524,5 @@ Note that these methods are passed a pointer to the cache resource structure,
not the read request structure as they could be used in other situations where
there isn't a read request structure as well, such as writing dirty data to the
cache.
+
+.. kernel-doc:: include/linux/netfs.h
diff --git a/Documentation/filesystems/ntfs3.rst b/Documentation/filesystems/ntfs3.rst
index ffe9ea0c1499..d67ccd22c63b 100644
--- a/Documentation/filesystems/ntfs3.rst
+++ b/Documentation/filesystems/ntfs3.rst
@@ -4,103 +4,112 @@
NTFS3
=====
-
Summary and Features
====================
-NTFS3 is fully functional NTFS Read-Write driver. The driver works with
-NTFS versions up to 3.1, normal/compressed/sparse files
-and journal replaying. File system type to use on mount is 'ntfs3'.
+NTFS3 is fully functional NTFS Read-Write driver. The driver works with NTFS
+versions up to 3.1. File system type to use on mount is *ntfs3*.
- This driver implements NTFS read/write support for normal, sparse and
compressed files.
-- Supports native journal replaying;
-- Supports extended attributes
- Predefined extended attributes:
- - 'system.ntfs_security' gets/sets security
- descriptor (SECURITY_DESCRIPTOR_RELATIVE)
- - 'system.ntfs_attrib' gets/sets ntfs file/dir attributes.
- Note: applied to empty files, this allows to switch type between
- sparse(0x200), compressed(0x800) and normal;
+- Supports native journal replaying.
- Supports NFS export of mounted NTFS volumes.
+- Supports extended attributes. Predefined extended attributes:
+
+ - *system.ntfs_security* gets/sets security
+
+ Descriptor: SECURITY_DESCRIPTOR_RELATIVE
+
+ - *system.ntfs_attrib* gets/sets ntfs file/dir attributes.
+
+ Note: Applied to empty files, this allows to switch type between
+ sparse(0x200), compressed(0x800) and normal.
Mount Options
=============
The list below describes mount options supported by NTFS3 driver in addition to
-generic ones.
+generic ones. You can use every mount option with **no** option. If it is in
+this table marked with no it means default is without **no**.
-===============================================================================
+.. flat-table::
+ :widths: 1 5
+ :fill-cells:
-nls=name This option informs the driver how to interpret path
- strings and translate them to Unicode and back. If
- this option is not set, the default codepage will be
- used (CONFIG_NLS_DEFAULT).
- Examples:
- 'nls=utf8'
+ * - iocharset=name
+ - This option informs the driver how to interpret path strings and
+ translate them to Unicode and back. If this option is not set, the
+ default codepage will be used (CONFIG_NLS_DEFAULT).
-uid=
-gid=
-umask= Controls the default permissions for files/directories created
- after the NTFS volume is mounted.
+ Example: iocharset=utf8
-fmask=
-dmask= Instead of specifying umask which applies both to
- files and directories, fmask applies only to files and
- dmask only to directories.
+ * - uid=
+ - :rspan:`1`
+ * - gid=
-nohidden Files with the Windows-specific HIDDEN (FILE_ATTRIBUTE_HIDDEN)
- attribute will not be shown under Linux.
+ * - umask=
+ - Controls the default permissions for files/directories created after
+ the NTFS volume is mounted.
-sys_immutable Files with the Windows-specific SYSTEM
- (FILE_ATTRIBUTE_SYSTEM) attribute will be marked as system
- immutable files.
+ * - dmask=
+ - :rspan:`1` Instead of specifying umask which applies both to files and
+ directories, fmask applies only to files and dmask only to directories.
+ * - fmask=
-discard Enable support of the TRIM command for improved performance
- on delete operations, which is recommended for use with the
- solid-state drives (SSD).
+ * - noacsrules
+ - "No access rules" mount option sets access rights for files/folders to
+ 777 and owner/group to root. This mount option absorbs all other
+ permissions.
-force Forces the driver to mount partitions even if 'dirty' flag
- (volume dirty) is set. Not recommended for use.
+ - Permissions change for files/folders will be reported as successful,
+ but they will remain 777.
-sparse Create new files as "sparse".
+ - Owner/group change will be reported as successful, butthey will stay
+ as root.
-showmeta Use this parameter to show all meta-files (System Files) on
- a mounted NTFS partition.
- By default, all meta-files are hidden.
+ * - nohidden
+ - Files with the Windows-specific HIDDEN (FILE_ATTRIBUTE_HIDDEN) attribute
+ will not be shown under Linux.
