summaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/obsolete/proc-pid-oom_adj2
-rw-r--r--Documentation/ABI/stable/firewire-cdev103
-rw-r--r--Documentation/ABI/stable/sysfs-bus-firewire122
-rw-r--r--Documentation/ABI/stable/vdso27
-rw-r--r--Documentation/ABI/testing/sysfs-bus-i2c-devices-fsa948021
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus8
-rw-r--r--Documentation/ABI/testing/sysfs-driver-hid-wiimote10
-rw-r--r--Documentation/ABI/testing/sysfs-module23
-rw-r--r--Documentation/DMA-API-HOWTO.txt12
-rw-r--r--Documentation/DocBook/80211.tmpl5
-rw-r--r--Documentation/DocBook/kernel-hacking.tmpl2
-rw-r--r--Documentation/DocBook/media/v4l/io.xml2
-rw-r--r--Documentation/DocBook/writing-an-alsa-driver.tmpl10
-rw-r--r--Documentation/RCU/NMI-RCU.txt4
-rw-r--r--Documentation/SubmitChecklist4
-rw-r--r--Documentation/arm/Booting5
-rw-r--r--Documentation/arm/SH-Mobile/zboot-rom-sdhi.txt42
-rw-r--r--Documentation/arm/Samsung-S3C24XX/Overview.txt7
-rw-r--r--Documentation/arm/kernel_user_helpers.txt267
-rw-r--r--Documentation/blackfin/bfin-spi-notes.txt2
-rw-r--r--Documentation/block/queue-sysfs.txt10
-rw-r--r--Documentation/blockdev/README.DAC9602
-rw-r--r--Documentation/blockdev/ramdisk.txt8
-rw-r--r--Documentation/cgroups/cpuacct.txt2
-rw-r--r--Documentation/cgroups/cpusets.txt2
-rw-r--r--Documentation/cgroups/memory.txt85
-rw-r--r--Documentation/cpu-freq/cpu-drivers.txt2
-rw-r--r--Documentation/development-process/4.Coding2
-rw-r--r--Documentation/devicetree/bindings/arm/arm-boards20
-rw-r--r--Documentation/devicetree/bindings/arm/pmu.txt21
-rw-r--r--Documentation/devicetree/bindings/arm/primecell.txt21
-rw-r--r--Documentation/devicetree/bindings/arm/sirf.txt3
-rw-r--r--Documentation/devicetree/bindings/arm/xilinx.txt7
-rw-r--r--Documentation/devicetree/bindings/crypto/fsl-sec2.txt (renamed from Documentation/devicetree/bindings/powerpc/fsl/sec.txt)2
-rw-r--r--Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt17
-rw-r--r--Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt22
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio.txt46
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio_keys.txt36
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio_nvidia.txt8
-rw-r--r--Documentation/devicetree/bindings/i2c/arm-versatile.txt10
-rw-r--r--Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt34
-rw-r--r--Documentation/devicetree/bindings/mtd/arm-versatile.txt8
-rw-r--r--[-rwxr-xr-x]Documentation/devicetree/bindings/net/can/fsl-flexcan.txt0
-rw-r--r--Documentation/devicetree/bindings/net/fsl-fec.txt24
-rw-r--r--Documentation/devicetree/bindings/net/smsc-lan91c111.txt10
-rw-r--r--Documentation/devicetree/bindings/rtc/olpc-xo1-rtc.txt5
-rw-r--r--Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt22
-rw-r--r--Documentation/devicetree/bindings/spi/spi_nvidia.txt5
-rw-r--r--Documentation/devicetree/bindings/tty/serial/fsl-imx-uart.txt19
-rw-r--r--Documentation/devicetree/bindings/tty/serial/of-serial.txt36
-rw-r--r--Documentation/devicetree/bindings/watchdog/fsl-imx-wdt.txt14
-rw-r--r--Documentation/devicetree/bindings/watchdog/samsung-wdt.txt11
-rw-r--r--Documentation/driver-model/device.txt2
-rw-r--r--Documentation/driver-model/overview.txt52
-rw-r--r--Documentation/fb/modedb.txt21
-rw-r--r--Documentation/feature-removal-schedule.txt80
-rw-r--r--Documentation/filesystems/Locking34
-rw-r--r--Documentation/filesystems/debugfs.txt4
-rw-r--r--Documentation/filesystems/ext3.txt13
-rw-r--r--Documentation/filesystems/ext4.txt23
-rw-r--r--Documentation/filesystems/nfs/Exporting9
-rw-r--r--Documentation/filesystems/nfs/nfs41-server.txt33
-rw-r--r--Documentation/filesystems/nfs/nfsroot.txt2
-rw-r--r--Documentation/filesystems/porting28
-rw-r--r--Documentation/filesystems/squashfs.txt4
-rw-r--r--Documentation/filesystems/ubifs.txt28
-rw-r--r--Documentation/filesystems/vfs.txt30
-rw-r--r--Documentation/hwmon/it873
-rw-r--r--Documentation/hwmon/lm783
-rw-r--r--Documentation/hwmon/sch563631
-rw-r--r--Documentation/i2o/ioctl2
-rw-r--r--Documentation/ioctl/ioctl-number.txt1
-rw-r--r--Documentation/isdn/README.HiSax2
-rw-r--r--Documentation/ja_JP/SubmitChecklist2
-rw-r--r--Documentation/ja_JP/SubmittingPatches258
-rw-r--r--Documentation/kbuild/makefiles.txt38
-rw-r--r--Documentation/kernel-parameters.txt22
-rw-r--r--Documentation/magic-number.txt2
-rw-r--r--Documentation/mca.txt4
-rw-r--r--Documentation/md.txt29
-rw-r--r--Documentation/mmc/00-INDEX2
-rw-r--r--Documentation/mmc/mmc-async-req.txt87
-rw-r--r--Documentation/networking/ifenslave.c18
-rw-r--r--Documentation/networking/ip-sysctl.txt29
-rw-r--r--Documentation/networking/netdev-features.txt154
-rw-r--r--Documentation/networking/nfc.txt128
-rw-r--r--Documentation/networking/stmmac.txt200
-rw-r--r--Documentation/power/devices.txt14
-rw-r--r--Documentation/power/opp.txt2
-rw-r--r--Documentation/power/runtime_pm.txt229
-rw-r--r--Documentation/rbtree.txt23
-rw-r--r--Documentation/s390/TAPE122
-rw-r--r--Documentation/scheduler/sched-arch.txt2
-rw-r--r--Documentation/scsi/BusLogic.txt2
-rw-r--r--Documentation/security/keys-ecryptfs.txt68
-rw-r--r--Documentation/security/keys-trusted-encrypted.txt52
-rw-r--r--Documentation/serial/computone.txt2
-rw-r--r--Documentation/sound/alsa/HD-Audio-Controls.txt100
-rw-r--r--Documentation/spi/ep93xx_spi10
-rw-r--r--Documentation/spi/pxa2xx5
-rw-r--r--Documentation/sysctl/kernel.txt237
-rw-r--r--Documentation/trace/kprobetrace.txt9
-rw-r--r--Documentation/usb/ehci.txt2
-rw-r--r--Documentation/usb/gadget_hid.txt6
-rw-r--r--Documentation/vDSO/parse_vdso.c256
-rw-r--r--Documentation/vDSO/vdso_test.c111
-rw-r--r--Documentation/virtual/kvm/api.txt172
-rw-r--r--Documentation/virtual/kvm/mmu.txt18
-rw-r--r--Documentation/virtual/kvm/msr.txt34
-rw-r--r--Documentation/virtual/kvm/nested-vmx.txt251
-rw-r--r--Documentation/virtual/kvm/ppc-pv.txt8
-rw-r--r--Documentation/virtual/lguest/lguest.c47
-rw-r--r--Documentation/watchdog/00-INDEX2
-rw-r--r--Documentation/watchdog/watchdog-kernel-api.txt162
-rw-r--r--Documentation/x86/entry_64.txt98
-rw-r--r--Documentation/zh_CN/SubmitChecklist2
-rw-r--r--Documentation/zh_CN/email-clients.txt210
-rw-r--r--Documentation/zh_CN/magic-number.txt2
118 files changed, 3913 insertions, 915 deletions
diff --git a/Documentation/ABI/obsolete/proc-pid-oom_adj b/Documentation/ABI/obsolete/proc-pid-oom_adj
index cf63f264ce0f..9a3cb88ade47 100644
--- a/Documentation/ABI/obsolete/proc-pid-oom_adj
+++ b/Documentation/ABI/obsolete/proc-pid-oom_adj
@@ -14,7 +14,7 @@ Why: /proc/<pid>/oom_adj allows userspace to influence the oom killer's
A much more powerful interface, /proc/<pid>/oom_score_adj, was
introduced with the oom killer rewrite that allows users to increase or
- decrease the badness() score linearly. This interface will replace
+ decrease the badness score linearly. This interface will replace
/proc/<pid>/oom_adj.
A warning will be emitted to the kernel log if an application uses this
diff --git a/Documentation/ABI/stable/firewire-cdev b/Documentation/ABI/stable/firewire-cdev
new file mode 100644
index 000000000000..16d030827368
--- /dev/null
+++ b/Documentation/ABI/stable/firewire-cdev
@@ -0,0 +1,103 @@
+What: /dev/fw[0-9]+
+Date: May 2007
+KernelVersion: 2.6.22
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ The character device files /dev/fw* are the interface between
+ firewire-core and IEEE 1394 device drivers implemented in
+ userspace. The ioctl(2)- and read(2)-based ABI is defined and
+ documented in <linux/firewire-cdev.h>.
+
+ This ABI offers most of the features which firewire-core also
+ exposes to kernelspace IEEE 1394 drivers.
+
+ Each /dev/fw* is associated with one IEEE 1394 node, which can
+ be remote or local nodes. Operations on a /dev/fw* file have
+ different scope:
+ - The 1394 node which is associated with the file:
+ - Asynchronous request transmission
+ - Get the Configuration ROM
+ - Query node ID
+ - Query maximum speed of the path between this node
+ and local node
+ - The 1394 bus (i.e. "card") to which the node is attached to:
+ - Isochronous stream transmission and reception
+ - Asynchronous stream transmission and reception
+ - Asynchronous broadcast request transmission
+ - PHY packet transmission and reception
+ - Allocate, reallocate, deallocate isochronous
+ resources (channels, bandwidth) at the bus's IRM
+ - Query node IDs of local node, root node, IRM, bus
+ manager
+ - Query cycle time
+ - Bus reset initiation, bus reset event reception
+ - All 1394 buses:
+ - Allocation of IEEE 1212 address ranges on the local
+ link layers, reception of inbound requests to such
+ an address range, asynchronous response transmission
+ to inbound requests
+ - Addition of descriptors or directories to the local
+ nodes' Configuration ROM
+
+ Due to the different scope of operations and in order to let
+ userland implement different access permission models, some
+ operations are restricted to /dev/fw* files that are associated
+ with a local node:
+ - Addition of descriptors or directories to the local
+ nodes' Configuration ROM
+ - PHY packet transmission and reception
+
+ A /dev/fw* file remains associated with one particular node
+ during its entire life time. Bus topology changes, and hence
+ node ID changes, are tracked by firewire-core. ABI users do not
+ need to be aware of topology.
+
+ The following file operations are supported:
+
+ open(2)
+ Currently the only useful flags are O_RDWR.
+
+ ioctl(2)
+ Initiate various actions. Some take immediate effect, others
+ are performed asynchronously while or after the ioctl returns.
+ See the inline documentation in <linux/firewire-cdev.h> for
+ descriptions of all ioctls.
+
+ poll(2), select(2), epoll_wait(2) etc.
+ Watch for events to become available to be read.
+
+ read(2)
+ Receive various events. There are solicited events like
+ outbound asynchronous transaction completion or isochronous
+ buffer completion, and unsolicited events such as bus resets,
+ request reception, or PHY packet reception. Always use a read
+ buffer which is large enough to receive the largest event that
+ could ever arrive. See <linux/firewire-cdev.h> for descriptions
+ of all event types and for which ioctls affect reception of
+ events.
+
+ mmap(2)
+ Allocate a DMA buffer for isochronous reception or transmission
+ and map it into the process address space. The arguments should
+ be used as follows: addr = NULL, length = the desired buffer
+ size, i.e. number of packets times size of largest packet,
+ prot = at least PROT_READ for reception and at least PROT_WRITE
+ for transmission, flags = MAP_SHARED, fd = the handle to the
+ /dev/fw*, offset = 0.
+
+ Isochronous reception works in packet-per-buffer fashion except
+ for multichannel reception which works in buffer-fill mode.
+
+ munmap(2)
+ Unmap the isochronous I/O buffer from the process address space.
+
+ close(2)
+ Besides stopping and freeing I/O contexts that were associated
+ with the file descriptor, back out any changes to the local
+ nodes' Configuration ROM. Deallocate isochronous channels and
+ bandwidth at the IRM that were marked for kernel-assisted
+ re- and deallocation.
+
+Users: libraw1394
+ libdc1394
+ tools like jujuutils, fwhack, ...
diff --git a/Documentation/ABI/stable/sysfs-bus-firewire b/Documentation/ABI/stable/sysfs-bus-firewire
new file mode 100644
index 000000000000..3d484e5dc846
--- /dev/null
+++ b/Documentation/ABI/stable/sysfs-bus-firewire
@@ -0,0 +1,122 @@
+What: /sys/bus/firewire/devices/fw[0-9]+/
+Date: May 2007
+KernelVersion: 2.6.22
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ IEEE 1394 node device attributes.
+ Read-only. Mutable during the node device's lifetime.
+ See IEEE 1212 for semantic definitions.
+
+ config_rom
+ Contents of the Configuration ROM register.
+ Binary attribute; an array of host-endian u32.
+
+ guid
+ The node's EUI-64 in the bus information block of
+ Configuration ROM.
+ Hexadecimal string representation of an u64.
+
+
+What: /sys/bus/firewire/devices/fw[0-9]+/units
+Date: June 2009
+KernelVersion: 2.6.31
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ IEEE 1394 node device attribute.
+ Read-only. Mutable during the node device's lifetime.
+ See IEEE 1212 for semantic definitions.
+
+ units
+ Summary of all units present in an IEEE 1394 node.
+ Contains space-separated tuples of specifier_id and
+ version of each unit present in the node. Specifier_id
+ and version are hexadecimal string representations of
+ u24 of the respective unit directory entries.
+ Specifier_id and version within each tuple are separated
+ by a colon.
+
+Users: udev rules to set ownership and access permissions or ACLs of
+ /dev/fw[0-9]+ character device files
+
+
+What: /sys/bus/firewire/devices/fw[0-9]+[.][0-9]+/
+Date: May 2007
+KernelVersion: 2.6.22
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ IEEE 1394 unit device attributes.
+ Read-only. Immutable during the unit device's lifetime.
+ See IEEE 1212 for semantic definitions.
+
+ modalias
+ Same as MODALIAS in the uevent at device creation.
+
+ rom_index
+ Offset of the unit directory within the parent device's
+ (node device's) Configuration ROM, in quadlets.
+ Decimal string representation.
+
+
+What: /sys/bus/firewire/devices/*/
+Date: May 2007
+KernelVersion: 2.6.22
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ Attributes common to IEEE 1394 node devices and unit devices.
+ Read-only. Mutable during the node device's lifetime.
+ Immutable during the unit device's lifetime.
+ See IEEE 1212 for semantic definitions.
+
+ These attributes are only created if the root directory of an
+ IEEE 1394 node or the unit directory of an IEEE 1394 unit
+ actually contains according entries.
+
+ hardware_version
+ Hexadecimal string representation of an u24.
+
+ hardware_version_name
+ Contents of a respective textual descriptor leaf.
+
+ model
+ Hexadecimal string representation of an u24.
+
+ model_name
+ Contents of a respective textual descriptor leaf.
+
+ specifier_id
+ Hexadecimal string representation of an u24.
+ Mandatory in unit directories according to IEEE 1212.
+
+ vendor
+ Hexadecimal string representation of an u24.
+ Mandatory in the root directory according to IEEE 1212.
+
+ vendor_name
+ Contents of a respective textual descriptor leaf.
+
+ version
+ Hexadecimal string representation of an u24.
+ Mandatory in unit directories according to IEEE 1212.
+
+
+What: /sys/bus/firewire/drivers/sbp2/fw*/host*/target*/*:*:*:*/ieee1394_id
+ formerly
+ /sys/bus/ieee1394/drivers/sbp2/fw*/host*/target*/*:*:*:*/ieee1394_id
+Date: Feb 2004
+KernelVersion: 2.6.4
+Contact: linux1394-devel@lists.sourceforge.net
+Description:
+ SCSI target port identifier and logical unit identifier of a
+ logical unit of an SBP-2 target. The identifiers are specified
+ in SAM-2...SAM-4 annex A. They are persistent and world-wide
+ unique properties the SBP-2 attached target.
+
+ Read-only attribute, immutable during the target's lifetime.
+ Format, as exposed by firewire-sbp2 since 2.6.22, May 2007:
+ Colon-separated hexadecimal string representations of
+ u64 EUI-64 : u24 directory_ID : u16 LUN
+ without 0x prefixes, without whitespace. The former sbp2 driver
+ (removed in 2.6.37 after being superseded by firewire-sbp2) used
+ a somewhat shorter format which was not as close to SAM.
+
+Users: udev rules to create /dev/disk/by-id/ symlinks
diff --git a/Documentation/ABI/stable/vdso b/Documentation/ABI/stable/vdso
new file mode 100644
index 000000000000..8a1cbb594497
--- /dev/null
+++ b/Documentation/ABI/stable/vdso
@@ -0,0 +1,27 @@
+On some architectures, when the kernel loads any userspace program it
+maps an ELF DSO into that program's address space. This DSO is called
+the vDSO and it often contains useful and highly-optimized alternatives
+to real syscalls.
+
+These functions are called just like ordinary C function according to
+your platform's ABI. Call them from a sensible context. (For example,
+if you set CS on x86 to something strange, the vDSO functions are
+within their rights to crash.) In addition, if you pass a bad
+pointer to a vDSO function, you might get SIGSEGV instead of -EFAULT.
+
+To find the DSO, parse the auxiliary vector passed to the program's
+entry point. The AT_SYSINFO_EHDR entry will point to the vDSO.
+
+The vDSO uses symbol versioning; whenever you request a symbol from the
+vDSO, specify the version you are expecting.
+
+Programs that dynamically link to glibc will use the vDSO automatically.
+Otherwise, you can use the reference parser in Documentation/vDSO/parse_vdso.c.
+
+Unless otherwise noted, the set of symbols with any given version and the
+ABI of those symbols is considered stable. It may vary across architectures,
+though.
+
+(As of this writing, this ABI documentation as been confirmed for x86_64.
+ The maintainers of the other vDSO-using architectures should confirm
+ that it is correct for their architecture.) \ No newline at end of file
diff --git a/Documentation/ABI/testing/sysfs-bus-i2c-devices-fsa9480 b/Documentation/ABI/testing/sysfs-bus-i2c-devices-fsa9480
new file mode 100644
index 000000000000..9de269bb0ae5
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-bus-i2c-devices-fsa9480
@@ -0,0 +1,21 @@
+What: /sys/bus/i2c/devices/.../device
+Date: February 2011
+Contact: Minkyu Kang <mk7.kang@samsung.com>
+Description:
+ show what device is attached
+ NONE - no device
+ USB - USB device is attached
+ UART - UART is attached
+ CHARGER - Charger is attaced
+ JIG - JIG is attached
+
+What: /sys/bus/i2c/devices/.../switch
+Date: February 2011
+Contact: Minkyu Kang <mk7.kang@samsung.com>
+Description:
+ show or set the state of manual switch
+ VAUDIO - switch to VAUDIO path
+ UART - switch to UART path
+ AUDIO - switch to AUDIO path
+ DHOST - switch to DHOST path
+ AUTO - switch automatically by device
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus b/Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus
index c1b53b8bc2ae..65e6e5dd67e8 100644
--- a/Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus
+++ b/Documentation/ABI/testing/sysfs-driver-hid-roccat-koneplus
@@ -92,6 +92,14 @@ Description: The mouse has a tracking- and a distance-control-unit. These
This file is writeonly.
Users: http://roccat.sourceforge.net
+What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/talk
+Date: May 2011
+Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
+Description: Used to active some easy* functions of the mouse from outside.
+ The data has to be 16 bytes long.
+ This file is writeonly.
+Users: http://roccat.sourceforge.net
+
What: /sys/bus/usb/devices/<busnum>-<devnum>:<config num>.<interface num>/<hid-bus>:<vendor-id>:<product-id>.<num>/koneplus/roccatkoneplus<minor>/tcu
Date: October 2010
Contact: Stefan Achatz <erazor_de@users.sourceforge.net>
diff --git a/Documentation/ABI/testing/sysfs-driver-hid-wiimote b/Documentation/ABI/testing/sysfs-driver-hid-wiimote
new file mode 100644
index 000000000000..5d5a16ea57c6
--- /dev/null
+++ b/Documentation/ABI/testing/sysfs-driver-hid-wiimote
@@ -0,0 +1,10 @@
+What: /sys/bus/hid/drivers/wiimote/<dev>/led1
+What: /sys/bus/hid/drivers/wiimote/<dev>/led2
+What: /sys/bus/hid/drivers/wiimote/<dev>/led3
+What: /sys/bus/hid/drivers/wiimote/<dev>/led4
+Date: July 2011
+KernelVersion: 3.1
+Contact: David Herrmann <dh.herrmann@googlemail.com>
+Description: Make it possible to set/get current led state. Reading from it
+ returns 0 if led is off and 1 if it is on. Writing 0 to it
+ disables the led, writing 1 enables it.
diff --git a/Documentation/ABI/testing/sysfs-module b/Documentation/ABI/testing/sysfs-module
index cfcec3bffc0a..9489ea8e294c 100644
--- a/Documentation/ABI/testing/sysfs-module
+++ b/Documentation/ABI/testing/sysfs-module
@@ -10,3 +10,26 @@ KernelVersion: 2.6.35
Contact: masa-korg@dsn.okisemi.com
Description: Write/read Option ROM data.
+
+What: /sys/module/ehci_hcd/drivers/.../uframe_periodic_max
+Date: July 2011
+KernelVersion: 3.1
+Contact: Kirill Smelkov <kirr@mns.spb.ru>
+Description: Maximum time allowed for periodic transfers per microframe (μs)
+
+ [ USB 2.0 sets maximum allowed time for periodic transfers per
+ microframe to be 80%, that is 100 microseconds out of 125
+ microseconds (full microframe).
+
+ However there are cases, when 80% max isochronous bandwidth is
+ too limiting. For example two video streams could require 110
+ microseconds of isochronous bandwidth per microframe to work
+ together. ]
+
+ Through this setting it is possible to raise the limit so that
+ the host controller would allow allocating more than 100
+ microseconds of periodic bandwidth per microframe.
+
+ Beware, non-standard modes are usually not thoroughly tested by
+ hardware designers, and the hardware can malfunction when this
+ setting differ from default 100.
diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt
index d568bc235bc0..a0b6250add79 100644
--- a/Documentation/DMA-API-HOWTO.txt
+++ b/Documentation/DMA-API-HOWTO.txt
@@ -613,13 +613,13 @@ to use the dma_sync_*() interfaces.
pass_to_upper_layers(cp->rx_buf);
make_and_setup_new_rx_buf(cp);
} else {
- /* Just sync the buffer and give it back
- * to the card.
+ /* CPU should not write to
+ * DMA_FROM_DEVICE-mapped area,
+ * so dma_sync_single_for_device() is
+ * not needed here. It would be required
+ * for DMA_BIDIRECTIONAL mapping if
+ * the memory was modified.
*/
- dma_sync_single_for_device(&cp->dev,
- cp->rx_dma,
- cp->rx_len,
- DMA_FROM_DEVICE);
give_rx_buf_to_card(cp);
}
}
diff --git a/Documentation/DocBook/80211.tmpl b/Documentation/DocBook/80211.tmpl
index 8906648f962b..445289cd0e65 100644
--- a/Documentation/DocBook/80211.tmpl
+++ b/Documentation/DocBook/80211.tmpl
@@ -402,8 +402,9 @@
!Finclude/net/mac80211.h set_key_cmd
!Finclude/net/mac80211.h ieee80211_key_conf
!Finclude/net/mac80211.h ieee80211_key_flags
-!Finclude/net/mac80211.h ieee80211_tkip_key_type
-!Finclude/net/mac80211.h ieee80211_get_tkip_key
+!Finclude/net/mac80211.h ieee80211_get_tkip_p1k
+!Finclude/net/mac80211.h ieee80211_get_tkip_p1k_iv
+!Finclude/net/mac80211.h ieee80211_get_tkip_p2k
!Finclude/net/mac80211.h ieee80211_key_removed
</chapter>
diff --git a/Documentation/DocBook/kernel-hacking.tmpl b/Documentation/DocBook/kernel-hacking.tmpl
index 7b3f49363413..07a9c48de5a2 100644
--- a/Documentation/DocBook/kernel-hacking.tmpl
+++ b/Documentation/DocBook/kernel-hacking.tmpl
@@ -409,7 +409,7 @@ cond_resched(); /* Will sleep */
<para>
You should always compile your kernel
- <symbol>CONFIG_DEBUG_SPINLOCK_SLEEP</symbol> on, and it will warn
+ <symbol>CONFIG_DEBUG_ATOMIC_SLEEP</symbol> on, and it will warn
you if you break these rules. If you <emphasis>do</emphasis> break
the rules, you will eventually lock up your box.
</para>
diff --git a/Documentation/DocBook/media/v4l/io.xml b/Documentation/DocBook/media/v4l/io.xml
index 227e7ac45a06..c57d1ec6291c 100644
--- a/Documentation/DocBook/media/v4l/io.xml
+++ b/Documentation/DocBook/media/v4l/io.xml
@@ -210,7 +210,7 @@ for (i = 0; i &lt; reqbuf.count; i++)
<programlisting>
&v4l2-requestbuffers; reqbuf;
/* Our current format uses 3 planes per buffer */
-#define FMT_NUM_PLANES = 3;
+#define FMT_NUM_PLANES = 3
struct {
void *start[FMT_NUM_PLANES];
diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl
index 58ced2346e67..598c22f3b3ac 100644
--- a/Documentation/DocBook/writing-an-alsa-driver.tmpl
+++ b/Documentation/DocBook/writing-an-alsa-driver.tmpl
@@ -1164,7 +1164,7 @@
}
chip->port = pci_resource_start(pci, 0);
if (request_irq(pci->irq, snd_mychip_interrupt,
- IRQF_SHARED, "My Chip", chip)) {
+ IRQF_SHARED, KBUILD_MODNAME, chip)) {
printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
snd_mychip_free(chip);
return -EBUSY;
@@ -1197,7 +1197,7 @@
/* pci_driver definition */
static struct pci_driver driver = {
- .name = "My Own Chip",
+ .name = KBUILD_MODNAME,
.id_table = snd_mychip_ids,
.probe = snd_mychip_probe,
.remove = __devexit_p(snd_mychip_remove),
@@ -1340,7 +1340,7 @@
<programlisting>
<![CDATA[
if (request_irq(pci->irq, snd_mychip_interrupt,
- IRQF_SHARED, "My Chip", chip)) {
+ IRQF_SHARED, KBUILD_MODNAME, chip)) {
printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
snd_mychip_free(chip);
return -EBUSY;
@@ -1616,7 +1616,7 @@
<programlisting>
<![CDATA[
static struct pci_driver driver = {
- .name = "My Own Chip",
+ .name = KBUILD_MODNAME,
.id_table = snd_mychip_ids,
.probe = snd_mychip_probe,
.remove = __devexit_p(snd_mychip_remove),
@@ -5816,7 +5816,7 @@ struct _snd_pcm_runtime {
<programlisting>
<![CDATA[
static struct pci_driver driver = {
- .name = "My Chip",
+ .name = KBUILD_MODNAME,
.id_table = snd_my_ids,
.probe = snd_my_probe,
.remove = __devexit_p(snd_my_remove),
diff --git a/Documentation/RCU/NMI-RCU.txt b/Documentation/RCU/NMI-RCU.txt
index a8536cb88091..bf82851a0e57 100644
--- a/Documentation/RCU/NMI-RCU.txt
+++ b/Documentation/RCU/NMI-RCU.txt
@@ -5,8 +5,8 @@ Although RCU is usually used to protect read-mostly data structures,
it is possible to use RCU to provide dynamic non-maskable interrupt
handlers, as well as dynamic irq handlers. This document describes
how to do this, drawing loosely from Zwane Mwaikambo's NMI-timer
-work in "arch/i386/oprofile/nmi_timer_int.c" and in
-"arch/i386/kernel/traps.c".
+work in "arch/x86/oprofile/nmi_timer_int.c" and in
+"arch/x86/kernel/traps.c".
The relevant pieces of code are listed below, each followed by a
brief explanation.
diff --git a/Documentation/SubmitChecklist b/Documentation/SubmitChecklist
index da0382daa395..dc0e33210d7e 100644
--- a/Documentation/SubmitChecklist
+++ b/Documentation/SubmitChecklist
@@ -53,8 +53,8 @@ kernel patches.
12: Has been tested with CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
- CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEP all simultaneously
- enabled.
+ CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_ATOMIC_SLEEP, CONFIG_PROVE_RCU
+ and CONFIG_DEBUG_OBJECTS_RCU_HEAD all simultaneously enabled.
13: Has been build- and runtime tested with and without CONFIG_SMP and
CONFIG_PREEMPT.
diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting
index 4e686a2ed91e..a341d87d276e 100644
--- a/Documentation/arm/Booting
+++ b/Documentation/arm/Booting
@@ -164,3 +164,8 @@ In either case, the following conditions must be met:
- The boot loader is expected to call the kernel image by jumping
directly to the first instruction of the kernel image.
+ On CPUs supporting the ARM instruction set, the entry must be
+ made in ARM state, even for a Thumb-2 kernel.
+
+ On CPUs supporting only the Thumb instruction set such as
+ Cortex-M class CPUs, the entry must be made in Thumb state.
diff --git a/Documentation/arm/SH-Mobile/zboot-rom-sdhi.txt b/Documentation/arm/SH-Mobile/zboot-rom-sdhi.txt
new file mode 100644
index 000000000000..441959846e1a
--- /dev/null
+++ b/Documentation/arm/SH-Mobile/zboot-rom-sdhi.txt
@@ -0,0 +1,42 @@
+ROM-able zImage boot from eSD
+-----------------------------
+
+An ROM-able zImage compiled with ZBOOT_ROM_SDHI may be written to eSD and
+SuperH Mobile ARM will to boot directly from the SDHI hardware block.
+
+This is achieved by the mask ROM loading the first portion of the image into
+MERAM and then jumping to it. This portion contains loader code which
+copies the entire image to SDRAM and jumps to it. From there the zImage
+boot code proceeds as normal, uncompressing the image into its final
+location and then jumping to it.
+
+This code has been tested on an mackerel board using the developer 1A eSD
+boot mode which is configured using the following jumper settings.
+
+ 8 7 6 5 4 3 2 1
+ x|x|x|x| |x|x|
+S4 -+-+-+-+-+-+-+-
+ | | | |x| | |x on
+
+The eSD card needs to be present in SDHI slot 1 (CN7).
+As such S1 and S33 also need to be configured as per
+the notes in arch/arm/mach-shmobile/board-mackerel.c.
+
+A partial zImage must be written to physical partition #1 (boot)
+of the eSD at sector 0 in vrl4 format. A utility vrl4 is supplied to
+accomplish this.
+
+e.g.
+ vrl4 < zImage | dd of=/dev/sdX bs=512 count=17
+
+A full copy of _the same_ zImage should be written to physical partition #1
+(boot) of the eSD at sector 0. This should _not_ be in vrl4 format.
+
+ vrl4 < zImage | dd of=/dev/sdX bs=512
+
+Note: The commands above assume that the physical partition has been
+switched. No such facility currently exists in the Linux Kernel.
+
+Physical partitions are described in the eSD specification. At the time of
+writing they are not the same as partitions that are typically configured
+using fdisk and visible through /proc/partitions
diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt
index c12bfc1a00c9..359587b2367b 100644
--- a/Documentation/arm/Samsung-S3C24XX/Overview.txt
+++ b/Documentation/arm/Samsung-S3C24XX/Overview.txt
@@ -8,10 +8,13 @@ Introduction
The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported
by the 's3c2410' architecture of ARM Linux. Currently the S3C2410,
- S3C2412, S3C2413, S3C2416 S3C2440, S3C2442, S3C2443 and S3C2450 devices
+ S3C2412, S3C2413, S3C2416, S3C2440, S3C2442, S3C2443 and S3C2450 devices
are supported.
- Support for the S3C2400 and S3C24A0 series are in progress.
+ Support for the S3C2400 and S3C24A0 series was never completed and the
+ corresponding code has been removed after a while. If someone wishes to
+ revive this effort, partial support can be retrieved from earlier Linux
+ versions.
The S3C2416 and S3C2450 devices are very similar and S3C2450 support is
included under the arch/arm/mach-s3c2416 directory. Note, whilst core
diff --git a/Documentation/arm/kernel_user_helpers.txt b/Documentation/arm/kernel_user_helpers.txt
new file mode 100644
index 000000000000..a17df9f91d16
--- /dev/null
+++ b/Documentation/arm/kernel_user_helpers.txt
@@ -0,0 +1,267 @@
+Kernel-provided User Helpers
+============================
+
+These are segment of kernel provided user code reachable from user space
+at a fixed address in kernel memory. This is used to provide user space
+with some operations which require kernel help because of unimplemented
+native feature and/or instructions in many ARM CPUs. The idea is for this
+code to be executed directly in user mode for best efficiency but which is
+too intimate with the kernel counter part to be left to user libraries.
+In fact this code might even differ from one CPU to another depending on
+the available instruction set, or whether it is a SMP systems. In other
+words, the kernel reserves the right to change this code as needed without
+warning. Only the entry points and their results as documented here are
+guaranteed to be stable.
+
+This is different from (but doesn't preclude) a full blown VDSO
+implementation, however a VDSO would prevent some assembly tricks with
+constants that allows for efficient branching to those code segments. And
+since those code segments only use a few cycles before returning to user
+code, the overhead of a VDSO indirect far call would add a measurable
+overhead to such minimalistic operations.
+
+User space is expected to bypass those helpers and implement those things
+inline (either in the code emitted directly by the compiler, or part of
+the implementation of a library call) when optimizing for a recent enough
+processor that has the necessary native support, but only if resulting
+binaries are already to be incompatible with earlier ARM processors due to
+useage of similar native instructions for other things. In other words
+don't make binaries unable to run on earlier processors just for the sake
+of not using these kernel helpers if your compiled code is not going to
+use new instructions for other purpose.
+
+New helpers may be added over time, so an older kernel may be missing some
+helpers present in a newer kernel. For this reason, programs must check
+the value of __kuser_helper_version (see below) before assuming that it is
+safe to call any particular helper. This check should ideally be
+performed only once at process startup time, and execution aborted early
+if the required helpers are not provided by the kernel version that
+process is running on.
+
+kuser_helper_version
+--------------------
+
+Location: 0xffff0ffc
+
+Reference declaration:
+
+ extern int32_t __kuser_helper_version;
+
+Definition:
+
+ This field contains the number of helpers being implemented by the
+ running kernel. User space may read this to determine the availability
+ of a particular helper.
+
+Usage example:
+
+#define __kuser_helper_version (*(int32_t *)0xffff0ffc)
+
+void check_kuser_version(void)
+{
+ if (__kuser_helper_version < 2) {
+ fprintf(stderr, "can't do atomic operations, kernel too old\n");
+ abort();
+ }
+}
+
+Notes:
+
+ User space may assume that the value of this field never changes
+ during the lifetime of any single process. This means that this
+ field can be read once during the initialisation of a library or
+ startup phase of a program.
+
+kuser_get_tls
+-------------
+
+Location: 0xffff0fe0
+
+Reference prototype:
+
+ void * __kuser_get_tls(void);
+
+Input:
+
+ lr = return address
+
+Output:
+
+ r0 = TLS value
+
+Clobbered registers:
+
+ none
+
+Definition:
+
+ Get the TLS value as previously set via the __ARM_NR_set_tls syscall.
+
+Usage example:
+
+typedef void * (__kuser_get_tls_t)(void);
+#define __kuser_get_tls (*(__kuser_get_tls_t *)0xffff0fe0)
+
+void foo()
+{
+ void *tls = __kuser_get_tls();
+ printf("TLS = %p\n", tls);
+}
+
+Notes:
+
+ - Valid only if __kuser_helper_version >= 1 (from kernel version 2.6.12).
+
+kuser_cmpxchg
+-------------
+
+Location: 0xffff0fc0
+
+Reference prototype:
+
+ int __kuser_cmpxchg(int32_t oldval, int32_t newval, volatile int32_t *ptr);
+
+Input:
+
+ r0 = oldval
+ r1 = newval
+ r2 = ptr
+ lr = return address
+
+Output:
+
+ r0 = success code (zero or non-zero)
+ C flag = set if r0 == 0, clear if r0 != 0
+
+Clobbered registers:
+
+ r3, ip, flags
+
+Definition:
+
+ Atomically store newval in *ptr only if *ptr is equal to oldval.
+ Return zero if *ptr was changed or non-zero if no exchange happened.
+ The C flag is also set if *ptr was changed to allow for assembly
+ optimization in the calling code.
+
+Usage example:
+
+typedef int (__kuser_cmpxchg_t)(int oldval, int newval, volatile int *ptr);
+#define __kuser_cmpxchg (*(__kuser_cmpxchg_t *)0xffff0fc0)
+
+int atomic_add(volatile int *ptr, int val)
+{
+ int old, new;
+
+ do {
+ old = *ptr;
+ new = old + val;
+ } while(__kuser_cmpxchg(old, new, ptr));
+
+ return new;
+}
+
+Notes:
+
+ - This routine already includes memory barriers as needed.
+
+ - Valid only if __kuser_helper_version >= 2 (from kernel version 2.6.12).
+
+kuser_memory_barrier
+--------------------
+
+Location: 0xffff0fa0
+
+Reference prototype:
+
+ void __kuser_memory_barrier(void);
+
+Input:
+
+ lr = return address
+
+Output:
+
+ none
+
+Clobbered registers:
+
+ none
+
+Definition:
+
+ Apply any needed memory barrier to preserve consistency with data modified
+ manually and __kuser_cmpxchg usage.
