diff options
Diffstat (limited to 'Documentation/vm/transhuge.rst')
-rw-r--r-- | Documentation/vm/transhuge.rst | 187 |
1 files changed, 0 insertions, 187 deletions
diff --git a/Documentation/vm/transhuge.rst b/Documentation/vm/transhuge.rst deleted file mode 100644 index 216db1d67d04..000000000000 --- a/Documentation/vm/transhuge.rst +++ /dev/null @@ -1,187 +0,0 @@ -.. _transhuge: - -============================ -Transparent Hugepage Support -============================ - -This document describes design principles for Transparent Hugepage (THP) -support and its interaction with other parts of the memory management -system. - -Design principles -================= - -- "graceful fallback": mm components which don't have transparent hugepage - knowledge fall back to breaking huge pmd mapping into table of ptes and, - if necessary, split a transparent hugepage. Therefore these components - can continue working on the regular pages or regular pte mappings. - -- if a hugepage allocation fails because of memory fragmentation, - regular pages should be gracefully allocated instead and mixed in - the same vma without any failure or significant delay and without - userland noticing - -- if some task quits and more hugepages become available (either - immediately in the buddy or through the VM), guest physical memory - backed by regular pages should be relocated on hugepages - automatically (with khugepaged) - -- it doesn't require memory reservation and in turn it uses hugepages - whenever possible (the only possible reservation here is kernelcore= - to avoid unmovable pages to fragment all the memory but such a tweak - is not specific to transparent hugepage support and it's a generic - feature that applies to all dynamic high order allocations in the - kernel) - -get_user_pages and follow_page -============================== - -get_user_pages and follow_page if run on a hugepage, will return the -head or tail pages as usual (exactly as they would do on -hugetlbfs). Most GUP users will only care about the actual physical -address of the page and its temporary pinning to release after the I/O -is complete, so they won't ever notice the fact the page is huge. But -if any driver is going to mangle over the page structure of the tail -page (like for checking page->mapping or other bits that are relevant -for the head page and not the tail page), it should be updated to jump -to check head page instead. Taking a reference on any head/tail page would -prevent the page from being split by anyone. - -.. note:: - these aren't new constraints to the GUP API, and they match the - same constraints that apply to hugetlbfs too, so any driver capable - of handling GUP on hugetlbfs will also work fine on transparent - hugepage backed mappings. - -Graceful fallback -================= - -Code walking pagetables but unaware about huge pmds can simply call -split_huge_pmd(vma, pmd, addr) where the pmd is the one returned by -pmd_offset. It's trivial to make the code transparent hugepage aware -by just grepping for "pmd_offset" and adding split_huge_pmd where -missing after pmd_offset returns the pmd. Thanks to the graceful -fallback design, with a one liner change, you can avoid to write -hundreds if not thousands of lines of complex code to make your code -hugepage aware. - -If you're not walking pagetables but you run into a physical hugepage -that you can't handle natively in your code, you can split it by -calling split_huge_page(page). This is what the Linux VM does before -it tries to swapout the hugepage for example. split_huge_page() can fail -if the page is pinned and you must handle this correctly. - -Example to make mremap.c transparent hugepage aware with a one liner -change:: - - diff --git a/mm/mremap.c b/mm/mremap.c - --- a/mm/mremap.c - +++ b/mm/mremap.c - @@ -41,6 +41,7 @@ static pmd_t *get_old_pmd(struct mm_stru - return NULL; - - pmd = pmd_offset(pud, addr); - + split_huge_pmd(vma, pmd, addr); - if (pmd_none_or_clear_bad(pmd)) - return NULL; - -Locking in hugepage aware code -============================== - -We want as much code as possible hugepage aware, as calling -split_huge_page() or split_huge_pmd() has a cost. - -To make pagetable walks huge pmd aware, all you need to do is to call -pmd_trans_huge() on the pmd returned by pmd_offset. You must hold the -mmap_lock in read (or write) mode to be sure a huge pmd cannot be -created from under you by khugepaged (khugepaged