diff options
Diffstat (limited to 'Documentation/vm/ksm.rst')
-rw-r--r-- | Documentation/vm/ksm.rst | 87 |
1 files changed, 0 insertions, 87 deletions
diff --git a/Documentation/vm/ksm.rst b/Documentation/vm/ksm.rst deleted file mode 100644 index 9e37add068e6..000000000000 --- a/Documentation/vm/ksm.rst +++ /dev/null @@ -1,87 +0,0 @@ -.. _ksm: - -======================= -Kernel Samepage Merging -======================= - -KSM is a memory-saving de-duplication feature, enabled by CONFIG_KSM=y, -added to the Linux kernel in 2.6.32. See ``mm/ksm.c`` for its implementation, -and http://lwn.net/Articles/306704/ and https://lwn.net/Articles/330589/ - -The userspace interface of KSM is described in :ref:`Documentation/admin-guide/mm/ksm.rst <admin_guide_ksm>` - -Design -====== - -Overview --------- - -.. kernel-doc:: mm/ksm.c - :DOC: Overview - -Reverse mapping ---------------- -KSM maintains reverse mapping information for KSM pages in the stable -tree. - -If a KSM page is shared between less than ``max_page_sharing`` VMAs, -the node of the stable tree that represents such KSM page points to a -list of struct rmap_item and the ``page->mapping`` of the -KSM page points to the stable tree node. - -When the sharing passes this threshold, KSM adds a second dimension to -the stable tree. The tree node becomes a "chain" that links one or -more "dups". Each "dup" keeps reverse mapping information for a KSM -page with ``page->mapping`` pointing to that "dup". - -Every "chain" and all "dups" linked into a "chain" enforce the -invariant that they represent the same write protected memory content, -even if each "dup" will be pointed by a different KSM page copy of -that content. - -This way the stable tree lookup computational complexity is unaffected -if compared to an unlimited list of reverse mappings. It is still -enforced that there cannot be KSM page content duplicates in the -stable tree itself. - -The deduplication limit enforced by ``max_page_sharing`` is required -to avoid the virtual memory rmap lists to grow too large. The rmap -walk has O(N) complexity where N is the number of rmap_items -(i.e. virtual mappings) that are sharing the page, which is in turn -capped by ``max_page_sharing``. So this effectively spreads the linear -O(N) computational complexity from rmap walk context over different -KSM pages. The ksmd walk over the stable_node "chains" is also O(N), -but N is the number of stable_node "dups", not the number of -rmap_items, so it has not a significant impact on ksmd performance. In -practice the best stable_node "dup" candidate will be kept and found -at the head of the "dups" list. - -High values of ``max_page_sharing`` result in faster memory merging -(because there will be fewer stable_node dups queued into the -stable_node chain->hlist to check for pruning) and higher -deduplication factor at the expense of slower worst case for rmap -walks for any KSM page which can happen during swapping, compaction, -NUMA balancing and page migration. - -The ``stable_node_dups/stable_node_chains`` ratio is also affected by the -``max_page_sharing`` tunable, and an high ratio may indicate fragmentation -in the stable_node dups, which could be solved by introducing -fragmentation algorithms in ksmd which would refile rmap_items from -one stable_node dup to another stable_node dup, in order to free up -stable_node "dups" with few rmap_items in them, but that may increase -the ksmd CPU usage and possibly slowdown the readonly computations on -the KSM pages of the applications. - -The whole list of stable_node "dups" linked in the stable_node -"chains" is scanned periodically in order to prune stale stable_nodes. -The frequency of such scans is defined by -``stable_node_chains_prune_millisecs`` sysfs tunable. - -Reference ---------- -.. kernel-doc:: mm/ksm.c - :functions: mm_slot ksm_scan stable_node rmap_item - --- -Izik Eidus, -Hugh Dickins, 17 Nov 2009 |