+
+Usage example:
+
+typedef void (__kuser_dmb_t)(void);
+#define __kuser_dmb (*(__kuser_dmb_t *)0xffff0fa0)
+
+Notes:
+
+ - Valid only if __kuser_helper_version >= 3 (from kernel version 2.6.15).
+
+kuser_cmpxchg64
+---------------
+
+Location: 0xffff0f60
+
+Reference prototype:
+
+ int __kuser_cmpxchg64(const int64_t *oldval,
+ const int64_t *newval,
+ volatile int64_t *ptr);
+
+Input:
+
+ r0 = pointer to oldval
+ r1 = pointer to newval
+ r2 = pointer to target value
+ lr = return address
+
+Output:
+
+ r0 = success code (zero or non-zero)
+ C flag = set if r0 == 0, clear if r0 != 0
+
+Clobbered registers:
+
+ r3, lr, flags
+
+Definition:
+
+ Atomically store the 64-bit value pointed by *newval in *ptr only if *ptr
+ is equal to the 64-bit value pointed by *oldval. Return zero if *ptr was
+ changed or non-zero if no exchange happened.
+
+ The C flag is also set if *ptr was changed to allow for assembly
+ optimization in the calling code.
+
+Usage example:
+
+typedef int (__kuser_cmpxchg64_t)(const int64_t *oldval,
+ const int64_t *newval,
+ volatile int64_t *ptr);
+#define __kuser_cmpxchg64 (*(__kuser_cmpxchg64_t *)0xffff0f60)
+
+int64_t atomic_add64(volatile int64_t *ptr, int64_t val)
+{
+ int64_t old, new;
+
+ do {
+ old = *ptr;
+ new = old + val;
+ } while(__kuser_cmpxchg64(&old, &new, ptr));
+
+ return new;
+}
+
+Notes:
+
+ - This routine already includes memory barriers as needed.
+
+ - Due to the length of this sequence, this spans 2 conventional kuser
+ "slots", therefore 0xffff0f80 is not used as a valid entry point.
+
+ - Valid only if __kuser_helper_version >= 5 (from kernel version 3.1).
diff --git a/Documentation/blackfin/bfin-spi-notes.txt b/Documentation/blackfin/bfin-spi-notes.txt
index 556fa877f2e8..eae6eaf2a09d 100644
--- a/Documentation/blackfin/bfin-spi-notes.txt
+++ b/Documentation/blackfin/bfin-spi-notes.txt
@@ -9,6 +9,8 @@ the entire SPI transfer. - And not just bits_per_word duration.
In most cases you can utilize SPI MODE_3 instead of MODE_0 to work-around this
behavior. If your SPI slave device in question requires SPI MODE_0 or MODE_2
timing, you can utilize the GPIO controlled SPI Slave Select option instead.
+In this case, you should use GPIO based CS for all of your slaves and not just
+the ones using mode 0 or 2 in order to guarantee correct CS toggling behavior.
You can even use the same pin whose peripheral role is a SSEL,
but use it as a GPIO instead.
diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.txt
index f65274081c8d..d8147b336c35 100644
--- a/Documentation/block/queue-sysfs.txt
+++ b/Documentation/block/queue-sysfs.txt
@@ -45,9 +45,13 @@ device.
rq_affinity (RW)
----------------
-If this option is enabled, the block layer will migrate request completions
-to the CPU that originally submitted the request. For some workloads
-this provides a significant reduction in CPU cycles due to caching effects.
+If this option is '1', the block layer will migrate request completions to the
+cpu "group" that originally submitted the request. For some workloads this
+provides a significant reduction in CPU cycles due to caching effects.
+
+For storage configurations that need to maximize distribution of completion
+processing setting this option to '2' forces the completion to run on the
+requesting cpu (bypassing the "group" aggregation logic).
scheduler (RW)
--------------
diff --git a/Documentation/blockdev/README.DAC960 b/Documentation/blockdev/README.DAC960
index 0e8f618ab534..bd85fb9dc6e5 100644
--- a/Documentation/blockdev/README.DAC960
+++ b/Documentation/blockdev/README.DAC960
@@ -214,7 +214,7 @@ replacing "/usr/src" with wherever you keep your Linux kernel source tree:
make config
make bzImage (or zImage)
-Then install "arch/i386/boot/bzImage" or "arch/i386/boot/zImage" as your
+Then install "arch/x86/boot/bzImage" or "arch/x86/boot/zImage" as your
standard kernel, run lilo if appropriate, and reboot.
To create the necessary devices in /dev, the "make_rd" script included in
diff --git a/Documentation/blockdev/ramdisk.txt b/Documentation/blockdev/ramdisk.txt
index 6c820baa19a6..fa72e97dd669 100644
--- a/Documentation/blockdev/ramdisk.txt
+++ b/Documentation/blockdev/ramdisk.txt
@@ -64,9 +64,9 @@ the RAM disk dynamically grows as data is being written into it, a size field
is not required. Bits 11 to 13 are not currently used and may as well be zero.
These numbers are no magical secrets, as seen below:
-./arch/i386/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
-./arch/i386/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
-./arch/i386/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
+./arch/x86/kernel/setup.c:#define RAMDISK_IMAGE_START_MASK 0x07FF
+./arch/x86/kernel/setup.c:#define RAMDISK_PROMPT_FLAG 0x8000
+./arch/x86/kernel/setup.c:#define RAMDISK_LOAD_FLAG 0x4000
Consider a typical two floppy disk setup, where you will have the
kernel on disk one, and have already put a RAM disk image onto disk #2.
@@ -85,7 +85,7 @@ The command line equivalent is: "prompt_ramdisk=1"
Putting that together gives 2^15 + 2^14 + 0 = 49152 for an rdev word.
So to create disk one of the set, you would do:
- /usr/src/linux# cat arch/i386/boot/zImage > /dev/fd0
+ /usr/src/linux# cat arch/x86/boot/zImage > /dev/fd0
/usr/src/linux# rdev /dev/fd0 /dev/fd0
/usr/src/linux# rdev -r /dev/fd0 49152
diff --git a/Documentation/cgroups/cpuacct.txt b/Documentation/cgroups/cpuacct.txt
index 9ad85df4b983..9d73cc0cadb9 100644
--- a/Documentation/cgroups/cpuacct.txt
+++ b/Documentation/cgroups/cpuacct.txt
@@ -23,7 +23,7 @@ New accounting groups can be created under the parent group /sys/fs/cgroup.
# cd /sys/fs/cgroup
# mkdir g1
-# echo $$ > g1
+# echo $$ > g1/tasks
The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt
index 5b0d78e55ccc..5c51ed406d1d 100644
--- a/Documentation/cgroups/cpusets.txt
+++ b/Documentation/cgroups/cpusets.txt
@@ -180,7 +180,7 @@ files describing that cpuset:
- cpuset.sched_load_balance flag: if set, load balance within CPUs on that cpuset
- cpuset.sched_relax_domain_level: the searching range when migrating tasks
-In addition, the root cpuset only has the following file:
+In addition, only the root cpuset has the following file:
- cpuset.memory_pressure_enabled flag: compute memory_pressure?
New cpusets are created using the mkdir system call or shell
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index 06eb6d957c83..6f3c598971fc 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -380,7 +380,7 @@ will be charged as a new owner of it.
5.2 stat file
-memory.stat file includes following statistics
+5.2.1 memory.stat file includes following statistics
# per-memory cgroup local status
cache - # of bytes of page cache memory.
@@ -438,6 +438,89 @@ Note:
file_mapped is accounted only when the memory cgroup is owner of page
cache.)
+5.2.2 memory.vmscan_stat
+
+memory.vmscan_stat includes statistics information for memory scanning and
+freeing, reclaiming. The statistics shows memory scanning information since
+memory cgroup creation and can be reset to 0 by writing 0 as
+
+ #echo 0 > ../memory.vmscan_stat
+
+This file contains following statistics.
+
+[param]_[file_or_anon]_pages_by_[reason]_[under_heararchy]
+[param]_elapsed_ns_by_[reason]_[under_hierarchy]
+
+For example,
+
+ scanned_file_pages_by_limit indicates the number of scanned
+ file pages at vmscan.
+
+Now, 3 parameters are supported
+
+ scanned - the number of pages scanned by vmscan
+ rotated - the number of pages activated at vmscan
+ freed - the number of pages freed by vmscan
+
+If "rotated" is high against scanned/freed, the memcg seems busy.
+
+Now, 2 reason are supported
+
+ limit - the memory cgroup's limit
+ system - global memory pressure + softlimit
+ (global memory pressure not under softlimit is not handled now)
+
+When under_hierarchy is added in the tail, the number indicates the
+total memcg scan of its children and itself.
+
+elapsed_ns is a elapsed time in nanosecond. This may include sleep time
+and not indicates CPU usage. So, please take this as just showing
+latency.
+
+Here is an example.
+
+# cat /cgroup/memory/A/memory.vmscan_stat
+scanned_pages_by_limit 9471864
+scanned_anon_pages_by_limit 6640629
+scanned_file_pages_by_limit 2831235
+rotated_pages_by_limit 4243974
+rotated_anon_pages_by_limit 3971968
+rotated_file_pages_by_limit 272006
+freed_pages_by_limit 2318492
+freed_anon_pages_by_limit 962052
+freed_file_pages_by_limit 1356440
+elapsed_ns_by_limit 351386416101
+scanned_pages_by_system 0
+scanned_anon_pages_by_system 0
+scanned_file_pages_by_system 0
+rotated_pages_by_system 0
+rotated_anon_pages_by_system 0
+rotated_file_pages_by_system 0
+freed_pages_by_system 0
+freed_anon_pages_by_system 0
+freed_file_pages_by_system 0
+elapsed_ns_by_system 0
+scanned_pages_by_limit_under_hierarchy 9471864
+scanned_anon_pages_by_limit_under_hierarchy 6640629
+scanned_file_pages_by_limit_under_hierarchy 2831235
+rotated_pages_by_limit_under_hierarchy 4243974
+rotated_anon_pages_by_limit_under_hierarchy 3971968
+rotated_file_pages_by_limit_under_hierarchy 272006
+freed_pages_by_limit_under_hierarchy 2318492
+freed_anon_pages_by_limit_under_hierarchy 962052
+freed_file_pages_by_limit_under_hierarchy 1356440
+elapsed_ns_by_limit_under_hierarchy 351386416101
+scanned_pages_by_system_under_hierarchy 0
+scanned_anon_pages_by_system_under_hierarchy 0
+scanned_file_pages_by_system_under_hierarchy 0
+rotated_pages_by_system_under_hierarchy 0
+rotated_anon_pages_by_system_under_hierarchy 0
+rotated_file_pages_by_system_under_hierarchy 0
+freed_pages_by_system_under_hierarchy 0
+freed_anon_pages_by_system_under_hierarchy 0
+freed_file_pages_by_system_under_hierarchy 0
+elapsed_ns_by_system_under_hierarchy 0
+
5.3 swappiness
Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only.
diff --git a/Documentation/cpu-freq/cpu-drivers.txt b/Documentation/cpu-freq/cpu-drivers.txt
index 6c30e930c122..c436096351f8 100644
--- a/Documentation/cpu-freq/cpu-drivers.txt
+++ b/Documentation/cpu-freq/cpu-drivers.txt
@@ -168,7 +168,7 @@ in-chipset dynamic frequency switching to policy->min, the upper limit
to policy->max, and -if supported- select a performance-oriented
setting when policy->policy is CPUFREQ_POLICY_PERFORMANCE, and a
powersaving-oriented setting when CPUFREQ_POLICY_POWERSAVE. Also check
-the reference implementation in arch/i386/kernel/cpu/cpufreq/longrun.c
+the reference implementation in drivers/cpufreq/longrun.c
diff --git a/Documentation/development-process/4.Coding b/Documentation/development-process/4.Coding
index f3f1a469443c..83f5f5b365a3 100644
--- a/Documentation/development-process/4.Coding
+++ b/Documentation/development-process/4.Coding
@@ -244,7 +244,7 @@ testing purposes. In particular, you should turn on:
- DEBUG_SLAB can find a variety of memory allocation and use errors; it
should be used on most development kernels.
- - DEBUG_SPINLOCK, DEBUG_SPINLOCK_SLEEP, and DEBUG_MUTEXES will find a
+ - DEBUG_SPINLOCK, DEBUG_ATOMIC_SLEEP, and DEBUG_MUTEXES will find a
number of common locking errors.
There are quite a few other debugging options, some of which will be
diff --git a/Documentation/devicetree/bindings/arm/arm-boards b/Documentation/devicetree/bindings/arm/arm-boards
new file mode 100644
index 000000000000..91f26148af79
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/arm-boards
@@ -0,0 +1,20 @@
+ARM Versatile Application and Platform Baseboards
+-------------------------------------------------
+ARM's development hardware platform with connectors for customizable
+core tiles. The hardware configuration of the Versatile boards is
+highly customizable.
+
+Required properties (in root node):
+ compatible = "arm,versatile-ab"; /* Application baseboard */
+ compatible = "arm,versatile-pb"; /* Platform baseboard */
+
+Interrupt controllers:
+- VIC required properties:
+ compatible = "arm,versatile-vic";
+ interrupt-controller;
+ #interrupt-cells = <1>;
+
+- SIC required properties:
+ compatible = "arm,versatile-sic";
+ interrupt-controller;
+ #interrupt-cells = <1>;
diff --git a/Documentation/devicetree/bindings/arm/pmu.txt b/Documentation/devicetree/bindings/arm/pmu.txt
new file mode 100644
index 000000000000..1c044eb320cc
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/pmu.txt
@@ -0,0 +1,21 @@
+* ARM Performance Monitor Units
+
+ARM cores often have a PMU for counting cpu and cache events like cache misses
+and hits. The interface to the PMU is part of the ARM ARM. The ARM PMU
+representation in the device tree should be done as under:-
+
+Required properties:
+
+- compatible : should be one of
+ "arm,cortex-a9-pmu"
+ "arm,cortex-a8-pmu"
+ "arm,arm1176-pmu"
+ "arm,arm1136-pmu"
+- interrupts : 1 combined interrupt or 1 per core.
+
+Example:
+
+pmu {
+ compatible = "arm,cortex-a9-pmu";
+ interrupts = <100 101>;
+};
diff --git a/Documentation/devicetree/bindings/arm/primecell.txt b/Documentation/devicetree/bindings/arm/primecell.txt
new file mode 100644
index 000000000000..1d5d7a870ec7
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/primecell.txt
@@ -0,0 +1,21 @@
+* ARM Primecell Peripherals
+
+ARM, Ltd. Primecell peripherals have a standard id register that can be used to
+identify the peripheral type, vendor, and revision. This value can be used for
+driver matching.
+
+Required properties:
+
+- compatible : should be a specific value for peripheral and "arm,primecell"
+
+Optional properties:
+
+- arm,primecell-periphid : Value to override the h/w value with
+
+Example:
+
+serial@fff36000 {
+ compatible = "arm,pl011", "arm,primecell";
+ arm,primecell-periphid = <0x00341011>;
+};
+
diff --git a/Documentation/devicetree/bindings/arm/sirf.txt b/Documentation/devicetree/bindings/arm/sirf.txt
new file mode 100644
index 000000000000..6b07f65b32de
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/sirf.txt
@@ -0,0 +1,3 @@
+prima2 "cb" evalutation board
+Required root node properties:
+ - compatible = "sirf,prima2-cb", "sirf,prima2";
diff --git a/Documentation/devicetree/bindings/arm/xilinx.txt b/Documentation/devicetree/bindings/arm/xilinx.txt
new file mode 100644
index 000000000000..6f1ed830b4f7
--- /dev/null
+++ b/Documentation/devicetree/bindings/arm/xilinx.txt
@@ -0,0 +1,7 @@
+Xilinx Zynq EP107 Emulation Platform board
+
+This board is an emulation platform for the Zynq product which is
+based on an ARM Cortex A9 processor.
+
+Required root node properties:
+ - compatible = "xlnx,zynq-ep107";
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/sec.txt b/Documentation/devicetree/bindings/crypto/fsl-sec2.txt
index 2b6f2d45c45a..38988ef1336b 100644
--- a/Documentation/devicetree/bindings/powerpc/fsl/sec.txt
+++ b/Documentation/devicetree/bindings/crypto/fsl-sec2.txt
@@ -1,4 +1,4 @@
-Freescale SoC SEC Security Engines
+Freescale SoC SEC Security Engines versions 2.x-3.x
Required properties:
diff --git a/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt b/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt
new file mode 100644
index 000000000000..d1e3f443e205
--- /dev/null
+++ b/Documentation/devicetree/bindings/dma/fsl-imx-sdma.txt
@@ -0,0 +1,17 @@
+* Freescale Smart Direct Memory Access (SDMA) Controller for i.MX
+
+Required properties:
+- compatible : Should be "fsl,<chip>-sdma"
+- reg : Should contain SDMA registers location and length
+- interrupts : Should contain SDMA interrupt
+- fsl,sdma-ram-script-name : Should contain the full path of SDMA RAM
+ scripts firmware
+
+Examples:
+
+sdma@83fb0000 {
+ compatible = "fsl,imx51-sdma", "fsl,imx35-sdma";
+ reg = <0x83fb0000 0x4000>;
+ interrupts = <6>;
+ fsl,sdma-ram-script-name = "sdma-imx51.bin";
+};
diff --git a/Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt b/Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt
new file mode 100644
index 000000000000..4363ae4b3c14
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/fsl-imx-gpio.txt
@@ -0,0 +1,22 @@
+* Freescale i.MX/MXC GPIO controller
+
+Required properties:
+- compatible : Should be "fsl,<soc>-gpio"
+- reg : Address and length of the register set for the device
+- interrupts : Should be the port interrupt shared by all 32 pins, if
+ one number. If two numbers, the first one is the interrupt shared
+ by low 16 pins and the second one is for high 16 pins.
+- gpio-controller : Marks the device node as a gpio controller.
+- #gpio-cells : Should be two. The first cell is the pin number and
+ the second cell is used to specify optional parameters (currently
+ unused).
+
+Example:
+
+gpio0: gpio@73f84000 {
+ compatible = "fsl,imx51-gpio", "fsl,imx31-gpio";
+ reg = <0x73f84000 0x4000>;
+ interrupts = <50 51>;
+ gpio-controller;
+ #gpio-cells = <2>;
+};
diff --git a/Documentation/devicetree/bindings/gpio/gpio.txt b/Documentation/devicetree/bindings/gpio/gpio.txt
index edaa84d288a1..4e16ba4feab0 100644
--- a/Documentation/devicetree/bindings/gpio/gpio.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio.txt
@@ -4,17 +4,45 @@ Specifying GPIO information for devices
1) gpios property
-----------------
-Nodes that makes use of GPIOs should define them using `gpios' property,
-format of which is: <&gpio-controller1-phandle gpio1-specifier
- &gpio-controller2-phandle gpio2-specifier
- 0 /* holes are permitted, means no GPIO 3 */
- &gpio-controller4-phandle gpio4-specifier
- ...>;
+Nodes that makes use of GPIOs should specify them using one or more
+properties, each containing a 'gpio-list':
-Note that gpio-specifier length is controller dependent.
+ gpio-list ::= <single-gpio> [gpio-list]
+ single-gpio ::= <gpio-phandle> <gpio-specifier>
+ gpio-phandle : phandle to gpio controller node
+ gpio-specifier : Array of #gpio-cells specifying specific gpio
+ (controller specific)
+
+GPIO properties should be named "[<name>-]gpios". Exact
+meaning of each gpios property must be documented in the device tree
+binding for each device.
+
+For example, the following could be used to describe gpios pins to use
+as chip select lines; with chip selects 0, 1 and 3 populated, and chip
+select 2 left empty:
+
+ gpio1: gpio1 {
+ gpio-controller
+ #gpio-cells = <2>;
+ };
+ gpio2: gpio2 {
+ gpio-controller
+ #gpio-cells = <1>;
+ };
+ [...]
+ chipsel-gpios = <&gpio1 12 0>,
+ <&gpio1 13 0>,
+ <0>, /* holes are permitted, means no GPIO 2 */
+ <&gpio2 2>;
+
+Note that gpio-specifier length is controller dependent. In the
+above example, &gpio1 uses 2 cells to specify a gpio, while &gpio2
+only uses one.
gpio-specifier may encode: bank, pin position inside the bank,
whether pin is open-drain and whether pin is logically inverted.
+Exact meaning of each specifier cell is controller specific, and must
+be documented in the device tree binding for the device.
Example of the node using GPIOs:
@@ -28,8 +56,8 @@ and empty GPIO flags as accepted by the "qe_pio_e" gpio-controller.
2) gpio-controller nodes
------------------------
-Every GPIO controller node must have #gpio-cells property defined,
-this information will be used to translate gpio-specifiers.
+Every GPIO controller node must both an empty "gpio-controller"
+property, and have #gpio-cells contain the size of the gpio-specifier.
Example of two SOC GPIO banks defined as gpio-controller nodes:
diff --git a/Documentation/devicetree/bindings/gpio/gpio_keys.txt b/Documentation/devicetree/bindings/gpio/gpio_keys.txt
new file mode 100644
index 000000000000..7190c99d7611
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio_keys.txt
@@ -0,0 +1,36 @@
+Device-Tree bindings for input/gpio_keys.c keyboard driver
+
+Required properties:
+ - compatible = "gpio-keys";
+
+Optional properties:
+ - autorepeat: Boolean, Enable auto repeat feature of Linux input
+ subsystem.
+
+Each button (key) is represented as a sub-node of "gpio-keys":
+Subnode properties:
+
+ - gpios: OF devcie-tree gpio specificatin.
+ - label: Descriptive name of the key.
+ - linux,code: Keycode to emit.
+
+Optional subnode-properties:
+ - linux,input-type: Specify event type this button/key generates.
+ If not specified defaults to <1> == EV_KEY.
+ - debounce-interval: Debouncing interval time in milliseconds.
+ If not specified defaults to 5.
+ - gpio-key,wakeup: Boolean, button can wake-up the system.
+
+Example nodes:
+
+ gpio_keys {
+ compatible = "gpio-keys";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ autorepeat;
+ button@21 {
+ label = "GPIO Key UP";
+ linux,code = <103>;
+ gpios = <&gpio1 0 1>;
+ };
+ ...
diff --git a/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt
new file mode 100644
index 000000000000..eb4b530d64e1
--- /dev/null
+++ b/Documentation/devicetree/bindings/gpio/gpio_nvidia.txt
@@ -0,0 +1,8 @@
+NVIDIA Tegra 2 GPIO controller
+
+Required properties:
+- compatible : "nvidia,tegra20-gpio"
+- #gpio-cells : Should be two. The first cell is the pin number and the
+ second cell is used to specify optional parameters:
+ - bit 0 specifies polarity (0 for normal, 1 for inverted)
+- gpio-controller : Marks the device node as a GPIO controller.
diff --git a/Documentation/devicetree/bindings/i2c/arm-versatile.txt b/Documentation/devicetree/bindings/i2c/arm-versatile.txt
new file mode 100644
index 000000000000..361d31c51b6f
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/arm-versatile.txt
@@ -0,0 +1,10 @@
+i2c Controller on ARM Versatile platform:
+
+Required properties:
+- compatible : Must be "arm,versatile-i2c";
+- reg
+- #address-cells = <1>;
+- #size-cells = <0>;
+
+Optional properties:
+- Child nodes conforming to i2c bus binding
diff --git a/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
new file mode 100644
index 000000000000..ab22fe6e73ab
--- /dev/null
+++ b/Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
@@ -0,0 +1,34 @@
+* Freescale Enhanced Secure Digital Host Controller (eSDHC) for i.MX
+
+The Enhanced Secure Digital Host Controller on Freescale i.MX family
+provides an interface for MMC, SD, and SDIO types of memory cards.
+
+Required properties:
+- compatible : Should be "fsl,<chip>-esdhc"
+- reg : Should contain eSDHC registers location and length
+- interrupts : Should contain eSDHC interrupt
+
+Optional properties:
+- fsl,card-wired : Indicate the card is wired to host permanently
+- fsl,cd-internal : Indicate to use controller internal card detection
+- fsl,wp-internal : Indicate to use controller internal write protection
+- cd-gpios : Specify GPIOs for card detection
+- wp-gpios : Specify GPIOs for write protection
+
+Examples:
+
+esdhc@70004000 {
+ compatible = "fsl,imx51-esdhc";
+ reg = <0x70004000 0x4000>;
+ interrupts = <1>;
+ fsl,cd-internal;
+ fsl,wp-internal;
+};
+
+esdhc@70008000 {
+ compatible = "fsl,imx51-esdhc";
+ reg = <0x70008000 0x4000>;
+ interrupts = <2>;
+ cd-gpios = <&gpio0 6 0>; /* GPIO1_6 */
+ wp-gpios = <&gpio0 5 0>; /* GPIO1_5 */
+};
diff --git a/Documentation/devicetree/bindings/mtd/arm-versatile.txt b/Documentation/devicetree/bindings/mtd/arm-versatile.txt
new file mode 100644
index 000000000000..476845db94d0
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/arm-versatile.txt
@@ -0,0 +1,8 @@
+Flash device on ARM Versatile board
+
+Required properties:
+- compatible : must be "arm,versatile-flash";
+- bank-width : width in bytes of flash interface.
+
+Optional properties:
+- Subnode partition map from mtd flash binding
diff --git a/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt b/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
index 1a729f089866..1a729f089866 100755..100644
--- a/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
+++ b/Documentation/devicetree/bindings/net/can/fsl-flexcan.txt
diff --git a/Documentation/devicetree/bindings/net/fsl-fec.txt b/Documentation/devicetree/bindings/net/fsl-fec.txt
new file mode 100644
index 000000000000..de439517dff0
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/fsl-fec.txt
@@ -0,0 +1,24 @@
+* Freescale Fast Ethernet Controller (FEC)
+
+Required properties:
+- compatible : Should be "fsl,<soc>-fec"
+- reg : Address and length of the register set for the device
+- interrupts : Should contain fec interrupt
+- phy-mode : String, operation mode of the PHY interface.
+ Supported values are: "mii", "gmii", "sgmii", "tbi", "rmii",
+ "rgmii", "rgmii-id", "rgmii-rxid", "rgmii-txid", "rtbi", "smii".
+- phy-reset-gpios : Should specify the gpio for phy reset
+
+Optional properties:
+- local-mac-address : 6 bytes, mac address
+
+Example:
+
+fec@83fec000 {
+ compatible = "fsl,imx51-fec", "fsl,imx27-fec";
+ reg = <0x83fec000 0x4000>;
+ interrupts = <87>;
+ phy-mode = "mii";
+ phy-reset-gpios = <&gpio1 14 0>; /* GPIO2_14 */
+ local-mac-address = [00 04 9F 01 1B B9];
+};
diff --git a/Documentation/devicetree/bindings/net/smsc-lan91c111.txt b/Documentation/devicetree/bindings/net/smsc-lan91c111.txt
new file mode 100644
index 000000000000..953049b4248a
--- /dev/null
+++ b/Documentation/devicetree/bindings/net/smsc-lan91c111.txt
@@ -0,0 +1,10 @@
+SMSC LAN91c111 Ethernet mac
+
+Required properties:
+- compatible = "smsc,lan91c111";
+- reg : physical address and size of registers
+- interrupts : interrupt connection
+
+Optional properties:
+- phy-device : phandle to Ethernet phy
+- local-mac-address : Ethernet mac address to use
diff --git a/Documentation/devicetree/bindings/rtc/olpc-xo1-rtc.txt b/Documentation/devicetree/bindings/rtc/olpc-xo1-rtc.txt
new file mode 100644
index 000000000000..a2891ceb6344
--- /dev/null
+++ b/Documentation/devicetree/bindings/rtc/olpc-xo1-rtc.txt
@@ -0,0 +1,5 @@
+OLPC XO-1 RTC
+~~~~~~~~~~~~~
+
+Required properties:
+ - compatible : "olpc,xo1-rtc"
diff --git a/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
new file mode 100644
index 000000000000..9841057d112b
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/fsl-imx-cspi.txt
@@ -0,0 +1,22 @@
+* Freescale (Enhanced) Configurable Serial Peripheral Interface
+ (CSPI/eCSPI) for i.MX
+
+Required properties:
+- compatible : Should be "fsl,<soc>-cspi" or "fsl,<soc>-ecspi"
+- reg : Offset and length of the register set for the device
+- interrupts : Should contain CSPI/eCSPI interrupt
+- fsl,spi-num-chipselects : Contains the number of the chipselect
+- cs-gpios : Specifies the gpio pins to be used for chipselects.
+
+Example:
+
+ecspi@70010000 {
+ #address-cells = <1>;
+ #size-cells = <0>;
+ compatible = "fsl,imx51-ecspi";
+ reg = <0x70010000 0x4000>;
+ interrupts = <36>;
+ fsl,spi-num-chipselects = <2>;
+ cs-gpios = <&gpio3 24 0>, /* GPIO4_24 */
+ <&gpio3 25 0>; /* GPIO4_25 */
+};
diff --git a/Documentation/devicetree/bindings/spi/spi_nvidia.txt b/Documentation/devicetree/bindings/spi/spi_nvidia.txt
new file mode 100644
index 000000000000..6b9e51896693
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi_nvidia.txt
@@ -0,0 +1,5 @@
+NVIDIA Tegra 2 SPI device
+
+Required properties:
+- compatible : should be "nvidia,tegra20-spi".
+- gpios : should specify GPIOs used for chipselect.
diff --git a/Documentation/devicetree/bindings/tty/serial/fsl-imx-uart.txt b/Documentation/devicetree/bindings/tty/serial/fsl-imx-uart.txt
new file mode 100644
index 000000000000..a9c0406280e8
--- /dev/null
+++ b/Documentation/devicetree/bindings/tty/serial/fsl-imx-uart.txt
@@ -0,0 +1,19 @@
+* Freescale i.MX Universal Asynchronous Receiver/Transmitter (UART)
+
+Required properties:
+- compatible : Should be "fsl,<soc>-uart"
+- reg : Address and length of the register set for the device
+- interrupts : Should contain uart interrupt
+
+Optional properties:
+- fsl,uart-has-rtscts : Indicate the uart has rts and cts
+- fsl,irda-mode : Indicate the uart supports irda mode
+
+Example:
+
+uart@73fbc000 {
+ compatible = "fsl,imx51-uart", "fsl,imx21-uart";
+ reg = <0x73fbc000 0x4000>;
+ interrupts = <31>;
+ fsl,uart-has-rtscts;
+};
diff --git a/Documentation/devicetree/bindings/tty/serial/of-serial.txt b/Documentation/devicetree/bindings/tty/serial/of-serial.txt
new file mode 100644
index 000000000000..b8b27b0aca10
--- /dev/null
+++ b/Documentation/devicetree/bindings/tty/serial/of-serial.txt
@@ -0,0 +1,36 @@
+* UART (Universal Asynchronous Receiver/Transmitter)
+
+Required properties:
+- compatible : one of:
+ - "ns8250"
+ - "ns16450"
+ - "ns16550a"
+ - "ns16550"
+ - "ns16750"
+ - "ns16850"
+ - "nvidia,tegra20-uart"
+ - "ibm,qpace-nwp-serial"
+ - "serial" if the port type is unknown.
+- reg : offset and length of the register set for the device.
+- interrupts : should contain uart interrupt.
+- clock-frequency : the input clock frequency for the UART.
+
+Optional properties:
+- current-speed : the current active speed of the UART.
+- reg-offset : offset to apply to the mapbase from the start of the registers.
+- reg-shift : quantity to shift the register offsets by.
+- reg-io-width : the size (in bytes) of the IO accesses that should be
+ performed on the device. There are some systems that require 32-bit
+ accesses to the UART (e.g. TI davinci).
+- used-by-rtas : set to indicate that the port is in use by the OpenFirmware
+ RTAS and should not be registered.
+
+Example:
+
+ uart@80230000 {
+ compatible = "ns8250";
+ reg = <0x80230000 0x100>;
+ clock-frequency = <3686400>;
+ interrupts = <10>;
+ reg-shift = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/watchdog/fsl-imx-wdt.txt b/Documentation/devicetree/bindings/watchdog/fsl-imx-wdt.txt
new file mode 100644
index 000000000000..2144af1a5264
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/fsl-imx-wdt.txt
@@ -0,0 +1,14 @@
+* Freescale i.MX Watchdog Timer (WDT) Controller
+
+Required properties:
+- compatible : Should be "fsl,<soc>-wdt"
+- reg : Should contain WDT registers location and length
+- interrupts : Should contain WDT interrupt
+
+Examples:
+
+wdt@73f98000 {
+ compatible = "fsl,imx51-wdt", "fsl,imx21-wdt";
+ reg = <0x73f98000 0x4000>;
+ interrupts = <58>;
+};
diff --git a/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt b/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt
new file mode 100644
index 000000000000..79ead8263ae4
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/samsung-wdt.txt
@@ -0,0 +1,11 @@
+* Samsung's Watchdog Timer Controller
+
+The Samsung's Watchdog controller is used for resuming system operation
+after a preset amount of time during which the WDT reset event has not
+occured.
+
+Required properties:
+- compatible : should be "samsung,s3c2410-wdt"
+- reg : base physical address of the controller and length of memory mapped
+ region.
+- interrupts : interrupt number to the cpu.
diff --git a/Documentation/driver-model/device.txt b/Documentation/driver-model/device.txt
index b2ff42685bcb..bdefe728a737 100644
--- a/Documentation/driver-model/device.txt
+++ b/Documentation/driver-model/device.txt
@@ -104,4 +104,4 @@ Then in the module init function is would do:
And assuming 'dev' is the struct device passed into the probe hook, the driver
probe function would do something like:
- create_device(&mydriver_class, dev, chrdev, &private_data, "my_name");
+ device_create(&mydriver_class, dev, chrdev, &private_data, "my_name");
diff --git a/Documentation/driver-model/overview.txt b/Documentation/driver-model/overview.txt
index 07236ed968da..6a8f9a8075d8 100644
--- a/Documentation/driver-model/overview.txt
+++ b/Documentation/driver-model/overview.txt
@@ -30,7 +30,7 @@ management, and hot plug. In particular, the model dictated by Intel and
Microsoft (namely ACPI) ensures that almost every device on almost any bus
on an x86-compatible system can work within this paradigm. Of course,
not every bus is able to support all such operations, although most
-buses support a most of those operations.
+buses support most of those operations.
Downstream Access
@@ -46,25 +46,29 @@ struct pci_dev now looks like this:
struct pci_dev {
...
- struct device dev;
+ struct device dev; /* Generic device interface */
+ ...
};
-Note first that it is statically allocated. This means only one allocation on
-device discovery. Note also that it is at the _end_ of struct pci_dev. This is
-to make people think about what they're doing when switching between the bus
-driver and the global driver; and to prevent against mindless casts between
-the two.
+Note first that the struct device dev within the struct pci_dev is
+statically allocated. This means only one allocation on device discovery.
+
+Note also that that struct device dev is not necessarily defined at the
+front of the pci_dev structure. This is to make people think about what
+they're doing when switching between the bus driver and the global driver,
+and to discourage meaningless and incorrect casts between the two.
The PCI bus layer freely accesses the fields of struct device. It knows about
the structure of struct pci_dev, and it should know the structure of struct
device. Individual PCI device drivers that have been converted to the current
driver model generally do not and should not touch the fields of struct device,
-unless there is a strong compelling reason to do so.
+unless there is a compelling reason to do so.
-This abstraction is prevention of unnecessary pain during transitional phases.
-If the name of the field changes or is removed, then every downstream driver
-will break. On the other hand, if only the bus layer (and not the device
-layer) accesses struct device, it is only that layer that needs to change.
+The above abstraction prevents unnecessary pain during transitional phases.
+If it were not done this way, then when a field was renamed or removed, every
+downstream driver would break. On the other hand, if only the bus layer
+(and not the device layer) accesses the struct device, it is only the bus
+layer that needs to change.
User Interface
@@ -73,15 +77,27 @@ User Interface
By virtue of having a complete hierarchical view of all the devices in the
system, exporting a complete hierarchical view to userspace becomes relatively
easy. This has been accomplished by implementing a special purpose virtual
-file system named sysfs. It is hence possible for the user to mount the
-whole sysfs filesystem anywhere in userspace.
+file system named sysfs.
+
+Almost all mainstream Linux distros mount this filesystem automatically; you
+can see some variation of the following in the output of the "mount" command:
+
+$ mount
+...
+none on /sys type sysfs (rw,noexec,nosuid,nodev)
+...
+$
+
+The auto-mounting of sysfs is typically accomplished by an entry similar to
+the following in the /etc/fstab file:
+
+none /sys sysfs defaults 0 0
-This can be done permanently by providing the following entry into the
-/etc/fstab (under the provision that the mount point does exist, of course):
+or something similar in the /lib/init/fstab file on Debian-based systems:
-none /sys sysfs defaults 0 0
+none /sys sysfs nodev,noexec,nosuid 0 0
-Or by hand on the command line:
+If sysfs is not automatically mounted, you can always do it manually with:
# mount -t sysfs sysfs /sys
diff --git a/Documentation/fb/modedb.txt b/Documentation/fb/modedb.txt
index ec4dee75a354..16aa08453911 100644
--- a/Documentation/fb/modedb.txt
+++ b/Documentation/fb/modedb.txt
@@ -20,7 +20,7 @@ in a video= option, fbmem considers that to be a global video mode option.
Valid mode specifiers (mode_option argument):
- <xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m]
+ <xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]
<name>[-<bpp>][@<refresh>]
with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.
@@ -36,6 +36,21 @@ pixels and 1.8% of yres).
Sample usage: 1024x768M@60m - CVT timing with margins
+DRM drivers also add options to enable or disable outputs:
+
+'e' will force the display to be enabled, i.e. it will override the detection
+if a display is connected. 'D' will force the display to be enabled and use
+digital output. This is useful for outputs that have both analog and digital
+signals (e.g. HDMI and DVI-I). For other outputs it behaves like 'e'. If 'd'
+is specified the output is disabled.
+
+You can additionally specify which output the options matches to.