-prealloc Preallocate space for files excessively when file size is
- increasing on writes. Decreases fragmentation in case of
- parallel write operations to different files.
+ * - sys_immutable
+ - Files with the Windows-specific SYSTEM (FILE_ATTRIBUTE_SYSTEM) attribute
+ will be marked as system immutable files.
-no_acs_rules "No access rules" mount option sets access rights for
- files/folders to 777 and owner/group to root. This mount
- option absorbs all other permissions:
- - permissions change for files/folders will be reported
- as successful, but they will remain 777;
- - owner/group change will be reported as successful, but
- they will stay as root
+ * - discard
+ - Enable support of the TRIM command for improved performance on delete
+ operations, which is recommended for use with the solid-state drives
+ (SSD).
-acl Support POSIX ACLs (Access Control Lists). Effective if
- supported by Kernel. Not to be confused with NTFS ACLs.
- The option specified as acl enables support for POSIX ACLs.
+ * - force
+ - Forces the driver to mount partitions even if volume is marked dirty.
+ Not recommended for use.
-noatime All files and directories will not update their last access
- time attribute if a partition is mounted with this parameter.
- This option can speed up file system operation.
+ * - sparse
+ - Create new files as sparse.
-===============================================================================
+ * - showmeta
+ - Use this parameter to show all meta-files (System Files) on a mounted
+ NTFS partition. By default, all meta-files are hidden.
-ToDo list
-=========
+ * - prealloc
+ - Preallocate space for files excessively when file size is increasing on
+ writes. Decreases fragmentation in case of parallel write operations to
+ different files.
-- Full journaling support (currently journal replaying is supported) over JBD.
+ * - acl
+ - Support POSIX ACLs (Access Control Lists). Effective if supported by
+ Kernel. Not to be confused with NTFS ACLs. The option specified as acl
+ enables support for POSIX ACLs.
+Todo list
+=========
+- Full journaling support over JBD. Currently journal replaying is supported
+ which is not necessarily as effectice as JBD would be.
References
==========
-https://www.paragon-software.com/home/ntfs-linux-professional/
- - Commercial version of the NTFS driver for Linux.
+- Commercial version of the NTFS driver for Linux.
+ https://www.paragon-software.com/home/ntfs-linux-professional/
-almaz.alexandrovich@paragon-software.com
- - Direct e-mail address for feedback and requests on the NTFS3 implementation.
+- Direct e-mail address for feedback and requests on the NTFS3 implementation.
+ almaz.alexandrovich@paragon-software.com
diff --git a/Documentation/gpu/amdgpu.rst b/Documentation/gpu/amdgpu.rst
index 364680cdad2e..8ba72e898099 100644
--- a/Documentation/gpu/amdgpu.rst
+++ b/Documentation/gpu/amdgpu.rst
@@ -300,8 +300,8 @@ pcie_replay_count
.. kernel-doc:: drivers/gpu/drm/amd/amdgpu/amdgpu_device.c
:doc: pcie_replay_count
-+GPU SmartShift Information
-============================
+GPU SmartShift Information
+==========================
GPU SmartShift information via sysfs
diff --git a/Documentation/gpu/drm-internals.rst b/Documentation/gpu/drm-internals.rst
index 06af044c882f..607f78f0f189 100644
--- a/Documentation/gpu/drm-internals.rst
+++ b/Documentation/gpu/drm-internals.rst
@@ -111,15 +111,6 @@ Component Helper Usage
.. kernel-doc:: drivers/gpu/drm/drm_drv.c
:doc: component helper usage recommendations
-IRQ Helper Library
-~~~~~~~~~~~~~~~~~~
-
-.. kernel-doc:: drivers/gpu/drm/drm_irq.c
- :doc: irq helpers
-
-.. kernel-doc:: drivers/gpu/drm/drm_irq.c
- :export:
-
Memory Manager Initialization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/networking/devlink/ice.rst b/Documentation/networking/devlink/ice.rst
index a432dc419fa4..5d97cee9457b 100644
--- a/Documentation/networking/devlink/ice.rst
+++ b/Documentation/networking/devlink/ice.rst
@@ -30,10 +30,11 @@ The ``ice`` driver reports the following versions
PHY, link, etc.
* - ``fw.mgmt.api``
- running
- - 1.5
- - 2-digit version number of the API exported over the AdminQ by the
- management firmware. Used by the driver to identify what commands
- are supported.