collapse_huge_page -takes the mmap_lock in write mode in addition to the anon_vma lock). If -pmd_trans_huge returns false, you just fallback in the old code -paths. If instead pmd_trans_huge returns true, you have to take the -page table lock (pmd_lock()) and re-run pmd_trans_huge. Taking the -page table lock will prevent the huge pmd being converted into a -regular pmd from under you (split_huge_pmd can run in parallel to the -pagetable walk). If the second pmd_trans_huge returns false, you -should just drop the page table lock and fallback to the old code as -before. Otherwise, you can proceed to process the huge pmd and the -hugepage natively. Once finished, you can drop the page table lock. - -Refcounts and transparent huge pages -==================================== - -Refcounting on THP is mostly consistent with refcounting on other compound -pages: - - - get_page()/put_page() and GUP operate on head page's ->_refcount. - - - ->_refcount in tail pages is always zero: get_page_unless_zero() never - succeeds on tail pages. - - - map/unmap of the pages with PTE entry increment/decrement ->_mapcount - on relevant sub-page of the compound page. - - - map/unmap of the whole compound page is accounted for in compound_mapcount - (stored in first tail page). For file huge pages, we also increment - ->_mapcount of all sub-pages in order to have race-free detection of - last unmap of subpages. - -PageDoubleMap() indicates that the page is *possibly* mapped with PTEs. - -For anonymous pages, PageDoubleMap() also indicates ->_mapcount in all -subpages is offset up by one. This additional reference is required to -get race-free detection of unmap of subpages when we have them mapped with -both PMDs and PTEs. - -This optimization is required to lower the overhead of per-subpage mapcount -tracking. The alternative is to alter ->_mapcount in all subpages on each -map/unmap of the whole compound page. - -For anonymous pages, we set PG_double_map when a PMD of the page is split -for the first time, but still have a PMD mapping. The additional references -go away with the last compound_mapcount. - -File pages get PG_double_map set on the first map of the page with PTE and -goes away when the page gets evicted from the page cache. - -split_huge_page internally has to distribute the refcounts in the head -page to the tail pages before clearing all PG_head/tail bits from the page -structures. It can be done easily for refcounts taken by page table -entries, but we don't have enough information on how to distribute any -additional pins (i.e. from get_user_pages). split_huge_page() fails any -requests to split pinned huge pages: it expects page count to be equal to -the sum of mapcount of all sub-pages plus one (split_huge_page caller must -have a reference to the head page). - -split_huge_page uses migration entries to stabilize page->_refcount and -page->_mapcount of anonymous pages. File pages just get unmapped. - -We are safe against physical memory scanners too: the only legitimate way -a scanner can get a reference to a page is get_page_unless_zero(). - -All tail pages have zero ->_refcount until atomic_add(). This prevents the -scanner from getting a reference to the tail page up to that point. After the -atomic_add() we don't care about the ->_refcount value. We already know how -many references should be uncharged from the head page. - -For head page get_page_unless_zero() will succeed and we don't mind. It's -clear where references should go after split: it will stay on the head page. - -Note that split_huge_pmd() doesn't have any limitations on refcounting: -pmd can be split at any point and never fails. - -Partial unmap and deferred_split_huge_page() -============================================ - -Unmapping part of THP (with munmap() or other way) is not going to free -memory immediately. Instead, we detect that a subpage of THP is not in use -in page_remove_rmap() and queue the THP for splitting if memory pressure -comes. Splitting will free up unused subpages. - -Splitting the page right away is not an option due to locking context in -the place where we can detect partial unmap. It also might be -counterproductive since in many cases partial unmap happens during exit(2) if -a THP crosses a VMA boundary. - -The function deferred_split_huge_page() is used to queue a page for splitting. -The splitting itself will happen when we get memory pressure via shrinker -interface. |