+To force the VGA output to be enabled and drive a specific mode say:
+ video=VGA-1:1280x1024@60me
+
+Specifying the option multiple times for different ports is possible, e.g.:
+ video=LVDS-1:d video=HDMI-1:D
+
***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo ***** oOo *****
What is the VESA(TM) Coordinated Video Timings (CVT)?
@@ -132,5 +147,5 @@ There may be more modes.
tridentfb - Trident (Cyber)blade chipset frame buffer
vt8623fb - VIA 8623 frame buffer
-BTW, only a few drivers use this at the moment. Others are to follow
-(feel free to send patches).
+BTW, only a few fb drivers use this at the moment. Others are to follow
+(feel free to send patches). The DRM drivers also support this.
diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt
index 8a988e5708ba..ea0bace0124a 100644
--- a/Documentation/feature-removal-schedule.txt
+++ b/Documentation/feature-removal-schedule.txt
@@ -184,7 +184,7 @@ Why: /proc/<pid>/oom_adj allows userspace to influence the oom killer's
A much more powerful interface, /proc/<pid>/oom_score_adj, was
introduced with the oom killer rewrite that allows users to increase or
- decrease the badness() score linearly. This interface will replace
+ decrease the badness score linearly. This interface will replace
/proc/<pid>/oom_adj.
A warning will be emitted to the kernel log if an application uses this
@@ -193,20 +193,6 @@ Why: /proc/<pid>/oom_adj allows userspace to influence the oom killer's
---------------------------
-What: CS5535/CS5536 obsolete GPIO driver
-When: June 2011
-Files: drivers/staging/cs5535_gpio/*
-Check: drivers/staging/cs5535_gpio/cs5535_gpio.c
-Why: A newer driver replaces this; it is drivers/gpio/cs5535-gpio.c, and
- integrates with the Linux GPIO subsystem. The old driver has been
- moved to staging, and will be removed altogether around 2.6.40.
- Please test the new driver, and ensure that the functionality you
- need and any bugfixes from the old driver are available in the new
- one.
-Who: Andres Salomon <dilinger@queued.net>
-
---------------------------
-
What: remove EXPORT_SYMBOL(kernel_thread)
When: August 2006
Files: arch/*/kernel/*_ksyms.c
@@ -294,7 +280,7 @@ When: The schedule was July 2008, but it was decided that we are going to keep t
Why: The support code for the old firmware hurts code readability/maintainability
and slightly hurts runtime performance. Bugfixes for the old firmware
are not provided by Broadcom anymore.
-Who: Michael Buesch <mb@bu3sch.de>
+Who: Michael Buesch <m@bues.ch>
---------------------------
@@ -430,7 +416,7 @@ Who: Avi Kivity <avi@redhat.com>
----------------------------
What: iwlwifi 50XX module parameters
-When: 2.6.40
+When: 3.0
Why: The "..50" modules parameters were used to configure 5000 series and
up devices; different set of module parameters also available for 4965
with same functionalities. Consolidate both set into single place
@@ -441,7 +427,7 @@ Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
----------------------------
What: iwl4965 alias support
-When: 2.6.40
+When: 3.0
Why: Internal alias support has been present in module-init-tools for some
time, the MODULE_ALIAS("iwl4965") boilerplate aliases can be removed
with no impact.
@@ -474,15 +460,8 @@ Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
----------------------------
-What: DMA_xxBIT_MASK macros
-When: Jun 2011
-Why: DMA_xxBIT_MASK macros were replaced with DMA_BIT_MASK() macros.
-Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
-
-----------------------------
-
What: iwlwifi disable_hw_scan module parameters
-When: 2.6.40
+When: 3.0
Why: Hareware scan is the prefer method for iwlwifi devices for
scanning operation. Remove software scan support for all the
iwlwifi devices.
@@ -491,26 +470,6 @@ Who: Wey-Yi Guy <wey-yi.w.guy@intel.com>
----------------------------
-What: access to nfsd auth cache through sys_nfsservctl or '.' files
- in the 'nfsd' filesystem.
-When: 2.6.40
-Why: This is a legacy interface which have been replaced by a more
- dynamic cache. Continuing to maintain this interface is an
- unnecessary burden.
-Who: NeilBrown <neilb@suse.de>
-
-----------------------------
-
-What: cancel_rearming_delayed_work[queue]()
-When: 2.6.39
-
-Why: The functions have been superceded by cancel_delayed_work_sync()
- quite some time ago. The conversion is trivial and there is no
- in-kernel user left.
-Who: Tejun Heo <tj@kernel.org>
-
-----------------------------
-
What: Legacy, non-standard chassis intrusion detection interface.
When: June 2011
Why: The adm9240, w83792d and w83793 hardware monitoring drivers have
@@ -528,22 +487,6 @@ Files: net/netfilter/xt_connlimit.c
----------------------------
-What: noswapaccount kernel command line parameter
-When: 2.6.40
-Why: The original implementation of memsw feature enabled by
- CONFIG_CGROUP_MEM_RES_CTLR_SWAP could be disabled by the noswapaccount
- kernel parameter (introduced in 2.6.29-rc1). Later on, this decision
- turned out to be not ideal because we cannot have the feature compiled
- in and disabled by default and let only interested to enable it
- (e.g. general distribution kernels might need it). Therefore we have
- added swapaccount[=0|1] parameter (introduced in 2.6.37) which provides
- the both possibilities. If we remove noswapaccount we will have
- less command line parameters with the same functionality and we
- can also cleanup the parameter handling a bit ().
-Who: Michal Hocko <mhocko@suse.cz>
-
-----------------------------
-
What: ipt_addrtype match include file
When: 2012
Why: superseded by xt_addrtype
@@ -562,7 +505,7 @@ Who: Jean Delvare <khali@linux-fr.org>
----------------------------
What: Support for UVCIOC_CTRL_ADD in the uvcvideo driver
-When: 2.6.42
+When: 3.2
Why: The information passed to the driver by this ioctl is now queried
dynamically from the device.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
@@ -570,7 +513,7 @@ Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
----------------------------
What: Support for UVCIOC_CTRL_MAP_OLD in the uvcvideo driver
-When: 2.6.42
+When: 3.2
Why: Used only by applications compiled against older driver versions.
Superseded by UVCIOC_CTRL_MAP which supports V4L2 menu controls.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
@@ -578,7 +521,7 @@ Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
----------------------------
What: Support for UVCIOC_CTRL_GET and UVCIOC_CTRL_SET in the uvcvideo driver
-When: 2.6.42
+When: 3.2
Why: Superseded by the UVCIOC_CTRL_QUERY ioctl.
Who: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
@@ -640,3 +583,10 @@ Why: Just opening a V4L device should not change the state of the hardware
Who: Hans Verkuil <hans.verkuil@cisco.com>
----------------------------
+
+What: g_file_storage driver
+When: 3.8
+Why: This driver has been superseded by g_mass_storage.
+Who: Alan Stern <stern@rowland.harvard.edu>
+
+----------------------------
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 57d827d6071d..653380793a6c 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -52,7 +52,7 @@ ata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
void (*truncate) (struct inode *);
int (*permission) (struct inode *, int, unsigned int);
- int (*check_acl)(struct inode *, int, unsigned int);
+ int (*get_acl)(struct inode *, int);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
@@ -80,7 +80,7 @@ put_link: no
truncate: yes (see below)
setattr: yes
permission: no (may not block if called in rcu-walk mode)
-check_acl: no
+get_acl: no
getattr: no
setxattr: yes
getxattr: no
@@ -338,21 +338,21 @@ fl_release_private: maybe no
----------------------- lock_manager_operations ---------------------------
prototypes:
- int (*fl_compare_owner)(struct file_lock *, struct file_lock *);
- void (*fl_notify)(struct file_lock *); /* unblock callback */
- int (*fl_grant)(struct file_lock *, struct file_lock *, int);
- void (*fl_release_private)(struct file_lock *);
- void (*fl_break)(struct file_lock *); /* break_lease callback */
- int (*fl_change)(struct file_lock **, int);
+ int (*lm_compare_owner)(struct file_lock *, struct file_lock *);
+ void (*lm_notify)(struct file_lock *); /* unblock callback */
+ int (*lm_grant)(struct file_lock *, struct file_lock *, int);
+ void (*lm_release_private)(struct file_lock *);
+ void (*lm_break)(struct file_lock *); /* break_lease callback */
+ int (*lm_change)(struct file_lock **, int);
locking rules:
file_lock_lock may block
-fl_compare_owner: yes no
-fl_notify: yes no
-fl_grant: no no
-fl_release_private: maybe no
-fl_break: yes no
-fl_change yes no
+lm_compare_owner: yes no
+lm_notify: yes no
+lm_grant: no no
+lm_release_private: maybe no
+lm_break: yes no
+lm_change yes no
--------------------------- buffer_head -----------------------------------
prototypes:
@@ -412,7 +412,7 @@ prototypes:
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
- int (*fsync) (struct file *, int datasync);
+ int (*fsync) (struct file *, loff_t start, loff_t end, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
@@ -438,9 +438,7 @@ prototypes:
locking rules:
All may block except for ->setlease.
- No VFS locks held on entry except for ->fsync and ->setlease.
-
-->fsync() has i_mutex on inode.
+ No VFS locks held on entry except for ->setlease.
->setlease has the file_list_lock held and must not sleep.
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt
index ed52af60c2d8..742cc06e138f 100644
--- a/Documentation/filesystems/debugfs.txt
+++ b/Documentation/filesystems/debugfs.txt
@@ -73,8 +73,8 @@ the following functions can be used instead:
struct dentry *parent, u16 *value);
struct dentry *debugfs_create_x32(const char *name, mode_t mode,
struct dentry *parent, u32 *value);
-
-Note that there is no debugfs_create_x64().
+ struct dentry *debugfs_create_x64(const char *name, mode_t mode,
+ struct dentry *parent, u64 *value);
These functions are useful as long as the developer knows the size of the
value to be exported. Some types can have different widths on different
diff --git a/Documentation/filesystems/ext3.txt b/Documentation/filesystems/ext3.txt
index 272f80d5f966..22f3a0eda1d2 100644
--- a/Documentation/filesystems/ext3.txt
+++ b/Documentation/filesystems/ext3.txt
@@ -147,15 +147,6 @@ grpjquota=<file> during journal replay. They replace the above
package for more details
(http://sourceforge.net/projects/linuxquota).
-bh (*) ext3 associates buffer heads to data pages to
-nobh (a) cache disk block mapping information
- (b) link pages into transaction to provide
- ordering guarantees.
- "bh" option forces use of buffer heads.
- "nobh" option tries to avoid associating buffer
- heads (supported only for "writeback" mode).
-
-
Specification
=============
Ext3 shares all disk implementation with the ext2 filesystem, and adds
@@ -227,5 +218,5 @@ kernel source: <file:fs/ext3/>
programs: http://e2fsprogs.sourceforge.net/
http://ext2resize.sourceforge.net
-useful links: http://www.ibm.com/developerworks/library/l-fs7.html
- http://www.ibm.com/developerworks/library/l-fs8.html
+useful links: http://www.ibm.com/developerworks/library/l-fs7/index.html
+ http://www.ibm.com/developerworks/library/l-fs8/index.html
diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt
index 3ae9bc94352a..232a575a0c48 100644
--- a/Documentation/filesystems/ext4.txt
+++ b/Documentation/filesystems/ext4.txt
@@ -68,12 +68,12 @@ Note: More extensive information for getting started with ext4 can be
'-o barriers=[0|1]' mount option for both ext3 and ext4 filesystems
for a fair comparison. When tuning ext3 for best benchmark numbers,
it is often worthwhile to try changing the data journaling mode; '-o
- data=writeback,nobh' can be faster for some workloads. (Note
- however that running mounted with data=writeback can potentially
- leave stale data exposed in recently written files in case of an
- unclean shutdown, which could be a security exposure in some
- situations.) Configuring the filesystem with a large journal can
- also be helpful for metadata-intensive workloads.
+ data=writeback' can be faster for some workloads. (Note however that
+ running mounted with data=writeback can potentially leave stale data
+ exposed in recently written files in case of an unclean shutdown,
+ which could be a security exposure in some situations.) Configuring
+ the filesystem with a large journal can also be helpful for
+ metadata-intensive workloads.
2. Features
===========
@@ -272,14 +272,6 @@ grpjquota=<file> during journal replay. They replace the above
package for more details
(http://sourceforge.net/projects/linuxquota).
-bh (*) ext4 associates buffer heads to data pages to
-nobh (a) cache disk block mapping information
- (b) link pages into transaction to provide
- ordering guarantees.
- "bh" option forces use of buffer heads.
- "nobh" option tries to avoid associating buffer
- heads (supported only for "writeback" mode).
-
stripe=n Number of filesystem blocks that mballoc will try
to use for allocation size and alignment. For RAID5/6
systems this should be the number of data
@@ -393,8 +385,7 @@ dioread_nolock locking. If the dioread_nolock option is specified
write and convert the extent to initialized after IO
completes. This approach allows ext4 code to avoid
using inode mutex, which improves scalability on high
- speed storages. However this does not work with nobh
- option and the mount will fail. Nor does it work with
+ speed storages. However this does not work with
data journaling and dioread_nolock option will be
ignored with kernel warning. Note that dioread_nolock
code path is only used for extent-based files.
diff --git a/Documentation/filesystems/nfs/Exporting b/Documentation/filesystems/nfs/Exporting
index 87019d2b5981..09994c247289 100644
--- a/Documentation/filesystems/nfs/Exporting
+++ b/Documentation/filesystems/nfs/Exporting
@@ -92,7 +92,14 @@ For a filesystem to be exportable it must:
1/ provide the filehandle fragment routines described below.
2/ make sure that d_splice_alias is used rather than d_add
when ->lookup finds an inode for a given parent and name.
- Typically the ->lookup routine will end with a:
+
+ If inode is NULL, d_splice_alias(inode, dentry) is eqivalent to
+
+ d_add(dentry, inode), NULL
+
+ Similarly, d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err)
+
+ Typically the ->lookup routine will simply end with a:
return d_splice_alias(inode, dentry);
}
diff --git a/Documentation/filesystems/nfs/nfs41-server.txt b/Documentation/filesystems/nfs/nfs41-server.txt
index 04884914a1c8..092fad92a3f0 100644
--- a/Documentation/filesystems/nfs/nfs41-server.txt
+++ b/Documentation/filesystems/nfs/nfs41-server.txt
@@ -39,27 +39,17 @@ interoperability problems with future clients. Known issues:
from a linux client are possible, but we aren't really
conformant with the spec (for example, we don't use kerberos
on the backchannel correctly).
- - no trunking support: no clients currently take advantage of
- trunking, but this is a mandatory feature, and its use is
- recommended to clients in a number of places. (E.g. to ensure
- timely renewal in case an existing connection's retry timeouts
- have gotten too long; see section 8.3 of the RFC.)
- Therefore, lack of this feature may cause future clients to
- fail.
- Incomplete backchannel support: incomplete backchannel gss
support and no support for BACKCHANNEL_CTL mean that
callbacks (hence delegations and layouts) may not be
available and clients confused by the incomplete
implementation may fail.
- - Server reboot recovery is unsupported; if the server reboots,
- clients may fail.
- We do not support SSV, which provides security for shared
client-server state (thus preventing unauthorized tampering
with locks and opens, for example). It is mandatory for
servers to support this, though no clients use it yet.
- Mandatory operations which we do not support, such as
- DESTROY_CLIENTID, FREE_STATEID, SECINFO_NO_NAME, and
- TEST_STATEID, are not currently used by clients, but will be
+ DESTROY_CLIENTID, are not currently used by clients, but will be
(and the spec recommends their uses in common cases), and
clients should not be expected to know how to recover from the
case where they are not supported. This will eventually cause
@@ -69,8 +59,9 @@ In addition, some limitations are inherited from the current NFSv4
implementation:
- Incomplete delegation enforcement: if a file is renamed or
- unlinked, a client holding a delegation may continue to
- indefinitely allow opens of the file under the old name.
+ unlinked by a local process, a client holding a delegation may
+ continue to indefinitely allow opens of the file under the old
+ name.
The table below, taken from the NFSv4.1 document, lists
the operations that are mandatory to implement (REQ), optional
@@ -99,7 +90,7 @@ Operations
+----------------------+------------+--------------+----------------+
| ACCESS | REQ | | Section 18.1 |
NS | BACKCHANNEL_CTL | REQ | | Section 18.33 |
-NS | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
+I | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
| CLOSE | REQ | | Section 18.2 |
| COMMIT | REQ | | Section 18.3 |
| CREATE | REQ | | Section 18.4 |
@@ -111,7 +102,7 @@ NS*| DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 |
NS | DESTROY_CLIENTID | REQ | | Section 18.50 |
I | DESTROY_SESSION | REQ | | Section 18.37 |
I | EXCHANGE_ID | REQ | | Section 18.35 |
-NS | FREE_STATEID | REQ | | Section 18.38 |
+I | FREE_STATEID | REQ | | Section 18.38 |
| GETATTR | REQ | | Section 18.7 |
P | GETDEVICEINFO | OPT | pNFS (REQ) | Section 18.40 |
P | GETDEVICELIST | OPT | pNFS (OPT) | Section 18.41 |
@@ -145,14 +136,14 @@ NS*| OPENATTR | OPT | | Section 18.17 |
| RESTOREFH | REQ | | Section 18.27 |
| SAVEFH | REQ | | Section 18.28 |
| SECINFO | REQ | | Section 18.29 |
-NS | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, |
+I | SECINFO_NO_NAME | REC | pNFS files | Section 18.45, |
| | | layout (REQ) | Section 13.12 |
I | SEQUENCE | REQ | | Section 18.46 |
| SETATTR | REQ | | Section 18.30 |
| SETCLIENTID | MNI | | N/A |
| SETCLIENTID_CONFIRM | MNI | | N/A |
NS | SET_SSV | REQ | | Section 18.47 |
-NS | TEST_STATEID | REQ | | Section 18.48 |
+I | TEST_STATEID | REQ | | Section 18.48 |
| VERIFY | REQ | | Section 18.31 |
NS*| WANT_DELEGATION | OPT | FDELG (OPT) | Section 18.49 |
| WRITE | REQ | | Section 18.32 |
@@ -206,12 +197,6 @@ CREATE_SESSION:
SEQUENCE:
* no support for dynamic slot table renegotiation (optional)
-nfsv4.1 COMPOUND rules:
-The following cases aren't supported yet:
-* Enforcing of NFS4ERR_NOT_ONLY_OP for: BIND_CONN_TO_SESSION, CREATE_SESSION,
- DESTROY_CLIENTID, DESTROY_SESSION, EXCHANGE_ID.
-* DESTROY_SESSION MUST be the final operation in the COMPOUND request.
-
Nonstandard compound limitations:
* No support for a sessions fore channel RPC compound that requires both a
ca_maxrequestsize request and a ca_maxresponsesize reply, so we may
@@ -219,3 +204,5 @@ Nonstandard compound limitations:
negotiation.
* No more than one IO operation (read, write, readdir) allowed per
compound.
+
+See also http://wiki.linux-nfs.org/wiki/index.php/Server_4.0_and_4.1_issues.
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
index 90c71c6f0d00..ffdd9d866ad7 100644
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ b/Documentation/filesystems/nfs/nfsroot.txt
@@ -226,7 +226,7 @@ They depend on various facilities being available:
cdrecord.
e.g.
- cdrecord dev=ATAPI:1,0,0 arch/i386/boot/image.iso
+ cdrecord dev=ATAPI:1,0,0 arch/x86/boot/image.iso
For more information on isolinux, including how to create bootdisks
for prebuilt kernels, see http://syslinux.zytor.com/
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
index 6e29954851a2..b4a3d765ff9a 100644
--- a/Documentation/filesystems/porting
+++ b/Documentation/filesystems/porting
@@ -400,10 +400,32 @@ a file off.
--
[mandatory]
-
---
-[mandatory]
->get_sb() is gone. Switch to use of ->mount(). Typically it's just
a matter of switching from calling get_sb_... to mount_... and changing the
function type. If you were doing it manually, just switch from setting ->mnt_root
to some pointer to returning that pointer. On errors return ERR_PTR(...).
+
+--
+[mandatory]
+ ->permission() and generic_permission()have lost flags
+argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
+ generic_permission() has also lost the check_acl argument; ACL checking
+has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
+to read an ACL from disk.
+
+--
+[mandatory]
+ If you implement your own ->llseek() you must handle SEEK_HOLE and
+SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
+support it in some way. The generic handler assumes that the entire file is
+data and there is a virtual hole at the end of the file. So if the provided
+offset is less than i_size and SEEK_DATA is specified, return the same offset.
+If the above is true for the offset and you are given SEEK_HOLE, return the end
+of the file. If the offset is i_size or greater return -ENXIO in either case.
+
+[mandatory]
+ If you have your own ->fsync() you must make sure to call
+filemap_write_and_wait_range() so that all dirty pages are synced out properly.
+You must also keep in mind that ->fsync() is not called with i_mutex held
+anymore, so if you require i_mutex locking you must make sure to take it and
+release it yourself.
diff --git a/Documentation/filesystems/squashfs.txt b/Documentation/filesystems/squashfs.txt
index d4d41465a0b1..7db3ebda5a4c 100644
--- a/Documentation/filesystems/squashfs.txt
+++ b/Documentation/filesystems/squashfs.txt
@@ -2,7 +2,7 @@ SQUASHFS 4.0 FILESYSTEM
=======================
Squashfs is a compressed read-only filesystem for Linux.
-It uses zlib/lzo compression to compress files, inodes and directories.
+It uses zlib/lzo/xz compression to compress files, inodes and directories.
Inodes in the system are very small and all blocks are packed to minimise
data overhead. Block sizes greater than 4K are supported up to a maximum
of 1Mbytes (default block size 128K).
@@ -55,6 +55,8 @@ create populated squashfs filesystems. This and other squashfs utilities
can be obtained from http://www.squashfs.org. Usage instructions can be
obtained from this site also.
+The squashfs-tools development tree is now located on kernel.org
+ git://git.kernel.org/pub/scm/fs/squashfs/squashfs-tools.git
3. SQUASHFS FILESYSTEM DESIGN
-----------------------------
diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt
index 8e4fab639d9c..a0a61d2f389f 100644
--- a/Documentation/filesystems/ubifs.txt
+++ b/Documentation/filesystems/ubifs.txt
@@ -111,34 +111,6 @@ The following is an example of the kernel boot arguments to attach mtd0
to UBI and mount volume "rootfs":
ubi.mtd=0 root=ubi0:rootfs rootfstype=ubifs
-
-Module Parameters for Debugging
-===============================
-
-When UBIFS has been compiled with debugging enabled, there are 2 module
-parameters that are available to control aspects of testing and debugging.
-
-debug_chks Selects extra checks that UBIFS can do while running:
-
- Check Flag value
-
- General checks 1
- Check Tree Node Cache (TNC) 2
- Check indexing tree size 4
- Check orphan area 8
- Check old indexing tree 16
- Check LEB properties (lprops) 32
- Check leaf nodes and inodes 64
-
-debug_tsts Selects a mode of testing, as follows:
-
- Test mode Flag value
-
- Failure mode for recovery testing 4
-
-For example, set debug_chks to 3 to enable general and TNC checks.
-
-
References
==========
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index 88b9f5519af9..52d8fb81cfff 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -229,6 +229,8 @@ struct super_operations {
ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t);
ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t);
+ int (*nr_cached_objects)(struct super_block *);
+ void (*free_cached_objects)(struct super_block *, int);
};
All methods are called without any locks being held, unless otherwise
@@ -301,6 +303,26 @@ or bottom half).
quota_write: called by the VFS to write to filesystem quota file.
+ nr_cached_objects: called by the sb cache shrinking function for the
+ filesystem to return the number of freeable cached objects it contains.
+ Optional.
+
+ free_cache_objects: called by the sb cache shrinking function for the
+ filesystem to scan the number of objects indicated to try to free them.
+ Optional, but any filesystem implementing this method needs to also
+ implement ->nr_cached_objects for it to be called correctly.
+
+ We can't do anything with any errors that the filesystem might
+ encountered, hence the void return type. This will never be called if
+ the VM is trying to reclaim under GFP_NOFS conditions, hence this
+ method does not need to handle that situation itself.
+
+ Implementations must include conditional reschedule calls inside any
+ scanning loop that is done. This allows the VFS to determine
+ appropriate scan batch sizes without having to worry about whether
+ implementations will cause holdoff problems due to large scan batch
+ sizes.
+
Whoever sets up the inode is responsible for filling in the "i_op" field. This
is a pointer to a "struct inode_operations" which describes the methods that
can be performed on individual inodes.
@@ -333,8 +355,8 @@ struct inode_operations {
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
void (*truncate) (struct inode *);
- int (*permission) (struct inode *, int, unsigned int);
- int (*check_acl)(struct inode *, int, unsigned int);
+ int (*permission) (struct inode *, int);
+ int (*get_acl)(struct inode *, int);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *);
int (*setxattr) (struct dentry *, const char *,const void *,size_t,int);
@@ -423,7 +445,7 @@ otherwise noted.
permission: called by the VFS to check for access rights on a POSIX-like
filesystem.
- May be called in rcu-walk mode (flags & IPERM_FLAG_RCU). If in rcu-walk
+ May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in rcu-walk
mode, the filesystem must check the permission without blocking or
storing to the inode.
@@ -755,7 +777,7 @@ struct file_operations {
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
- int (*fsync) (struct file *, int datasync);
+ int (*fsync) (struct file *, loff_t, loff_t, int datasync);
int (*aio_fsync) (struct kiocb *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index 38425f0f2645..6f496a586732 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -76,7 +76,8 @@ IT8718F, IT8720F, IT8721F, IT8726F, IT8758E and SiS950 chips.
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
joysticks and other miscellaneous stuff. For hardware monitoring, they
include an 'environment controller' with 3 temperature sensors, 3 fan
-rotation speed sensors, 8 voltage sensors, and associated alarms.
+rotation speed sensors, 8 voltage sensors, associated alarms, and chassis
+intrusion detection.
The IT8712F and IT8716F additionally feature VID inputs, used to report
the Vcore voltage of the processor. The early IT8712F have 5 VID pins,
diff --git a/Documentation/hwmon/lm78 b/Documentation/hwmon/lm78
index 60932e26abaa..2bdc881a0c12 100644
--- a/Documentation/hwmon/lm78
+++ b/Documentation/hwmon/lm78
@@ -13,7 +13,8 @@ Supported chips:
Datasheet: Publicly available at the National Semiconductor website
http://www.national.com/
-Author: Frodo Looijaard <frodol@dds.nl>
+Authors: Frodo Looijaard <frodol@dds.nl>
+ Jean Delvare <khali@linux-fr.org>
Description
-----------
diff --git a/Documentation/hwmon/sch5636 b/Documentation/hwmon/sch5636
new file mode 100644
index 000000000000..f83bd1c260f0
--- /dev/null
+++ b/Documentation/hwmon/sch5636
@@ -0,0 +1,31 @@
+Kernel driver sch5636
+=====================
+
+Supported chips:
+ * SMSC SCH5636
+ Prefix: 'sch5636'
+ Addresses scanned: none, address read from Super I/O config space
+
+Author: Hans de Goede <hdegoede@redhat.com>
+
+
+Description
+-----------
+
+SMSC SCH5636 Super I/O chips include an embedded microcontroller for
+hardware monitoring solutions, allowing motherboard manufacturers to create
+their own custom hwmon solution based upon the SCH5636.
+
+Currently the sch5636 driver only supports the Fujitsu Theseus SCH5636 based
+hwmon solution. The sch5636 driver runs a sanity check on loading to ensure
+it is dealing with a Fujitsu Theseus and not with another custom SCH5636 based
+hwmon solution.
+
+The Fujitsu Theseus can monitor up to 5 voltages, 8 fans and 16
+temperatures. Note that the driver detects how many fan headers /
+temperature sensors are actually implemented on the motherboard, so you will
+likely see fewer temperature and fan inputs.
+
+An application note describing the Theseus' registers, as well as an
+application note describing the protocol for communicating with the
+microcontroller is available upon request. Please mail me if you want a copy.
diff --git a/Documentation/i2o/ioctl b/Documentation/i2o/ioctl
index 1e77fac4e120..22ca53a67e23 100644
--- a/Documentation/i2o/ioctl
+++ b/Documentation/i2o/ioctl
@@ -110,7 +110,7 @@ V. Getting Logical Configuration Table
ENOBUFS Buffer not large enough. If this occurs, the required
buffer length is written into *(lct->reslen)
-VI. Settting Parameters
+VI. Setting Parameters
SYNOPSIS
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 3a46e360496d..72ba8d51dbc1 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -301,6 +301,7 @@ Code Seq#(hex) Include File Comments
<mailto:rusty@rustcorp.com.au>
0xAE all linux/kvm.h Kernel-based Virtual Machine
<mailto:kvm@vger.kernel.org>
+0xAF 00-1F linux/fsl_hypervisor.h Freescale hypervisor
0xB0 all RATIO devices in development:
<mailto:vgo@ratio.de>
0xB1 00-1F PPPoX <mailto:mostrows@styx.uwaterloo.ca>
diff --git a/Documentation/isdn/README.HiSax b/Documentation/isdn/README.HiSax
index 99e87a61897d..b1a573cf4472 100644
--- a/Documentation/isdn/README.HiSax
+++ b/Documentation/isdn/README.HiSax
@@ -506,7 +506,7 @@ to e.g. the Internet:
<ISDN subsystem - ISDN support -- HiSax>
make clean; make zImage; make modules; make modules_install
2. Install the new kernel
- cp /usr/src/linux/arch/i386/boot/zImage /etc/kernel/linux.isdn
+ cp /usr/src/linux/arch/x86/boot/zImage /etc/kernel/linux.isdn
vi /etc/lilo.conf
<add new kernel in the bootable image section>
lilo
diff --git a/Documentation/ja_JP/SubmitChecklist b/Documentation/ja_JP/SubmitChecklist
index 2df4576f1173..cb5507b1ac81 100644
--- a/Documentation/ja_JP/SubmitChecklist
+++ b/Documentation/ja_JP/SubmitChecklist
@@ -68,7 +68,7 @@ Linux カーネルパッチ投稿者向けチェックリスト
12: CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT, CONFIG_DEBUG_SLAB,
CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES, CONFIG_DEBUG_SPINLOCK,
- CONFIG_DEBUG_SPINLOCK_SLEEP これら全てを同時に有効にして動作確認を
+ CONFIG_DEBUG_ATOMIC_SLEEP これら全てを同時に有効にして動作確認を
行ってください。
13: CONFIG_SMP, CONFIG_PREEMPT を有効にした場合と無効にした場合の両方で
diff --git a/Documentation/ja_JP/SubmittingPatches b/Documentation/ja_JP/SubmittingPatches
index f107c834d242..97f78dd0c085 100644
--- a/Documentation/ja_JP/SubmittingPatches
+++ b/Documentation/ja_JP/SubmittingPatches
@@ -11,16 +11,18 @@ for non English (read: Japanese) speakers and is not intended as a
fork. So if you have any comments or updates of this file, please try
to update the original English file first.
-Last Updated: 2007/10/24
+Last Updated: 2011/06/09
+
==================================
これは、
-linux-2.6.23/Documentation/SubmittingPatches の和訳
+linux-2.6.39/Documentation/SubmittingPatches の和訳
です。
翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ >
-翻訳日: 2007/10/17
+翻訳日: 2011/06/09
翻訳者: Keiichi Kii <k-keiichi at bx dot jp dot nec dot com>
校正者: Masanari Kobayashi さん <zap03216 at nifty dot ne dot jp>
Matsukura さん <nbh--mats at nifty dot com>
+ Takeshi Hamasaki さん <hmatrjp at users dot sourceforge dot jp>
==================================
Linux カーネルに変更を加えるための Howto
@@ -97,7 +99,7 @@ Quilt:
http://savannah.nongnu.org/projects/quilt
Andrew Morton's patch scripts:
-http://userweb.kernel.org/~akpm/stuff/tpp.txt
+http://userweb.kernel.org/~akpm/stuff/patch-scripts.tar.gz
このリンクの先のスクリプトの代わりとして、quilt がパッチマネジメント
ツールとして推奨されています(上のリンクを見てください)。
@@ -109,9 +111,25 @@ http://userweb.kernel.org/~akpm/stuff/tpp.txt
「ドライバー X に対するバグフィックス」あるいは「このパッチはサブシス
テム X に対する更新を含んでいます。どうか取り入れてください。」などです。
+パッチの説明を Linux カーネルのソースコードマネジメントシステム「 git 」の
+コミットログとして簡単に引用できる形で書けば、メンテナから感謝されるでしょう。
+以下の #15 を見てください。
+
説明が長くなりだしたのであれば、おそらくそれはパッチを分ける必要がある
という兆候です。次の #3 を見てください。
+パッチ(シリーズ)を(再)投稿する時、十分なパッチの説明とそのパッチが必要な理由を
+パッチに含めてください。ただ「これはパッチ(シリーズ)のバージョン N」とだけ
+書かないでください。そして、パッチをマージする人にパッチの説明を探させそれを
+パッチに追記させるため、過去のバージョンのパッチやそのパッチの URL を参照する
+手間をかけさせないでください。
+つまり、パッチシリーズとその説明は一緒にあるべきです。これはパッチをマージする
+人、レビューする人、どちらのためにもなります。レビューする人の中には、おそらく
+過去のバージョンのパッチを受け取ってもいない人がいます。
+
+登録済みのバグエントリを修正するパッチであれば、そのバグエントリを示すバグ ID
+や URL を明記してください。
+
3) パッチの分割
意味のあるひとまとまりごとに変更を個々のパッチファイルに分けてください。
@@ -141,7 +159,7 @@ http://userweb.kernel.org/~akpm/stuff/tpp.txt
拒否されるでしょう。
あなたはパッチを投稿する前に最低限パッチスタイルチェッカー
-( scripts/patchcheck.pl )を利用してパッチをチェックすべきです。
+( scripts/checkpatch.pl )を利用してパッチをチェックすべきです。
もしパッチに違反がのこっているならば、それらの全てについてあなたは正当な
理由を示せるようにしておく必要があります。
@@ -192,13 +210,13 @@ VGER.KERNEL.ORG でホスティングされているメーリングリストの
情報がマニュアルページの中に入ってくるように、変更が起きたという
通知を送ってください。
-たとえ、メンテナが #4 で反応がなかったとしても、メンテナのコードに変更を
+たとえ、メンテナが #5 で反応がなかったとしても、メンテナのコードに変更を
加えたときには、いつもメンテナに CC するのを忘れないようにしてください。
-小さなパッチであれば、Adrian Bunk が管理している Trivial Patch Monkey
-(ちょっとしたパッチを集めている)<trivial@kernel.org>に CC してもいい
-です。ちょっとしたパッチとは以下のルールのどれか1つを満たしていなけ
-ればなりません。
+小さなパッチであれば、Trivial Patch Monkey(ちょっとしたパッチを集めている)
+<trivial@kernel.org>に CC してもいいです。その現管理者については MAINTAINERS
+ファイルを見てください。ちょっとしたパッチとは以下のルールのどれか1つを満たして
+いなければなりません。
・ドキュメントのスペルミスの修正
・grep(1) コマンドによる検索を困難にしているスペルの修正
・コンパイル時の警告の修正(無駄な警告が散乱することは好ましくないた
@@ -210,7 +228,6 @@ VGER.KERNEL.ORG でホスティングされているメーリングリストの
・移植性のないコードから移植性のあるコードへの置き換え(小さい範囲で
あればアーキテクチャ特有のことでも他の人がコピーできます)
・作者やメンテナによる修正(すなわち patch monkey の再転送モード)
-EMAIL: <trivial@kernel.org>
7) MIME やリンクや圧縮ファイルや添付ファイルではなくプレインテキストのみ
@@ -233,26 +250,15 @@ MIME 形式の添付ファイルは Linus に手間を取らせることにな
例外:お使いの電子メールクライアントがパッチをめちゃくちゃにするので
あれば、誰かが MIME 形式のパッチを再送するよう求めるかもしれません。
-警告: Mozilla のような特定の電子メールクライアントは電子メールの
-ヘッダに以下のものを付加して送ります。
----- message header ----
-Content-Type: text/plain; charset=us-ascii; format=flowed
----- message header ----
-問題は、「 format=flowed 」が付いた電子メールを特定の受信側の電子メール
-クライアントがタブをスペースに置き換えるというような変更をすることです。
-したがって送られてきたパッチは壊れているように見えるでしょう。
-
-これを修正するには、mozilla の defaults/pref/mailnews.js ファイルを
-以下のように修正します。
-pref("mailnews.send_plaintext_flowed", false); // RFC 2646=======
-pref("mailnews.display.disable_format_flowed_support", true);
+余計な変更を加えずにあなたのパッチを送信するための電子メールクライアントの設定
+のヒントについては Documentation/email-clients.txt を参照してください。
8) 電子メールのサイズ
パッチを Linus へ送るときは常に #7 の手順に従ってください。
大きなパッチはメーリングリストやメンテナにとって不親切です。パッチが
-未圧縮で 40KB を超えるようであるなら、インターネット上のアクセス可能な
+未圧縮で 300KB を超えるようであるなら、インターネット上のアクセス可能な
サーバに保存し、保存場所を示す URL を伝えるほうが適切です。
9) カーネルバージョンの明記
@@ -324,7 +330,7 @@ Linus や LKML への大量の電子メールのために、サブジェクト
(c) 本寄与は(a)、(b)、(c)を証明する第3者から私へ直接提供された
ものであり、私はそれに変更を加えていない。
- (d) 私はこのプロジェクトと本寄与が公のものであることに理解及び同意す
+ (d) 私はこのプロジェクトと本寄与が公のものであることに理解及び同意す
る。同時に、関与した記録(投稿の際の全ての個人情報と sign-off を
含む)が無期限に保全されることと、当該プロジェクト又は関連する
オープンソースライセンスに沿った形で再配布されることに理解及び
@@ -340,7 +346,51 @@ Linus や LKML への大量の電子メールのために、サブジェクト
無視されますが、あなたはそのタグを社内の手続きに利用したり、sign-off に特別
な情報を示したりすることができます。
-13) いつ Acked-by: を使うのか
+あなたがサブシステムまたはブランチのメンテナであれば、受け取ったパッチを自身の
+ツリーにマージするために、わずかに変更が必要となる場合があります。なぜなら
+あなたのツリーの中のコードと投稿者のツリーの中のコードは同一ではないためです。
+もし、あなたが厳密に上記ルール(c)にこだわるのであれば、投稿者に再度差分を
+とるよう依頼すべきです。しかし、これは時間とエネルギーを非生産的に浪費する
+ことになります。ルール(b)はあなたにコードを修正する権利を与えてくれます。
+しかし、投稿者のコードを修正し、その修正によるバグを投稿者に押し付けてしまう
+ことはとても失礼なことです。この問題を解決するために、末尾の投稿者の
+Signed-off-by とあなたがその末尾に追加する Signed-off-by の間に、修正を
+加えたことを示す1行を追加することが推奨されています。
+(その1行の書き方に)決まりはありませんが、大括弧の中に電子メールアドレスや氏名
+と修正内容を記載するやり方は目につきやすく、最終段階での変更の責任があなたに
+あることを明確にするのに十分な方法のようです。例えば、
+
+ Signed-off-by: Random J Developer <random@developer.example.org>
+ [lucky@maintainer.example.org: struct foo moved from foo.c to foo.h]
+ Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>
+
+あなたが安定版のブランチを管理しており、作成者のクレジット、変更の追跡、
+修正のマージ、と同時に苦情からの投稿者の保護を行いたい場合、この慣習は特に
+有用となります。いかなる事情があってもチェンジログに出てくる作成者の
+アイデンティティ情報(From ヘッダ)は変更できないことに注意してください。
+
+バックポートする人のための特別な注意事項。追跡を容易に行うために、コミット
+メッセージのトップ(サブジェクト行のすぐ後)にパッチの起源を示す情報を記述する
+ことは一般的で有用な慣習です。例えば、これは 2.6-stable ツリーでの一例です。
+
+ Date: Tue May 13 19:10:30 2008 +0000
+
+ SCSI: libiscsi regression in 2.6.25: fix nop timer handling
+
+ commit 4cf1043593db6a337f10e006c23c69e5fc93e722 upstream
+
+そして、これは 2.4 ツリーでの一例です。
+
+ Date: Tue May 13 22:12:27 2008 +0200
+
+ wireless, airo: waitbusy() won't delay
+
+ [backport of 2.6 commit b7acbdfbd1f277c1eb23f344f899cfa4cd0bf36a]
+
+どんな形式であれ、この情報はあなたのツリーを追跡する人やあなたのツリーのバグを
+解決しようとしている人にとって価値のある支援となります。
+
+13) いつ Acked-by: と Cc: を使うのか
「 Signed-off-by: 」タグはその署名者がパッチの開発に関わっていたことやパッチ
の伝播パスにいたことを示しています。
@@ -354,7 +404,7 @@ Linus や LKML への大量の電子メールのために、サブジェクト
Acked-by: は Signed-off-by: のように公式なタグではありません。それはメンテナが
少なくともパッチをレビューし、同意を示しているという記録です。そのような
-ことからパッチの統合者がメンテナの「うん、良いと思うよ」という発言を
+ことからパッチをマージする人がメンテナの「うん、良いと思うよ」という発言を
Acked-by: へ置き換えることがあります。
Acked-by: が必ずしもパッチ全体の承認を示しているわけではありません。例えば、
@@ -364,7 +414,62 @@ Acked-by: が必ずしもパッチ全体の承認を示しているわけでは
この点は、ご自分で判断してください。(その Acked-by: が)疑わしい場合は、
メーリングリストアーカイブの中の大元の議論を参照すべきです。
-14) 標準的なパッチのフォーマット
+パッチにコメントする機会を持っていたが、その時にコメントしなかった人がいれば、
+その人を指す「Cc:」タグを任意で追加してもかまいません。これは指定された人からの
+明確なアクションなしに付与できる唯一のタグです。
+このタグはパッチに関心があると思われる人達がそのパッチの議論に含まれていたこと
+を明文化します。
+
+14) Reported-by と Tested-by: と Reviewed-by: の利用
+
+他の誰かによって報告された問題を修正するパッチであれば、問題報告者という寄与を
+クレジットするために、Reported-by: タグを追加することを検討してください。
+こまめにバグ報告者をクレジットしていくことで、うまくいけばその人たちが将来再び
+コミュニティの力となってくれるでしょう。
+ただし、報告者の許可無くこのタグを追加しないように注意してください。特に、
+問題が公の場で報告されていなかったのであれば。
+
+Tested-by: タグはタグで指定された人によって(ある環境下で)パッチのテストに成功
+していることを示します。このタグはメンテナにテストが実施済みであることを
+知らせ、将来の関連パッチのテスト協力者を見つける方法を提供し、テスト実施者に
+対するクレジットを保証します。
+
+Reviewed-by: タグは、それとは異なり、下記のレビューア宣言の下にレビューされ、
+受け入れ可能とみなされたパッチであることを示します。
+
+ レビューアによる監督宣言
+
+ 私は Reviewed-by: タグを提示することによって、以下のことを明言する。
+
+ (a) 私はメインラインカーネルへの統合に向け、その妥当性及び「即応性
+ (訳注)」を検証し、技術的側面からパッチをレビュー済みである。
+
+ 訳注:
+ 「即応性」の原文は "readiness"。
+ パッチが十分な品質を持っており、メインラインカーネルへの統合を即座に
+ 行うことができる状態であるかどうかを "readiness" という単語で表現
+ している。
+
+ (b) パッチに関するあらゆる問題、懸念、あるいは、疑問は投稿者へ伝達済み
+ である。私はそれらのコメントに対する投稿者の返答に満足している。
+
+ (c) 投稿に伴い改良されるコードがある一方で、現時点で、私は(1)それが
+ カーネルにとって価値のある変更であること、そして、(2)統合に際して
+ 議論になり得るような問題はないものと確信している。
+
+ (d) 私はパッチをレビューし適切であると確信している一方で、あらゆる
+ 状況においてその宣言した目的や機能が正しく実現することに関して、
+ いかなる保証もしない(特にどこかで明示しない限り)。
+
+Reviewd-by タグはそのパッチがカーネルに対して適切な修正であって、深刻な技術的
+問題を残していないという意見の宣言です。興味のあるレビューアは誰でも(レビュー
+作業を終えたら)パッチに対して Reviewed-by タグを提示できます。このタグは
+レビューアの寄与をクレジットする働き、レビューの進捗の度合いをメンテナに
+知らせる働きを持ちます。そのパッチの領域に詳しく、そして、しっかりとした
+レビューを実施したレビューアによって提供される時、Reviewed-by: タグがあなたの
+パッチをカーネルにマージする可能性を高めるでしょう。
+
+15) 標準的なパッチのフォーマット
標準的なパッチのサブジェクトは以下のとおりです。
@@ -396,18 +501,37 @@ Acked-by: が必ずしもパッチ全体の承認を示しているわけでは
電子メールのサブジェクト内のサブシステム表記は、パッチが適用される
分野またはサブシステムを識別できるようにすべきです。
-電子メールのサブジェクトの「概要の言い回し」はそのパッチの概要を正確
-に表現しなければなりません。「概要の言い回し」をファイル名にしてはい
-けません。一連のパッチ中でそれぞれのパッチは同じ「概要の言い回し」を
-使ってはいけません(「一連のパッチ」とは順序付けられた関連のある複数の
+電子メールのサブジェクトの「summary phrase」はそのパッチの概要を正確
+に表現しなければなりません。「summary phrase」をファイル名にしてはい
+けません。パッチシリーズ中でそれぞれのパッチは同じ「summary phrase」を
+使ってはいけません(「パッチシリーズ」とは順序付けられた関連のある複数の
パッチ群です)。
-あなたの電子メールの「概要の言い回し」がそのパッチにとって世界で唯
-一の識別子になるように心がけてください。「概要の言い回し」は git の
-チェンジログの中へずっと伝播していきます。「概要の言い回し」は、開
-発者が後でパッチを参照するために議論の中で利用するかもしれません。
-人々はそのパッチに関連した議論を読むために「概要の言い回し」を使って
-google で検索したがるでしょう。
+あなたの電子メールの「summary phrase」がそのパッチにとって世界で唯一の識別子に
+なるように心がけてください。「summary phrase」は git のチェンジログの中へ
+ずっと伝播していきます。「summary phrase」は、開発者が後でパッチを参照する
+ために議論の中で利用するかもしれません。
+人々はそのパッチに関連した議論を読むために「summary phrase」を使って google で
+検索したがるでしょう。それはまた2、3ヶ月あとで、人々が「gitk」や
+「git log --oneline」のようなツールを使用して何千ものパッチに目を通す時、
+唯一目にとまる情報となるでしょう。
+
+これらの理由のため、「summary phrase」はなぜパッチが必要であるか、パッチが何を
+変更するかの2つの情報をせいぜい70〜75文字で表現していなければなりません。
+「summary phrase」は簡潔であり説明的である表現を目指しつつ、うまく
+まとめられている概要となるべきです。
+
+「summary phrase」は「Subject: [PATCH tag] <summary phrase>」のように、
+大括弧で閉じられたタグを接頭辞として付加してもかまいません。このタグは
+「summary phrase」の一部とは考えませんが、パッチをどのように取り扱うべきかを
+表現します。
+一般的には「v1, v2, v3」のようなバージョン情報を表すタグ(過去のパッチに対する
+コメントを反映するために複数のバージョンのパッチが投稿されているのであれば)、
+「RFC」のようなコメントを要求するタグが挙げられます。パッチシリーズとして4つの
+パッチがあれば、個々のパッチに「1/4, 2/4, 3/4, 4/4」のように番号を付けても
+かまいません。これは開発者がパッチを適用する順番を確実に把握するためです。
+そして、開発者がパッチシリーズの中のすべてのパッチをもらさずレビュー或いは
+適用するのを保証するためです。
サブジェクトの例を二つ
@@ -426,7 +550,12 @@ google で検索したがるでしょう。
説明本体は無期限のソースのチェンジログにコミットされます。なので、説明
本体はそのパッチに至った議論の詳細を忘れているある程度の技量を持っている人
-がその詳細を思い出すことができるものでなければなりません。
+がその詳細を思い出すことができるものでなければなりません。パッチが対処する
+障害の症状(カーネルログメッセージや oops メッセージ等)を記載することは問題に
+対処可能なパッチを求めてコミットログを検索する人々にとって特に有用です。
+パッチがコンパイル問題を解決するのであれば、そのパッチを探している人が見つける
+ことができる情報だけで十分であり、コンパイル時の全てのエラーを含める必要は
+ありません。「summary phrase」と同様に、簡潔であり説明的であることが重要です。
「 --- 」マーカー行はパッチ処理ツールに対して、チェンジログメッセージの終端
部分を認識させるという重要な役目を果たします。
@@ -436,14 +565,46 @@ google で検索したがるでしょう。
追加され何行消されたかを示すものです。diffstat コマンドは特に大きなパッチに
おいて役立ちます。その時点でだけ又はメンテナにとってのみ関係のあるコメント
は無期限に保存されるチェンジログにとって適切ではありません。そのため、この
-ようなコメントもマーカー行の後に書かれるべきです。ファイル名はカーネルソー
-スツリーのトップディレクトリからの表記でリストされるため、横方向のスペース
-をとり過ぎないように、diffstat コマンドにオプション「 -p 1 -w 70 」を指定し
-てください(インデントを含めてちょうど80列に合うでしょう)。
+ようなコメントもマーカー行の後に書かれるべきです。
+このようなコメントの良い例として、v1 と v2 のバージョン間で何が変更されたかを
+表す「パッチの変更履歴」が挙げられます。
+
+「 --- 」マーカー行の後に diffstat コマンドの結果を含めるのであれば、ファイル
+名はカーネルソースツリーのトップディレクトリからの表記で列記されるため、横方向
+のスペースをとり過ぎないように、diffstat コマンドにオプション「 -p 1 -w 70 」
+を指定してください(インデントを含めてちょうど80列に合うでしょう)。
適切なパッチのフォーマットの詳細についてはセクション3の参考文献を参照して
ください。
+16) 「git pull」要求の送り方(Linus の電子メールから)
+
+間違ったブランチから引っ張るのを防ぐために、git リポジトリのアドレスと
+ブランチ名を同じ行に1行で記載してください。そうすることで、3回の連続クリック
+で全て選択できます。
+
+正しい形式は下記の通りです。
+
+ "Please pull from
+
+ git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus
+
+ to get these changes:"
+
+その結果、アドレスを自分自身でタイピングして間違えることはなくなります(実際に、
+何度か間違ったブランチから引っ張ってきてしまい、その時に diffstat の結果を
+検証して間違っていることに気づいたことがあります。どこから何を引っ張るべきかを
+「探したり」、正しいブランチ名かどうかを重ねてチェックしたりする必要が
+なくなればより快適になるでしょう)。
+
+diffstat の結果を生成するために「 git diff -M --stat --summary 」を使って
+ください。-M オプションはファイル名の変更を検知でき、--summary オプションは
+新規ファイル、削除されたファイル、名前が変更されたファイルの概要を生成します。
+
+-M オプション(ファイル名の変更検知)を指定すると、diffstat の結果はかなり
+異なってきます。git は大規模な変更(追加と削除のペア)をファイル名の変更と
+判断するためです。
+
------------------------------------
セクション2 - ヒントとTIPSと小技
------------------------------------
@@ -459,7 +620,7 @@ google で検索したがるでしょう。
も逸脱していると、レビューやコメントなしに受け取ってもらえないかもし
れません。
-唯一の特筆すべき例外は、コードをあるファイルから別のファイルに移動
+特筆すべき例外は、コードをあるファイルから別のファイルに移動
するときです。この場合、コードを移動するパッチでは、移動されるコード
に関して移動以外の変更を一切加えるべきではありません。これにより、
コードの移動とあなたが行ったコードの修正を明確に区別できるようにな
@@ -553,4 +714,11 @@ Kernel Documentation/CodingStyle:
Linus Torvalds's mail on the canonical patch format:
<http://lkml.org/lkml/2005/4/7/183>
+
+Andi Kleen, "On submitting kernel patches"
+ Some strategies to get difficult or controversial changes in.
+ http://halobates.de/on-submitting-patches.pdf
+
--
+
+
diff --git a/Documentation/kbuild/makefiles.txt b/Documentation/kbuild/makefiles.txt
index 47435e56c5da..f47cdefb4d1e 100644
--- a/Documentation/kbuild/makefiles.txt
+++ b/Documentation/kbuild/makefiles.txt
@@ -441,7 +441,7 @@ more details, with real examples.
specified if first option are not supported.
Example:
- #arch/i386/kernel/Makefile
+ #arch/x86/kernel/Makefile
vsyscall-flags += $(call cc-ldoption, -Wl$(comma)--hash-style=sysv)
In the above example, vsyscall-flags will be assigned the option
@@ -460,7 +460,7 @@ more details, with real examples.
supported to use an optional second option.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
cflags-y += $(call cc-option,-march=pentium-mmx,-march=i586)
In the above example, cflags-y will be assigned the option
@@ -522,7 +522,7 @@ more details, with real examples.
even though the option was accepted by gcc.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
cflags-y += $(shell \
if [ $(call cc-version) -ge 0300 ] ; then \
echo "-mregparm=3"; fi ;)
@@ -802,7 +802,7 @@ but in the architecture makefiles where the kbuild infrastructure
is not sufficient this sometimes needs to be explicit.
Example:
- #arch/i386/boot/Makefile
+ #arch/x86/boot/Makefile
subdir- := compressed/
The above assignment instructs kbuild to descend down in the
@@ -812,12 +812,12 @@ To support the clean infrastructure in the Makefiles that builds the
final bootimage there is an optional target named archclean:
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
archclean:
- $(Q)$(MAKE) $(clean)=arch/i386/boot
+ $(Q)$(MAKE) $(clean)=arch/x86/boot
-When "make clean" is executed, make will descend down in arch/i386/boot,
-and clean as usual. The Makefile located in arch/i386/boot/ may use
+When "make clean" is executed, make will descend down in arch/x86/boot,
+and clean as usual. The Makefile located in arch/x86/boot/ may use
the subdir- trick to descend further down.
Note 1: arch/$(ARCH)/Makefile cannot use "subdir-", because that file is
@@ -882,7 +882,7 @@ When kbuild executes, the following steps are followed (roughly):
LDFLAGS_vmlinux uses the LDFLAGS_$@ support.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
LDFLAGS_vmlinux := -e stext
OBJCOPYFLAGS objcopy flags
@@ -920,14 +920,14 @@ When kbuild executes, the following steps are followed (roughly):
Often, the KBUILD_CFLAGS variable depends on the configuration.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
cflags-$(CONFIG_M386) += -march=i386
KBUILD_CFLAGS += $(cflags-y)
Many arch Makefiles dynamically run the target C compiler to
probe supported options:
- #arch/i386/Makefile
+ #arch/x86/Makefile
...
cflags-$(CONFIG_MPENTIUMII) += $(call cc-option,\
@@ -1038,8 +1038,8 @@ When kbuild executes, the following steps are followed (roughly):
into the arch/$(ARCH)/boot/Makefile.
Example:
- #arch/i386/Makefile
- boot := arch/i386/boot
+ #arch/x86/Makefile
+ boot := arch/x86/boot
bzImage: vmlinux
$(Q)$(MAKE) $(build)=$(boot) $(boot)/$@
@@ -1051,7 +1051,7 @@ When kbuild executes, the following steps are followed (roughly):
To support this, $(archhelp) must be defined.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
define archhelp
echo '* bzImage - Image (arch/$(ARCH)/boot/bzImage)'
endif
@@ -1065,7 +1065,7 @@ When kbuild executes, the following steps are followed (roughly):
from vmlinux.
Example:
- #arch/i386/Makefile
+ #arch/x86/Makefile
all: bzImage
When "make" is executed without arguments, bzImage will be built.
@@ -1083,7 +1083,7 @@ When kbuild executes, the following steps are followed (roughly):
2) kbuild knows what files to delete during "make clean"
Example:
- #arch/i386/kernel/Makefile
+ #arch/x86/kernel/Makefile
extra-y := head.o init_task.o
In this example, extra-y is used to list object files that
@@ -1133,7 +1133,7 @@ When kbuild executes, the following steps are followed (roughly):
Compress target. Use maximum compression to compress target.
Example:
- #arch/i386/boot/Makefile
+ #arch/x86/boot/Makefile
LDFLAGS_bootsect := -Ttext 0x0 -s --oformat binary
LDFLAGS_setup := -Ttext 0x0 -s --oformat binary -e begtext
@@ -1193,7 +1193,7 @@ When kbuild executes, the following steps are followed (roughly):
When updating the $(obj)/bzImage target, the line
- BUILD arch/i386/boot/bzImage
+ BUILD arch/x86/boot/bzImage
will be displayed with "make KBUILD_VERBOSE=0".
@@ -1207,7 +1207,7 @@ When kbuild executes, the following steps are followed (roughly):
kbuild knows .lds files and includes a rule *lds.S -> *lds.
Example:
- #arch/i386/kernel/Makefile
+ #arch/x86/kernel/Makefile
always := vmlinux.lds
#Makefile
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index aa47be71df4c..4ca93898fbd3 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -1159,10 +1159,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
for all guests.
Default is 1 (enabled) if in 64bit or 32bit-PAE mode
- kvm-intel.bypass_guest_pf=
- [KVM,Intel] Disables bypassing of guest page faults
- on Intel chips. Default is 1 (enabled)
-
kvm-intel.ept= [KVM,Intel] Disable extended page tables
(virtualized MMU) support on capable Intel chips.
Default is 1 (enabled)
@@ -1737,6 +1733,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
no-kvmapf [X86,KVM] Disable paravirtualized asynchronous page
fault handling.
+ no-steal-acc [X86,KVM] Disable paravirtualized steal time accounting.
+ steal time is computed, but won't influence scheduler
+ behaviour
+
nolapic [X86-32,APIC] Do not enable or use the local APIC.
nolapic_timer [X86-32,APIC] Do not use the local APIC timer.
@@ -1846,7 +1846,9 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
See Documentation/sound/oss/oss-parameters.txt
panic= [KNL] Kernel behaviour on panic: delay <timeout>
- seconds before rebooting
+ timeout > 0: seconds before rebooting
+ timeout = 0: wait forever
+ timeout < 0: reboot immediately
Format: <timeout>
parkbd.port= [HW] Parallel port number the keyboard adapter is
@@ -2526,6 +2528,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
<port#>,<js1>,<js2>,<js3>,<js4>,<js5>,<js6>,<js7>
See also Documentation/input/joystick-parport.txt
+ udbg-immortal [PPC] When debugging early kernel crashes that
+ happen after console_init() and before a proper
+ console driver takes over, this boot options might
+ help "seeing" what's going on.
+
uhash_entries= [KNL,NET]
Set number of hash buckets for UDP/UDP-Lite connections
@@ -2540,6 +2547,11 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
unknown_nmi_panic
[X86] Cause panic on unknown NMI.
+ usbcore.authorized_default=
+ [USB] Default USB device authorization:
+ (default -1 = authorized except for wireless USB,
+ 0 = not authorized, 1 = authorized)
+
usbcore.autosuspend=
[USB] The autosuspend time delay (in seconds) used
for newly-detected USB devices (default 2). This
diff --git a/Documentation/magic-number.txt b/Documentation/magic-number.txt
index 4b12abcb2ad3..abf481f780ec 100644
--- a/Documentation/magic-number.txt
+++ b/Documentation/magic-number.txt
@@ -66,7 +66,7 @@ MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
RISCOM8_MAGIC 0x0907 riscom_port drivers/char/riscom8.h
SPECIALIX_MAGIC 0x0907 specialix_port drivers/char/specialix_io8.h
HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
-APM_BIOS_MAGIC 0x4101 apm_user arch/i386/kernel/apm.c
+APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
DB_MAGIC 0x4442 fc_info drivers/net/iph5526_novram.c
DL_MAGIC 0x444d fc_info drivers/net/iph5526_novram.c
diff --git a/Documentation/mca.txt b/Documentation/mca.txt
index 510375d4209a..dfd130c2207d 100644
--- a/Documentation/mca.txt
+++ b/Documentation/mca.txt
@@ -11,7 +11,7 @@ Adapter Detection
The ideal MCA adapter detection is done through the use of the
Programmable Option Select registers. Generic functions for doing
-this have been added in include/linux/mca.h and arch/i386/kernel/mca.c.
+this have been added in include/linux/mca.h and arch/x86/kernel/mca_32.c.
Everything needed to detect adapters and read (and write) configuration
information is there. A number of MCA-specific drivers already use
this. The typical probe code looks like the following:
@@ -81,7 +81,7 @@ more people use shared IRQs on PCI machines.
In general, an interrupt must be acknowledged not only at the ICU (which
is done automagically by the kernel), but at the device level. In
particular, IRQ 0 must be reset after a timer interrupt (now done in
-arch/i386/kernel/time.c) or the first timer interrupt hangs the system.
+arch/x86/kernel/time.c) or the first timer interrupt hangs the system.
There were also problems with the 1.3.x floppy drivers, but that seems
to have been fixed.
diff --git a/Documentation/md.txt b/Documentation/md.txt
index f0eee83ff78a..fc94770f44ab 100644
--- a/Documentation/md.txt
+++ b/Documentation/md.txt
@@ -360,18 +360,20 @@ Each directory contains:
A file recording the current state of the device in the array
which can be a comma separated list of
faulty - device has been kicked from active use due to
- a detected fault
+ a detected fault or it has unacknowledged bad
+ blocks
in_sync - device is a fully in-sync member of the array
writemostly - device will only be subject to read
requests if there are no other options.
This applies only to raid1 arrays.
- blocked - device has failed, metadata is "external",
- and the failure hasn't been acknowledged yet.
+ blocked - device has failed, and the failure hasn't been
+ acknowledged yet by the metadata handler.
Writes that would write to this device if
it were not faulty are blocked.
spare - device is working, but not a full member.
This includes spares that are in the process
of being recovered to
+ write_error - device has ever seen a write error.
This list may grow in future.
This can be written to.
Writing "faulty" simulates a failure on the device.
@@ -379,9 +381,11 @@ Each directory contains:
Writing "writemostly" sets the writemostly flag.
Writing "-writemostly" clears the writemostly flag.
Writing "blocked" sets the "blocked" flag.
- Writing "-blocked" clears the "blocked" flag and allows writes
- to complete.
+ Writing "-blocked" clears the "blocked" flags and allows writes
+ to complete and possibly simulates an error.
Writing "in_sync" sets the in_sync flag.
+ Writing "write_error" sets writeerrorseen flag.
+ Writing "-write_error" clears writeerrorseen flag.
This file responds to select/poll. Any change to 'faulty'
or 'blocked' causes an event.
@@ -419,7 +423,6 @@ Each directory contains:
written, it will be rejected.
recovery_start
-
When the device is not 'in_sync', this records the number of
sectors from the start of the device which are known to be
correct. This is normally zero, but during a recovery
@@ -435,6 +438,20 @@ Each directory contains:
Setting this to 'none' is equivalent to setting 'in_sync'.
Setting to any other value also clears the 'in_sync' flag.
+ bad_blocks
+ This gives the list of all known bad blocks in the form of
+ start address and length (in sectors respectively). If output
+ is too big to fit in a page, it will be truncated. Writing
+ "sector length" to this file adds new acknowledged (i.e.
+ recorded to disk safely) bad blocks.
+
+ unacknowledged_bad_blocks
+ This gives the list of known-but-not-yet-saved-to-disk bad
+ blocks in the same form of 'bad_blocks'. If output is too big
+ to fit in a page, it will be truncated. Writing to this file
+ adds bad blocks without acknowledging them. This is largely
+ for testing.
+
An active md device will also contain and entry for each active device
diff --git a/Documentation/mmc/00-INDEX b/Documentation/mmc/00-INDEX
index 93dd7a714075..a9ba6720ffdf 100644
--- a/Documentation/mmc/00-INDEX
+++ b/Documentation/mmc/00-INDEX
@@ -4,3 +4,5 @@ mmc-dev-attrs.txt
- info on SD and MMC device attributes
mmc-dev-parts.txt
- info on SD and MMC device partitions
+mmc-async-req.txt
+ - info on mmc asynchronous requests
diff --git a/Documentation/mmc/mmc-async-req.txt b/Documentation/mmc/mmc-async-req.txt
new file mode 100644
index 000000000000..ae1907b10e4a
--- /dev/null
+++ b/Documentation/mmc/mmc-async-req.txt
@@ -0,0 +1,87 @@
+Rationale
+=========
+
+How significant is the cache maintenance overhead?
+It depends. Fast eMMC and multiple cache levels with speculative cache
+pre-fetch makes the cache overhead relatively significant. If the DMA
+preparations for the next request are done in parallel with the current
+transfer, the DMA preparation overhead would not affect the MMC performance.
+The intention of non-blocking (asynchronous) MMC requests is to minimize the
+time between when an MMC request ends and another MMC request begins.
+Using mmc_wait_for_req(), the MMC controller is idle while dma_map_sg and
+dma_unmap_sg are processing. Using non-blocking MMC requests makes it
+possible to prepare the caches for next job in parallel with an active
+MMC request.
+
+MMC block driver
+================
+
+The mmc_blk_issue_rw_rq() in the MMC block driver is made non-blocking.
+The increase in throughput is proportional to the time it takes to
+prepare (major part of preparations are dma_map_sg() and dma_unmap_sg())
+a request and how fast the memory is. The faster the MMC/SD is the
+more significant the prepare request time becomes. Roughly the expected
+performance gain is 5% for large writes and 10% on large reads on a L2 cache
+platform. In power save mode, when clocks run on a lower frequency, the DMA
+preparation may cost even more. As long as these slower preparations are run
+in parallel with the transfer performance won't be affected.
+
+Details on measurements from IOZone and mmc_test
+================================================
+
+https://wiki.linaro.org/WorkingGroups/Kernel/Specs/StoragePerfMMC-async-req
+
+MMC core API extension
+======================
+
+There is one new public function mmc_start_req().
+It starts a new MMC command request for a host. The function isn't
+truly non-blocking. If there is an ongoing async request it waits
+for completion of that request and starts the new one and returns. It
+doesn't wait for the new request to complete. If there is no ongoing
+request it starts the new request and returns immediately.
+
+MMC host extensions
+===================
+
+There are two optional members in the mmc_host_ops -- pre_req() and
+post_req() -- that the host driver may implement in order to move work
+to before and after the actual mmc_host_ops.request() function is called.
+In the DMA case pre_req() may do dma_map_sg() and prepare the DMA
+descriptor, and post_req() runs the dma_unmap_sg().
+
+Optimize for the first request
+==============================
+
+The first request in a series of requests can't be prepared in parallel
+with the previous transfer, since there is no previous request.
+The argument is_first_req in pre_req() indicates that there is no previous
+request. The host driver may optimize for this scenario to minimize
+the performance loss. A way to optimize for this is to split the current
+request in two chunks, prepare the first chunk and start the request,
+and finally prepare the second chunk and start the transfer.
+
+Pseudocode to handle is_first_req scenario with minimal prepare overhead:
+
+if (is_first_req && req->size > threshold)
+ /* start MMC transfer for the complete transfer size */
+ mmc_start_command(MMC_CMD_TRANSFER_FULL_SIZE);
+
+ /*
+ * Begin to prepare DMA while cmd is being processed by MMC.
+ * The first chunk of the request should take the same time
+ * to prepare as the "MMC process command time".
+ * If prepare time exceeds MMC cmd time
+ * the transfer is delayed, guesstimate max 4k as first chunk size.
+ */
+ prepare_1st_chunk_for_dma(req);
+ /* flush pending desc to the DMAC (dmaengine.h) */
+ dma_issue_pending(req->dma_desc);
+
+ prepare_2nd_chunk_for_dma(req);
+ /*
+ * The second issue_pending should be called before MMC runs out
+ * of the first chunk. If the MMC runs out of the first data chunk
+ * before this call, the transfer is delayed.
+ */
+ dma_issue_pending(req->dma_desc);
diff --git a/Documentation/networking/ifenslave.c b/Documentation/networking/ifenslave.c
index 2bac9618c345..65968fbf1e49 100644
--- a/Documentation/networking/ifenslave.c
+++ b/Documentation/networking/ifenslave.c
@@ -260,7 +260,7 @@ int main(int argc, char *argv[])
case 'V': opt_V++; exclusive++; break;
case '?':
- fprintf(stderr, usage_msg);
+ fprintf(stderr, "%s", usage_msg);
res = 2;
goto out;
}
@@ -268,13 +268,13 @@ int main(int argc, char *argv[])
/* options check */
if (exclusive > 1) {
- fprintf(stderr, usage_msg);
+ fprintf(stderr, "%s", usage_msg);
res = 2;
goto out;
}
if (opt_v || opt_V) {
- printf(version);
+ printf("%s", version);
if (opt_V) {
res = 0;
goto out;
@@ -282,14 +282,14 @@ int main(int argc, char *argv[])
}
if (opt_u) {
- printf(usage_msg);
+ printf("%s", usage_msg);
res = 0;
goto out;
}
if (opt_h) {
- printf(usage_msg);
- printf(help_msg);
+ printf("%s", usage_msg);
+ printf("%s", help_msg);
res = 0;
goto out;
}
@@ -309,7 +309,7 @@ int main(int argc, char *argv[])
goto out;
} else {
/* Just show usage */
- fprintf(stderr, usage_msg);
+ fprintf(stderr, "%s", usage_msg);
res = 2;
goto out;
}
@@ -320,7 +320,7 @@ int main(int argc, char *argv[])
master_ifname = *spp++;
if (master_ifname == NULL) {
- fprintf(stderr, usage_msg);
+ fprintf(stderr, "%s", usage_msg);
res = 2;
goto out;
}
@@ -339,7 +339,7 @@ int main(int argc, char *argv[])
if (slave_ifname == NULL) {
if (opt_d || opt_c) {
- fprintf(stderr, usage_msg);
+ fprintf(stderr, "%s", usage_msg);
res = 2;
goto out;
}
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index bfe924217f24..db2a4067013c 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -106,16 +106,6 @@ inet_peer_maxttl - INTEGER
when the number of entries in the pool is very small).
Measured in seconds.
-inet_peer_gc_mintime - INTEGER
- Minimum interval between garbage collection passes. This interval is
- in effect under high memory pressure on the pool.
- Measured in seconds.
-
-inet_peer_gc_maxtime - INTEGER
- Minimum interval between garbage collection passes. This interval is
- in effect under low (or absent) memory pressure on the pool.
- Measured in seconds.
-
TCP variables:
somaxconn - INTEGER
@@ -394,7 +384,7 @@ tcp_rmem - vector of 3 INTEGERs: min, default, max
min: Minimal size of receive buffer used by TCP sockets.
It is guaranteed to each TCP socket, even under moderate memory
pressure.
- Default: 8K
+ Default: 1 page
default: initial size of receive buffer used by TCP sockets.
This value overrides net.core.rmem_default used by other protocols.
@@ -483,7 +473,7 @@ tcp_window_scaling - BOOLEAN
tcp_wmem - vector of 3 INTEGERs: min, default, max
min: Amount of memory reserved for send buffers for TCP sockets.
Each TCP socket has rights to use it due to fact of its birth.
- Default: 4K
+ Default: 1 page
default: initial size of send buffer used by TCP sockets. This
value overrides net.core.wmem_default used by other protocols.
@@ -553,13 +543,13 @@ udp_rmem_min - INTEGER
Minimal size of receive buffer used by UDP sockets in moderation.
Each UDP socket is able to use the size for receiving data, even if
total pages of UDP sockets exceed udp_mem pressure. The unit is byte.
- Default: 4096
+ Default: 1 page
udp_wmem_min - INTEGER
Minimal size of send buffer used by UDP sockets in moderation.
Each UDP socket is able to use the size for sending data, even if
total pages of UDP sockets exceed udp_mem pressure. The unit is byte.
- Default: 4096
+ Default: 1 page
CIPSOv4 Variables:
@@ -1465,10 +1455,17 @@ sctp_mem - vector of 3 INTEGERs: min, pressure, max
Default is calculated at boot time from amount of available memory.
sctp_rmem - vector of 3 INTEGERs: min, default, max
- See tcp_rmem for a description.
+ Only the first value ("min") is used, "default" and "max" are
+ ignored.
+
+ min: Minimal size of receive buffer used by SCTP socket.
+ It is guaranteed to each SCTP socket (but not association) even
+ under moderate memory pressure.
+
+ Default: 1 page
sctp_wmem - vector of 3 INTEGERs: min, default, max
- See tcp_wmem for a description.
+ Currently this tunable has no effect.
addr_scope_policy - INTEGER
Control IPv4 address scoping - draft-stewart-tsvwg-sctp-ipv4-00
diff --git a/Documentation/networking/netdev-features.txt b/Documentation/networking/netdev-features.txt
new file mode 100644
index 000000000000..4b1c0dcef84c
--- /dev/null
+++ b/Documentation/networking/netdev-features.txt
@@ -0,0 +1,154 @@
+Netdev features mess and how to get out from it alive
+=====================================================
+
+Author:
+ Michał Mirosław <mirq-linux@rere.qmqm.pl>
+
+
+
+ Part I: Feature sets
+======================
+
+Long gone are the days when a network card would just take and give packets
+verbatim. Today's devices add multiple features and bugs (read: offloads)
+that relieve an OS of various tasks like generating and checking checksums,
+splitting packets, classifying them. Those capabilities and their state
+are commonly referred to as netdev features in Linux kernel world.
+
+There are currently three sets of features relevant to the driver, and
+one used internally by network core:
+
+ 1. netdev->hw_features set contains features whose state may possibly
+ be changed (enabled or disabled) for a particular device by user's
+ request. This set should be initialized in ndo_init callback and not
+ changed later.
+
+ 2. netdev->features set contains features which are currently enabled
+ for a device. This should be changed only by network core or in
+ error paths of ndo_set_features callback.
+
+ 3. netdev->vlan_features set contains features whose state is inherited
+ by child VLAN devices (limits netdev->features set). This is currently
+ used for all VLAN devices whether tags are stripped or inserted in
+ hardware or software.
+
+ 4. netdev->wanted_features set contains feature set requested by user.
+ This set is filtered by ndo_fix_features callback whenever it or
+ some device-specific conditions change. This set is internal to
+ networking core and should not be referenced in drivers.
+
+
+
+ Part II: Controlling enabled features
+=======================================
+
+When current feature set (netdev->features) is to be changed, new set
+is calculated and filtered by calling ndo_fix_features callback
+and netdev_fix_features(). If the resulting set differs from current
+set, it is passed to ndo_set_features callback and (if the callback
+returns success) replaces value stored in netdev->features.
+NETDEV_FEAT_CHANGE notification is issued after that whenever current
+set might have changed.
+
+The following events trigger recalculation:
+ 1. device's registration, after ndo_init returned success
+ 2. user requested changes in features state
+ 3. netdev_update_features() is called
+
+ndo_*_features callbacks are called with rtnl_lock held. Missing callbacks
+are treated as always returning success.
+
+A driver that wants to trigger recalculation must do so by calling
+netdev_update_features() while holding rtnl_lock. This should not be done
+from ndo_*_features callbacks. netdev->features should not be modified by
+driver except by means of ndo_fix_features callback.
+
+
+
+ Part III: Implementation hints
+================================
+
+ * ndo_fix_features:
+
+All dependencies between features should be resolved here. The resulting
+set can be reduced further by networking core imposed limitations (as coded
+in netdev_fix_features()). For this reason it is safer to disable a feature
+when its dependencies are not met instead of forcing the dependency on.
+
+This callback should not modify hardware nor driver state (should be
+stateless). It can be called multiple times between successive
+ndo_set_features calls.
+
+Callback must not alter features contained in NETIF_F_SOFT_FEATURES or
+NETIF_F_NEVER_CHANGE sets. The exception is NETIF_F_VLAN_CHALLENGED but
+care must be taken as the change won't affect already configured VLANs.
+
+ * ndo_set_features:
+
+Hardware should be reconfigured to match passed feature set. The set
+should not be altered unless some error condition happens that can't
+be reliably detected in ndo_fix_features. In this case, the callback
+should update netdev->features to match resulting hardware state.
+Errors returned are not (and cannot be) propagated anywhere except dmesg.
+(Note: successful return is zero, >0 means silent error.)
+
+
+
+ Part IV: Features
+===================
+
+For current list of features, see include/linux/netdev_features.h.
+This section describes semantics of some of them.
+
+ * Transmit checksumming
+
+For complete description, see comments near the top of include/linux/skbuff.h.
+
+Note: NETIF_F_HW_CSUM is a superset of NETIF_F_IP_CSUM + NETIF_F_IPV6_CSUM.
+It means that device can fill TCP/UDP-like checksum anywhere in the packets
+whatever headers there might be.
+
+ * Transmit TCP segmentation offload
+
+NETIF_F_TSO_ECN means that hardware can properly split packets with CWR bit
+set, be it TCPv4 (when NETIF_F_TSO is enabled) or TCPv6 (NETIF_F_TSO6).
+
+ * Transmit DMA from high memory
+
+On platforms where this is relevant, NETIF_F_HIGHDMA signals that
+ndo_start_xmit can handle skbs with frags in high memory.
+
+ * Transmit scatter-gather
+
+Those features say that ndo_start_xmit can handle fragmented skbs:
+NETIF_F_SG --- paged skbs (skb_shinfo()->frags), NETIF_F_FRAGLIST ---
+chained skbs (skb->next/prev list).
+
+ * Software features
+
+Features contained in NETIF_F_SOFT_FEATURES are features of networking
+stack. Driver should not change behaviour based on them.
+
+ * LLTX driver (deprecated for hardware drivers)
+
+NETIF_F_LLTX should be set in drivers that implement their own locking in
+transmit path or don't need locking at all (e.g. software tunnels).
+In ndo_start_xmit, it is recommended to use a try_lock and return
+NETDEV_TX_LOCKED when the spin lock fails. The locking should also properly
+protect against other callbacks (the rules you need to find out).
+
+Don't use it for new drivers.
+
+ * netns-local device
+
+NETIF_F_NETNS_LOCAL is set for devices that are not allowed to move between
+network namespaces (e.g. loopback).
+
+Don't use it in drivers.
+
+ * VLAN challenged
+
+NETIF_F_VLAN_CHALLENGED should be set for devices which can't cope with VLAN
+headers. Some drivers set this because the cards can't handle the bigger MTU.
+[FIXME: Those cases could be fixed in VLAN code by allowing only reduced-MTU
+VLANs. This may be not useful, though.]
diff --git a/Documentation/networking/nfc.txt b/Documentation/networking/nfc.txt
new file mode 100644
index 000000000000..b24c29bdae27
--- /dev/null
+++ b/Documentation/networking/nfc.txt
@@ -0,0 +1,128 @@
+Linux NFC subsystem
+===================
+
+The Near Field Communication (NFC) subsystem is required to standardize the
+NFC device drivers development and to create an unified userspace interface.
+
+This document covers the architecture overview, the device driver interface
+description and the userspace interface description.
+
+Architecture overview
+---------------------
+
+The NFC subsystem is responsible for:
+ - NFC adapters management;
+ - Polling for targets;
+ - Low-level data exchange;
+
+The subsystem is divided in some parts. The 'core' is responsible for
+providing the device driver interface. On the other side, it is also
+responsible for providing an interface to control operations and low-level
+data exchange.
+
+The control operations are available to userspace via generic netlink.
+
+The low-level data exchange interface is provided by the new socket family
+PF_NFC. The NFC_SOCKPROTO_RAW performs raw communication with NFC targets.
+
+
+ +--------------------------------------+
+ | USER SPACE |
+ +--------------------------------------+
+ ^ ^
+ | low-level | control
+ | data exchange | operations
+ | |
+ | v
+ | +-----------+
+ | AF_NFC | netlink |
+ | socket +-----------+
+ | raw ^
+ | |
+ v v
+ +---------+ +-----------+
+ | rawsock | <--------> | core |
+ +---------+ +-----------+
+ ^
+ |
+ v
+ +-----------+
+ | driver |
+ +-----------+
+
+Device Driver Interface
+-----------------------
+
+When registering on the NFC subsystem, the device driver must inform the core
+of the set of supported NFC protocols and the set of ops callbacks. The ops
+callbacks that must be implemented are the following:
+
+* start_poll - setup the device to poll for targets
+* stop_poll - stop on progress polling operation
+* activate_target - select and initialize one of the targets found
+* deactivate_target - deselect and deinitialize the selected target
+* data_exchange - send data and receive the response (transceive operation)
+
+Userspace interface
+--------------------
+
+The userspace interface is divided in control operations and low-level data
+exchange operation.
+
+CONTROL OPERATIONS:
+
+Generic netlink is used to implement the interface to the control operations.
+The operations are composed by commands and events, all listed below:
+
+* NFC_CMD_GET_DEVICE - get specific device info or dump the device list
+* NFC_CMD_START_POLL - setup a specific device to polling for targets
+* NFC_CMD_STOP_POLL - stop the polling operation in a specific device
+* NFC_CMD_GET_TARGET - dump the list of targets found by a specific device
+
+* NFC_EVENT_DEVICE_ADDED - reports an NFC device addition
+* NFC_EVENT_DEVICE_REMOVED - reports an NFC device removal
+* NFC_EVENT_TARGETS_FOUND - reports START_POLL results when 1 or more targets
+are found
+
+The user must call START_POLL to poll for NFC targets, passing the desired NFC
+protocols through NFC_ATTR_PROTOCOLS attribute. The device remains in polling
+state until it finds any target. However, the user can stop the polling
+operation by calling STOP_POLL command. In this case, it will be checked if
+the requester of STOP_POLL is the same of START_POLL.
+
+If the polling operation finds one or more targets, the event TARGETS_FOUND is
+sent (including the device id). The user must call GET_TARGET to get the list of
+all targets found by such device. Each reply message has target attributes with
+relevant information such as the supported NFC protocols.
+
+All polling operations requested through one netlink socket are stopped when
+it's closed.
+
+LOW-LEVEL DATA EXCHANGE:
+
+The userspace must use PF_NFC sockets to perform any data communication with
+targets. All NFC sockets use AF_NFC:
+
+struct sockaddr_nfc {
+ sa_family_t sa_family;
+ __u32 dev_idx;
+ __u32 target_idx;
+ __u32 nfc_protocol;
+};
+
+To establish a connection with one target, the user must create an
+NFC_SOCKPROTO_RAW socket and call the 'connect' syscall with the sockaddr_nfc
+struct correctly filled. All information comes from NFC_EVENT_TARGETS_FOUND
+netlink event. As a target can support more than one NFC protocol, the user
+must inform which protocol it wants to use.
+
+Internally, 'connect' will result in an activate_target call to the driver.
+When the socket is closed, the target is deactivated.
+
+The data format exchanged through the sockets is NFC protocol dependent. For
+instance, when communicating with MIFARE tags, the data exchanged are MIFARE
+commands and their responses.
+
+The first received package is the response to the first sent package and so
+on. In order to allow valid "empty" responses, every data received has a NULL
+header of 1 byte.
diff --git a/Documentation/networking/stmmac.txt b/Documentation/networking/stmmac.txt
index 80a7a3454902..57a24108b845 100644
--- a/Documentation/networking/stmmac.txt
+++ b/Documentation/networking/stmmac.txt
@@ -7,7 +7,7 @@ This is the driver for the MAC 10/100/1000 on-chip Ethernet controllers
(Synopsys IP blocks); it has been fully tested on STLinux platforms.
Currently this network device driver is for all STM embedded MAC/GMAC
-(7xxx SoCs). Other platforms start using it i.e. ARM SPEAr.
+(i.e. 7xxx/5xxx SoCs) and it's known working on other platforms i.e. ARM SPEAr.
DWC Ether MAC 10/100/1000 Universal version 3.41a and DWC Ether MAC 10/100
Universal version 4.0 have been used for developing the first code
@@ -71,7 +71,7 @@ Several performance tests on STM platforms showed this optimisation allows to sp
the CPU while having the maximum throughput.
4.4) WOL
-Wake up on Lan feature through Magic Frame is only supported for the GMAC
+Wake up on Lan feature through Magic and Unicast frames are supported for the GMAC
core.
4.5) DMA descriptors
@@ -91,11 +91,15 @@ LRO is not supported.
The driver is compatible with PAL to work with PHY and GPHY devices.
4.9) Platform information
-Several information came from the platform; please refer to the
-driver's Header file in include/linux directory.
+Several driver's information can be passed through the platform
+These are included in the include/linux/stmmac.h header file
+and detailed below as well:
-struct plat_stmmacenet_data {
+ struct plat_stmmacenet_data {
int bus_id;
+ int phy_addr;
+ int interface;
+ struct stmmac_mdio_bus_data *mdio_bus_data;
int pbl;
int clk_csr;
int has_gmac;
@@ -103,67 +107,135 @@ struct plat_stmmacenet_data {
int tx_coe;
int bugged_jumbo;
int pmt;
- void (*fix_mac_speed)(void *priv, unsigned int speed);
- void (*bus_setup)(unsigned long ioaddr);
-#ifdef CONFIG_STM_DRIVERS
- struct stm_pad_config *pad_config;
-#endif
- void *bsp_priv;
-};
+ int force_sf_dma_mode;
+ void (*fix_mac_speed)(void *priv, unsigned int speed);
+ void (*bus_setup)(void __iomem *ioaddr);
+ int (*init)(struct platform_device *pdev);
+ void (*exit)(struct platform_device *pdev);
+ void *bsp_priv;
+ };
Where:
-- pbl (Programmable Burst Length) is maximum number of
- beats to be transferred in one DMA transaction.
- GMAC also enables the 4xPBL by default.
-- fix_mac_speed and bus_setup are used to configure internal target
- registers (on STM platforms);
-- has_gmac: GMAC core is on board (get it at run-time in the next step);
-- bus_id: bus identifier.
-- tx_coe: core is able to perform the tx csum in HW.
-- enh_desc: if sets the MAC will use the enhanced descriptor structure.
-- clk_csr: CSR Clock range selection.
-- bugged_jumbo: some HWs are not able to perform the csum in HW for
- over-sized frames due to limited buffer sizes. Setting this
- flag the csum will be done in SW on JUMBO frames.
-
-struct plat_stmmacphy_data {
- int bus_id;
- int phy_addr;
- unsigned int phy_mask;
- int interface;
- int (*phy_reset)(void *priv);
- void *priv;
-};
+ o bus_id: bus identifier.
+ o phy_addr: the physical address can be passed from the platform.
+ If it is set to -1 the driver will automatically
+ detect it at run-time by probing all the 32 addresses.
+ o interface: PHY device's interface.
+ o mdio_bus_data: specific platform fields for the MDIO bus.
+ o pbl: the Programmable Burst Length is maximum number of beats to
+ be transferred in one DMA transaction.
+ GMAC also enables the 4xPBL by default.
+ o clk_csr: CSR Clock range selection.
+ o has_gmac: uses the GMAC core.
+ o enh_desc: if sets the MAC will use the enhanced descriptor structure.
+ o tx_coe: core is able to perform the tx csum in HW.
+ o bugged_jumbo: some HWs are not able to perform the csum in HW for
+ over-sized frames due to limited buffer sizes.
+ Setting this flag the csum will be done in SW on
+ JUMBO frames.
+ o pmt: core has the embedded power module (optional).
+ o force_sf_dma_mode: force DMA to use the Store and Forward mode
+ instead of the Threshold.
+ o fix_mac_speed: this callback is used for modifying some syscfg registers
+ (on ST SoCs) according to the link speed negotiated by the
+ physical layer .
+ o bus_setup: perform HW setup of the bus. For example, on some ST platforms
+ this field is used to configure the AMBA bridge to generate more
+ efficient STBus traffic.
+ o init/exit: callbacks used for calling a custom initialisation;
+ this is sometime necessary on some platforms (e.g. ST boxes)
+ where the HW needs to have set some PIO lines or system cfg
+ registers.
+ o custom_cfg: this is a custom configuration that can be passed while
+ initialising the resources.
+
+The we have:
+
+ struct stmmac_mdio_bus_data {
+ int bus_id;
+ int (*phy_reset)(void *priv);
+ unsigned int phy_mask;
+ int *irqs;
+ int probed_phy_irq;
+ };
Where:
-- bus_id: bus identifier;
-- phy_addr: physical address used for the attached phy device;
- set it to -1 to get it at run-time;
-- interface: physical MII interface mode;
-- phy_reset: hook to reset HW function.
-
-SOURCES:
-- Kconfig
-- Makefile
-- stmmac_main.c: main network device driver;
-- stmmac_mdio.c: mdio functions;
-- stmmac_ethtool.c: ethtool support;
-- stmmac_timer.[ch]: timer code used for mitigating the driver dma interrupts
- Only tested on ST40 platforms based.
-- stmmac.h: private driver structure;
-- common.h: common definitions and VFTs;
-- descs.h: descriptor structure definitions;
-- dwmac1000_core.c: GMAC core functions;
-- dwmac1000_dma.c: dma functions for the GMAC chip;
-- dwmac1000.h: specific header file for the GMAC;
-- dwmac100_core: MAC 100 core and dma code;
-- dwmac100_dma.c: dma funtions for the MAC chip;
-- dwmac1000.h: specific header file for the MAC;
-- dwmac_lib.c: generic DMA functions shared among chips
-- enh_desc.c: functions for handling enhanced descriptors
-- norm_desc.c: functions for handling normal descriptors
-
-TODO:
-- XGMAC controller is not supported.
-- Review the timer optimisation code to use an embedded device that seems to be
+ o bus_id: bus identifier;
+ o phy_reset: hook to reset the phy device attached to the bus.
+ o phy_mask: phy mask passed when register the MDIO bus within the driver.
+ o irqs: list of IRQs, one per PHY.
+ o probed_phy_irq: if irqs is NULL, use this for probed PHY.
+
+Below an example how the structures above are using on ST platforms.
+
+ static struct plat_stmmacenet_data stxYYY_ethernet_platform_data = {
+ .pbl = 32,
+ .has_gmac = 0,
+ .enh_desc = 0,
+ .fix_mac_speed = stxYYY_ethernet_fix_mac_speed,
+ |
+ |-> to write an internal syscfg
+ | on this platform when the
+ | link speed changes from 10 to
+ | 100 and viceversa
+ .init = &stmmac_claim_resource,
+ |
+ |-> On ST SoC this calls own "PAD"
+ | manager framework to claim
+ | all the resources necessary
+ | (GPIO ...). The .custom_cfg field
+ | is used to pass a custom config.
+};
+
+Below the usage of the stmmac_mdio_bus_data: on this SoC, in fact,
+there are two MAC cores: one MAC is for MDIO Bus/PHY emulation
+with fixed_link support.
+
+static struct stmmac_mdio_bus_data stmmac1_mdio_bus = {
+ .bus_id = 1,
+ |
+ |-> phy device on the bus_id 1
+ .phy_reset = phy_reset;
+ |
+ |-> function to provide the phy_reset on this board
+ .phy_mask = 0,
+};
+
+static struct fixed_phy_status stmmac0_fixed_phy_status = {
+ .link = 1,
+ .speed = 100,
+ .duplex = 1,
+};
+
+During the board's device_init we can configure the first
+MAC for fixed_link by calling:
+ fixed_phy_add(PHY_POLL, 1, &stmmac0_fixed_phy_status));)
+and the second one, with a real PHY device attached to the bus,
+by using the stmmac_mdio_bus_data structure (to provide the id, the
+reset procedure etc).
+
+4.10) List of source files:
+ o Kconfig
+ o Makefile
+ o stmmac_main.c: main network device driver;
+ o stmmac_mdio.c: mdio functions;
+ o stmmac_ethtool.c: ethtool support;
+ o stmmac_timer.[ch]: timer code used for mitigating the driver dma interrupts
+ Only tested on ST40 platforms based.
+ o stmmac.h: private driver structure;
+ o common.h: common definitions and VFTs;
+ o descs.h: descriptor structure definitions;
+ o dwmac1000_core.c: GMAC core functions;
+ o dwmac1000_dma.c: dma functions for the GMAC chip;
+ o dwmac1000.h: specific header file for the GMAC;
+ o dwmac100_core: MAC 100 core and dma code;
+ o dwmac100_dma.c: dma funtions for the MAC chip;
+ o dwmac1000.h: specific header file for the MAC;
+ o dwmac_lib.c: generic DMA functions shared among chips
+ o enh_desc.c: functions for handling enhanced descriptors
+ o norm_desc.c: functions for handling normal descriptors
+
+5) TODO:
+ o XGMAC is not supported.
+ o Review the timer optimisation code to use an embedded device that will be
available in new chip generations.
diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt
index 64565aac6e40..3384d5996be2 100644
--- a/Documentation/power/devices.txt
+++ b/Documentation/power/devices.txt
@@ -506,8 +506,8 @@ routines. Nevertheless, different callback pointers are used in case there is a
situation where it actually matters.
-Device Power Domains
---------------------
+Device Power Management Domains
+-------------------------------
Sometimes devices share reference clocks or other power resources. In those
cases it generally is not possible to put devices into low-power states
individually. Instead, a set of devices sharing a power resource can be put
@@ -516,8 +516,8 @@ power resource. Of course, they also need to be put into the full-power state
together, by turning the shared power resource on. A set of devices with this
property is often referred to as a power domain.
-Support for power domains is provided through the pwr_domain field of struct
-device. This field is a pointer to an object of type struct dev_power_domain,
+Support for power domains is provided through the pm_domain field of struct
+device. This field is a pointer to an object of type struct dev_pm_domain,
defined in include/linux/pm.h, providing a set of power management callbacks
analogous to the subsystem-level and device driver callbacks that are executed
for the given device during all power transitions, instead of the respective
@@ -604,7 +604,7 @@ state temporarily, for example so that its system wakeup capability can be
disabled. This all depends on the hardware and the design of the subsystem and
device driver in question.
-During system-wide resume from a sleep state it's best to put devices into the
-full-power state, as explained in Documentation/power/runtime_pm.txt. Refer to
-that document for more information regarding this particular issue as well as
+During system-wide resume from a sleep state it's easiest to put devices into
+the full-power state, as explained in Documentation/power/runtime_pm.txt. Refer
+to that document for more information regarding this particular issue as well as
for information on the device runtime power management framework in general.
diff --git a/Documentation/power/opp.txt b/Documentation/power/opp.txt
index 5ae70a12c1e2..3035d00757ad 100644
--- a/Documentation/power/opp.txt
+++ b/Documentation/power/opp.txt
@@ -321,6 +321,8 @@ opp_init_cpufreq_table - cpufreq framework typically is initialized with
addition to CONFIG_PM as power management feature is required to
dynamically scale voltage and frequency in a system.
+opp_free_cpufreq_table - Free up the table allocated by opp_init_cpufreq_table
+
7. Data Structures
==================
Typically an SoC contains multiple voltage domains which are variable. Each
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index b24875b1ced5..14dd3c6ad97e 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -1,39 +1,39 @@
-Run-time Power Management Framework for I/O Devices
+Runtime Power Management Framework for I/O Devices
(C) 2009-2011 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
(C) 2010 Alan Stern <stern@rowland.harvard.edu>
1. Introduction
-Support for run-time power management (run-time PM) of I/O devices is provided
+Support for runtime power management (runtime PM) of I/O devices is provided
at the power management core (PM core) level by means of:
* The power management workqueue pm_wq in which bus types and device drivers can
put their PM-related work items. It is strongly recommended that pm_wq be
- used for queuing all work items related to run-time PM, because this allows
+ used for queuing all work items related to runtime PM, because this allows
them to be synchronized with system-wide power transitions (suspend to RAM,
hibernation and resume from system sleep states). pm_wq is declared in
include/linux/pm_runtime.h and defined in kernel/power/main.c.
-* A number of run-time PM fields in the 'power' member of 'struct device' (which
+* A number of runtime PM fields in the 'power' member of 'struct device' (which
is of the type 'struct dev_pm_info', defined in include/linux/pm.h) that can
- be used for synchronizing run-time PM operations with one another.
+ be used for synchronizing runtime PM operations with one another.
-* Three device run-time PM callbacks in 'struct dev_pm_ops' (defined in
+* Three device runtime PM callbacks in 'struct dev_pm_ops' (defined in
include/linux/pm.h).
* A set of helper functions defined in drivers/base/power/runtime.c that can be
- used for carrying out run-time PM operations in such a way that the
+ used for carrying out runtime PM operations in such a way that the
synchronization between them is taken care of by the PM core. Bus types and
device drivers are encouraged to use these functions.
-The run-time PM callbacks present in 'struct dev_pm_ops', the device run-time PM
+The runtime PM callbacks present in 'struct dev_pm_ops', the device runtime PM
fields of 'struct dev_pm_info' and the core helper functions provided for
-run-time PM are described below.
+runtime PM are described below.
-2. Device Run-time PM Callbacks
+2. Device Runtime PM Callbacks
-There are three device run-time PM callbacks defined in 'struct dev_pm_ops':
+There are three device runtime PM callbacks defined in 'struct dev_pm_ops':
struct dev_pm_ops {
...
@@ -72,11 +72,11 @@ knows what to do to handle the device).
not mean that the device has been put into a low power state. It is
supposed to mean, however, that the device will not process data and will
not communicate with the CPU(s) and RAM until the subsystem-level resume
- callback is executed for it. The run-time PM status of a device after
+ callback is executed for it. The runtime PM status of a device after
successful execution of the subsystem-level suspend callback is 'suspended'.
* If the subsystem-level suspend callback returns -EBUSY or -EAGAIN,
- the device's run-time PM status is 'active', which means that the device
+ the device's runtime PM status is 'active', which means that the device
_must_ be fully operational afterwards.
* If the subsystem-level suspend callback returns an error code different
@@ -104,7 +104,7 @@ the device).
* Once the subsystem-level resume callback has completed successfully, the PM
core regards the device as fully operational, which means that the device
- _must_ be able to complete I/O operations as needed. The run-time PM status
+ _must_ be able to complete I/O operations as needed. The runtime PM status
of the device is then 'active'.
* If the subsystem-level resume callback returns an error code, the PM core
@@ -130,7 +130,7 @@ device in that case. The value returned by this callback is ignored by the PM
core.
The helper functions provided by the PM core, described in Section 4, guarantee
-that the following constraints are met with respect to the bus type's run-time
+that the following constraints are met with respect to the bus type's runtime
PM callbacks:
(1) The callbacks are mutually exclusive (e.g. it is forbidden to execute
@@ -142,7 +142,7 @@ PM callbacks:
(2) ->runtime_idle() and ->runtime_suspend() can only be executed for 'active'
devices (i.e. the PM core will only execute ->runtime_idle() or
- ->runtime_suspend() for the devices the run-time PM status of which is
+ ->runtime_suspend() for the devices the runtime PM status of which is
'active').
(3) ->runtime_idle() and ->runtime_suspend() can only be executed for a device
@@ -151,7 +151,7 @@ PM callbacks:
flag of which is set.
(4) ->runtime_resume() can only be executed for 'suspended' devices (i.e. the
- PM core will only execute ->runtime_resume() for the devices the run-time
+ PM core will only execute ->runtime_resume() for the devices the runtime
PM status of which is 'suspended').
Additionally, the helper functions provided by the PM core obey the following
@@ -171,9 +171,9 @@ rules:
scheduled requests to execute the other callbacks for the same device,
except for scheduled autosuspends.
-3. Run-time PM Device Fields
+3. Runtime PM Device Fields
-The following device run-time PM fields are present in 'struct dev_pm_info', as
+The following device runtime PM fields are present in 'struct dev_pm_info', as
defined in include/linux/pm.h:
struct timer_list suspend_timer;
@@ -205,7 +205,7 @@ defined in include/linux/pm.h:
unsigned int disable_depth;
- used for disabling the helper funcions (they work normally if this is
- equal to zero); the initial value of it is 1 (i.e. run-time PM is
+ equal to zero); the initial value of it is 1 (i.e. runtime PM is
initially disabled for all devices)
unsigned int runtime_error;
@@ -229,10 +229,10 @@ defined in include/linux/pm.h:
suspend to complete; means "start a resume as soon as you've suspended"
unsigned int run_wake;
- - set if the device is capable of generating run-time wake-up events
+ - set if the device is capable of generating runtime wake-up events
enum rpm_status runtime_status;
- - the run-time PM status of the device; this field's initial value is
+ - the runtime PM status of the device; this field's initial value is
RPM_SUSPENDED, which means that each device is initially regarded by the
PM core as 'suspended', regardless of its real hardware status
@@ -243,7 +243,7 @@ defined in include/linux/pm.h:
and pm_runtime_forbid() helper functions
unsigned int no_callbacks;
- - indicates that the device does not use the run-time PM callbacks (see
+ - indicates that the device does not use the runtime PM callbacks (see
Section 8); it may be modified only by the pm_runtime_no_callbacks()
helper function
@@ -270,16 +270,16 @@ defined in include/linux/pm.h:
All of the above fields are members of the 'power' member of 'struct device'.
-4. Run-time PM Device Helper Functions
+4. Runtime PM Device Helper Functions
-The following run-time PM helper functions are defined in
+The following runtime PM helper functions are defined in
drivers/base/power/runtime.c and include/linux/pm_runtime.h:
void pm_runtime_init(struct device *dev);
- - initialize the device run-time PM fields in 'struct dev_pm_info'
+ - initialize the device runtime PM fields in 'struct dev_pm_info'
void pm_runtime_remove(struct device *dev);
- - make sure that the run-time PM of the device will be disabled after
+ - make sure that the runtime PM of the device will be disabled after
removing the device from device hierarchy
int pm_runtime_idle(struct device *dev);
@@ -289,9 +289,10 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
int pm_runtime_suspend(struct device *dev);
- execute the subsystem-level suspend callback for the device; returns 0 on
- success, 1 if the device's run-time PM status was already 'suspended', or
+ success, 1 if the device's runtime PM status was already 'suspended', or
error code on failure, where -EAGAIN or -EBUSY means it is safe to attempt
- to suspend the device again in future
+ to suspend the device again in future and -EACCES means that
+ 'power.disable_depth' is different from 0
int pm_runtime_autosuspend(struct device *dev);
- same as pm_runtime_suspend() except that the autosuspend delay is taken
@@ -301,10 +302,11 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
int pm_runtime_resume(struct device *dev);
- execute the subsystem-level resume callback for the device; returns 0 on
- success, 1 if the device's run-time PM status was already 'active' or
+ success, 1 if the device's runtime PM status was already 'active' or
error code on failure, where -EAGAIN means it may be safe to attempt to
resume the device again in future, but 'power.runtime_error' should be
- checked additionally
+ checked additionally, and -EACCES means that 'power.disable_depth' is
+ different from 0
int pm_request_idle(struct device *dev);
- submit a request to execute the subsystem-level idle callback for the
@@ -321,7 +323,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
device in future, where 'delay' is the time to wait before queuing up a
suspend work item in pm_wq, in milliseconds (if 'delay' is zero, the work
item is queued up immediately); returns 0 on success, 1 if the device's PM
- run-time status was already 'suspended', or error code if the request
+ runtime status was already 'suspended', or error code if the request
hasn't been scheduled (or queued up if 'delay' is 0); if the execution of
->runtime_suspend() is already scheduled and not yet expired, the new
value of 'delay' will be used as the time to wait
@@ -329,7 +331,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
int pm_request_resume(struct device *dev);
- submit a request to execute the subsystem-level resume callback for the
device (the request is represented by a work item in pm_wq); returns 0 on
- success, 1 if the device's run-time PM status was already 'active', or
+ success, 1 if the device's runtime PM status was already 'active', or
error code if the request hasn't been queued up
void pm_runtime_get_noresume(struct device *dev);
@@ -367,22 +369,32 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
pm_runtime_autosuspend(dev) and return its result
void pm_runtime_enable(struct device *dev);
- - enable the run-time PM helper functions to run the device bus type's
- run-time PM callbacks described in Section 2
+ - decrement the device's 'power.disable_depth' field; if that field is equal
+ to zero, the runtime PM helper functions can execute subsystem-level
+ callbacks described in Section 2 for the device
int pm_runtime_disable(struct device *dev);
- - prevent the run-time PM helper functions from running subsystem-level
- run-time PM callbacks for the device, make sure that all of the pending
- run-time PM operations on the device are either completed or canceled;
+ - increment the device's 'power.disable_depth' field (if the value of that
+ field was previously zero, this prevents subsystem-level runtime PM
+ callbacks from being run for the device), make sure that all of the pending
+ runtime PM operations on the device are either completed or canceled;
returns 1 if there was a resume request pending and it was necessary to
execute the subsystem-level resume callback for the device to satisfy that
request, otherwise 0 is returned
+ int pm_runtime_barrier(struct device *dev);
+ - check if there's a resume request pending for the device and resume it
+ (synchronously) in that case, cancel any other pending runtime PM requests
+ regarding it and wait for all runtime PM operations on it in progress to
+ complete; returns 1 if there was a resume request pending and it was
+ necessary to execute the subsystem-level resume callback for the device to
+ satisfy that request, otherwise 0 is returned
+
void pm_suspend_ignore_children(struct device *dev, bool enable);
- set/unset the power.ignore_children flag of the device
int pm_runtime_set_active(struct device *dev);
- - clear the device's 'power.runtime_error' flag, set the device's run-time
+ - clear the device's 'power.runtime_error' flag, set the device's runtime
PM status to 'active' and update its parent's counter of 'active'
children as appropriate (it is only valid to use this function if
'power.runtime_error' is set or 'power.disable_depth' is greater than
@@ -390,7 +402,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
which is not active and the 'power.ignore_children' flag of which is unset
void pm_runtime_set_suspended(struct device *dev);
- - clear the device's 'power.runtime_error' flag, set the device's run-time
+ - clear the device's 'power.runtime_error' flag, set the device's runtime
PM status to 'suspended' and update its parent's counter of 'active'
children as appropriate (it is only valid to use this function if
'power.runtime_error' is set or 'power.disable_depth' is greater than
@@ -400,6 +412,9 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
- return true if the device's runtime PM status is 'suspended' and its
'power.disable_depth' field is equal to zero, or false otherwise
+ bool pm_runtime_status_suspended(struct device *dev);
+ - return true if the device's runtime PM status is 'suspended'
+
void pm_runtime_allow(struct device *dev);
- set the power.runtime_auto flag for the device and decrease its usage
counter (used by the /sys/devices/.../power/control interface to
@@ -411,7 +426,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
effectively prevent the device from being power managed at run time)
void pm_runtime_no_callbacks(struct device *dev);
- - set the power.no_callbacks flag for the device and remove the run-time
+ - set the power.no_callbacks flag for the device and remove the runtime
PM attributes from /sys/devices/.../power (or prevent them from being
added when the device is registered)
@@ -431,7 +446,7 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
void pm_runtime_set_autosuspend_delay(struct device *dev, int delay);
- set the power.autosuspend_delay value to 'delay' (expressed in
- milliseconds); if 'delay' is negative then run-time suspends are
+ milliseconds); if 'delay' is negative then runtime suspends are
prevented
unsigned long pm_runtime_autosuspend_expiration(struct device *dev);
@@ -470,35 +485,35 @@ pm_runtime_resume()
pm_runtime_get_sync()
pm_runtime_put_sync_suspend()
-5. Run-time PM Initialization, Device Probing and Removal
+5. Runtime PM Initialization, Device Probing and Removal
-Initially, the run-time PM is disabled for all devices, which means that the
-majority of the run-time PM helper funtions described in Section 4 will return
+Initially, the runtime PM is disabled for all devices, which means that the
+majority of the runtime PM helper funtions described in Section 4 will return
-EAGAIN until pm_runtime_enable() is called for the device.
-In addition to that, the initial run-time PM status of all devices is
+In addition to that, the initial runtime PM status of all devices is
'suspended', but it need not reflect the actual physical state of the device.
Thus, if the device is initially active (i.e. it is able to process I/O), its
-run-time PM status must be changed to 'active', with the help of
+runtime PM status must be changed to 'active', with the help of
pm_runtime_set_active(), before pm_runtime_enable() is called for the device.
-However, if the device has a parent and the parent's run-time PM is enabled,
+However, if the device has a parent and the parent's runtime PM is enabled,
calling pm_runtime_set_active() for the device will affect the parent, unless
the parent's 'power.ignore_children' flag is set. Namely, in that case the
parent won't be able to suspend at run time, using the PM core's helper
functions, as long as the child's status is 'active', even if the child's
-run-time PM is still disabled (i.e. pm_runtime_enable() hasn't been called for
+runtime PM is still disabled (i.e. pm_runtime_enable() hasn't been called for
the child yet or pm_runtime_disable() has been called for it). For this reason,
once pm_runtime_set_active() has been called for the device, pm_runtime_enable()
-should be called for it too as soon as reasonably possible or its run-time PM
+should be called for it too as soon as reasonably possible or its runtime PM
status should be changed back to 'suspended' with the help of
pm_runtime_set_suspended().
-If the default initial run-time PM status of the device (i.e. 'suspended')
+If the default initial runtime PM status of the device (i.e. 'suspended')
reflects the actual state of the device, its bus type's or its driver's
->probe() callback will likely need to wake it up using one of the PM core's
helper functions described in Section 4. In that case, pm_runtime_resume()
-should be used. Of course, for this purpose the device's run-time PM has to be
+should be used. Of course, for this purpose the device's runtime PM has to be
enabled earlier by calling pm_runtime_enable().
If the device bus type's or driver's ->probe() callback runs
@@ -529,33 +544,33 @@ The user space can effectively disallow the driver of the device to power manage
it at run time by changing the value of its /sys/devices/.../power/control
attribute to "on", which causes pm_runtime_forbid() to be called. In principle,
this mechanism may also be used by the driver to effectively turn off the
-run-time power management of the device until the user space turns it on.
-Namely, during the initialization the driver can make sure that the run-time PM
+runtime power management of the device until the user space turns it on.
+Namely, during the initialization the driver can make sure that the runtime PM
status of the device is 'active' and call pm_runtime_forbid(). It should be
noted, however, that if the user space has already intentionally changed the
value of /sys/devices/.../power/control to "auto" to allow the driver to power
manage the device at run time, the driver may confuse it by using
pm_runtime_forbid() this way.
-6. Run-time PM and System Sleep
+6. Runtime PM and System Sleep
-Run-time PM and system sleep (i.e., system suspend and hibernation, also known
+Runtime PM and system sleep (i.e., system suspend and hibernation, also known
as suspend-to-RAM and suspend-to-disk) interact with each other in a couple of
ways. If a device is active when a system sleep starts, everything is
straightforward. But what should happen if the device is already suspended?
-The device may have different wake-up settings for run-time PM and system sleep.
-For example, remote wake-up may be enabled for run-time suspend but disallowed
+The device may have different wake-up settings for runtime PM and system sleep.
+For example, remote wake-up may be enabled for runtime suspend but disallowed
for system sleep (device_may_wakeup(dev) returns 'false'). When this happens,
the subsystem-level system suspend callback is responsible for changing the
device's wake-up setting (it may leave that to the device driver's system
suspend routine). It may be necessary to resume the device and suspend it again
in order to do so. The same is true if the driver uses different power levels
-or other settings for run-time suspend and system sleep.
+or other settings for runtime suspend and system sleep.
-During system resume, devices generally should be brought back to full power,
-even if they were suspended before the system sleep began. There are several
-reasons for this, including:
+During system resume, the simplest approach is to bring all devices back to full
+power, even if they had been suspended before the system suspend began. There
+are several reasons for this, including:
* The device might need to switch power levels, wake-up settings, etc.
@@ -570,18 +585,50 @@ reasons for this, including:
* The device might need to be reset.
* Even though the device was suspended, if its usage counter was > 0 then most
- likely it would need a run-time resume in the near future anyway.
-
- * Always going back to full power is simplest.
+ likely it would need a runtime resume in the near future anyway.
-If the device was suspended before the sleep began, then its run-time PM status
-will have to be updated to reflect the actual post-system sleep status. The way
-to do this is:
+If the device had been suspended before the system suspend began and it's
+brought back to full power during resume, then its runtime PM status will have
+to be updated to reflect the actual post-system sleep status. The way to do
+this is:
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
+The PM core always increments the runtime usage counter before calling the
+->suspend() callback and decrements it after calling the ->resume() callback.
+Hence disabling runtime PM temporarily like this will not cause any runtime
+suspend attempts to be permanently lost. If the usage count goes to zero
+following the return of the ->resume() callback, the ->runtime_idle() callback
+will be invoked as usual.
+
+On some systems, however, system sleep is not entered through a global firmware
+or hardware operation. Instead, all hardware components are put into low-power
+states directly by the kernel in a coordinated way. Then, the system sleep
+state effectively follows from the states the hardware components end up in
+and the system is woken up from that state by a hardware interrupt or a similar
+mechanism entirely under the kernel's control. As a result, the kernel never
+gives control away and the states of all devices during resume are precisely
+known to it. If that is the case and none of the situations listed above takes
+place (in particular, if the system is not waking up from hibernation), it may
+be more efficient to leave the devices that had been suspended before the system
+suspend began in the suspended state.
+
+The PM core does its best to reduce the probability of race conditions between
+the runtime PM and system suspend/resume (and hibernation) callbacks by carrying
+out the following operations:
+
+ * During system suspend it calls pm_runtime_get_noresume() and
+ pm_runtime_barrier() for every device right before executing the
+ subsystem-level .suspend() callback for it. In addition to that it calls
+ pm_runtime_disable() for every device right after executing the
+ subsystem-level .suspend() callback for it.
+
+ * During system resume it calls pm_runtime_enable() and pm_runtime_put_sync()
+ for every device right before and right after executing the subsystem-level
+ .resume() callback for it, respectively.
+
7. Generic subsystem callbacks
Subsystems may wish to conserve code space by using the set of generic power
@@ -606,40 +653,68 @@ driver/base/power/generic_ops.c:
callback provided by its driver and return its result, or return 0 if not
defined
+ int pm_generic_suspend_noirq(struct device *dev);
+ - if pm_runtime_suspended(dev) returns "false", invoke the ->suspend_noirq()
+ callback provided by the device's driver and return its result, or return
+ 0 if not defined
+
int pm_generic_resume(struct device *dev);
- invoke the ->resume() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
+ int pm_generic_resume_noirq(struct device *dev);
+ - invoke the ->resume_noirq() callback provided by the driver of this device
+
int pm_generic_freeze(struct device *dev);
- if the device has not been suspended at run time, invoke the ->freeze()
callback provided by its driver and return its result, or return 0 if not
defined
+ int pm_generic_freeze_noirq(struct device *dev);
+ - if pm_runtime_suspended(dev) returns "false", invoke the ->freeze_noirq()
+ callback provided by the device's driver and return its result, or return
+ 0 if not defined
+
int pm_generic_thaw(struct device *dev);
- if the device has not been suspended at run time, invoke the ->thaw()
callback provided by its driver and return its result, or return 0 if not
defined
+ int pm_generic_thaw_noirq(struct device *dev);
+ - if pm_runtime_suspended(dev) returns "false", invoke the ->thaw_noirq()
+ callback provided by the device's driver and return its result, or return
+ 0 if not defined
+
int pm_generic_poweroff(struct device *dev);
- if the device has not been suspended at run time, invoke the ->poweroff()
callback provided by its driver and return its result, or return 0 if not
defined
+ int pm_generic_poweroff_noirq(struct device *dev);
+ - if pm_runtime_suspended(dev) returns "false", run the ->poweroff_noirq()
+ callback provided by the device's driver and return its result, or return
+ 0 if not defined
+
int pm_generic_restore(struct device *dev);
- invoke the ->restore() callback provided by the driver of this device and,
if successful, change the device's runtime PM status to 'active'
+ int pm_generic_restore_noirq(struct device *dev);
+ - invoke the ->restore_noirq() callback provided by the device's driver
+
These functions can be assigned to the ->runtime_idle(), ->runtime_suspend(),
-->runtime_resume(), ->suspend(), ->resume(), ->freeze(), ->thaw(), ->poweroff(),
-or ->restore() callback pointers in the subsystem-level dev_pm_ops structures.
+->runtime_resume(), ->suspend(), ->suspend_noirq(), ->resume(),
+->resume_noirq(), ->freeze(), ->freeze_noirq(), ->thaw(), ->thaw_noirq(),
+->poweroff(), ->poweroff_noirq(), ->restore(), ->restore_noirq() callback
+pointers in the subsystem-level dev_pm_ops structures.
If a subsystem wishes to use all of them at the same time, it can simply assign
the GENERIC_SUBSYS_PM_OPS macro, defined in include/linux/pm.h, to its
dev_pm_ops structure pointer.
Device drivers that wish to use the same function as a system suspend, freeze,
-poweroff and run-time suspend callback, and similarly for system resume, thaw,
-restore, and run-time resume, can achieve this with the help of the
+poweroff and runtime suspend callback, and similarly for system resume, thaw,
+restore, and runtime resume, can achieve this with the help of the
UNIVERSAL_DEV_PM_OPS macro defined in include/linux/pm.h (possibly setting its
last argument to NULL).
@@ -649,7 +724,7 @@ Some "devices" are only logical sub-devices of their parent and cannot be
power-managed on their own. (The prototype example is a USB interface. Entire
USB devices can go into low-power mode or send wake-up requests, but neither is
possible for individual interfaces.) The drivers for these devices have no
-need of run-time PM callbacks; if the callbacks did exist, ->runtime_suspend()
+need of runtime PM callbacks; if the callbacks did exist, ->runtime_suspend()
and ->runtime_resume() would always return 0 without doing anything else and
->runtime_idle() would always call pm_runtime_suspend().
@@ -657,7 +732,7 @@ Subsystems can tell the PM core about these devices by calling
pm_runtime_no_callbacks(). This should be done after the device structure is
initialized and before it is registered (although after device registration is
also okay). The routine will set the device's power.no_callbacks flag and
-prevent the non-debugging run-time PM sysfs attributes from being created.
+prevent the non-debugging runtime PM sysfs attributes from being created.
When power.no_callbacks is set, the PM core will not invoke the
->runtime_idle(), ->runtime_suspend(), or ->runtime_resume() callbacks.
@@ -665,7 +740,7 @@ Instead it will assume that suspends and resumes always succeed and that idle
devices should be suspended.
As a consequence, the PM core will never directly inform the device's subsystem
-or driver about run-time power changes. Instead, the driver for the device's
+or driver about runtime power changes. Instead, the driver for the device's
parent must take responsibility for telling the device's driver when the
parent's power state changes.
@@ -676,13 +751,13 @@ A device should be put in a low-power state only when there's some reason to
think it will remain in that state for a substantial time. A common heuristic
says that a device which hasn't been used for a while is liable to remain
unused; following this advice, drivers should not allow devices to be suspended
-at run-time until they have been inactive for some minimum period. Even when
+at runtime until they have been inactive for some minimum period. Even when
the heuristic ends up being non-optimal, it will still prevent devices from
"bouncing" too rapidly between low-power and full-power states.
The term "autosuspend" is an historical remnant. It doesn't mean that the
device is automatically suspended (the subsystem or driver still has to call
-the appropriate PM routines); rather it means that run-time suspends will
+the appropriate PM routines); rather it means that runtime suspends will
automatically be delayed until the desired period of inactivity has elapsed.
Inactivity is determined based on the power.last_busy field. Drivers should
diff --git a/Documentation/rbtree.txt b/Documentation/rbtree.txt
index 19f8278c3854..8d32d85a5234 100644
--- a/Documentation/rbtree.txt
+++ b/Documentation/rbtree.txt
@@ -196,15 +196,20 @@ Support for Augmented rbtrees
Augmented rbtree is an rbtree with "some" additional data stored in each node.
This data can be used to augment some new functionality to rbtree.
Augmented rbtree is an optional feature built on top of basic rbtree
-infrastructure. rbtree user who wants this feature will have an augment
-callback function in rb_root initialized.
-
-This callback function will be called from rbtree core routines whenever
-a node has a change in one or both of its children. It is the responsibility
-of the callback function to recalculate the additional data that is in the
-rb node using new children information. Note that if this new additional
-data affects the parent node's additional data, then callback function has
-to handle it and do the recursive updates.
+infrastructure. An rbtree user who wants this feature will have to call the
+augmentation functions with the user provided augmentation callback
+when inserting and erasing nodes.
+
+On insertion, the user must call rb_augment_insert() once the new node is in
+place. This will cause the augmentation function callback to be called for
+each node between the new node and the root which has been affected by the
+insertion.
+
+When erasing a node, the user must call rb_augment_erase_begin() first to
+retrieve the deepest node on the rebalance path. Then, after erasing the
+original node, the user must call rb_augment_erase_end() with the deepest
+node found earlier. This will cause the augmentation function to be called
+for each affected node between the deepest node and the root.
Interval tree is an example of augmented rb tree. Reference -
diff --git a/Documentation/s390/TAPE b/Documentation/s390/TAPE
deleted file mode 100644
index c639aa5603ff..000000000000
--- a/Documentation/s390/TAPE
+++ /dev/null
@@ -1,122 +0,0 @@
-Channel attached Tape device driver
-
------------------------------WARNING-----------------------------------------
-This driver is considered to be EXPERIMENTAL. Do NOT use it in
-production environments. Feel free to test it and report problems back to us.
------------------------------------------------------------------------------
-
-The LINUX for zSeries tape device driver manages channel attached tape drives
-which are compatible to IBM 3480 or IBM 3490 magnetic tape subsystems. This
-includes various models of these devices (for example the 3490E).
-
-
-Tape driver features
-
-The device driver supports a maximum of 128 tape devices.
-No official LINUX device major number is assigned to the zSeries tape device
-driver. It allocates major numbers dynamically and reports them on system
-startup.
-Typically it will get major number 254 for both the character device front-end
-and the block device front-end.
-
-The tape device driver needs no kernel parameters. All supported devices
-present are detected on driver initialization at system startup or module load.
-The devices detected are ordered by their subchannel numbers. The device with
-the lowest subchannel number becomes device 0, the next one will be device 1
-and so on.
-
-
-Tape character device front-end
-
-The usual way to read or write to the tape device is through the character
-device front-end. The zSeries tape device driver provides two character devices
-for each physical device -- the first of these will rewind automatically when
-it is closed, the second will not rewind automatically.
-
-The character device nodes are named /dev/rtibm0 (rewinding) and /dev/ntibm0
-(non-rewinding) for the first device, /dev/rtibm1 and /dev/ntibm1 for the
-second, and so on.
-
-The character device front-end can be used as any other LINUX tape device. You
-can write to it and read from it using LINUX facilities such as GNU tar. The
-tool mt can be used to perform control operations, such as rewinding the tape
-or skipping a file.
-
-Most LINUX tape software should work with either tape character device.
-
-
-Tape block device front-end
-
-The tape device may also be accessed as a block device in read-only mode.
-This could be used for software installation in the same way as it is used with
-other operation systems on the zSeries platform (and most LINUX
-distributions are shipped on compact disk using ISO9660 filesystems).
-
-One block device node is provided for each physical device. These are named
-/dev/btibm0 for the first device, /dev/btibm1 for the second and so on.
-You should only use the ISO9660 filesystem on LINUX for zSeries tapes because
-the physical tape devices cannot perform fast seeks and the ISO9660 system is
-optimized for this situation.
-
-
-Tape block device example
-
-In this example a tape with an ISO9660 filesystem is created using the first
-tape device. ISO9660 filesystem support must be built into your system kernel
-for this.
-The mt command is used to issue tape commands and the mkisofs command to
-create an ISO9660 filesystem:
-
-- create a LINUX directory (somedir) with the contents of the filesystem
- mkdir somedir
- cp contents somedir
-
-- insert a tape
-
-- ensure the tape is at the beginning
- mt -f /dev/ntibm0 rewind
-
-- set the blocksize of the character driver. The blocksize 2048 bytes
- is commonly used on ISO9660 CD-Roms
- mt -f /dev/ntibm0 setblk 2048
-
-- write the filesystem to the character device driver
- mkisofs -o /dev/ntibm0 somedir
-
-- rewind the tape again
- mt -f /dev/ntibm0 rewind
-
-- Now you can mount your new filesystem as a block device:
- mount -t iso9660 -o ro,block=2048 /dev/btibm0 /mnt
-
-TODO List
-
- - Driver has to be stabilized still
-
-BUGS
-
-This driver is considered BETA, which means some weaknesses may still
-be in it.
-If an error occurs which cannot be handled by the code you will get a
-sense-data dump.In that case please do the following:
-
-1. set the tape driver debug level to maximum:
- echo 6 >/proc/s390dbf/tape/level
-
-2. re-perform the actions which produced the bug. (Hopefully the bug will
- reappear.)
-
-3. get a snapshot from the debug-feature:
- cat /proc/s390dbf/tape/hex_ascii >somefile
-
-4. Now put the snapshot together with a detailed description of the situation
- that led to the bug:
- - Which tool did you use?
- - Which hardware do you have?
- - Was your tape unit online?
- - Is it a shared tape unit?
-
-5. Send an email with your bug report to:
- mailto:Linux390@de.ibm.com
-
-
diff --git a/Documentation/scheduler/sched-arch.txt b/Documentation/scheduler/sched-arch.txt
index d43dbcbd163b..28aa1075e291 100644
--- a/Documentation/scheduler/sched-arch.txt
+++ b/Documentation/scheduler/sched-arch.txt
@@ -66,7 +66,7 @@ Your cpu_idle routines need to obey the following rules:
barrier issued (followed by a test of need_resched with
interrupts disabled, as explained in 3).
-arch/i386/kernel/process.c has examples of both polling and
+arch/x86/kernel/process.c has examples of both polling and
sleeping idle functions.
diff --git a/Documentation/scsi/BusLogic.txt b/Documentation/scsi/BusLogic.txt
index d7fbc9488b98..48e982cd6fe7 100644
--- a/Documentation/scsi/BusLogic.txt
+++ b/Documentation/scsi/BusLogic.txt
@@ -553,7 +553,7 @@ replacing "/usr/src" with wherever you keep your Linux kernel source tree:
make config
make zImage
-Then install "arch/i386/boot/zImage" as your standard kernel, run lilo if
+Then install "arch/x86/boot/zImage" as your standard kernel, run lilo if
appropriate, and reboot.
diff --git a/Documentation/security/keys-ecryptfs.txt b/Documentation/security/keys-ecryptfs.txt
new file mode 100644
index 000000000000..c3bbeba63562
--- /dev/null
+++ b/Documentation/security/keys-ecryptfs.txt
@@ -0,0 +1,68 @@
+ Encrypted keys for the eCryptfs filesystem
+
+ECryptfs is a stacked filesystem which transparently encrypts and decrypts each
+file using a randomly generated File Encryption Key (FEK).
+
+Each FEK is in turn encrypted with a File Encryption Key Encryption Key (FEFEK)
+either in kernel space or in user space with a daemon called 'ecryptfsd'. In
+the former case the operation is performed directly by the kernel CryptoAPI
+using a key, the FEFEK, derived from a user prompted passphrase; in the latter
+the FEK is encrypted by 'ecryptfsd' with the help of external libraries in order
+to support other mechanisms like public key cryptography, PKCS#11 and TPM based
+operations.
+
+The data structure defined by eCryptfs to contain information required for the
+FEK decryption is called authentication token and, currently, can be stored in a
+kernel key of the 'user' type, inserted in the user's session specific keyring
+by the userspace utility 'mount.ecryptfs' shipped with the package
+'ecryptfs-utils'.
+
+The 'encrypted' key type has been extended with the introduction of the new
+format 'ecryptfs' in order to be used in conjunction with the eCryptfs
+filesystem. Encrypted keys of the newly introduced format store an
+authentication token in its payload with a FEFEK randomly generated by the
+kernel and protected by the parent master key.
+
+In order to avoid known-plaintext attacks, the datablob obtained through
+commands 'keyctl print' or 'keyctl pipe' does not contain the overall
+authentication token, which content is well known, but only the FEFEK in
+encrypted form.
+
+The eCryptfs filesystem may really benefit from using encrypted keys in that the
+required key can be securely generated by an Administrator and provided at boot
+time after the unsealing of a 'trusted' key in order to perform the mount in a
+controlled environment. Another advantage is that the key is not exposed to
+threats of malicious software, because it is available in clear form only at
+kernel level.
+
+Usage:
+ keyctl add encrypted name "new ecryptfs key-type:master-key-name keylen" ring
+ keyctl add encrypted name "load hex_blob" ring
+ keyctl update keyid "update key-type:master-key-name"
+
+name:= '<16 hexadecimal characters>'
+key-type:= 'trusted' | 'user'
+keylen:= 64
+
+
+Example of encrypted key usage with the eCryptfs filesystem:
+
+Create an encrypted key "1000100010001000" of length 64 bytes with format
+'ecryptfs' and save it using a previously loaded user key "test":
+
+ $ keyctl add encrypted 1000100010001000 "new ecryptfs user:test 64" @u
+ 19184530
+
+ $ keyctl print 19184530
+ ecryptfs user:test 64 490045d4bfe48c99f0d465fbbbb79e7500da954178e2de0697
+ dd85091f5450a0511219e9f7cd70dcd498038181466f78ac8d4c19504fcc72402bfc41c2
+ f253a41b7507ccaa4b2b03fff19a69d1cc0b16e71746473f023a95488b6edfd86f7fdd40
+ 9d292e4bacded1258880122dd553a661
+
+ $ keyctl pipe 19184530 > ecryptfs.blob
+
+Mount an eCryptfs filesystem using the created encrypted key "1000100010001000"
+into the '/secret' directory:
+
+ $ mount -i -t ecryptfs -oecryptfs_sig=1000100010001000,\
+ ecryptfs_cipher=aes,ecryptfs_key_bytes=32 /secret /secret
diff --git a/Documentation/security/keys-trusted-encrypted.txt b/Documentation/security/keys-trusted-encrypted.txt
index 8fb79bc1ac4b..5f50ccabfc8a 100644
--- a/Documentation/security/keys-trusted-encrypted.txt
+++ b/Documentation/security/keys-trusted-encrypted.txt
@@ -53,12 +53,19 @@ they are only as secure as the user key encrypting them. The master user key
should therefore be loaded in as secure a way as possible, preferably early in
boot.
+The decrypted portion of encrypted keys can contain either a simple symmetric
+key or a more complex structure. The format of the more complex structure is
+application specific, which is identified by 'format'.
+
Usage:
- keyctl add encrypted name "new key-type:master-key-name keylen" ring
- keyctl add encrypted name "load hex_blob" ring
- keyctl update keyid "update key-type:master-key-name"
+ keyctl add encrypted name "new [format] key-type:master-key-name keylen"
+ ring
+ keyctl add encrypted name "load hex_blob" ring
+ keyctl update keyid "update key-type:master-key-name"
+
+format:= 'default | ecryptfs'
+key-type:= 'trusted' | 'user'
-where 'key-type' is either 'trusted' or 'user'.
Examples of trusted and encrypted key usage:
@@ -114,15 +121,25 @@ Reseal a trusted key under new pcr values:
7ef6a24defe4846104209bf0c3eced7fa1a672ed5b125fc9d8cd88b476a658a4434644ef
df8ae9a178e9f83ba9f08d10fa47e4226b98b0702f06b3b8
-Create and save an encrypted key "evm" using the above trusted key "kmk":
+The initial consumer of trusted keys is EVM, which at boot time needs a high
+quality symmetric key for HMAC protection of file metadata. The use of a
+trusted key provides strong guarantees that the EVM key has not been
+compromised by a user level problem, and when sealed to specific boot PCR
+values, protects against boot and offline attacks. Create and save an
+encrypted key "evm" using the above trusted key "kmk":
+option 1: omitting 'format'
$ keyctl add encrypted evm "new trusted:kmk 32" @u
159771175
+option 2: explicitly defining 'format' as 'default'
+ $ keyctl add encrypted evm "new default trusted:kmk 32" @u
+ 159771175
+
$ keyctl print 159771175
- trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
- be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
- 5972dcb82ab2dde83376d82b2e3c09ffc
+ default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
+ 82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
+ 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
$ keyctl pipe 159771175 > evm.blob
@@ -132,14 +149,11 @@ Load an encrypted key "evm" from saved blob:
831684262
$ keyctl print 831684262
- trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382dbbc55
- be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e024717c64
- 5972dcb82ab2dde83376d82b2e3c09ffc
-
-
-The initial consumer of trusted keys is EVM, which at boot time needs a high
-quality symmetric key for HMAC protection of file metadata. The use of a
-trusted key provides strong guarantees that the EVM key has not been
-compromised by a user level problem, and when sealed to specific boot PCR
-values, protects against boot and offline attacks. Other uses for trusted and
-encrypted keys, such as for disk and file encryption are anticipated.
+ default trusted:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b3
+ 82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
+ 24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
+
+Other uses for trusted and encrypted keys, such as for disk and file encryption
+are anticipated. In particular the new format 'ecryptfs' has been defined in
+in order to use encrypted keys to mount an eCryptfs filesystem. More details
+about the usage can be found in the file 'Documentation/keys-ecryptfs.txt'.
diff --git a/Documentation/serial/computone.txt b/Documentation/serial/computone.txt
index c57ea4781e5d..60a6f657c37d 100644
--- a/Documentation/serial/computone.txt
+++ b/Documentation/serial/computone.txt
@@ -87,7 +87,7 @@ c) Set address on ISA cards then:
edit /usr/src/linux/drivers/char/ip2.c
(Optional - may be specified on kernel command line now)
d) Run "make zImage" or whatever target you prefer.
-e) mv /usr/src/linux/arch/i386/boot/zImage to /boot.
+e) mv /usr/src/linux/arch/x86/boot/zImage to /boot.
f) Add new config for this kernel into /etc/lilo.conf, run "lilo"
or copy to a floppy disk and boot from that floppy disk.
g) Reboot using this kernel
diff --git a/Documentation/sound/alsa/HD-Audio-Controls.txt b/Documentation/sound/alsa/HD-Audio-Controls.txt
new file mode 100644
index 000000000000..1482035243e6
--- /dev/null
+++ b/Documentation/sound/alsa/HD-Audio-Controls.txt
@@ -0,0 +1,100 @@
+This file explains the codec-specific mixer controls.
+
+Realtek codecs
+--------------
+
+* Channel Mode
+ This is an enum control to change the surround-channel setup,
+ appears only when the surround channels are available.
+ It gives the number of channels to be used, "2ch", "4ch", "6ch",
+ and "8ch". According to the configuration, this also controls the
+ jack-retasking of multi-I/O jacks.
+
+* Auto-Mute Mode
+ This is an enum control to change the auto-mute behavior of the
+ headphone and line-out jacks. If built-in speakers and headphone
+ and/or line-out jacks are available on a machine, this controls
+ appears.
+ When there are only either headphones or line-out jacks, it gives
+ "Disabled" and "Enabled" state. When enabled, the speaker is muted
+ automatically when a jack is plugged.
+
+ When both headphone and line-out jacks are present, it gives
+ "Disabled", "Speaker Only" and "Line-Out+Speaker". When
+ speaker-only is chosen, plugging into a headphone or a line-out jack
+ mutes the speakers, but not line-outs. When line-out+speaker is
+ selected, plugging to a headphone jack mutes both speakers and
+ line-outs.
+
+
+IDT/Sigmatel codecs
+-------------------
+
+* Analog Loopback
+ This control enables/disables the analog-loopback circuit. This
+ appears only when "loopback" is set to true in a codec hint
+ (see HD-Audio.txt). Note that on some codecs the analog-loopback
+ and the normal PCM playback are exclusive, i.e. when this is on, you
+ won't hear any PCM stream.
+
+* Swap Center/LFE
+ Swaps the center and LFE channel order. Normally, the left
+ corresponds to the center and the right to the LFE. When this is
+ ON, the left to the LFE and the right to the center.
+
+* Headphone as Line Out
+ When this control is ON, treat the headphone jacks as line-out
+ jacks. That is, the headphone won't auto-mute the other line-outs,
+ and no HP-amp is set to the pins.
+
+* Mic Jack Mode, Line Jack Mode, etc
+ These enum controls the direction and the bias of the input jack
+ pins. Depending on the jack type, it can set as "Mic In" and "Line
+ In", for determining the input bias, or it can be set to "Line Out"
+ when the pin is a multi-I/O jack for surround channels.
+
+
+VIA codecs
+----------
+
+* Smart 5.1
+ An enum control to re-task the multi-I/O jacks for surround outputs.
+ When it's ON, the corresponding input jacks (usually a line-in and a
+ mic-in) are switched as the surround and the CLFE output jacks.
+
+* Independent HP
+ When this enum control is enabled, the headphone output is routed
+ from an individual stream (the third PCM such as hw:0,2) instead of
+ the primary stream. In the case the headphone DAC is shared with a
+ side or a CLFE-channel DAC, the DAC is switched to the headphone
+ automatically.
+
+* Loopback Mixing
+ An enum control to determine whether the analog-loopback route is
+ enabled or not. When it's enabled, the analog-loopback is mixed to
+ the front-channel. Also, the same route is used for the headphone
+ and speaker outputs. As a side-effect, when this mode is set, the
+ individual volume controls will be no longer available for
+ headphones and speakers because there is only one DAC connected to a
+ mixer widget.
+
+* Dynamic Power-Control
+ This control determines whether the dynamic power-control per jack
+ detection is enabled or not. When enabled, the widgets power state
+ (D0/D3) are changed dynamically depending on the jack plugging
+ state for saving power consumptions. However, if your system
+ doesn't provide a proper jack-detection, this won't work; in such a
+ case, turn this control OFF.
+
+* Jack Detect
+ This control is provided only for VT1708 codec which gives no proper
+ unsolicited event per jack plug. When this is on, the driver polls
+ the jack detection so that the headphone auto-mute can work, while
+ turning this off would reduce the power consumption.
+
+
+Conexant codecs
+---------------
+
+* Auto-Mute Mode
+ See Reatek codecs.
diff --git a/Documentation/spi/ep93xx_spi b/Documentation/spi/ep93xx_spi
index 6325f5b48635..d8eb01c15db1 100644
--- a/Documentation/spi/ep93xx_spi
+++ b/Documentation/spi/ep93xx_spi
@@ -88,6 +88,16 @@ static void __init ts72xx_init_machine(void)
ARRAY_SIZE(ts72xx_spi_devices));
}
+The driver can use DMA for the transfers also. In this case ts72xx_spi_info
+becomes:
+
+static struct ep93xx_spi_info ts72xx_spi_info = {
+ .num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
+ .use_dma = true;
+};
+
+Note that CONFIG_EP93XX_DMA should be enabled as well.
+
Thanks to
=========
Martin Guy, H. Hartley Sweeten and others who helped me during development of
diff --git a/Documentation/spi/pxa2xx b/Documentation/spi/pxa2xx
index 493dada57372..00511e08db78 100644
--- a/Documentation/spi/pxa2xx
+++ b/Documentation/spi/pxa2xx
@@ -22,15 +22,11 @@ Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
found in include/linux/spi/pxa2xx_spi.h:
struct pxa2xx_spi_master {
- enum pxa_ssp_type ssp_type;
u32 clock_enable;
u16 num_chipselect;
u8 enable_dma;
};
-The "pxa2xx_spi_master.ssp_type" field must have a value between 1 and 3 and
-informs the driver which features a particular SSP supports.
-
The "pxa2xx_spi_master.clock_enable" field is used to enable/disable the
corresponding SSP peripheral block in the "Clock Enable Register (CKEN"). See
the "PXA2xx Developer Manual" section "Clocks and Power Management".
@@ -61,7 +57,6 @@ static struct resource pxa_spi_nssp_resources[] = {
};
static struct pxa2xx_spi_master pxa_nssp_master_info = {
- .ssp_type = PXA25x_NSSP, /* Type of SSP */
.clock_enable = CKEN_NSSP, /* NSSP Peripheral clock */
.num_chipselect = 1, /* Matches the number of chips attached to NSSP */
.enable_dma = 1, /* Enables NSSP DMA */
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index 5e7cb39ad195..704e474a93df 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -17,23 +17,21 @@ before actually making adjustments.
Currently, these files might (depending on your configuration)
show up in /proc/sys/kernel:
-- acpi_video_flags
+
- acct
+- acpi_video_flags
+- auto_msgmni
- bootloader_type [ X86 only ]
- bootloader_version [ X86 only ]
- callhome [ S390 only ]
-- auto_msgmni
- core_pattern
- core_pipe_limit
- core_uses_pid
- ctrl-alt-del
-- dentry-state
- dmesg_restrict
- domainname
- hostname
- hotplug
-- java-appletviewer [ binfmt_java, obsolete ]
-- java-interpreter [ binfmt_java, obsolete ]
- kptr_restrict
- kstack_depth_to_print [ X86 only ]
- l2cr [ PPC only ]
@@ -48,10 +46,14 @@ show up in /proc/sys/kernel:
- overflowgid
- overflowuid
- panic
+- panic_on_oops
+- panic_on_unrecovered_nmi
- pid_max
- powersave-nap [ PPC only ]
-- panic_on_unrecovered_nmi
- printk
+- printk_delay
+- printk_ratelimit
+- printk_ratelimit_burst
- randomize_va_space
- real-root-dev ==> Documentation/initrd.txt
- reboot-cmd [ SPARC only ]
@@ -59,9 +61,11 @@ show up in /proc/sys/kernel:
- rtsig-nr
- sem
- sg-big-buff [ generic SCSI device (sg) ]
+- shm_rmid_forced
- shmall
- shmmax [ sysv ipc ]
- shmmni
+- softlockup_thresh
- stop-a [ SPARC only ]
- sysrq ==> Documentation/sysrq.txt
- tainted
@@ -71,15 +75,6 @@ show up in /proc/sys/kernel:
==============================================================
-acpi_video_flags:
-
-flags
-
-See Doc*/kernel/power/video.txt, it allows mode of video boot to be
-set during run time.
-
-==============================================================
-
acct:
highwater lowwater frequency
@@ -97,6 +92,25 @@ valid for 30 seconds.
==============================================================
+acpi_video_flags:
+
+flags
+
+See Doc*/kernel/power/video.txt, it allows mode of video boot to be
+set during run time.
+
+==============================================================
+
+auto_msgmni:
+
+Enables/Disables automatic recomputing of msgmni upon memory add/remove
+or upon ipc namespace creation/removal (see the msgmni description
+above). Echoing "1" into this file enables msgmni automatic recomputing.
+Echoing "0" turns it off. auto_msgmni default value is 1.
+
+
+==============================================================
+
bootloader_type:
x86 bootloader identification
@@ -172,22 +186,24 @@ core_pattern is used to specify a core dumpfile pattern name.
core_pipe_limit:
-This sysctl is only applicable when core_pattern is configured to pipe core
-files to a user space helper (when the first character of core_pattern is a '|',
-see above). When collecting cores via a pipe to an application, it is
-occasionally useful for the collecting application to gather data about the
-crashing process from its /proc/pid directory. In order to do this safely, the
-kernel must wait for the collecting process to exit, so as not to remove the
-crashing processes proc files prematurely. This in turn creates the possibility
-that a misbehaving userspace collecting process can block the reaping of a
-crashed process simply by never exiting. This sysctl defends against that. It
-defines how many concurrent crashing processes may be piped to user space
-applications in parallel. If this value is exceeded, then those crashing
-processes above that value are noted via the kernel log and their cores are
-skipped. 0 is a special value, indicating that unlimited processes may be
-captured in parallel, but that no waiting will take place (i.e. the collecting
-process is not guaranteed access to /proc/<crashing pid>/). This value defaults
-to 0.
+This sysctl is only applicable when core_pattern is configured to pipe
+core files to a user space helper (when the first character of
+core_pattern is a '|', see above). When collecting cores via a pipe
+to an application, it is occasionally useful for the collecting
+application to gather data about the crashing process from its
+/proc/pid directory. In order to do this safely, the kernel must wait
+for the collecting process to exit, so as not to remove the crashing
+processes proc files prematurely. This in turn creates the
+possibility that a misbehaving userspace collecting process can block
+the reaping of a crashed process simply by never exiting. This sysctl
+defends against that. It defines how many concurrent crashing
+processes may be piped to user space applications in parallel. If
+this value is exceeded, then those crashing processes above that value
+are noted via the kernel log and their cores are skipped. 0 is a
+special value, indicating that unlimited processes may be captured in
+parallel, but that no waiting will take place (i.e. the collecting
+process is not guaranteed access to /proc/<crashing pid>/). This
+value defaults to 0.
==============================================================
@@ -218,14 +234,14 @@ to decide what to do with it.
dmesg_restrict:
-This toggle indicates whether unprivileged users are prevented from using
-dmesg(8) to view messages from the kernel's log buffer. When
-dmesg_restrict is set to (0) there are no restrictions. When
+This toggle indicates whether unprivileged users are prevented
+from using dmesg(8) to view messages from the kernel's log buffer.
+When dmesg_restrict is set to (0) there are no restrictions. When
dmesg_restrict is set set to (1), users must have CAP_SYSLOG to use
dmesg(8).
-The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the default
-value of dmesg_restrict.
+The kernel config option CONFIG_SECURITY_DMESG_RESTRICT sets the
+default value of dmesg_restrict.
==============================================================
@@ -256,13 +272,6 @@ Default value is "/sbin/hotplug".
==============================================================
-l2cr: (PPC only)
-
-This flag controls the L2 cache of G3 processor boards. If
-0, the cache is disabled. Enabled if nonzero.
-
-==============================================================
-
kptr_restrict:
This toggle indicates whether restrictions are placed on
@@ -283,6 +292,13 @@ kernel stack.
==============================================================
+l2cr: (PPC only)
+
+This flag controls the L2 cache of G3 processor boards. If
+0, the cache is disabled. Enabled if nonzero.
+
+==============================================================
+
modules_disabled:
A toggle value indicating if modules are allowed to be loaded
@@ -293,6 +309,21 @@ to false.
==============================================================
+nmi_watchdog:
+
+Enables/Disables the NMI watchdog on x86 systems. When the value is
+non-zero the NMI watchdog is enabled and will continuously test all
+online cpus to determine whether or not they are still functioning
+properly. Currently, passing "nmi_watchdog=" parameter at boot time is
+required for this function to work.
+
+If LAPIC NMI watchdog method is in use (nmi_watchdog=2 kernel
+parameter), the NMI watchdog shares registers with oprofile. By
+disabling the NMI watchdog, oprofile may have more registers to
+utilize.
+
+==============================================================
+
osrelease, ostype & version:
# cat osrelease
@@ -312,10 +343,10 @@ The only way to tune these values is to rebuild the kernel :-)
overflowgid & overflowuid:
-if your architecture did not always support 32-bit UIDs (i.e. arm, i386,
-m68k, sh, and sparc32), a fixed UID and GID will be returned to
-applications that use the old 16-bit UID/GID system calls, if the actual
-UID or GID would exceed 65535.
+if your architecture did not always support 32-bit UIDs (i.e. arm,
+i386, m68k, sh, and sparc32), a fixed UID and GID will be returned to
+applications that use the old 16-bit UID/GID system calls, if the
+actual UID or GID would exceed 65535.
These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
@@ -324,9 +355,22 @@ The default is 65534.
panic:
-The value in this file represents the number of seconds the
-kernel waits before rebooting on a panic. When you use the
-software watchdog, the recommended setting is 60.
+The value in this file represents the number of seconds the kernel
+waits before rebooting on a panic. When you use the software watchdog,
+the recommended setting is 60.
+
+==============================================================
+
+panic_on_unrecovered_nmi:
+
+The default Linux behaviour on an NMI of either memory or unknown is
+to continue operation. For many environments such as scientific
+computing it is preferable that the box is taken out and the error
+dealt with than an uncorrected parity/ECC error get propagated.
+
+A small number of systems do generate NMI's for bizarre random reasons
+such as power management so the default is off. That sysctl works like
+the existing panic controls already in that directory.
==============================================================
@@ -376,6 +420,14 @@ the different loglevels.
==============================================================
+printk_delay:
+
+Delay each printk message in printk_delay milliseconds
+
+Value from 0 - 10000 is allowed.
+
+==============================================================
+
printk_ratelimit:
Some warning messages are rate limited. printk_ratelimit specifies
@@ -395,15 +447,7 @@ send before ratelimiting kicks in.
==============================================================
-printk_delay:
-
-Delay each printk message in printk_delay milliseconds
-
-Value from 0 - 10000 is allowed.
-
-==============================================================
-
-randomize-va-space:
+randomize_va_space:
This option can be used to select the type of process address
space randomization that is used in the system, for architectures
@@ -466,15 +510,36 @@ are doing anyway :)
==============================================================
-shmmax:
+shmmax:
This value can be used to query and set the run time limit
on the maximum shared memory segment size that can be created.
-Shared memory segments up to 1Gb are now supported in the
+Shared memory segments up to 1Gb are now supported in the
kernel. This value defaults to SHMMAX.
==============================================================
+shm_rmid_forced:
+
+Linux lets you set resource limits, including how much memory one
+process can consume, via setrlimit(2). Unfortunately, shared memory
+segments are allowed to exist without association with any process, and
+thus might not be counted against any resource limits. If enabled,
+shared memory segments are automatically destroyed when their attach
+count becomes zero after a detach or a process termination. It will
+also destroy segments that were created, but never attached to, on exit
+from the process. The only use left for IPC_RMID is to immediately
+destroy an unattached segment. Of course, this breaks the way things are
+defined, so some applications might stop working. Note that this
+feature will do you no good unless you also configure your resource
+limits (in particular, RLIMIT_AS and RLIMIT_NPROC). Most systems don't
+need this.
+
+Note that if you change this from 0 to 1, already created segments
+without users and with a dead originative process will be destroyed.
+
+==============================================================
+
softlockup_thresh:
This value can be used to lower the softlockup tolerance threshold. The
@@ -484,7 +549,7 @@ tunable to zero will disable the softlockup detection altogether.
==============================================================
-tainted:
+tainted:
Non-zero if the kernel has been tainted. Numeric values, which
can be ORed together:
@@ -509,49 +574,11 @@ can be ORed together:
==============================================================
-auto_msgmni:
-
-Enables/Disables automatic recomputing of msgmni upon memory add/remove or
-upon ipc namespace creation/removal (see the msgmni description above).
-Echoing "1" into this file enables msgmni automatic recomputing.
-Echoing "0" turns it off.
-auto_msgmni default value is 1.
-
-==============================================================
-
-nmi_watchdog:
-
-Enables/Disables the NMI watchdog on x86 systems. When the value is non-zero
-the NMI watchdog is enabled and will continuously test all online cpus to
-determine whether or not they are still functioning properly. Currently,
-passing "nmi_watchdog=" parameter at boot time is required for this function
-to work.
-
-If LAPIC NMI watchdog method is in use (nmi_watchdog=2 kernel parameter), the
-NMI watchdog shares registers with oprofile. By disabling the NMI watchdog,
-oprofile may have more registers to utilize.
-
-==============================================================
-
unknown_nmi_panic:
-The value in this file affects behavior of handling NMI. When the value is
-non-zero, unknown NMI is trapped and then panic occurs. At that time, kernel
-debugging information is displayed on console.
-
-NMI switch that most IA32 servers have fires unknown NMI up, for example.
-If a system hangs up, try pressing the NMI switch.
-
-==============================================================
-
-panic_on_unrecovered_nmi:
-
-The default Linux behaviour on an NMI of either memory or unknown is to continue
-operation. For many environments such as scientific computing it is preferable
-that the box is taken out and the error dealt with than an uncorrected
-parity/ECC error get propogated.
-
-A small number of systems do generate NMI's for bizarre random reasons such as
-power management so the default is off. That sysctl works like the existing
-panic controls already in that directory.
+The value in this file affects behavior of handling NMI. When the
+value is non-zero, unknown NMI is trapped and then panic occurs. At
+that time, kernel debugging information is displayed on console.
+NMI switch that most IA32 servers have fires unknown NMI up, for
+example. If a system hangs up, try pressing the NMI switch.
diff --git a/Documentation/trace/kprobetrace.txt b/Documentation/trace/kprobetrace.txt
index c83bd6b4e6e8..d0d0bb9e3e25 100644
--- a/Documentation/trace/kprobetrace.txt
+++ b/Documentation/trace/kprobetrace.txt
@@ -22,14 +22,15 @@ current_tracer. Instead of that, add probe points via
Synopsis of kprobe_events
-------------------------
- p[:[GRP/]EVENT] SYMBOL[+offs]|MEMADDR [FETCHARGS] : Set a probe
- r[:[GRP/]EVENT] SYMBOL[+0] [FETCHARGS] : Set a return probe
+ p[:[GRP/]EVENT] [MOD:]SYM[+offs]|MEMADDR [FETCHARGS] : Set a probe
+ r[:[GRP/]EVENT] [MOD:]SYM[+0] [FETCHARGS] : Set a return probe
-:[GRP/]EVENT : Clear a probe
GRP : Group name. If omitted, use "kprobes" for it.
EVENT : Event name. If omitted, the event name is generated
- based on SYMBOL+offs or MEMADDR.
- SYMBOL[+offs] : Symbol+offset where the probe is inserted.
+ based on SYM+offs or MEMADDR.
+ MOD : Module name which has given SYM.
+ SYM[+offs] : Symbol+offset where the probe is inserted.
MEMADDR : Address where the probe is inserted.
FETCHARGS : Arguments. Each probe can have up to 128 args.
diff --git a/Documentation/usb/ehci.txt b/Documentation/usb/ehci.txt
index 9dcafa7d930d..160bd6c3ab7b 100644
--- a/Documentation/usb/ehci.txt
+++ b/Documentation/usb/ehci.txt
@@ -210,3 +210,5 @@ TBD: Interrupt and ISO transfer performance issues. Those periodic
transfers are fully scheduled, so the main issue is likely to be how
to trigger "high bandwidth" modes.
+TBD: More than standard 80% periodic bandwidth allocation is possible
+through sysfs uframe_periodic_max parameter. Describe that.
diff --git a/Documentation/usb/gadget_hid.txt b/Documentation/usb/gadget_hid.txt
index f4a51f567427..12696c2e43fb 100644
--- a/Documentation/usb/gadget_hid.txt
+++ b/Documentation/usb/gadget_hid.txt
@@ -81,8 +81,8 @@ Send and receive HID reports
to do this.
hid_gadget_test is a small interactive program to test the HID
- gadget driver. To use, point it at a hidg device and set the
- device type (keyboard / mouse / joystick) - E.G.:
+ gadget driver. To use, point it at a hidg device and set the
+ device type (keyboard / mouse / joystick) - E.G.:
# hid_gadget_test /dev/hidg0 keyboard
@@ -97,7 +97,7 @@ Send and receive HID reports
HID gadget.
Another interesting example is the caps lock test. Type
- -–caps-lock and hit return. A report is then sent by the
+ --caps-lock and hit return. A report is then sent by the
gadget and you should receive the host answer, corresponding
to the caps lock LED status.
diff --git a/Documentation/vDSO/parse_vdso.c b/Documentation/vDSO/parse_vdso.c
new file mode 100644
index 000000000000..85870208edcf
--- /dev/null
+++ b/Documentation/vDSO/parse_vdso.c
@@ -0,0 +1,256 @@
+/*
+ * parse_vdso.c: Linux reference vDSO parser
+ * Written by Andrew Lutomirski, 2011.
+ *
+ * This code is meant to be linked in to various programs that run on Linux.
+ * As such, it is available with as few restrictions as possible. This file
+ * is licensed under the Creative Commons Zero License, version 1.0,
+ * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
+ *
+ * The vDSO is a regular ELF DSO that the kernel maps into user space when
+ * it starts a program. It works equally well in statically and dynamically
+ * linked binaries.
+ *
+ * This code is tested on x86_64. In principle it should work on any 64-bit
+ * architecture that has a vDSO.
+ */
+
+#include <stdbool.h>
+#include <stdint.h>
+#include <string.h>
+#include <elf.h>
+
+/*
+ * To use this vDSO parser, first call one of the vdso_init_* functions.
+ * If you've already parsed auxv, then pass the value of AT_SYSINFO_EHDR
+ * to vdso_init_from_sysinfo_ehdr. Otherwise pass auxv to vdso_init_from_auxv.
+ * Then call vdso_sym for each symbol you want. For example, to look up
+ * gettimeofday on x86_64, use:
+ *
+ * <some pointer> = vdso_sym("LINUX_2.6", "gettimeofday");
+ * or
+ * <some pointer> = vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
+ *
+ * vdso_sym will return 0 if the symbol doesn't exist or if the init function
+ * failed or was not called. vdso_sym is a little slow, so its return value
+ * should be cached.
+ *
+ * vdso_sym is threadsafe; the init functions are not.
+ *
+ * These are the prototypes:
+ */
+extern void vdso_init_from_auxv(void *auxv);
+extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
+extern void *vdso_sym(const char *version, const char *name);
+
+
+/* And here's the code. */
+
+#ifndef __x86_64__
+# error Not yet ported to non-x86_64 architectures
+#endif
+
+static struct vdso_info
+{
+ bool valid;
+
+ /* Load information */
+ uintptr_t load_addr;
+ uintptr_t load_offset; /* load_addr - recorded vaddr */
+
+ /* Symbol table */
+ Elf64_Sym *symtab;
+ const char *symstrings;
+ Elf64_Word *bucket, *chain;
+ Elf64_Word nbucket, nchain;
+
+ /* Version table */
+ Elf64_Versym *versym;
+ Elf64_Verdef *verdef;
+} vdso_info;
+
+/* Straight from the ELF specification. */
+static unsigned long elf_hash(const unsigned char *name)
+{
+ unsigned long h = 0, g;
+ while (*name)
+ {
+ h = (h << 4) + *name++;
+ if (g = h & 0xf0000000)
+ h ^= g >> 24;
+ h &= ~g;
+ }
+ return h;
+}
+
+void vdso_init_from_sysinfo_ehdr(uintptr_t base)
+{
+ size_t i;
+ bool found_vaddr = false;
+
+ vdso_info.valid = false;
+
+ vdso_info.load_addr = base;
+
+ Elf64_Ehdr *hdr = (Elf64_Ehdr*)base;
+ Elf64_Phdr *pt = (Elf64_Phdr*)(vdso_info.load_addr + hdr->e_phoff);
+ Elf64_Dyn *dyn = 0;
+
+ /*
+ * We need two things from the segment table: the load offset
+ * and the dynamic table.
+ */
+ for (i = 0; i < hdr->e_phnum; i++)
+ {
+ if (pt[i].p_type == PT_LOAD && !found_vaddr) {
+ found_vaddr = true;
+ vdso_info.load_offset = base
+ + (uintptr_t)pt[i].p_offset
+ - (uintptr_t)pt[i].p_vaddr;
+ } else if (pt[i].p_type == PT_DYNAMIC) {
+ dyn = (Elf64_Dyn*)(base + pt[i].p_offset);
+ }
+ }
+
+ if (!found_vaddr || !dyn)
+ return; /* Failed */
+
+ /*
+ * Fish out the useful bits of the dynamic table.
+ */
+ Elf64_Word *hash = 0;
+ vdso_info.symstrings = 0;
+ vdso_info.symtab = 0;
+ vdso_info.versym = 0;
+ vdso_info.verdef = 0;
+ for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
+ switch (dyn[i].d_tag) {
+ case DT_STRTAB:
+ vdso_info.symstrings = (const char *)
+ ((uintptr_t)dyn[i].d_un.d_ptr
+ + vdso_info.load_offset);
+ break;
+ case DT_SYMTAB:
+ vdso_info.symtab = (Elf64_Sym *)
+ ((uintptr_t)dyn[i].d_un.d_ptr
+ + vdso_info.load_offset);
+ break;
+ case DT_HASH:
+ hash = (Elf64_Word *)
+ ((uintptr_t)dyn[i].d_un.d_ptr
+ + vdso_info.load_offset);
+ break;
+ case DT_VERSYM:
+ vdso_info.versym = (Elf64_Versym *)
+ ((uintptr_t)dyn[i].d_un.d_ptr
+ + vdso_info.load_offset);
+ break;
+ case DT_VERDEF:
+ vdso_info.verdef = (Elf64_Verdef *)
+ ((uintptr_t)dyn[i].d_un.d_ptr
+ + vdso_info.load_offset);
+ break;
+ }
+ }
+ if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
+ return; /* Failed */
+
+ if (!vdso_info.verdef)
+ vdso_info.versym = 0;
+
+ /* Parse the hash table header. */
+ vdso_info.nbucket = hash[0];
+ vdso_info.nchain = hash[1];
+ vdso_info.bucket = &hash[2];
+ vdso_info.chain = &hash[vdso_info.nbucket + 2];
+
+ /* That's all we need. */
+ vdso_info.valid = true;
+}
+
+static bool vdso_match_version(Elf64_Versym ver,
+ const char *name, Elf64_Word hash)
+{
+ /*
+ * This is a helper function to check if the version indexed by
+ * ver matches name (which hashes to hash).
+ *
+ * The version definition table is a mess, and I don't know how
+ * to do this in better than linear time without allocating memory
+ * to build an index. I also don't know why the table has
+ * variable size entries in the first place.
+ *
+ * For added fun, I can't find a comprehensible specification of how
+ * to parse all the weird flags in the table.
+ *
+ * So I just parse the whole table every time.
+ */
+
+ /* First step: find the version definition */
+ ver &= 0x7fff; /* Apparently bit 15 means "hidden" */
+ Elf64_Verdef *def = vdso_info.verdef;
+ while(true) {
+ if ((def->vd_flags & VER_FLG_BASE) == 0
+ && (def->vd_ndx & 0x7fff) == ver)
+ break;
+
+ if (def->vd_next == 0)
+ return false; /* No definition. */
+
+ def = (Elf64_Verdef *)((char *)def + def->vd_next);
+ }
+
+ /* Now figure out whether it matches. */
+ Elf64_Verdaux *aux = (Elf64_Verdaux*)((char *)def + def->vd_aux);
+ return def->vd_hash == hash
+ && !strcmp(name, vdso_info.symstrings + aux->vda_name);
+}
+
+void *vdso_sym(const char *version, const char *name)
+{
+ unsigned long ver_hash;
+ if (!vdso_info.valid)
+ return 0;
+
+ ver_hash = elf_hash(version);
+ Elf64_Word chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
+
+ for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
+ Elf64_Sym *sym = &vdso_info.symtab[chain];
+
+ /* Check for a defined global or weak function w/ right name. */
+ if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
+ continue;
+ if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
+ ELF64_ST_BIND(sym->st_info) != STB_WEAK)
+ continue;
+ if (sym->st_shndx == SHN_UNDEF)
+ continue;
+ if (strcmp(name, vdso_info.symstrings + sym->st_name))
+ continue;
+
+ /* Check symbol version. */
+ if (vdso_info.versym
+ && !vdso_match_version(vdso_info.versym[chain],
+ version, ver_hash))
+ continue;
+
+ return (void *)(vdso_info.load_offset + sym->st_value);
+ }
+
+ return 0;
+}
+
+void vdso_init_from_auxv(void *auxv)
+{
+ Elf64_auxv_t *elf_auxv = auxv;
+ for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
+ {
+ if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
+ vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
+ return;
+ }
+ }
+
+ vdso_info.valid = false;
+}
diff --git a/Documentation/vDSO/vdso_test.c b/Documentation/vDSO/vdso_test.c
new file mode 100644
index 000000000000..fff633432dff
--- /dev/null
+++ b/Documentation/vDSO/vdso_test.c
@@ -0,0 +1,111 @@
+/*
+ * vdso_test.c: Sample code to test parse_vdso.c on x86_64
+ * Copyright (c) 2011 Andy Lutomirski
+ * Subject to the GNU General Public License, version 2
+ *
+ * You can amuse yourself by compiling with:
+ * gcc -std=gnu99 -nostdlib
+ * -Os -fno-asynchronous-unwind-tables -flto
+ * vdso_test.c parse_vdso.c -o vdso_test
+ * to generate a small binary with no dependencies at all.
+ */
+
+#include <sys/syscall.h>
+#include <sys/time.h>
+#include <unistd.h>
+#include <stdint.h>
+
+extern void *vdso_sym(const char *version, const char *name);
+extern void vdso_init_from_sysinfo_ehdr(uintptr_t base);
+extern void vdso_init_from_auxv(void *auxv);
+
+/* We need a libc functions... */
+int strcmp(const char *a, const char *b)
+{
+ /* This implementation is buggy: it never returns -1. */
+ while (*a || *b) {
+ if (*a != *b)
+ return 1;
+ if (*a == 0 || *b == 0)
+ return 1;
+ a++;
+ b++;
+ }
+
+ return 0;
+}
+
+/* ...and two syscalls. This is x86_64-specific. */
+static inline long linux_write(int fd, const void *data, size_t len)
+{
+
+ long ret;
+ asm volatile ("syscall" : "=a" (ret) : "a" (__NR_write),
+ "D" (fd), "S" (data), "d" (len) :
+ "cc", "memory", "rcx",
+ "r8", "r9", "r10", "r11" );
+ return ret;
+}
+
+static inline void linux_exit(int code)
+{
+ asm volatile ("syscall" : : "a" (__NR_exit), "D" (code));
+}
+
+void to_base10(char *lastdig, uint64_t n)
+{
+ while (n) {
+ *lastdig = (n % 10) + '0';
+ n /= 10;
+ lastdig--;
+ }
+}
+
+__attribute__((externally_visible)) void c_main(void **stack)
+{
+ /* Parse the stack */
+ long argc = (long)*stack;
+ stack += argc + 2;
+
+ /* Now we're pointing at the environment. Skip it. */
+ while(*stack)
+ stack++;
+ stack++;
+
+ /* Now we're pointing at auxv. Initialize the vDSO parser. */
+ vdso_init_from_auxv((void *)stack);
+
+ /* Find gettimeofday. */
+ typedef long (*gtod_t)(struct timeval *tv, struct timezone *tz);
+ gtod_t gtod = (gtod_t)vdso_sym("LINUX_2.6", "__vdso_gettimeofday");
+
+ if (!gtod)
+ linux_exit(1);
+
+ struct timeval tv;
+ long ret = gtod(&tv, 0);
+
+ if (ret == 0) {
+ char buf[] = "The time is .000000\n";
+ to_base10(buf + 31, tv.tv_sec);
+ to_base10(buf + 38, tv.tv_usec);
+ linux_write(1, buf, sizeof(buf) - 1);
+ } else {
+ linux_exit(ret);
+ }
+
+ linux_exit(0);
+}
+
+/*
+ * This is the real entry point. It passes the initial stack into
+ * the C entry point.
+ */
+asm (
+ ".text\n"
+ ".global _start\n"
+ ".type _start,@function\n"
+ "_start:\n\t"
+ "mov %rsp,%rdi\n\t"
+ "jmp c_main"
+ );
diff --git a/Documentation/virtual/kvm/api.txt b/Documentation/virtual/kvm/api.txt
index 42542eb802ca..b0e4b9cd6a66 100644
--- a/Documentation/virtual/kvm/api.txt
+++ b/Documentation/virtual/kvm/api.txt
@@ -180,6 +180,19 @@ KVM_CHECK_EXTENSION ioctl() to determine the value for max_vcpus at run-time.
If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
cpus max.
+On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
+threads in one or more virtual CPU cores. (This is because the
+hardware requires all the hardware threads in a CPU core to be in the
+same partition.) The KVM_CAP_PPC_SMT capability indicates the number
+of vcpus per virtual core (vcore). The vcore id is obtained by
+dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
+given vcore will always be in the same physical core as each other
+(though that might be a different physical core from time to time).
+Userspace can control the threading (SMT) mode of the guest by its
+allocation of vcpu ids. For example, if userspace wants
+single-threaded guest vcpus, it should make all vcpu ids be a multiple
+of the number of vcpus per vcore.
+
4.8 KVM_GET_DIRTY_LOG (vm ioctl)
Capability: basic
@@ -1143,15 +1156,10 @@ Assigns an IRQ to a passed-through device.
struct kvm_assigned_irq {
__u32 assigned_dev_id;
- __u32 host_irq;
+ __u32 host_irq; /* ignored (legacy field) */
__u32 guest_irq;
__u32 flags;
union {
- struct {
- __u32 addr_lo;
- __u32 addr_hi;
- __u32 data;
- } guest_msi;
__u32 reserved[12];
};
};
@@ -1239,8 +1247,10 @@ Type: vm ioctl
Parameters: struct kvm_assigned_msix_nr (in)
Returns: 0 on success, -1 on error
-Set the number of MSI-X interrupts for an assigned device. This service can
-only be called once in the lifetime of an assigned device.
+Set the number of MSI-X interrupts for an assigned device. The number is
+reset again by terminating the MSI-X assignment of the device via
+KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
+point will fail.
struct kvm_assigned_msix_nr {
__u32 assigned_dev_id;
@@ -1291,6 +1301,135 @@ Returns the tsc frequency of the guest. The unit of the return value is
KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
error.
+4.56 KVM_GET_LAPIC
+
+Capability: KVM_CAP_IRQCHIP
+Architectures: x86
+Type: vcpu ioctl
+Parameters: struct kvm_lapic_state (out)
+Returns: 0 on success, -1 on error
+
+#define KVM_APIC_REG_SIZE 0x400
+struct kvm_lapic_state {
+ char regs[KVM_APIC_REG_SIZE];
+};
+
+Reads the Local APIC registers and copies them into the input argument. The
+data format and layout are the same as documented in the architecture manual.
+
+4.57 KVM_SET_LAPIC
+
+Capability: KVM_CAP_IRQCHIP
+Architectures: x86
+Type: vcpu ioctl
+Parameters: struct kvm_lapic_state (in)
+Returns: 0 on success, -1 on error
+
+#define KVM_APIC_REG_SIZE 0x400
+struct kvm_lapic_state {
+ char regs[KVM_APIC_REG_SIZE];
+};
+
+Copies the input argument into the the Local APIC registers. The data format
+and layout are the same as documented in the architecture manual.
+
+4.58 KVM_IOEVENTFD
+
+Capability: KVM_CAP_IOEVENTFD
+Architectures: all
+Type: vm ioctl
+Parameters: struct kvm_ioeventfd (in)
+Returns: 0 on success, !0 on error
+
+This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
+within the guest. A guest write in the registered address will signal the
+provided event instead of triggering an exit.
+
+struct kvm_ioeventfd {
+ __u64 datamatch;
+ __u64 addr; /* legal pio/mmio address */
+ __u32 len; /* 1, 2, 4, or 8 bytes */
+ __s32 fd;
+ __u32 flags;
+ __u8 pad[36];
+};
+
+The following flags are defined:
+
+#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
+#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
+#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
+
+If datamatch flag is set, the event will be signaled only if the written value
+to the registered address is equal to datamatch in struct kvm_ioeventfd.
+
+4.62 KVM_CREATE_SPAPR_TCE
+
+Capability: KVM_CAP_SPAPR_TCE
+Architectures: powerpc
+Type: vm ioctl
+Parameters: struct kvm_create_spapr_tce (in)
+Returns: file descriptor for manipulating the created TCE table
+
+This creates a virtual TCE (translation control entry) table, which
+is an IOMMU for PAPR-style virtual I/O. It is used to translate
+logical addresses used in virtual I/O into guest physical addresses,
+and provides a scatter/gather capability for PAPR virtual I/O.
+
+/* for KVM_CAP_SPAPR_TCE */
+struct kvm_create_spapr_tce {
+ __u64 liobn;
+ __u32 window_size;
+};
+
+The liobn field gives the logical IO bus number for which to create a
+TCE table. The window_size field specifies the size of the DMA window
+which this TCE table will translate - the table will contain one 64
+bit TCE entry for every 4kiB of the DMA window.
+
+When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
+table has been created using this ioctl(), the kernel will handle it
+in real mode, updating the TCE table. H_PUT_TCE calls for other
+liobns will cause a vm exit and must be handled by userspace.
+
+The return value is a file descriptor which can be passed to mmap(2)
+to map the created TCE table into userspace. This lets userspace read
+the entries written by kernel-handled H_PUT_TCE calls, and also lets
+userspace update the TCE table directly which is useful in some
+circumstances.
+
+4.63 KVM_ALLOCATE_RMA
+
+Capability: KVM_CAP_PPC_RMA
+Architectures: powerpc
+Type: vm ioctl
+Parameters: struct kvm_allocate_rma (out)
+Returns: file descriptor for mapping the allocated RMA
+
+This allocates a Real Mode Area (RMA) from the pool allocated at boot
+time by the kernel. An RMA is a physically-contiguous, aligned region
+of memory used on older POWER processors to provide the memory which
+will be accessed by real-mode (MMU off) accesses in a KVM guest.
+POWER processors support a set of sizes for the RMA that usually
+includes 64MB, 128MB, 256MB and some larger powers of two.
+
+/* for KVM_ALLOCATE_RMA */
+struct kvm_allocate_rma {
+ __u64 rma_size;
+};
+
+The return value is a file descriptor which can be passed to mmap(2)
+to map the allocated RMA into userspace. The mapped area can then be
+passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
+RMA for a virtual machine. The size of the RMA in bytes (which is
+fixed at host kernel boot time) is returned in the rma_size field of
+the argument structure.
+
+The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
+is supported; 2 if the processor requires all virtual machines to have
+an RMA, or 1 if the processor can use an RMA but doesn't require it,
+because it supports the Virtual RMA (VRMA) facility.
+
5. The kvm_run structure
Application code obtains a pointer to the kvm_run structure by
@@ -1473,6 +1612,23 @@ Userspace can now handle the hypercall and when it's done modify the gprs as
necessary. Upon guest entry all guest GPRs will then be replaced by the values
in this struct.
+ /* KVM_EXIT_PAPR_HCALL */
+ struct {
+ __u64 nr;
+ __u64 ret;
+ __u64 args[9];
+ } papr_hcall;
+
+This is used on 64-bit PowerPC when emulating a pSeries partition,
+e.g. with the 'pseries' machine type in qemu. It occurs when the
+guest does a hypercall using the 'sc 1' instruction. The 'nr' field
+contains the hypercall number (from the guest R3), and 'args' contains
+the arguments (from the guest R4 - R12). Userspace should put the
+return code in 'ret' and any extra returned values in args[].
+The possible hypercalls are defined in the Power Architecture Platform
+Requirements (PAPR) document available from www.power.org (free
+developer registration required to access it).
+
/* Fix the size of the union. */
char padding[256];
};
diff --git a/Documentation/virtual/kvm/mmu.txt b/Documentation/virtual/kvm/mmu.txt
index f46aa58389ca..5dc972c09b55 100644
--- a/Documentation/virtual/kvm/mmu.txt
+++ b/Documentation/virtual/kvm/mmu.txt
@@ -165,6 +165,10 @@ Shadow pages contain the following information:
Contains the value of efer.nxe for which the page is valid.
role.cr0_wp:
Contains the value of cr0.wp for which the page is valid.
+ role.smep_andnot_wp:
+ Contains the value of cr4.smep && !cr0.wp for which the page is valid
+ (pages for which this is true are different from other pages; see the
+ treatment of cr0.wp=0 below).
gfn:
Either the guest page table containing the translations shadowed by this
page, or the base page frame for linear translations. See role.direct.
@@ -317,6 +321,20 @@ on fault type:
(user write faults generate a #PF)
+In the first case there is an additional complication if CR4.SMEP is
+enabled: since we've turned the page into a kernel page, the kernel may now
+execute it. We handle this by also setting spte.nx. If we get a user
+fetch or read fault, we'll change spte.u=1 and spte.nx=gpte.nx back.
+
+To prevent an spte that was converted into a kernel page with cr0.wp=0
+from being written by the kernel after cr0.wp has changed to 1, we make
+the value of cr0.wp part of the page role. This means that an spte created
+with one value of cr0.wp cannot be used when cr0.wp has a different value -
+it will simply be missed by the shadow page lookup code. A similar issue
+exists when an spte created with cr0.wp=0 and cr4.smep=0 is used after
+changing cr4.smep to 1. To avoid this, the value of !cr0.wp && cr4.smep
+is also made a part of the page role.
+
Large pages
===========
diff --git a/Documentation/virtual/kvm/msr.txt b/Documentation/virtual/kvm/msr.txt
index d079aed27e03..50317809113d 100644
--- a/Documentation/virtual/kvm/msr.txt
+++ b/Documentation/virtual/kvm/msr.txt
@@ -185,3 +185,37 @@ MSR_KVM_ASYNC_PF_EN: 0x4b564d02
Currently type 2 APF will be always delivered on the same vcpu as
type 1 was, but guest should not rely on that.
+
+MSR_KVM_STEAL_TIME: 0x4b564d03
+
+ data: 64-byte alignment physical address of a memory area which must be
+ in guest RAM, plus an enable bit in bit 0. This memory is expected to
+ hold a copy of the following structure:
+
+ struct kvm_steal_time {
+ __u64 steal;
+ __u32 version;
+ __u32 flags;
+ __u32 pad[12];
+ }
+
+ whose data will be filled in by the hypervisor periodically. Only one
+ write, or registration, is needed for each VCPU. The interval between
+ updates of this structure is arbitrary and implementation-dependent.
+ The hypervisor may update this structure at any time it sees fit until
+ anything with bit0 == 0 is written to it. Guest is required to make sure
+ this structure is initialized to zero.
+
+ Fields have the following meanings:
+
+ version: a sequence counter. In other words, guest has to check
+ this field before and after grabbing time information and make
+ sure they are both equal and even. An odd version indicates an
+ in-progress update.
+
+ flags: At this point, always zero. May be used to indicate
+ changes in this structure in the future.
+
+ steal: the amount of time in which this vCPU did not run, in
+ nanoseconds. Time during which the vcpu is idle, will not be
+ reported as steal time.
diff --git a/Documentation/virtual/kvm/nested-vmx.txt b/Documentation/virtual/kvm/nested-vmx.txt
new file mode 100644
index 000000000000..8ed937de1163
--- /dev/null
+++ b/Documentation/virtual/kvm/nested-vmx.txt
@@ -0,0 +1,251 @@
+Nested VMX
+==========
+
+Overview
+---------
+
+On Intel processors, KVM uses Intel's VMX (Virtual-Machine eXtensions)
+to easily and efficiently run guest operating systems. Normally, these guests
+*cannot* themselves be hypervisors running their own guests, because in VMX,
+guests cannot use VMX instructions.
+
+The "Nested VMX" feature adds this missing capability - of running guest
+hypervisors (which use VMX) with their own nested guests. It does so by
+allowing a guest to use VMX instructions, and correctly and efficiently
+emulating them using the single level of VMX available in the hardware.
+
+We describe in much greater detail the theory behind the nested VMX feature,
+its implementation and its performance characteristics, in the OSDI 2010 paper
+"The Turtles Project: Design and Implementation of Nested Virtualization",
+available at:
+
+ http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
+
+
+Terminology
+-----------
+
+Single-level virtualization has two levels - the host (KVM) and the guests.
+In nested virtualization, we have three levels: The host (KVM), which we call
+L0, the guest hypervisor, which we call L1, and its nested guest, which we
+call L2.
+
+
+Known limitations
+-----------------
+
+The current code supports running Linux guests under KVM guests.
+Only 64-bit guest hypervisors are supported.
+
+Additional patches for running Windows under guest KVM, and Linux under
+guest VMware server, and support for nested EPT, are currently running in
+the lab, and will be sent as follow-on patchsets.
+
+
+Running nested VMX
+------------------
+
+The nested VMX feature is disabled by default. It can be enabled by giving
+the "nested=1" option to the kvm-intel module.
+
+No modifications are required to user space (qemu). However, qemu's default
+emulated CPU type (qemu64) does not list the "VMX" CPU feature, so it must be
+explicitly enabled, by giving qemu one of the following options:
+
+ -cpu host (emulated CPU has all features of the real CPU)
+
+ -cpu qemu64,+vmx (add just the vmx feature to a named CPU type)
+
+
+ABIs
+----
+
+Nested VMX aims to present a standard and (eventually) fully-functional VMX
+implementation for the a guest hypervisor to use. As such, the official
+specification of the ABI that it provides is Intel's VMX specification,
+namely volume 3B of their "Intel 64 and IA-32 Architectures Software
+Developer's Manual". Not all of VMX's features are currently fully supported,
+but the goal is to eventually support them all, starting with the VMX features
+which are used in practice by popular hypervisors (KVM and others).
+
+As a VMX implementation, nested VMX presents a VMCS structure to L1.
+As mandated by the spec, other than the two fields revision_id and abort,
+this structure is *opaque* to its user, who is not supposed to know or care
+about its internal structure. Rather, the structure is accessed through the
+VMREAD and VMWRITE instructions.
+Still, for debugging purposes, KVM developers might be interested to know the
+internals of this structure; This is struct vmcs12 from arch/x86/kvm/vmx.c.
+
+The name "vmcs12" refers to the VMCS that L1 builds for L2. In the code we
+also have "vmcs01", the VMCS that L0 built for L1, and "vmcs02" is the VMCS
+which L0 builds to actually run L2 - how this is done is explained in the
+aforementioned paper.
+
+For convenience, we repeat the content of struct vmcs12 here. If the internals
+of this structure changes, this can break live migration across KVM versions.
+VMCS12_REVISION (from vmx.c) should be changed if struct vmcs12 or its inner
+struct shadow_vmcs is ever changed.
+
+ typedef u64 natural_width;
+ struct __packed vmcs12 {
+ /* According to the Intel spec, a VMCS region must start with
+ * these two user-visible fields */
+ u32 revision_id;
+ u32 abort;
+
+ u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+ u32 padding[7]; /* room for future expansion */
+
+ u64 io_bitmap_a;
+ u64 io_bitmap_b;
+ u64 msr_bitmap;
+ u64 vm_exit_msr_store_addr;
+ u64 vm_exit_msr_load_addr;
+ u64 vm_entry_msr_load_addr;
+ u64 tsc_offset;
+ u64 virtual_apic_page_addr;
+ u64 apic_access_addr;
+ u64 ept_pointer;
+ u64 guest_physical_address;
+ u64 vmcs_link_pointer;
+ u64 guest_ia32_debugctl;
+ u64 guest_ia32_pat;
+ u64 guest_ia32_efer;
+ u64 guest_pdptr0;
+ u64 guest_pdptr1;
+ u64 guest_pdptr2;
+ u64 guest_pdptr3;
+ u64 host_ia32_pat;
+ u64 host_ia32_efer;
+ u64 padding64[8]; /* room for future expansion */
+ natural_width cr0_guest_host_mask;
+ natural_width cr4_guest_host_mask;
+ natural_width cr0_read_shadow;
+ natural_width cr4_read_shadow;
+ natural_width cr3_target_value0;
+ natural_width cr3_target_value1;
+ natural_width cr3_target_value2;
+ natural_width cr3_target_value3;
+ natural_width exit_qualification;
+ natural_width guest_linear_address;
+ natural_width guest_cr0;
+ natural_width guest_cr3;
+ natural_width guest_cr4;
+ natural_width guest_es_base;
+ natural_width guest_cs_base;
+ natural_width guest_ss_base;
+ natural_width guest_ds_base;
+ natural_width guest_fs_base;
+ natural_width guest_gs_base;
+ natural_width guest_ldtr_base;
+ natural_width guest_tr_base;
+ natural_width guest_gdtr_base;
+ natural_width guest_idtr_base;
+ natural_width guest_dr7;
+ natural_width guest_rsp;
+ natural_width guest_rip;
+ natural_width guest_rflags;
+ natural_width guest_pending_dbg_exceptions;
+ natural_width guest_sysenter_esp;
+ natural_width guest_sysenter_eip;
+ natural_width host_cr0;
+ natural_width host_cr3;
+ natural_width host_cr4;
+ natural_width host_fs_base;
+ natural_width host_gs_base;
+ natural_width host_tr_base;
+ natural_width host_gdtr_base;
+ natural_width host_idtr_base;
+ natural_width host_ia32_sysenter_esp;
+ natural_width host_ia32_sysenter_eip;
+ natural_width host_rsp;
+ natural_width host_rip;
+ natural_width paddingl[8]; /* room for future expansion */
+ u32 pin_based_vm_exec_control;
+ u32 cpu_based_vm_exec_control;
+ u32 exception_bitmap;
+ u32 page_fault_error_code_mask;
+ u32 page_fault_error_code_match;
+ u32 cr3_target_count;
+ u32 vm_exit_controls;
+ u32 vm_exit_msr_store_count;
+ u32 vm_exit_msr_load_count;
+ u32 vm_entry_controls;
+ u32 vm_entry_msr_load_count;
+ u32 vm_entry_intr_info_field;
+ u32 vm_entry_exception_error_code;
+ u32 vm_entry_instruction_len;
+ u32 tpr_threshold;
+ u32 secondary_vm_exec_control;
+ u32 vm_instruction_error;
+ u32 vm_exit_reason;
+ u32 vm_exit_intr_info;
+ u32 vm_exit_intr_error_code;
+ u32 idt_vectoring_info_field;
+ u32 idt_vectoring_error_code;
+ u32 vm_exit_instruction_len;
+ u32 vmx_instruction_info;
+ u32 guest_es_limit;
+ u32 guest_cs_limit;
+ u32 guest_ss_limit;
+ u32 guest_ds_limit;
+ u32 guest_fs_limit;
+ u32 guest_gs_limit;
+ u32 guest_ldtr_limit;
+ u32 guest_tr_limit;
+ u32 guest_gdtr_limit;
+ u32 guest_idtr_limit;
+ u32 guest_es_ar_bytes;
+ u32 guest_cs_ar_bytes;
+ u32 guest_ss_ar_bytes;
+ u32 guest_ds_ar_bytes;
+ u32 guest_fs_ar_bytes;
+ u32 guest_gs_ar_bytes;
+ u32 guest_ldtr_ar_bytes;
+ u32 guest_tr_ar_bytes;
+ u32 guest_interruptibility_info;
+ u32 guest_activity_state;
+ u32 guest_sysenter_cs;
+ u32 host_ia32_sysenter_cs;
+ u32 padding32[8]; /* room for future expansion */
+ u16 virtual_processor_id;
+ u16 guest_es_selector;
+ u16 guest_cs_selector;
+ u16 guest_ss_selector;
+ u16 guest_ds_selector;
+ u16 guest_fs_selector;
+ u16 guest_gs_selector;
+ u16 guest_ldtr_selector;
+ u16 guest_tr_selector;
+ u16 host_es_selector;
+ u16 host_cs_selector;
+ u16 host_ss_selector;
+ u16 host_ds_selector;
+ u16 host_fs_selector;
+ u16 host_gs_selector;
+ u16 host_tr_selector;
+ };
+
+
+Authors
+-------
+
+These patches were written by:
+ Abel Gordon, abelg <at> il.ibm.com
+ Nadav Har'El, nyh <at> il.ibm.com
+ Orit Wasserman, oritw <at> il.ibm.com
+ Ben-Ami Yassor, benami <at> il.ibm.com
+ Muli Ben-Yehuda, muli <at> il.ibm.com
+
+With contributions by:
+ Anthony Liguori, aliguori <at> us.ibm.com
+ Mike Day, mdday <at> us.ibm.com
+ Michael Factor, factor <at> il.ibm.com
+ Zvi Dubitzky, dubi <at> il.ibm.com
+
+And valuable reviews by:
+ Avi Kivity, avi <at> redhat.com
+ Gleb Natapov, gleb <at> redhat.com
+ Marcelo Tosatti, mtosatti <at> redhat.com
+ Kevin Tian, kevin.tian <at> intel.com
+ and others.
diff --git a/Documentation/virtual/kvm/ppc-pv.txt b/Documentation/virtual/kvm/ppc-pv.txt
index 3ab969c59046..2b7ce190cde4 100644
--- a/Documentation/virtual/kvm/ppc-pv.txt
+++ b/Documentation/virtual/kvm/ppc-pv.txt
@@ -68,9 +68,11 @@ page that contains parts of supervisor visible register state. The guest can
map this shared page using the KVM hypercall KVM_HC_PPC_MAP_MAGIC_PAGE.
With this hypercall issued the guest always gets the magic page mapped at the
-desired location in effective and physical address space. For now, we always
-map the page to -4096. This way we can access it using absolute load and store
-functions. The following instruction reads the first field of the magic page:
+desired location. The first parameter indicates the effective address when the
+MMU is enabled. The second parameter indicates the address in real mode, if
+applicable to the target. For now, we always map the page to -4096. This way we
+can access it using absolute load and store functions. The following
+instruction reads the first field of the magic page:
ld rX, -4096(0)
diff --git a/Documentation/virtual/lguest/lguest.c b/Documentation/virtual/lguest/lguest.c
index cd9d6af61d07..043bd7df3139 100644
--- a/Documentation/virtual/lguest/lguest.c
+++ b/Documentation/virtual/lguest/lguest.c
@@ -51,7 +51,7 @@
#include <asm/bootparam.h>
#include "../../../include/linux/lguest_launcher.h"
/*L:110
- * We can ignore the 42 include files we need for this program, but I do want
+ * We can ignore the 43 include files we need for this program, but I do want
* to draw attention to the use of kernel-style types.
*
* As Linus said, "C is a Spartan language, and so should your naming be." I
@@ -65,7 +65,6 @@ typedef uint16_t u16;
typedef uint8_t u8;
/*:*/
-#define PAGE_PRESENT 0x7 /* Present, RW, Execute */
#define BRIDGE_PFX "bridge:"
#ifndef SIOCBRADDIF
#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
@@ -861,8 +860,10 @@ static void console_output(struct virtqueue *vq)
/* writev can return a partial write, so we loop here. */
while (!iov_empty(iov, out)) {
int len = writev(STDOUT_FILENO, iov, out);
- if (len <= 0)
- err(1, "Write to stdout gave %i", len);
+ if (len <= 0) {
+ warn("Write to stdout gave %i (%d)", len, errno);
+ break;
+ }
iov_consume(iov, out, len);
}
@@ -898,7 +899,7 @@ static void net_output(struct virtqueue *vq)
* same format: what a coincidence!
*/
if (writev(net_info->tunfd, iov, out) < 0)
- errx(1, "Write to tun failed?");
+ warnx("Write to tun failed (%d)?", errno);
/*
* Done with that one; wait_for_vq_desc() will send the interrupt if
@@ -955,7 +956,7 @@ static void net_input(struct virtqueue *vq)
*/
len = readv(net_info->tunfd, iov, in);
if (len <= 0)
- err(1, "Failed to read from tun.");
+ warn("Failed to read from tun (%d).", errno);
/*
* Mark that packet buffer as used, but don't interrupt here. We want
@@ -1093,9 +1094,10 @@ static void update_device_status(struct device *dev)
warnx("Device %s configuration FAILED", dev->name);
if (dev->running)
reset_device(dev);
- } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
- if (!dev->running)
- start_device(dev);
+ } else {
+ if (dev->running)
+ err(1, "Device %s features finalized twice", dev->name);
+ start_device(dev);
}
}
@@ -1120,25 +1122,11 @@ static void handle_output(unsigned long addr)
return;
}
- /*
- * Devices *can* be used before status is set to DRIVER_OK.
- * The original plan was that they would never do this: they
- * would always finish setting up their status bits before
- * actually touching the virtqueues. In practice, we allowed
- * them to, and they do (eg. the disk probes for partition
- * tables as part of initialization).
- *
- * If we see this, we start the device: once it's running, we
- * expect the device to catch all the notifications.
- */
+ /* Devices should not be used before features are finalized. */
for (vq = i->vq; vq; vq = vq->next) {
if (addr != vq->config.pfn*getpagesize())
continue;
- if (i->running)
- errx(1, "Notification on running %s", i->name);
- /* This just calls create_thread() for each virtqueue */
- start_device(i);
- return;
+ errx(1, "Notification on %s before setup!", i->name);
}
}
@@ -1370,7 +1358,7 @@ static void setup_console(void)
* --sharenet=<name> option which opens or creates a named pipe. This can be
* used to send packets to another guest in a 1:1 manner.
*
- * More sopisticated is to use one of the tools developed for project like UML
+ * More sophisticated is to use one of the tools developed for project like UML
* to do networking.
*
* Faster is to do virtio bonding in kernel. Doing this 1:1 would be
@@ -1380,7 +1368,7 @@ static void setup_console(void)
* multiple inter-guest channels behind one interface, although it would
* require some manner of hotplugging new virtio channels.
*
- * Finally, we could implement a virtio network switch in the kernel.
+ * Finally, we could use a virtio network switch in the kernel, ie. vhost.
:*/
static u32 str2ip(const char *ipaddr)
@@ -2017,10 +2005,7 @@ int main(int argc, char *argv[])
/* Tell the entry path not to try to reload segment registers. */
boot->hdr.loadflags |= KEEP_SEGMENTS;
- /*
- * We tell the kernel to initialize the Guest: this returns the open
- * /dev/lguest file descriptor.
- */
+ /* We tell the kernel to initialize the Guest. */
tell_kernel(start);
/* Ensure that we terminate if a device-servicing child dies. */
diff --git a/Documentation/watchdog/00-INDEX b/Documentation/watchdog/00-INDEX
index ee994513a9b1..fc51128071c2 100644
--- a/Documentation/watchdog/00-INDEX
+++ b/Documentation/watchdog/00-INDEX
@@ -8,6 +8,8 @@ src/
- directory holding watchdog related example programs.
watchdog-api.txt
- description of the Linux Watchdog driver API.
+watchdog-kernel-api.txt
+ - description of the Linux WatchDog Timer Driver Core kernel API.
watchdog-parameters.txt
- information on driver parameters (for drivers other than
the ones that have driver-specific files here)
diff --git a/Documentation/watchdog/watchdog-kernel-api.txt b/Documentation/watchdog/watchdog-kernel-api.txt
new file mode 100644
index 000000000000..4f7c894244d2
--- /dev/null
+++ b/Documentation/watchdog/watchdog-kernel-api.txt
@@ -0,0 +1,162 @@
+The Linux WatchDog Timer Driver Core kernel API.
+===============================================
+Last reviewed: 22-Jul-2011
+
+Wim Van Sebroeck <wim@iguana.be>
+
+Introduction
+------------
+This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
+It also does not describe the API which can be used by user space to communicate
+with a WatchDog Timer. If you want to know this then please read the following
+file: Documentation/watchdog/watchdog-api.txt .
+
+So what does this document describe? It describes the API that can be used by
+WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
+Framework. This framework provides all interfacing towards user space so that
+the same code does not have to be reproduced each time. This also means that
+a watchdog timer driver then only needs to provide the different routines
+(operations) that control the watchdog timer (WDT).
+
+The API
+-------
+Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
+must #include <linux/watchdog.h> (you would have to do this anyway when
+writing a watchdog device driver). This include file contains following
+register/unregister routines:
+
+extern int watchdog_register_device(struct watchdog_device *);
+extern void watchdog_unregister_device(struct watchdog_device *);
+
+The watchdog_register_device routine registers a watchdog timer device.
+The parameter of this routine is a pointer to a watchdog_device structure.
+This routine returns zero on success and a negative errno code for failure.
+
+The watchdog_unregister_device routine deregisters a registered watchdog timer
+device. The parameter of this routine is the pointer to the registered
+watchdog_device structure.
+
+The watchdog device structure looks like this:
+
+struct watchdog_device {
+ const struct watchdog_info *info;
+ const struct watchdog_ops *ops;
+ unsigned int bootstatus;
+ unsigned int timeout;
+ unsigned int min_timeout;
+ unsigned int max_timeout;
+ void *driver_data;
+ unsigned long status;
+};
+
+It contains following fields:
+* info: a pointer to a watchdog_info structure. This structure gives some
+ additional information about the watchdog timer itself. (Like it's unique name)
+* ops: a pointer to the list of watchdog operations that the watchdog supports.
+* timeout: the watchdog timer's timeout value (in seconds).
+* min_timeout: the watchdog timer's minimum timeout value (in seconds).
+* max_timeout: the watchdog timer's maximum timeout value (in seconds).
+* bootstatus: status of the device after booting (reported with watchdog
+ WDIOF_* status bits).
+* driver_data: a pointer to the drivers private data of a watchdog device.
+ This data should only be accessed via the watchdog_set_drvadata and
+ watchdog_get_drvdata routines.
+* status: this field contains a number of status bits that give extra
+ information about the status of the device (Like: is the watchdog timer
+ running/active, is the nowayout bit set, is the device opened via
+ the /dev/watchdog interface or not, ...).
+
+The list of watchdog operations is defined as:
+
+struct watchdog_ops {
+ struct module *owner;
+ /* mandatory operations */
+ int (*start)(struct watchdog_device *);
+ int (*stop)(struct watchdog_device *);
+ /* optional operations */
+ int (*ping)(struct watchdog_device *);
+ unsigned int (*status)(struct watchdog_device *);
+ int (*set_timeout)(struct watchdog_device *, unsigned int);
+ long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
+};
+
+It is important that you first define the module owner of the watchdog timer
+driver's operations. This module owner will be used to lock the module when
+the watchdog is active. (This to avoid a system crash when you unload the
+module and /dev/watchdog is still open).
+Some operations are mandatory and some are optional. The mandatory operations
+are:
+* start: this is a pointer to the routine that starts the watchdog timer
+ device.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+* stop: with this routine the watchdog timer device is being stopped.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+ Some watchdog timer hardware can only be started and not be stopped. The
+ driver supporting this hardware needs to make sure that a start and stop
+ routine is being provided. This can be done by using a timer in the driver
+ that regularly sends a keepalive ping to the watchdog timer hardware.
+
+Not all watchdog timer hardware supports the same functionality. That's why
+all other routines/operations are optional. They only need to be provided if
+they are supported. These optional routines/operations are:
+* ping: this is the routine that sends a keepalive ping to the watchdog timer
+ hardware.
+ The routine needs a pointer to the watchdog timer device structure as a
+ parameter. It returns zero on success or a negative errno code for failure.
+ Most hardware that does not support this as a separate function uses the
+ start function to restart the watchdog timer hardware. And that's also what
+ the watchdog timer driver core does: to send a keepalive ping to the watchdog
+ timer hardware it will either use the ping operation (when available) or the
+ start operation (when the ping operation is not available).
+ (Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
+ WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
+ info structure).
+* status: this routine checks the status of the watchdog timer device. The
+ status of the device is reported with watchdog WDIOF_* status flags/bits.
+* set_timeout: this routine checks and changes the timeout of the watchdog
+ timer device. It returns 0 on success, -EINVAL for "parameter out of range"
+ and -EIO for "could not write value to the watchdog". On success the timeout
+ value of the watchdog_device will be changed to the value that was just used
+ to re-program the watchdog timer device.
+ (Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
+ watchdog's info structure).
+* ioctl: if this routine is present then it will be called first before we do
+ our own internal ioctl call handling. This routine should return -ENOIOCTLCMD
+ if a command is not supported. The parameters that are passed to the ioctl
+ call are: watchdog_device, cmd and arg.
+
+The status bits should (preferably) be set with the set_bit and clear_bit alike
+bit-operations. The status bits that are defined are:
+* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
+ is active or not. When the watchdog is active after booting, then you should
+ set this status bit (Note: when you register the watchdog timer device with
+ this bit set, then opening /dev/watchdog will skip the start operation)
+* WDOG_DEV_OPEN: this status bit shows whether or not the watchdog device
+ was opened via /dev/watchdog.
+ (This bit should only be used by the WatchDog Timer Driver Core).
+* WDOG_ALLOW_RELEASE: this bit stores whether or not the magic close character
+ has been sent (so that we can support the magic close feature).
+ (This bit should only be used by the WatchDog Timer Driver Core).
+* WDOG_NO_WAY_OUT: this bit stores the nowayout setting for the watchdog.
+ If this bit is set then the watchdog timer will not be able to stop.
+
+Note: The WatchDog Timer Driver Core supports the magic close feature and
+the nowayout feature. To use the magic close feature you must set the
+WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
+The nowayout feature will overrule the magic close feature.
+
+To get or set driver specific data the following two helper functions should be
+used:
+
+static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
+static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+
+The watchdog_set_drvdata function allows you to add driver specific data. The
+arguments of this function are the watchdog device where you want to add the
+driver specific data to and a pointer to the data itself.
+
+The watchdog_get_drvdata function allows you to retrieve driver specific data.
+The argument of this function is the watchdog device where you want to retrieve
+data from. The function retruns the pointer to the driver specific data.
diff --git a/Documentation/x86/entry_64.txt b/Documentation/x86/entry_64.txt
new file mode 100644
index 000000000000..7869f14d055c
--- /dev/null
+++ b/Documentation/x86/entry_64.txt
@@ -0,0 +1,98 @@
+This file documents some of the kernel entries in
+arch/x86/kernel/entry_64.S. A lot of this explanation is adapted from
+an email from Ingo Molnar:
+
+http://lkml.kernel.org/r/<20110529191055.GC9835%40elte.hu>
+
+The x86 architecture has quite a few different ways to jump into
+kernel code. Most of these entry points are registered in
+arch/x86/kernel/traps.c and implemented in arch/x86/kernel/entry_64.S
+and arch/x86/ia32/ia32entry.S.
+
+The IDT vector assignments are listed in arch/x86/include/irq_vectors.h.
+
+Some of these entries are:
+
+ - system_call: syscall instruction from 64-bit code.
+
+ - ia32_syscall: int 0x80 from 32-bit or 64-bit code; compat syscall
+ either way.
+
+ - ia32_syscall, ia32_sysenter: syscall and sysenter from 32-bit
+ code
+
+ - interrupt: An array of entries. Every IDT vector that doesn't
+ explicitly point somewhere else gets set to the corresponding
+ value in interrupts. These point to a whole array of
+ magically-generated functions that make their way to do_IRQ with
+ the interrupt number as a parameter.
+
+ - emulate_vsyscall: int 0xcc, a special non-ABI entry used by
+ vsyscall emulation.
+
+ - APIC interrupts: Various special-purpose interrupts for things
+ like TLB shootdown.
+
+ - Architecturally-defined exceptions like divide_error.
+
+There are a few complexities here. The different x86-64 entries
+have different calling conventions. The syscall and sysenter
+instructions have their own peculiar calling conventions. Some of
+the IDT entries push an error code onto the stack; others don't.
+IDT entries using the IST alternative stack mechanism need their own
+magic to get the stack frames right. (You can find some
+documentation in the AMD APM, Volume 2, Chapter 8 and the Intel SDM,
+Volume 3, Chapter 6.)
+
+Dealing with the swapgs instruction is especially tricky. Swapgs
+toggles whether gs is the kernel gs or the user gs. The swapgs
+instruction is rather fragile: it must nest perfectly and only in
+single depth, it should only be used if entering from user mode to
+kernel mode and then when returning to user-space, and precisely
+so. If we mess that up even slightly, we crash.
+
+So when we have a secondary entry, already in kernel mode, we *must
+not* use SWAPGS blindly - nor must we forget doing a SWAPGS when it's
+not switched/swapped yet.
+
+Now, there's a secondary complication: there's a cheap way to test
+which mode the CPU is in and an expensive way.
+
+The cheap way is to pick this info off the entry frame on the kernel
+stack, from the CS of the ptregs area of the kernel stack:
+
+ xorl %ebx,%ebx
+ testl $3,CS+8(%rsp)
+ je error_kernelspace
+ SWAPGS
+
+The expensive (paranoid) way is to read back the MSR_GS_BASE value
+(which is what SWAPGS modifies):
+
+ movl $1,%ebx
+ movl $MSR_GS_BASE,%ecx
+ rdmsr
+ testl %edx,%edx
+ js 1f /* negative -> in kernel */
+ SWAPGS
+ xorl %ebx,%ebx
+1: ret
+
+and the whole paranoid non-paranoid macro complexity is about whether
+to suffer that RDMSR cost.
+
+If we are at an interrupt or user-trap/gate-alike boundary then we can
+use the faster check: the stack will be a reliable indicator of
+whether SWAPGS was already done: if we see that we are a secondary
+entry interrupting kernel mode execution, then we know that the GS
+base has already been switched. If it says that we interrupted
+user-space execution then we must do the SWAPGS.
+
+But if we are in an NMI/MCE/DEBUG/whatever super-atomic entry context,
+which might have triggered right after a normal entry wrote CS to the
+stack but before we executed SWAPGS, then the only safe way to check
+for GS is the slower method: the RDMSR.
+
+So we try only to mark those entry methods 'paranoid' that absolutely
+need the more expensive check for the GS base - and we generate all
+'normal' entry points with the regular (faster) entry macros.
diff --git a/Documentation/zh_CN/SubmitChecklist b/Documentation/zh_CN/SubmitChecklist
index 951415bbab0c..4c741d6bc048 100644
--- a/Documentation/zh_CN/SubmitChecklist
+++ b/Documentation/zh_CN/SubmitChecklist
@@ -67,7 +67,7 @@ Linuxںύ嵥
12ѾͨCONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT,
CONFIG_DEBUG_SLAB, CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES,
- CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_SPINLOCK_SLEEPԣͬʱ
+ CONFIG_DEBUG_SPINLOCK, CONFIG_DEBUG_ATOMIC_SLEEPԣͬʱ
ʹܡ
13Ѿʹû߲ʹ CONFIG_SMP CONFIG_PREEMPTִʱ䡣
diff --git a/Documentation/zh_CN/email-clients.txt b/Documentation/zh_CN/email-clients.txt
index 5d65e323d060..b9a1a3e6c78d 100644
--- a/Documentation/zh_CN/email-clients.txt
+++ b/Documentation/zh_CN/email-clients.txt
@@ -1,4 +1,4 @@
-锘?Chinese translated version of Documentation/email-clients.txt
+Chinese translated version of Documentation/email-clients.txt
If you have any comment or update to the content, please contact the
original document maintainer directly. However, if you have a problem
@@ -8,203 +8,203 @@ or if there is a problem with the translation.
Chinese maintainer: Harry Wei <harryxiyou@gmail.com>
---------------------------------------------------------------------
-Documentation/email-clients.txt ???涓????缈昏??
+Documentation/email-clients.txt 的中文翻译
-濡??????宠??璁烘????存?版???????????瀹癸??璇风?存?ヨ??绯诲?????妗g??缁存?よ?????濡????浣?浣跨?ㄨ?辨??
-浜ゆ???????伴?剧??璇?锛?涔????浠ュ??涓???????缁存?よ??姹???┿??濡???????缈昏????存?颁???????舵?????缈?
-璇?瀛???ㄩ??棰?锛?璇疯??绯讳腑??????缁存?よ?????
+如果想评论或更新本文的内容,请直接联系原文档的维护者。如果你使用英文
+交流有困难的话,也可以向中文版维护者求助。如果本翻译更新不及时或者翻
+译存在问题,请联系中文版维护者。
-涓???????缁存?よ??锛? 璐惧??濞? Harry Wei <harryxiyou@gmail.com>
-涓???????缈昏?????锛? 璐惧??濞? Harry Wei <harryxiyou@gmail.com>
-涓?????????¤?????锛? Yinglin Luan <synmyth@gmail.com>
+中文版维护者: 贾威威 Harry Wei <harryxiyou@gmail.com>
+中文版翻译者: 贾威威 Harry Wei <harryxiyou@gmail.com>
+中文版校译者: Yinglin Luan <synmyth@gmail.com>
Xiaochen Wang <wangxiaochen0@gmail.com>
yaxinsn <yaxinsn@163.com>
-浠ヤ??涓烘?f??
+以下为正文
---------------------------------------------------------------------
-Linux???浠跺?㈡?风?????缃?淇℃??
+Linux邮件客户端配置信息
======================================================================
-?????????缃?
+普通配置
----------------------------------------------------------------------
-Linux?????歌ˉ涓???????杩????浠惰?????浜ょ??锛????濂芥??琛ヤ??浣?涓洪??浠朵????????宓?????????????浜?缁存?よ??
-??ユ?堕??浠讹??浣???????浠剁?????瀹规?煎??搴?璇ユ??"text/plain"?????惰??锛????浠朵????????涓?璧???????锛?
-???涓鸿??浼?浣胯ˉ涓????寮???ㄩ?ㄥ????ㄨ??璁鸿??绋?涓???????寰???伴?俱??
+Linux内核补丁是通过邮件被提交的,最好把补丁作为邮件体的内嵌文本。有些维护者
+接收附件,但是附件的内容格式应该是"text/plain"。然而,附件一般是不赞成的,
+因为这会使补丁的引用部分在评论过程中变的很困难。
-??ㄦ?ュ?????Linux?????歌ˉ涓???????浠跺?㈡?风????ㄥ?????琛ヤ????跺??璇ュ??浜?????????????濮???舵?????渚?濡?锛?
-浠?浠?涓???芥?瑰?????????????ゅ?惰〃绗???????绌烘?硷???????虫????ㄦ??涓?琛????寮?澶存?????缁?灏俱??
+用来发送Linux内核补丁的邮件客户端在发送补丁时应该处于文本的原始状态。例如,
+他们不能改变或者删除制表符或者空格,甚至是在每一行的开头或者结尾。
-涓?瑕????杩?"format=flowed"妯″????????琛ヤ?????杩???蜂??寮?璧蜂?????棰????浠ュ?????瀹崇?????琛????
+不要通过"format=flowed"模式发送补丁。这样会引起不可预期以及有害的断行。
-涓?瑕?璁╀????????浠跺?㈡?风??杩?琛??????ㄦ?㈣?????杩???蜂??浼???村??浣????琛ヤ?????
+不要让你的邮件客户端进行自动换行。这样也会破坏你的补丁。
-???浠跺?㈡?风??涓???芥?瑰???????????瀛?绗????缂??????瑰?????瑕??????????琛ヤ???????芥??ASCII??????UTF-8缂??????瑰??锛?
-濡????浣?浣跨??UTF-8缂??????瑰???????????浠讹????d??浣?灏?浼???垮??涓?浜??????藉????????瀛?绗???????棰????
+邮件客户端不能改变文本的字符集编码方式。要发送的补丁只能是ASCII或者UTF-8编码方式,
+如果你使用UTF-8编码方式发送邮件,那么你将会避免一些可能发生的字符集问题。
-???浠跺?㈡?风??搴?璇ュ舰???骞朵??淇???? References: ?????? In-Reply-To: ???棰?锛???d??
-???浠惰??棰?灏变??浼?涓???????
+邮件客户端应该形成并且保持 References: 或者 In-Reply-To: 标题,那么
+邮件话题就不会中断。
-澶???剁??甯?(?????????璐寸??甯?)???甯镐????界?ㄤ??琛ヤ??锛????涓哄?惰〃绗?浼?杞????涓虹┖??笺??浣跨??xclipboard, xclip
-??????xcutsel涔?璁稿??浠ワ??浣???????濂芥??璇?涓?涓?????????垮??浣跨?ㄥ????剁??甯????
+复制粘帖(或者剪贴粘帖)通常不能用于补丁,因为制表符会转换为空格。使用xclipboard, xclip
+或者xcutsel也许可以,但是最好测试一下或者避免使用复制粘帖。
-涓?瑕???ㄤ娇???PGP/GPG缃插????????浠朵腑??????琛ヤ?????杩???蜂??浣垮??寰?澶???????涓???借?诲??????????ㄤ??浣????琛ヤ?????
-锛?杩?涓????棰?搴?璇ユ?????浠ヤ慨澶????锛?
+不要在使用PGP/GPG署名的邮件中包含补丁。这样会使得很多脚本不能读取和适用于你的补丁。
+(这个问题应该是可以修复的)
-??ㄧ???????搁??浠跺??琛ㄥ?????琛ヤ??涔????锛?缁????宸卞?????涓?涓?琛ヤ?????涓?涓???????涓绘??锛?淇?瀛???ユ?跺?扮??
-???浠讹??灏?琛ヤ?????'patch'??戒护???涓?锛?濡??????????浜?锛????缁??????搁??浠跺??琛ㄥ????????
+在给内核邮件列表发送补丁之前,给自己发送一个补丁是个不错的主意,保存接收到的
+邮件,将补丁用'patch'命令打上,如果成功了,再给内核邮件列表发送。
-涓?浜????浠跺?㈡?风?????绀?
+一些邮件客户端提示
----------------------------------------------------------------------
-杩????缁???轰??浜?璇?缁????MUA???缃????绀猴?????浠ョ?ㄤ??缁?Linux?????稿?????琛ヤ?????杩?浜?骞朵???????虫??
-?????????杞?浠跺?????缃???荤?????
+这里给出一些详细的MUA配置提示,可以用于给Linux内核发送补丁。这些并不意味是
+所有的软件包配置总结。
-璇存??锛?
-TUI = 浠ユ?????涓哄?虹???????ㄦ?锋?ュ??
-GUI = ??惧舰?????㈢?ㄦ?锋?ュ??
+说明:
+TUI = 以文本为基础的用户接口
+GUI = 图形界面用户接口
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alpine (TUI)
-???缃????椤癸??
-???"Sending Preferences"??ㄥ??锛?
+配置选项:
+在"Sending Preferences"部分:
-- "Do Not Send Flowed Text"蹇?椤诲?????
-- "Strip Whitespace Before Sending"蹇?椤诲?抽??
+- "Do Not Send Flowed Text"必须开启
+- "Strip Whitespace Before Sending"必须关闭
-褰???????浠舵?讹????????搴?璇ユ?惧?ㄨˉ涓?浼???虹?扮????版?癸????跺?????涓?CTRL-R缁???????锛?浣挎??瀹????
-琛ヤ?????浠跺????ュ?伴??浠朵腑???
+当写邮件时,光标应该放在补丁会出现的地方,然后按下CTRL-R组合键,使指定的
+补丁文件嵌入到邮件中。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Evolution (GUI)
-涓?浜?寮????????????????浣跨?ㄥ????????琛ヤ??
+一些开发者成功的使用它发送补丁
-褰??????╅??浠堕??椤癸??Preformat
- 浠?Format->Heading->Preformatted (Ctrl-7)??????宸ュ?锋??
+当选择邮件选项:Preformat
+ 从Format->Heading->Preformatted (Ctrl-7)或者工具栏
-??跺??浣跨??锛?
- Insert->Text File... (Alt-n x)?????ヨˉ涓????浠躲??
+然后使用:
+ Insert->Text File... (Alt-n x)插入补丁文件。
-浣?杩????浠?"diff -Nru old.c new.c | xclip"锛???????Preformat锛???跺??浣跨?ㄤ腑??撮??杩?琛?绮?甯????
+你还可以"diff -Nru old.c new.c | xclip",选择Preformat,然后使用中间键进行粘帖。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Kmail (GUI)
-涓?浜?寮????????????????浣跨?ㄥ????????琛ヤ?????
+一些开发者成功的使用它发送补丁。
-榛?璁よ?剧疆涓?涓?HTML??煎??????????????锛?涓?瑕??????ㄥ?????
+默认设置不为HTML格式是合适的;不要启用它。
-褰?涔????涓?灏????浠剁????跺??锛???ㄩ??椤逛?????涓?瑕??????╄????ㄦ?㈣????????涓????缂虹?瑰氨???浣???ㄩ??浠朵腑杈???ョ??浠讳????????
-??戒??浼?琚??????ㄦ?㈣??锛????姝や??蹇?椤诲?ㄥ?????琛ヤ??涔?????????ㄦ?㈣????????绠?????????规??灏辨???????ㄨ????ㄦ?㈣????ヤ功??????浠讹??
-??跺?????瀹?淇?瀛?涓鸿??绋裤??涓????浣???ㄨ??绋夸腑???娆℃??寮?瀹?锛?瀹?宸茬????ㄩ?ㄨ????ㄦ?㈣??浜?锛???d??浣???????浠惰?界?舵病???
-?????╄????ㄦ?㈣??锛?浣????杩?涓?浼?澶卞?诲凡???????????ㄦ?㈣?????
+当书写一封邮件的时候,在选项下面不要选择自动换行。唯一的缺点就是你在邮件中输入的任何文本
+都不会被自动换行,因此你必须在发送补丁之前手动换行。最简单的方法就是启用自动换行来书写邮件,
+然后把它保存为草稿。一旦你在草稿中再次打开它,它已经全部自动换行了,那么你的邮件虽然没有
+选择自动换行,但是还不会失去已有的自动换行。
-??ㄩ??浠剁??搴????锛??????ヨˉ涓?涔????锛???句??甯哥?ㄧ??琛ヤ??瀹????绗?锛?涓?涓?杩?瀛????(---)???
+在邮件的底部,插入补丁之前,放上常用的补丁定界符:三个连字号(---)。
-??跺?????"Message"????????$??锛??????╂????ユ??浠讹????ョ????????浣????琛ヤ?????浠躲??杩????涓?涓?棰?澶???????椤癸??浣????浠?
-???杩?瀹????缃?浣???????浠跺缓绔?宸ュ?锋????????锛?杩????浠ュ甫涓?"insert file"??炬?????
+然后在"Message"菜单条目,选择插入文件,接着选取你的补丁文件。还有一个额外的选项,你可以
+通过它配置你的邮件建立工具栏菜单,还可以带上"insert file"图标。
-浣????浠ュ????ㄥ?伴??杩?GPG???璁伴??浠讹??浣???????宓?琛ヤ?????濂戒??瑕?浣跨??GPG???璁板??浠????浣?涓哄??宓??????????绛惧??琛ヤ??锛?
-褰?浠?GPG涓???????7浣?缂??????朵??浣夸??浠?????????村??澶???????
+你可以安全地通过GPG标记附件,但是内嵌补丁最好不要使用GPG标记它们。作为内嵌文本的签发补丁,
+当从GPG中提取7位编码时会使他们变的更加复杂。
-濡????浣????瑕?浠ラ??浠剁??褰㈠????????琛ヤ??锛???d??灏卞?抽????瑰?婚??浠讹????跺?????涓?灞???э??绐????"Suggest automatic
-display"锛?杩???峰??宓????浠舵?村?规??璁╄?昏???????般??
+如果你非要以附件的形式发送补丁,那么就右键点击附件,然后选中属性,突出"Suggest automatic
+display",这样内嵌附件更容易让读者看到。
-褰?浣?瑕?淇?瀛?灏?瑕?????????????宓???????琛ヤ??锛?浣????浠ヤ??娑???????琛ㄧ????奸????╁?????琛ヤ????????浠讹????跺????冲?婚?????
-"save as"???浣????浠ヤ娇??ㄤ??涓?娌℃????存?圭????????琛ヤ????????浠讹??濡????瀹????浠ユ?g‘???褰㈠??缁???????褰?浣?姝g????ㄥ??
-???宸辩??绐???d??涓?瀵????锛???f?舵病??????椤瑰??浠ヤ??瀛????浠?--宸茬?????涓?涓?杩???风??bug琚?姹???ュ?颁??kmail???bugzilla
-骞朵??甯????杩?灏?浼?琚?澶??????????浠舵??浠ュ?????瀵规??涓???ㄦ?峰??璇诲???????????琚?淇?瀛????锛????浠ュ?????浣???虫?????浠跺????跺?板?朵????版?癸??
-浣?涓?寰?涓????浠?浠????????????逛负缁?????????翠?????璇汇??
+当你要保存将要发送的内嵌文本补丁,你可以从消息列表窗格选择包含补丁的邮件,然后右击选择
+"save as"。你可以使用一个没有更改的包含补丁的邮件,如果它是以正确的形式组成。当你正真在它
+自己的窗口之下察看,那时没有选项可以保存邮件--已经有一个这样的bug被汇报到了kmail的bugzilla
+并且希望这将会被处理。邮件是以只针对某个用户可读写的权限被保存的,所以如果你想把邮件复制到其他地方,
+你不得不把他们的权限改为组或者整体可读。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Lotus Notes (GUI)
-涓?瑕?浣跨?ㄥ?????
+不要使用它。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Mutt (TUI)
-寰?澶?Linux寮????浜哄??浣跨??mutt瀹㈡?风??锛????浠ヨ?????瀹????瀹?宸ヤ????????甯告??浜????
+很多Linux开发人员使用mutt客户端,所以证明它肯定工作的非常漂亮。
-Mutt涓????甯?缂?杈????锛????浠ヤ??绠′??浣跨?ㄤ??涔?缂?杈???ㄩ?戒??搴?璇ュ甫????????ㄦ??琛????澶у????扮??杈???ㄩ?藉甫???
-涓?涓?"insert file"???椤癸??瀹????浠ラ??杩?涓???瑰?????浠跺??瀹圭????瑰???????ユ??浠躲??
+Mutt不自带编辑器,所以不管你使用什么编辑器都不应该带有自动断行。大多数编辑器都带有
+一个"insert file"选项,它可以通过不改变文件内容的方式插入文件。
-'vim'浣?涓?mutt???缂?杈????锛?
+'vim'作为mutt的编辑器:
set editor="vi"
- 濡????浣跨??xclip锛???插?ヤ互涓???戒护
+ 如果使用xclip,敲入以下命令
:set paste
- ???涓????涔??????????shift-insert??????浣跨??
+ 按中键之前或者shift-insert或者使用
:r filename
-濡??????宠?????琛ヤ??浣?涓哄??宓??????????
-(a)ttach宸ヤ?????寰?濂斤??涓?甯????"set paste"???
+如果想要把补丁作为内嵌文本。
+(a)ttach工作的很好,不带有"set paste"。
-???缃????椤癸??
-瀹?搴?璇ヤ互榛?璁よ?剧疆???褰㈠??宸ヤ?????
-??惰??锛????"send_charset"璁剧疆涓?"us-ascii::utf-8"涔????涓?涓?涓???????涓绘?????
+配置选项:
+它应该以默认设置的形式工作。
+然而,把"send_charset"设置为"us-ascii::utf-8"也是一个不错的主意。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pine (TUI)
-Pine杩???绘??涓?浜?绌烘?煎????????棰?锛?浣????杩?浜???板?ㄥ??璇ラ?借??淇?澶?浜????
+Pine过去有一些空格删减问题,但是这些现在应该都被修复了。
-濡???????浠ワ??璇蜂娇???alpine(pine???缁ф?胯??)
+如果可以,请使用alpine(pine的继承者)
-???缃????椤癸??
-- ???杩?????????????瑕?娑???ゆ??绋???????
-- "no-strip-whitespace-before-send"???椤逛????????瑕???????
+配置选项:
+- 最近的版本需要消除流程文本
+- "no-strip-whitespace-before-send"选项也是需要的。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sylpheed (GUI)
-- ???宓??????????浠ュ??濂界??宸ヤ??锛???????浣跨?ㄩ??浠讹?????
-- ???璁镐娇??ㄥ????ㄧ??缂?杈???ㄣ??
-- 瀵逛?????褰?杈?澶???堕??甯告?????
-- 濡???????杩?non-SSL杩???ワ?????娉?浣跨??TLS SMTP?????????
-- ??ㄧ?????绐???d腑???涓?涓?寰??????ㄧ??ruler bar???
-- 缁???板?????涓?娣诲????板??灏变??浼?姝g‘???浜?瑙f?剧ず??????
+- 内嵌文本可以很好的工作(或者使用附件)。
+- 允许使用外部的编辑器。
+- 对于目录较多时非常慢。
+- 如果通过non-SSL连接,无法使用TLS SMTP授权。
+- 在组成窗口中有一个很有用的ruler bar。
+- 给地址本中添加地址就不会正确的了解显示名。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Thunderbird (GUI)
-榛?璁ゆ????典??锛?thunderbird寰?瀹规??????????????锛?浣????杩????涓?浜???规?????浠ュ己??跺?????寰???村ソ???
+默认情况下,thunderbird很容易损坏文本,但是还有一些方法可以强制它变得更好。
-- ??ㄧ?ㄦ?峰????疯?剧疆???锛?缁???????瀵诲??锛?涓?瑕???????"Compose messages in HTML format"???
+- 在用户帐号设置里,组成和寻址,不要选择"Compose messages in HTML format"。
-- 缂?杈?浣????Thunderbird???缃?璁剧疆??ヤ娇瀹?涓?瑕????琛?浣跨??锛?user_pref("mailnews.wraplength", 0);
+- 编辑你的Thunderbird配置设置来使它不要拆行使用:user_pref("mailnews.wraplength", 0);
-- 缂?杈?浣????Thunderbird???缃?璁剧疆锛?浣垮??涓?瑕?浣跨??"format=flowed"??煎??锛?user_pref("mailnews.
+- 编辑你的Thunderbird配置设置,使它不要使用"format=flowed"格式:user_pref("mailnews.
send_plaintext_flowed", false);
-- 浣????瑕?浣?Thunderbird???涓洪???????煎????瑰??锛?
- 濡????榛?璁ゆ????典??浣?涔??????????HTML??煎??锛???d?????寰???俱??浠?浠?浠????棰???????涓????妗?涓???????"Preformat"??煎?????
- 濡????榛?璁ゆ????典??浣?涔??????????????????煎??锛?浣?涓?寰????瀹???逛负HTML??煎??锛?浠?浠?浣?涓轰??娆℃?х??锛???ヤ功?????扮??娑????锛?
- ??跺??寮哄?朵娇瀹??????版???????煎??锛???????瀹?灏变?????琛????瑕?瀹???板??锛???ㄥ??淇$????炬??涓?浣跨??shift?????ヤ娇瀹????涓?HTML
- ??煎??锛???跺?????棰???????涓????妗?涓???????"Preformat"??煎?????
+- 你需要使Thunderbird变为预先格式方式:
+ 如果默认情况下你书写的是HTML格式,那不是很难。仅仅从标题栏的下拉框中选择"Preformat"格式。
+ 如果默认情况下你书写的是文本格式,你不得把它改为HTML格式(仅仅作为一次性的)来书写新的消息,
+ 然后强制使它回到文本格式,否则它就会拆行。要实现它,在写信的图标上使用shift键来使它变为HTML
+ 格式,然后标题栏的下拉框中选择"Preformat"格式。
-- ???璁镐娇??ㄥ????ㄧ??缂?杈????锛?
- ???瀵?Thunderbird???琛ヤ?????绠?????????规??灏辨??浣跨?ㄤ??涓?"external editor"??╁??锛???跺??浣跨?ㄤ????????娆㈢??
- $EDITOR??ヨ?诲???????????骞惰ˉ涓???版?????涓????瑕?瀹???板??锛????浠ヤ??杞藉苟涓?瀹?瑁?杩?涓???╁??锛???跺??娣诲??涓?涓?浣跨?ㄥ?????
- ??????View->Toolbars->Customize...??????褰?浣?涔????淇℃???????跺??浠?浠???瑰?诲??灏卞??浠ヤ?????
+- 允许使用外部的编辑器:
+ 针对Thunderbird打补丁最简单的方法就是使用一个"external editor"扩展,然后使用你最喜欢的
+ $EDITOR来读取或者合并补丁到文本中。要实现它,可以下载并且安装这个扩展,然后添加一个使用它的
+ 按键View->Toolbars->Customize...最后当你书写信息的时候仅仅点击它就可以了。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TkRat (GUI)
-???浠ヤ娇??ㄥ?????浣跨??"Insert file..."??????澶???ㄧ??缂?杈???ㄣ??
+可以使用它。使用"Insert file..."或者外部的编辑器。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Gmail (Web GUI)
-涓?瑕?浣跨?ㄥ????????琛ヤ?????
+不要使用它发送补丁。
-Gmail缃?椤靛?㈡?风???????ㄥ?版????惰〃绗?杞????涓虹┖??笺??
+Gmail网页客户端自动地把制表符转换为空格。
-??界?跺?惰〃绗?杞????涓虹┖??奸??棰????浠ヨ??澶???ㄧ??杈???ㄨВ??筹???????跺??杩?浼?浣跨?ㄥ??杞???㈣?????姣?琛???????涓?78涓?瀛?绗????
+虽然制表符转换为空格问题可以被外部编辑器解决,同时它还会使用回车换行把每行拆分为78个字符。
-???涓?涓????棰????Gmail杩?浼????浠讳??涓????ASCII???瀛?绗????淇℃????逛负base64缂???????瀹????涓?瑗垮????????娆ф床浜虹?????瀛????
+另一个问题是Gmail还会把任何不是ASCII的字符的信息改为base64编码。它把东西变的像欧洲人的名字。
###
diff --git a/Documentation/zh_CN/magic-number.txt b/Documentation/zh_CN/magic-number.txt
index 4c4ce853577b..c278f412dc65 100644
--- a/Documentation/zh_CN/magic-number.txt
+++ b/Documentation/zh_CN/magic-number.txt
@@ -66,7 +66,7 @@ MKISS_DRIVER_MAGIC 0x04bf mkiss_channel drivers/net/mkiss.h
RISCOM8_MAGIC 0x0907 riscom_port drivers/char/riscom8.h
SPECIALIX_MAGIC 0x0907 specialix_port drivers/char/specialix_io8.h
HDLC_MAGIC 0x239e n_hdlc drivers/char/n_hdlc.c
-APM_BIOS_MAGIC 0x4101 apm_user arch/i386/kernel/apm.c
+APM_BIOS_MAGIC 0x4101 apm_user arch/x86/kernel/apm_32.c
CYCLADES_MAGIC 0x4359 cyclades_port include/linux/cyclades.h
DB_MAGIC 0x4442 fc_info drivers/net/iph5526_novram.c
DL_MAGIC 0x444d fc_info drivers/net/iph5526_novram.c