+ - 1.5.1
+ - 3-digit version number (major.minor.patch) of the API exported over
+ the AdminQ by the management firmware. Used by the driver to
+ identify what commands are supported. Historical versions of the
+ kernel only displayed a 2-digit version number (major.minor).
* - ``fw.mgmt.build``
- running
- 0x305d955f
diff --git a/Documentation/networking/mctp.rst b/Documentation/networking/mctp.rst
index 6100cdc220f6..fa7730dbf7b9 100644
--- a/Documentation/networking/mctp.rst
+++ b/Documentation/networking/mctp.rst
@@ -59,11 +59,11 @@ specified with a ``sockaddr`` type, with a single-byte endpoint address:
};
struct sockaddr_mctp {
- unsigned short int smctp_family;
- int smctp_network;
- struct mctp_addr smctp_addr;
- __u8 smctp_type;
- __u8 smctp_tag;
+ __kernel_sa_family_t smctp_family;
+ unsigned int smctp_network;
+ struct mctp_addr smctp_addr;
+ __u8 smctp_type;
+ __u8 smctp_tag;
};
#define MCTP_NET_ANY 0x0
diff --git a/Documentation/userspace-api/ioctl/cdrom.rst b/Documentation/userspace-api/ioctl/cdrom.rst
index 3b4c0506de46..682948fc88a3 100644
--- a/Documentation/userspace-api/ioctl/cdrom.rst
+++ b/Documentation/userspace-api/ioctl/cdrom.rst
@@ -13,61 +13,64 @@ in drivers/cdrom/cdrom.c and drivers/block/scsi_ioctl.c
ioctl values are listed in <linux/cdrom.h>. As of this writing, they
are as follows:
- ====================== ===============================================
- CDROMPAUSE Pause Audio Operation
- CDROMRESUME Resume paused Audio Operation
- CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
- CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
- CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
- CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
- CDROMSTOP Stop the cdrom drive
- CDROMSTART Start the cdrom drive
- CDROMEJECT Ejects the cdrom media
- CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
- CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
- CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
- (struct cdrom_read)
- CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
- (struct cdrom_read)
- CDROMREADAUDIO (struct cdrom_read_audio)
- CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
- CDROMMULTISESSION Obtain the start-of-last-session
- address of multi session disks
- (struct cdrom_multisession)
- CDROM_GET_MCN Obtain the "Universal Product Code"
- if available (struct cdrom_mcn)
- CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
- CDROMRESET hard-reset the drive
- CDROMVOLREAD Get the drive's volume setting
- (struct cdrom_volctrl)
- CDROMREADRAW read data in raw mode (2352 Bytes)
- (struct cdrom_read)
- CDROMREADCOOKED read data in cooked mode
- CDROMSEEK seek msf address
- CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
- CDROMREADALL read all 2646 bytes
- CDROMGETSPINDOWN return 4-bit spindown value
- CDROMSETSPINDOWN set 4-bit spindown value
- CDROMCLOSETRAY pendant of CDROMEJECT
- CDROM_SET_OPTIONS Set behavior options
- CDROM_CLEAR_OPTIONS Clear behavior options
- CDROM_SELECT_SPEED Set the CD-ROM speed
- CDROM_SELECT_DISC Select disc (for juke-boxes)
- CDROM_MEDIA_CHANGED Check is media changed
- CDROM_DRIVE_STATUS Get tray position, etc.
- CDROM_DISC_STATUS Get disc type, etc.
- CDROM_CHANGER_NSLOTS Get number of slots
- CDROM_LOCKDOOR lock or unlock door
- CDROM_DEBUG Turn debug messages on/off
- CDROM_GET_CAPABILITY get capabilities
- CDROMAUDIOBUFSIZ set the audio buffer size
- DVD_READ_STRUCT Read structure
- DVD_WRITE_STRUCT Write structure
- DVD_AUTH Authentication
- CDROM_SEND_PACKET send a packet to the drive
- CDROM_NEXT_WRITABLE get next writable block
- CDROM_LAST_WRITTEN get last block written on disc
- ====================== ===============================================
+ ======================== ===============================================
+ CDROMPAUSE Pause Audio Operation
+ CDROMRESUME Resume paused Audio Operation
+ CDROMPLAYMSF Play Audio MSF (struct cdrom_msf)
+ CDROMPLAYTRKIND Play Audio Track/index (struct cdrom_ti)
+ CDROMREADTOCHDR Read TOC header (struct cdrom_tochdr)
+ CDROMREADTOCENTRY Read TOC entry (struct cdrom_tocentry)
+ CDROMSTOP Stop the cdrom drive
+ CDROMSTART Start the cdrom drive
+ CDROMEJECT Ejects the cdrom media
+ CDROMVOLCTRL Control output volume (struct cdrom_volctrl)
+ CDROMSUBCHNL Read subchannel data (struct cdrom_subchnl)
+ CDROMREADMODE2 Read CDROM mode 2 data (2336 Bytes)
+ (struct cdrom_read)
+ CDROMREADMODE1 Read CDROM mode 1 data (2048 Bytes)
+ (struct cdrom_read)
+ CDROMREADAUDIO (struct cdrom_read_audio)
+ CDROMEJECT_SW enable(1)/disable(0) auto-ejecting
+ CDROMMULTISESSION Obtain the start-of-last-session
+ address of multi session disks
+ (struct cdrom_multisession)
+ CDROM_GET_MCN Obtain the "Universal Product Code"
+ if available (struct cdrom_mcn)
+ CDROM_GET_UPC Deprecated, use CDROM_GET_MCN instead.
+ CDROMRESET hard-reset the drive
+ CDROMVOLREAD Get the drive's volume setting
+ (struct cdrom_volctrl)
+ CDROMREADRAW read data in raw mode (2352 Bytes)
+ (struct cdrom_read)
+ CDROMREADCOOKED read data in cooked mode
+ CDROMSEEK seek msf address
+ CDROMPLAYBLK scsi-cd only, (struct cdrom_blk)
+ CDROMREADALL read all 2646 bytes
+ CDROMGETSPINDOWN return 4-bit spindown value
+ CDROMSETSPINDOWN set 4-bit spindown value
+ CDROMCLOSETRAY pendant of CDROMEJECT
+ CDROM_SET_OPTIONS Set behavior options
+ CDROM_CLEAR_OPTIONS Clear behavior options
+ CDROM_SELECT_SPEED Set the CD-ROM speed
+ CDROM_SELECT_DISC Select disc (for juke-boxes)
+ CDROM_MEDIA_CHANGED Check is media changed
+ CDROM_TIMED_MEDIA_CHANGE Check if media changed
+ since given time
+ (struct cdrom_timed_media_change_info)
+ CDROM_DRIVE_STATUS Get tray position, etc.
+ CDROM_DISC_STATUS Get disc type, etc.
+ CDROM_CHANGER_NSLOTS Get number of slots
+ CDROM_LOCKDOOR lock or unlock door
+ CDROM_DEBUG Turn debug messages on/off
+ CDROM_GET_CAPABILITY get capabilities
+ CDROMAUDIOBUFSIZ set the audio buffer size
+ DVD_READ_STRUCT Read structure
+ DVD_WRITE_STRUCT Write structure
+ DVD_AUTH Authentication
+ CDROM_SEND_PACKET send a packet to the drive
+ CDROM_NEXT_WRITABLE get next writable block
+ CDROM_LAST_WRITTEN get last block written on disc
+ ======================== ===============================================
The information that follows was determined from reading kernel source
diff --git a/Documentation/userspace-api/ioctl/ioctl-number.rst b/Documentation/userspace-api/ioctl/ioctl-number.rst
index 2e8134059c87..6655d929a351 100644
--- a/Documentation/userspace-api/ioctl/ioctl-number.rst
+++ b/Documentation/userspace-api/ioctl/ioctl-number.rst
@@ -104,6 +104,7 @@ Code Seq# Include File Comments
'8' all SNP8023 advanced NIC card
<mailto:mcr@solidum.com>
';' 64-7F linux/vfio.h
+'=' 00-3f uapi/linux/ptp_clock.h <mailto:richardcochran@gmail.com>
'@' 00-0F linux/radeonfb.h conflict!
'@' 00-0F drivers/video/aty/aty128fb.c conflict!
'A' 00-1F linux/apm_bios.h conflict!
diff --git a/Documentation/userspace-api/vduse.rst b/Documentation/userspace-api/vduse.rst
index 42ef59ea5314..bdb880e01132 100644
--- a/Documentation/userspace-api/vduse.rst
+++ b/Documentation/userspace-api/vduse.rst
@@ -18,7 +18,7 @@ types can be added after the security issue of corresponding device driver
is clarified or fixed in the future.
Create/Destroy VDUSE devices
-------------------------
+----------------------------
VDUSE devices are created as follows: