summaryrefslogtreecommitdiff
path: root/Documentation/video4linux
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/video4linux')
-rw-r--r--Documentation/video4linux/API.html2
-rw-r--r--Documentation/video4linux/CARDLIST.bttv2
-rw-r--r--Documentation/video4linux/CARDLIST.cx238857
-rw-r--r--Documentation/video4linux/CARDLIST.cx881
-rw-r--r--Documentation/video4linux/CARDLIST.em28xx5
-rw-r--r--Documentation/video4linux/CARDLIST.saa71346
-rw-r--r--Documentation/video4linux/CARDLIST.tuner2
-rw-r--r--Documentation/video4linux/CQcam.txt4
-rw-r--r--Documentation/video4linux/README.cpia2
-rw-r--r--Documentation/video4linux/README.ivtv2
-rw-r--r--Documentation/video4linux/README.tlg230047
-rw-r--r--Documentation/video4linux/Zoran6
-rw-r--r--Documentation/video4linux/bttv/Cards6
-rw-r--r--Documentation/video4linux/bttv/MAKEDEV2
-rw-r--r--Documentation/video4linux/bttv/Specs4
-rw-r--r--Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt2
-rw-r--r--Documentation/video4linux/extract_xc3028.pl817
-rw-r--r--Documentation/video4linux/gspca.txt39
-rw-r--r--Documentation/video4linux/hauppauge-wintv-cx88-ir.txt2
-rw-r--r--Documentation/video4linux/ibmcam.txt5
-rw-r--r--Documentation/video4linux/se401.txt2
-rw-r--r--Documentation/video4linux/sh_mobile_ceu_camera.txt80
-rw-r--r--Documentation/video4linux/v4l2-controls.txt648
-rw-r--r--Documentation/video4linux/v4l2-framework.txt249
-rw-r--r--Documentation/video4linux/videobuf360
-rw-r--r--Documentation/video4linux/w9966.txt2
26 files changed, 2107 insertions, 197 deletions
diff --git a/Documentation/video4linux/API.html b/Documentation/video4linux/API.html
index d749d41f647b..d72fd2aa9158 100644
--- a/Documentation/video4linux/API.html
+++ b/Documentation/video4linux/API.html
@@ -17,7 +17,7 @@
</tr>
<tr>
<td>
- <a href="http://www.linuxtv.org/downloads/video4linux/API/V4L2_API">V4L2 API</a>
+ <a href="http://v4l2spec.bytesex.org/spec-single/v4l2.html">V4L2 API</a>
</td>
<td>Should be used for new projects
</td>
diff --git a/Documentation/video4linux/CARDLIST.bttv b/Documentation/video4linux/CARDLIST.bttv
index f11c583295e9..4739d5684305 100644
--- a/Documentation/video4linux/CARDLIST.bttv
+++ b/Documentation/video4linux/CARDLIST.bttv
@@ -100,7 +100,7 @@
99 -> AD-TVK503
100 -> Hercules Smart TV Stereo
101 -> Pace TV & Radio Card
-102 -> IVC-200 [0000:a155,0001:a155,0002:a155,0003:a155,0100:a155,0101:a155,0102:a155,0103:a155]
+102 -> IVC-200 [0000:a155,0001:a155,0002:a155,0003:a155,0100:a155,0101:a155,0102:a155,0103:a155,0800:a155,0801:a155,0802:a155,0803:a155]
103 -> Grand X-Guard / Trust 814PCI [0304:0102]
104 -> Nebula Electronics DigiTV [0071:0101]
105 -> ProVideo PV143 [aa00:1430,aa00:1431,aa00:1432,aa00:1433,aa03:1433]
diff --git a/Documentation/video4linux/CARDLIST.cx23885 b/Documentation/video4linux/CARDLIST.cx23885
index 7539e8fa1ffd..87c46347bd63 100644
--- a/Documentation/video4linux/CARDLIST.cx23885
+++ b/Documentation/video4linux/CARDLIST.cx23885
@@ -17,12 +17,13 @@
16 -> DVBWorld DVB-S2 2005 [0001:2005]
17 -> NetUP Dual DVB-S2 CI [1b55:2a2c]
18 -> Hauppauge WinTV-HVR1270 [0070:2211]
- 19 -> Hauppauge WinTV-HVR1275 [0070:2215]
- 20 -> Hauppauge WinTV-HVR1255 [0070:2251]
- 21 -> Hauppauge WinTV-HVR1210 [0070:2291,0070:2295]
+ 19 -> Hauppauge WinTV-HVR1275 [0070:2215,0070:221d,0070:22f2]
+ 20 -> Hauppauge WinTV-HVR1255 [0070:2251,0070:2259,0070:22f1]
+ 21 -> Hauppauge WinTV-HVR1210 [0070:2291,0070:2295,0070:2299,0070:229d,0070:22f0,0070:22f3,0070:22f4,0070:22f5]
22 -> Mygica X8506 DMB-TH [14f1:8651]
23 -> Magic-Pro ProHDTV Extreme 2 [14f1:8657]
24 -> Hauppauge WinTV-HVR1850 [0070:8541]
25 -> Compro VideoMate E800 [1858:e800]
26 -> Hauppauge WinTV-HVR1290 [0070:8551]
27 -> Mygica X8558 PRO DMB-TH [14f1:8578]
+ 28 -> LEADTEK WinFast PxTV1200 [107d:6f22]
diff --git a/Documentation/video4linux/CARDLIST.cx88 b/Documentation/video4linux/CARDLIST.cx88
index 7ec3c4e4b60f..f2510541373b 100644
--- a/Documentation/video4linux/CARDLIST.cx88
+++ b/Documentation/video4linux/CARDLIST.cx88
@@ -82,3 +82,4 @@
81 -> Leadtek WinFast DTV1800 Hybrid [107d:6654]
82 -> WinFast DTV2000 H rev. J [107d:6f2b]
83 -> Prof 7301 DVB-S/S2 [b034:3034]
+ 84 -> Samsung SMT 7020 DVB-S [18ac:dc00,18ac:dccd]
diff --git a/Documentation/video4linux/CARDLIST.em28xx b/Documentation/video4linux/CARDLIST.em28xx
index 0c166ff003a0..5c568757c301 100644
--- a/Documentation/video4linux/CARDLIST.em28xx
+++ b/Documentation/video4linux/CARDLIST.em28xx
@@ -1,5 +1,5 @@
0 -> Unknown EM2800 video grabber (em2800) [eb1a:2800]
- 1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2710,eb1a:2820,eb1a:2821,eb1a:2860,eb1a:2861,eb1a:2862,eb1a:2870,eb1a:2881,eb1a:2883,eb1a:2868]
+ 1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2710,eb1a:2820,eb1a:2821,eb1a:2860,eb1a:2861,eb1a:2862,eb1a:2863,eb1a:2870,eb1a:2881,eb1a:2883,eb1a:2868]
2 -> Terratec Cinergy 250 USB (em2820/em2840) [0ccd:0036]
3 -> Pinnacle PCTV USB 2 (em2820/em2840) [2304:0208]
4 -> Hauppauge WinTV USB 2 (em2820/em2840) [2040:4200,2040:4201]
@@ -27,6 +27,7 @@
26 -> Hercules Smart TV USB 2.0 (em2820/em2840)
27 -> Pinnacle PCTV USB 2 (Philips FM1216ME) (em2820/em2840)
28 -> Leadtek Winfast USB II Deluxe (em2820/em2840)
+ 29 -> EM2860/TVP5150 Reference Design (em2860)
30 -> Videology 20K14XUSB USB2.0 (em2820/em2840)
31 -> Usbgear VD204v9 (em2821)
32 -> Supercomp USB 2.0 TV (em2821)
@@ -70,3 +71,5 @@
72 -> Gadmei UTV330+ (em2861)
73 -> Reddo DVB-C USB TV Box (em2870)
74 -> Actionmaster/LinXcel/Digitus VC211A (em2800)
+ 75 -> Dikom DK300 (em2882)
+ 76 -> KWorld PlusTV 340U or UB435-Q (ATSC) (em2870) [1b80:a340]
diff --git a/Documentation/video4linux/CARDLIST.saa7134 b/Documentation/video4linux/CARDLIST.saa7134
index fce1e7eb0474..4000c29fcfb6 100644
--- a/Documentation/video4linux/CARDLIST.saa7134
+++ b/Documentation/video4linux/CARDLIST.saa7134
@@ -174,3 +174,9 @@
173 -> Zolid Hybrid TV Tuner PCI [1131:2004]
174 -> Asus Europa Hybrid OEM [1043:4847]
175 -> Leadtek Winfast DTV1000S [107d:6655]
+176 -> Beholder BeholdTV 505 RDS [0000:5051]
+177 -> Hawell HW-404M7
+178 -> Beholder BeholdTV H7 [5ace:7190]
+179 -> Beholder BeholdTV A7 [5ace:7090]
+180 -> Avermedia PCI M733A [1461:4155,1461:4255]
+181 -> TechoTrend TT-budget T-3000 [13c2:2804]
diff --git a/Documentation/video4linux/CARDLIST.tuner b/Documentation/video4linux/CARDLIST.tuner
index e0d298fe8830..e67c1db96854 100644
--- a/Documentation/video4linux/CARDLIST.tuner
+++ b/Documentation/video4linux/CARDLIST.tuner
@@ -81,3 +81,5 @@ tuner=80 - Philips FQ1216LME MK3 PAL/SECAM w/active loopthrough
tuner=81 - Partsnic (Daewoo) PTI-5NF05
tuner=82 - Philips CU1216L
tuner=83 - NXP TDA18271
+tuner=84 - Sony BTF-Pxn01Z
+tuner=85 - Philips FQ1236 MK5
diff --git a/Documentation/video4linux/CQcam.txt b/Documentation/video4linux/CQcam.txt
index d230878e473e..8977e7ce4dab 100644
--- a/Documentation/video4linux/CQcam.txt
+++ b/Documentation/video4linux/CQcam.txt
@@ -203,11 +203,11 @@ The V4L2 API spec:
http://v4l2spec.bytesex.org/
Some web pages about the quickcams:
- http://www.dkfz-heidelberg.de/Macromol/wedemann/mini-HOWTO-cqcam.html
+ http://www.pingouin-land.com/howto/QuickCam-HOWTO.html
http://www.crynwr.com/qcpc/ QuickCam Third-Party Drivers
http://www.crynwr.com/qcpc/re.html Some Reverse Engineering
- http://cse.unl.edu/~cluening/gqcam/ v4l client
+ http://www.wirelesscouch.net/software/gqcam/ v4l client
http://phobos.illtel.denver.co.us/pub/qcread/ doesn't use v4l
ftp://ftp.cs.unm.edu/pub/chris/quickcam/ Has lots of drivers
http://www.cs.duke.edu/~reynolds/quickcam/ Has lots of information
diff --git a/Documentation/video4linux/README.cpia b/Documentation/video4linux/README.cpia
index 19cd3bf24981..8a747fee661f 100644
--- a/Documentation/video4linux/README.cpia
+++ b/Documentation/video4linux/README.cpia
@@ -185,7 +185,7 @@ THANKS (in no particular order):
---------------------------------------------------------------------------
REFERENCES
- 1. http://www.risc.uni-linz.ac.at/people/ppregler
+ 1. http://www.risc.uni-linz.ac.at/
mailto:Peter_Pregler@email.com
2. see the file COPYING in the top directory of the kernel tree
3. http://webcam.sourceforge.net/
diff --git a/Documentation/video4linux/README.ivtv b/Documentation/video4linux/README.ivtv
index 73df22c40bfe..42b06686eb78 100644
--- a/Documentation/video4linux/README.ivtv
+++ b/Documentation/video4linux/README.ivtv
@@ -10,7 +10,7 @@ Hauppauge PVR-350.
NOTE: this driver requires the latest encoder firmware (version 2.06.039, size
376836 bytes). Get the firmware from here:
-http://dl.ivtvdriver.org/ivtv/firmware/firmware.tar.gz
+http://dl.ivtvdriver.org/ivtv/firmware/
NOTE: 'normal' TV applications do not work with this driver, you need
an application that can handle MPEG input such as mplayer, xine, MythTV,
diff --git a/Documentation/video4linux/README.tlg2300 b/Documentation/video4linux/README.tlg2300
new file mode 100644
index 000000000000..416ccb93d8c9
--- /dev/null
+++ b/Documentation/video4linux/README.tlg2300
@@ -0,0 +1,47 @@
+tlg2300 release notes
+====================
+
+This is a v4l2/dvb device driver for the tlg2300 chip.
+
+
+current status
+==============
+
+video
+ - support mmap and read().(no overlay)
+
+audio
+ - The driver will register a ALSA card for the audio input.
+
+vbi
+ - Works for almost TV norms.
+
+dvb-t
+ - works for DVB-T
+
+FM
+ - Works for radio.
+
+---------------------------------------------------------------------------
+TESTED APPLICATIONS:
+
+-VLC1.0.4 test the video and dvb. The GUI is friendly to use.
+
+-Mplayer test the video.
+
+-Mplayer test the FM. The mplayer should be compiled with --enable-radio and
+ --enable-radio-capture.
+ The command runs as this(The alsa audio registers to card 1):
+ #mplayer radio://103.7/capture/ -radio adevice=hw=1,0:arate=48000 \
+ -rawaudio rate=48000:channels=2
+
+---------------------------------------------------------------------------
+KNOWN PROBLEMS:
+about preemphasis:
+ You can set the preemphasis for radio by the following command:
+ #v4l2-ctl -d /dev/radio0 --set-ctrl=pre_emphasis_settings=1
+
+ "pre_emphasis_settings=1" means that you select the 50us. If you want
+ to select the 75us, please use "pre_emphasis_settings=2"
+
+
diff --git a/Documentation/video4linux/Zoran b/Documentation/video4linux/Zoran
index 0e89e7676298..00e3f9267814 100644
--- a/Documentation/video4linux/Zoran
+++ b/Documentation/video4linux/Zoran
@@ -174,7 +174,7 @@ and is used in Argentinia, Uruguay, an a few others
We do not talk about how the audio is broadcast !
A rather good sites about the TV standards are:
-http://www.sony.jp/ServiceArea/Voltage_map/
+http://www.sony.jp/support/
http://info.electronicwerkstatt.de/bereiche/fernsehtechnik/frequenzen_und_normen/Fernsehnormen/
and http://www.cabl.com/restaurant/channel.html
@@ -330,7 +330,7 @@ These extensions are known as the v4l/mjpeg extensions. See zoran.h for
details (structs/ioctls).
Information - video4linux:
-http://roadrunner.swansea.linux.org.uk/v4lapi.shtml
+http://linux.bytesex.org/v4l2/API.html
Documentation/video4linux/API.html
/usr/include/linux/videodev.h
@@ -390,7 +390,7 @@ BUZIOC_G_STATUS
Get the status of the input lines (video source connected/norm).
For programming example, please, look at lavrec.c and lavplay.c code in
-lavtools-1.2p2 package (URL: http://www.cicese.mx/~mirsev/DC10plus/)
+lavtools-1.2p2 package (URL: http://www.cicese.mx/)
and the 'examples' directory in the original Buz driver distribution.
Additional notes for software developers:
diff --git a/Documentation/video4linux/bttv/Cards b/Documentation/video4linux/bttv/Cards
index d3389655ad96..12217fc49725 100644
--- a/Documentation/video4linux/bttv/Cards
+++ b/Documentation/video4linux/bttv/Cards
@@ -802,7 +802,7 @@ Kworld (www.kworld.com.tw)
-JTT/ Justy Corp.http://www.justy.co.jp/ (www.jtt.com.jp website down)
+JTT/ Justy Corp.(http://www.jtt.ne.jp/)
---------------------------------------------------------------------
JTT-02 (JTT TV) "TV watchmate pro" (bt848)
@@ -828,7 +828,7 @@ Eline www.eline-net.com/
Eline Vision TVMaster / TVMaster FM (ELV-TVM/ ELV-TVM-FM) = LR26 (bt878)
Eline Vision TVMaster-2000 (ELV-TVM-2000, ELV-TVM-2000-FM)= LR138 (saa713x)
-Spirit http://www.spiritmodems.com.au/
+Spirit
------
Spirit TV Tuner/Video Capture Card (bt848)
@@ -959,6 +959,6 @@ Asus www.asuscom.com
Hoontech
--------
-http://www.hoontech.com/korean/download/down_driver_list03.html
+http://www.hoontech.de/
HART Vision 848 (H-ART Vision 848)
HART Vision 878 (H-Art Vision 878)
diff --git a/Documentation/video4linux/bttv/MAKEDEV b/Documentation/video4linux/bttv/MAKEDEV
index 6c29ba43b6c6..9d112f7fd5f7 100644
--- a/Documentation/video4linux/bttv/MAKEDEV
+++ b/Documentation/video4linux/bttv/MAKEDEV
@@ -14,7 +14,7 @@ function makedev () {
ln -s /dev/${1}0 /dev/$1
}
-# see http://roadrunner.swansea.uk.linux.org/v4lapi.shtml
+# see http://linux.bytesex.org/v4l2/API.html
echo "*** new device names ***"
makedev video 0
diff --git a/Documentation/video4linux/bttv/Specs b/Documentation/video4linux/bttv/Specs
index 79b9e576fe79..f32466cdae05 100644
--- a/Documentation/video4linux/bttv/Specs
+++ b/Documentation/video4linux/bttv/Specs
@@ -1,3 +1,3 @@
Philips http://www.Semiconductors.COM/pip/
-Conexant http://www.conexant.com/techinfo/default.asp
-Micronas http://www.micronas.de/pages/product_documentation/index.html
+Conexant http://www.conexant.com/
+Micronas http://www.micronas.com/en/home/index.html
diff --git a/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt b/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt
index faccee68f603..f4329a38878e 100644
--- a/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt
+++ b/Documentation/video4linux/cx88/hauppauge-wintv-cx88-ir.txt
@@ -44,7 +44,7 @@ http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
This data sheet (google search) seems to have a lovely description of the
RC5 basics
-http://users.pandora.be/nenya/electronics/rc5/ and more data
+http://www.nenya.be/beor/electronics/rc5.htm and more data
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
and even a reference to how to decode a bi-phase data stream.
diff --git a/Documentation/video4linux/extract_xc3028.pl b/Documentation/video4linux/extract_xc3028.pl
index 2cb816047fc1..47877deae6d7 100644
--- a/Documentation/video4linux/extract_xc3028.pl
+++ b/Documentation/video4linux/extract_xc3028.pl
@@ -5,12 +5,18 @@
#
# In order to use, you need to:
# 1) Download the windows driver with something like:
+# Version 2.4
+# wget http://www.twinhan.com/files/AW/BDA T/20080303_V1.0.6.7.zip
+# or wget http://www.stefanringel.de/pub/20080303_V1.0.6.7.zip
+# Version 2.7
# wget http://www.steventoth.net/linux/xc5000/HVR-12x0-14x0-17x0_1_25_25271_WHQL.zip
-# 2) Extract the file hcw85bda.sys from the zip into the current dir:
+# 2) Extract the files from the zip into the current dir:
+# unzip -j 20080303_V1.0.6.7.zip 20080303_v1.0.6.7/UDXTTM6000.sys
# unzip -j HVR-12x0-14x0-17x0_1_25_25271_WHQL.zip Driver85/hcw85bda.sys
# 3) run the script:
# ./extract_xc3028.pl
-# 4) copy the generated file:
+# 4) copy the generated files:
+# cp xc3028-v24.fw /lib/firmware
# cp xc3028-v27.fw /lib/firmware
#use strict;
@@ -135,7 +141,7 @@ sub write_hunk_fix_endian($$)
}
}
-sub main_firmware($$$$)
+sub main_firmware_24($$$$)
{
my $out;
my $j=0;
@@ -146,8 +152,774 @@ sub main_firmware($$$$)
for ($j = length($name); $j <32; $j++) {
$name = $name.chr(0);
+ }
+
+ open OUTFILE, ">$outfile";
+ syswrite(OUTFILE, $name);
+ write_le16($version);
+ write_le16($nr_desc);
+
+ #
+ # Firmware 0, type: BASE FW F8MHZ (0x00000003), id: (0000000000000000), size: 6635
+ #
+
+ write_le32(0x00000003); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6635); # Size
+ write_hunk_fix_endian(257752, 6635);
+
+ #
+ # Firmware 1, type: BASE FW F8MHZ MTS (0x00000007), id: (0000000000000000), size: 6635
+ #
+
+ write_le32(0x00000007); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6635); # Size
+ write_hunk_fix_endian(264392, 6635);
+
+ #
+ # Firmware 2, type: BASE FW FM (0x00000401), id: (0000000000000000), size: 6525
+ #
+
+ write_le32(0x00000401); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6525); # Size
+ write_hunk_fix_endian(271040, 6525);
+
+ #
+ # Firmware 3, type: BASE FW FM INPUT1 (0x00000c01), id: (0000000000000000), size: 6539
+ #
+
+ write_le32(0x00000c01); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6539); # Size
+ write_hunk_fix_endian(277568, 6539);
+
+ #
+ # Firmware 4, type: BASE FW (0x00000001), id: (0000000000000000), size: 6633
+ #
+
+ write_le32(0x00000001); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6633); # Size
+ write_hunk_fix_endian(284120, 6633);
+
+ #
+ # Firmware 5, type: BASE FW MTS (0x00000005), id: (0000000000000000), size: 6617
+ #
+
+ write_le32(0x00000005); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(6617); # Size
+ write_hunk_fix_endian(290760, 6617);
+
+ #
+ # Firmware 6, type: STD FW (0x00000000), id: PAL/BG A2/A (0000000100000007), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000001, 0x00000007); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(297384, 161);
+
+ #
+ # Firmware 7, type: STD FW MTS (0x00000004), id: PAL/BG A2/A (0000000100000007), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000001, 0x00000007); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(297552, 169);
+
+ #
+ # Firmware 8, type: STD FW (0x00000000), id: PAL/BG A2/B (0000000200000007), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000002, 0x00000007); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(297728, 161);
+
+ #
+ # Firmware 9, type: STD FW MTS (0x00000004), id: PAL/BG A2/B (0000000200000007), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000002, 0x00000007); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(297896, 169);
+
+ #
+ # Firmware 10, type: STD FW (0x00000000), id: PAL/BG NICAM/A (0000000400000007), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000004, 0x00000007); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(298072, 161);
+
+ #
+ # Firmware 11, type: STD FW MTS (0x00000004), id: PAL/BG NICAM/A (0000000400000007), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000004, 0x00000007); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(298240, 169);
+
+ #
+ # Firmware 12, type: STD FW (0x00000000), id: PAL/BG NICAM/B (0000000800000007), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000008, 0x00000007); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(298416, 161);
+
+ #
+ # Firmware 13, type: STD FW MTS (0x00000004), id: PAL/BG NICAM/B (0000000800000007), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000008, 0x00000007); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(298584, 169);
+
+ #
+ # Firmware 14, type: STD FW (0x00000000), id: PAL/DK A2 (00000003000000e0), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000003, 0x000000e0); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(298760, 161);
+
+ #
+ # Firmware 15, type: STD FW MTS (0x00000004), id: PAL/DK A2 (00000003000000e0), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000003, 0x000000e0); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(298928, 169);
+
+ #
+ # Firmware 16, type: STD FW (0x00000000), id: PAL/DK NICAM (0000000c000000e0), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x0000000c, 0x000000e0); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(299104, 161);
+
+ #
+ # Firmware 17, type: STD FW MTS (0x00000004), id: PAL/DK NICAM (0000000c000000e0), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x0000000c, 0x000000e0); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(299272, 169);
+
+ #
+ # Firmware 18, type: STD FW (0x00000000), id: SECAM/K1 (0000000000200000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x00200000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(299448, 161);
+
+ #
+ # Firmware 19, type: STD FW MTS (0x00000004), id: SECAM/K1 (0000000000200000), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000000, 0x00200000); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(299616, 169);
+
+ #
+ # Firmware 20, type: STD FW (0x00000000), id: SECAM/K3 (0000000004000000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x04000000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(299792, 161);
+
+ #
+ # Firmware 21, type: STD FW MTS (0x00000004), id: SECAM/K3 (0000000004000000), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000000, 0x04000000); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(299960, 169);
+
+ #
+ # Firmware 22, type: STD FW D2633 DTV6 ATSC (0x00010030), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00010030); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300136, 149);
+
+ #
+ # Firmware 23, type: STD FW D2620 DTV6 QAM (0x00000068), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000068); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300296, 149);
+
+ #
+ # Firmware 24, type: STD FW D2633 DTV6 QAM (0x00000070), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000070); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300448, 149);
+
+ #
+ # Firmware 25, type: STD FW D2620 DTV7 (0x00000088), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000088); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300608, 149);
+
+ #
+ # Firmware 26, type: STD FW D2633 DTV7 (0x00000090), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000090); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300760, 149);
+
+ #
+ # Firmware 27, type: STD FW D2620 DTV78 (0x00000108), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000108); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(300920, 149);
+
+ #
+ # Firmware 28, type: STD FW D2633 DTV78 (0x00000110), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000110); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(301072, 149);
+
+ #
+ # Firmware 29, type: STD FW D2620 DTV8 (0x00000208), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000208); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(301232, 149);
+
+ #
+ # Firmware 30, type: STD FW D2633 DTV8 (0x00000210), id: (0000000000000000), size: 149
+ #
+
+ write_le32(0x00000210); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(149); # Size
+ write_hunk_fix_endian(301384, 149);
+
+ #
+ # Firmware 31, type: STD FW FM (0x00000400), id: (0000000000000000), size: 135
+ #
+
+ write_le32(0x00000400); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le32(135); # Size
+ write_hunk_fix_endian(301554, 135);
+
+ #
+ # Firmware 32, type: STD FW (0x00000000), id: PAL/I (0000000000000010), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x00000010); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(301688, 161);
+
+ #
+ # Firmware 33, type: STD FW MTS (0x00000004), id: PAL/I (0000000000000010), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000000, 0x00000010); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(301856, 169);
+
+ #
+ # Firmware 34, type: STD FW (0x00000000), id: SECAM/L AM (0000001000400000), size: 169
+ #
+
+ #
+ # Firmware 35, type: STD FW (0x00000000), id: SECAM/L NICAM (0000000c00400000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x0000000c, 0x00400000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(302032, 161);
+
+ #
+ # Firmware 36, type: STD FW (0x00000000), id: SECAM/Lc (0000000000800000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x00800000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(302200, 161);
+
+ #
+ # Firmware 37, type: STD FW (0x00000000), id: NTSC/M Kr (0000000000008000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(302368, 161);
+
+ #
+ # Firmware 38, type: STD FW LCD (0x00001000), id: NTSC/M Kr (0000000000008000), size: 161
+ #
+
+ write_le32(0x00001000); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(302536, 161);
+
+ #
+ # Firmware 39, type: STD FW LCD NOGD (0x00003000), id: NTSC/M Kr (0000000000008000), size: 161
+ #
+
+ write_le32(0x00003000); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(302704, 161);
+
+ #
+ # Firmware 40, type: STD FW MTS (0x00000004), id: NTSC/M Kr (0000000000008000), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(302872, 169);
+
+ #
+ # Firmware 41, type: STD FW (0x00000000), id: NTSC PAL/M PAL/N (000000000000b700), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(303048, 161);
+
+ #
+ # Firmware 42, type: STD FW LCD (0x00001000), id: NTSC PAL/M PAL/N (000000000000b700), size: 161
+ #
+
+ write_le32(0x00001000); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(303216, 161);
+
+ #
+ # Firmware 43, type: STD FW LCD NOGD (0x00003000), id: NTSC PAL/M PAL/N (000000000000b700), size: 161
+ #
+
+ write_le32(0x00003000); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(303384, 161);
+
+ #
+ # Firmware 44, type: STD FW (0x00000000), id: NTSC/M Jp (0000000000002000), size: 161
+ #
+
+ write_le32(0x00000000); # Type
+ write_le64(0x00000000, 0x00002000); # ID
+ write_le32(161); # Size
+ write_hunk_fix_endian(303552, 161);
+
+ #
+ # Firmware 45, type: STD FW MTS (0x00000004), id: NTSC PAL/M PAL/N (000000000000b700), size: 169
+ #
+
+ write_le32(0x00000004); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(303720, 169);
+
+ #
+ # Firmware 46, type: STD FW MTS LCD (0x00001004), id: NTSC PAL/M PAL/N (000000000000b700), size: 169
+ #
+
+ write_le32(0x00001004); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(303896, 169);
+
+ #
+ # Firmware 47, type: STD FW MTS LCD NOGD (0x00003004), id: NTSC PAL/M PAL/N (000000000000b700), size: 169
+ #
+
+ write_le32(0x00003004); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le32(169); # Size
+ write_hunk_fix_endian(304072, 169);
+
+ #
+ # Firmware 48, type: SCODE FW HAS IF (0x60000000), IF = 3.28 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(3280); # IF
+ write_le32(192); # Size
+ write_hunk(309048, 192);
+
+ #
+ # Firmware 49, type: SCODE FW HAS IF (0x60000000), IF = 3.30 MHz id: (0000000000000000), size: 192
+ #
+
+# write_le32(0x60000000); # Type
+# write_le64(0x00000000, 0x00000000); # ID
+# write_le16(3300); # IF
+# write_le32(192); # Size
+# write_hunk(304440, 192);
+
+ #
+ # Firmware 50, type: SCODE FW HAS IF (0x60000000), IF = 3.44 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(3440); # IF
+ write_le32(192); # Size
+ write_hunk(309432, 192);
+
+ #
+ # Firmware 51, type: SCODE FW HAS IF (0x60000000), IF = 3.46 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(3460); # IF
+ write_le32(192); # Size
+ write_hunk(309624, 192);
+
+ #
+ # Firmware 52, type: SCODE FW DTV6 ATSC OREN36 HAS IF (0x60210020), IF = 3.80 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60210020); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(3800); # IF
+ write_le32(192); # Size
+ write_hunk(306936, 192);
+
+ #
+ # Firmware 53, type: SCODE FW HAS IF (0x60000000), IF = 4.00 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4000); # IF
+ write_le32(192); # Size
+ write_hunk(309240, 192);
+
+ #
+ # Firmware 54, type: SCODE FW DTV6 ATSC TOYOTA388 HAS IF (0x60410020), IF = 4.08 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60410020); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4080); # IF
+ write_le32(192); # Size
+ write_hunk(307128, 192);
+
+ #
+ # Firmware 55, type: SCODE FW HAS IF (0x60000000), IF = 4.20 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4200); # IF
+ write_le32(192); # Size
+ write_hunk(308856, 192);
+
+ #
+ # Firmware 56, type: SCODE FW MONO HAS IF (0x60008000), IF = 4.32 MHz id: NTSC/M Kr (0000000000008000), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le16(4320); # IF
+ write_le32(192); # Size
+ write_hunk(305208, 192);
+
+ #
+ # Firmware 57, type: SCODE FW HAS IF (0x60000000), IF = 4.45 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4450); # IF
+ write_le32(192); # Size
+ write_hunk(309816, 192);
+
+ #
+ # Firmware 58, type: SCODE FW MTS LCD NOGD MONO IF HAS IF (0x6002b004), IF = 4.50 MHz id: NTSC PAL/M PAL/N (000000000000b700), size: 192
+ #
+
+ write_le32(0x6002b004); # Type
+ write_le64(0x00000000, 0x0000b700); # ID
+ write_le16(4500); # IF
+ write_le32(192); # Size
+ write_hunk(304824, 192);
+
+ #
+ # Firmware 59, type: SCODE FW LCD NOGD IF HAS IF (0x60023000), IF = 4.60 MHz id: NTSC/M Kr (0000000000008000), size: 192
+ #
+
+ write_le32(0x60023000); # Type
+ write_le64(0x00000000, 0x00008000); # ID
+ write_le16(4600); # IF
+ write_le32(192); # Size
+ write_hunk(305016, 192);
+
+ #
+ # Firmware 60, type: SCODE FW DTV6 QAM DTV7 DTV78 DTV8 ZARLINK456 HAS IF (0x620003e0), IF = 4.76 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x620003e0); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4760); # IF
+ write_le32(192); # Size
+ write_hunk(304440, 192);
+
+ #
+ # Firmware 61, type: SCODE FW HAS IF (0x60000000), IF = 4.94 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(4940); # IF
+ write_le32(192); # Size
+ write_hunk(308664, 192);
+
+ #
+ # Firmware 62, type: SCODE FW HAS IF (0x60000000), IF = 5.26 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(5260); # IF
+ write_le32(192); # Size
+ write_hunk(307704, 192);
+
+ #
+ # Firmware 63, type: SCODE FW MONO HAS IF (0x60008000), IF = 5.32 MHz id: PAL/BG A2 NICAM (0000000f00000007), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x0000000f, 0x00000007); # ID
+ write_le16(5320); # IF
+ write_le32(192); # Size
+ write_hunk(307896, 192);
+
+ #
+ # Firmware 64, type: SCODE FW DTV7 DTV78 DTV8 DIBCOM52 CHINA HAS IF (0x65000380), IF = 5.40 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x65000380); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(5400); # IF
+ write_le32(192); # Size
+ write_hunk(304248, 192);
+
+ #
+ # Firmware 65, type: SCODE FW DTV6 ATSC OREN538 HAS IF (0x60110020), IF = 5.58 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60110020); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(5580); # IF
+ write_le32(192); # Size
+ write_hunk(306744, 192);
+
+ #
+ # Firmware 66, type: SCODE FW HAS IF (0x60000000), IF = 5.64 MHz id: PAL/BG A2 (0000000300000007), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000003, 0x00000007); # ID
+ write_le16(5640); # IF
+ write_le32(192); # Size
+ write_hunk(305592, 192);
+
+ #
+ # Firmware 67, type: SCODE FW HAS IF (0x60000000), IF = 5.74 MHz id: PAL/BG NICAM (0000000c00000007), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x0000000c, 0x00000007); # ID
+ write_le16(5740); # IF
+ write_le32(192); # Size
+ write_hunk(305784, 192);
+
+ #
+ # Firmware 68, type: SCODE FW HAS IF (0x60000000), IF = 5.90 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(5900); # IF
+ write_le32(192); # Size
+ write_hunk(307512, 192);
+
+ #
+ # Firmware 69, type: SCODE FW MONO HAS IF (0x60008000), IF = 6.00 MHz id: PAL/DK PAL/I SECAM/K3 SECAM/L SECAM/Lc NICAM (0000000c04c000f0), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x0000000c, 0x04c000f0); # ID
+ write_le16(6000); # IF
+ write_le32(192); # Size
+ write_hunk(305576, 192);
+
+ #
+ # Firmware 70, type: SCODE FW DTV6 QAM ATSC LG60 F6MHZ HAS IF (0x68050060), IF = 6.20 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x68050060); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(6200); # IF
+ write_le32(192); # Size
+ write_hunk(306552, 192);
+
+ #
+ # Firmware 71, type: SCODE FW HAS IF (0x60000000), IF = 6.24 MHz id: PAL/I (0000000000000010), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00000010); # ID
+ write_le16(6240); # IF
+ write_le32(192); # Size
+ write_hunk(305400, 192);
+
+ #
+ # Firmware 72, type: SCODE FW MONO HAS IF (0x60008000), IF = 6.32 MHz id: SECAM/K1 (0000000000200000), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x00000000, 0x00200000); # ID
+ write_le16(6320); # IF
+ write_le32(192); # Size
+ write_hunk(308472, 192);
+
+ #
+ # Firmware 73, type: SCODE FW HAS IF (0x60000000), IF = 6.34 MHz id: SECAM/K1 (0000000000200000), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000000, 0x00200000); # ID
+ write_le16(6340); # IF
+ write_le32(192); # Size
+ write_hunk(306360, 192);
+
+ #
+ # Firmware 74, type: SCODE FW MONO HAS IF (0x60008000), IF = 6.50 MHz id: PAL/DK SECAM/K3 SECAM/L NICAM (0000000c044000e0), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x0000000c, 0x044000e0); # ID
+ write_le16(6500); # IF
+ write_le32(192); # Size
+ write_hunk(308280, 192);
+
+ #
+ # Firmware 75, type: SCODE FW DTV6 ATSC ATI638 HAS IF (0x60090020), IF = 6.58 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60090020); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(6580); # IF
+ write_le32(192); # Size
+ write_hunk(304632, 192);
+
+ #
+ # Firmware 76, type: SCODE FW HAS IF (0x60000000), IF = 6.60 MHz id: PAL/DK A2 (00000003000000e0), size: 192
+ #
+
+ write_le32(0x60000000); # Type
+ write_le64(0x00000003, 0x000000e0); # ID
+ write_le16(6600); # IF
+ write_le32(192); # Size
+ write_hunk(306168, 192);
+
+ #
+ # Firmware 77, type: SCODE FW MONO HAS IF (0x60008000), IF = 6.68 MHz id: PAL/DK A2 (00000003000000e0), size: 192
+ #
+
+ write_le32(0x60008000); # Type
+ write_le64(0x00000003, 0x000000e0); # ID
+ write_le16(6680); # IF
+ write_le32(192); # Size
+ write_hunk(308088, 192);
+
+ #
+ # Firmware 78, type: SCODE FW DTV6 ATSC TOYOTA794 HAS IF (0x60810020), IF = 8.14 MHz id: (0000000000000000), size: 192
+ #
+
+ write_le32(0x60810020); # Type
+ write_le64(0x00000000, 0x00000000); # ID
+ write_le16(8140); # IF
+ write_le32(192); # Size
+ write_hunk(307320, 192);
+
+ #
+ # Firmware 79, type: SCODE FW HAS IF (0x60000000), IF = 8.20 MHz id: (0000000000000000), size: 192
+ #
+
+# write_le32(0x60000000); # Type
+# write_le64(0x00000000, 0x00000000); # ID
+# write_le16(8200); # IF
+# write_le32(192); # Size
+# write_hunk(308088, 192);
}
+sub main_firmware_27($$$$)
+{
+ my $out;
+ my $j=0;
+ my $outfile = shift;
+ my $name = shift;
+ my $version = shift;
+ my $nr_desc = shift;
+
+ for ($j = length($name); $j <32; $j++) {
+ $name = $name.chr(0);
+ }
+
open OUTFILE, ">$outfile";
syswrite(OUTFILE, $name);
write_le16($version);
@@ -906,20 +1678,39 @@ sub main_firmware($$$$)
write_hunk(812856, 192);
}
+
sub extract_firmware {
- my $sourcefile = "hcw85bda.sys";
- my $hash = "0e44dbf63bb0169d57446aec21881ff2";
- my $outfile = "xc3028-v27.fw";
- my $name = "xc2028 firmware";
- my $version = 519;
- my $nr_desc = 80;
+ my $sourcefile_24 = "UDXTTM6000.sys";
+ my $hash_24 = "cb9deb5508a5e150af2880f5b0066d78";
+ my $outfile_24 = "xc3028-v24.fw";
+ my $name_24 = "xc2028 firmware";
+ my $version_24 = 516;
+ my $nr_desc_24 = 77;
+ my $out;
+
+ my $sourcefile_27 = "hcw85bda.sys";
+ my $hash_27 = "0e44dbf63bb0169d57446aec21881ff2";
+ my $outfile_27 = "xc3028-v27.fw";
+ my $name_27 = "xc2028 firmware";
+ my $version_27 = 519;
+ my $nr_desc_27 = 80;
my $out;
- verify($sourcefile, $hash);
+ if (-e $sourcefile_24) {
+ verify($sourcefile_24, $hash_24);
+
+ open INFILE, "<$sourcefile_24";
+ main_firmware_24($outfile_24, $name_24, $version_24, $nr_desc_24);
+ close INFILE;
+ }
- open INFILE, "<$sourcefile";
- main_firmware($outfile, $name, $version, $nr_desc);
- close INFILE;
+ if (-e $sourcefile_27) {
+ verify($sourcefile_27, $hash_27);
+
+ open INFILE, "<$sourcefile_27";
+ main_firmware_27($outfile_27, $name_27, $version_27, $nr_desc_27);
+ close INFILE;
+ }
}
extract_firmware;
diff --git a/Documentation/video4linux/gspca.txt b/Documentation/video4linux/gspca.txt
index 1800a62cf135..56ba7bba7168 100644
--- a/Documentation/video4linux/gspca.txt
+++ b/Documentation/video4linux/gspca.txt
@@ -29,8 +29,12 @@ zc3xx 041e:4029 Creative WebCam Vista Pro
zc3xx 041e:4034 Creative Instant P0620
zc3xx 041e:4035 Creative Instant P0620D
zc3xx 041e:4036 Creative Live !
+sq930x 041e:4038 Creative Joy-IT
zc3xx 041e:403a Creative Nx Pro 2
spca561 041e:403b Creative Webcam Vista (VF0010)
+sq930x 041e:403c Creative Live! Ultra
+sq930x 041e:403d Creative Live! Ultra for Notebooks
+sq930x 041e:4041 Creative Live! Motion
zc3xx 041e:4051 Creative Live!Cam Notebook Pro (VF0250)
ov519 041e:4052 Creative Live! VISTA IM
zc3xx 041e:4053 Creative Live!Cam Video IM
@@ -42,6 +46,7 @@ ov519 041e:4064 Creative Live! VISTA VF0420
ov519 041e:4067 Creative Live! Cam Video IM (VF0350)
ov519 041e:4068 Creative Live! VISTA VF0470
spca561 0458:7004 Genius VideoCAM Express V2
+sn9c2028 0458:7005 Genius Smart 300, version 2
sunplus 0458:7006 Genius Dsc 1.3 Smart
zc3xx 0458:7007 Genius VideoCam V2
zc3xx 0458:700c Genius VideoCam V3
@@ -49,6 +54,8 @@ zc3xx 0458:700f Genius VideoCam Web V2
sonixj 0458:7025 Genius Eye 311Q
sn9c20x 0458:7029 Genius Look 320s
sonixj 0458:702e Genius Slim 310 NB
+sn9c20x 0458:704a Genius Slim 1320
+sn9c20x 0458:704c Genius i-Look 1321
sn9c20x 045e:00f4 LifeCam VX-6000 (SN9C20x + OV9650)
sonixj 045e:00f5 MicroSoft VX3000
sonixj 045e:00f7 MicroSoft VX1000
@@ -109,6 +116,7 @@ sunplus 04a5:3003 Benq DC 1300
sunplus 04a5:3008 Benq DC 1500
sunplus 04a5:300a Benq DC 3410
spca500 04a5:300c Benq DC 1016
+benq 04a5:3035 Benq DC E300
finepix 04cb:0104 Fujifilm FinePix 4800
finepix 04cb:0109 Fujifilm FinePix A202
finepix 04cb:010b Fujifilm FinePix A203
@@ -134,6 +142,7 @@ finepix 04cb:013d Fujifilm FinePix unknown model
finepix 04cb:013f Fujifilm FinePix F420
sunplus 04f1:1001 JVC GC A50
spca561 04fc:0561 Flexcam 100
+spca1528 04fc:1528 Sunplus MD80 clone
sunplus 04fc:500c Sunplus CA500C
sunplus 04fc:504a Aiptek Mini PenCam 1.3
sunplus 04fc:504b Maxell MaxPocket LE 1.3
@@ -142,6 +151,7 @@ sunplus 04fc:5360 Sunplus Generic
spca500 04fc:7333 PalmPixDC85
sunplus 04fc:ffff Pure DigitalDakota
spca501 0506:00df 3Com HomeConnect Lite
+sunplus 052b:1507 Megapixel 5 Pretec DC-1007
sunplus 052b:1513 Megapix V4
sunplus 052b:1803 MegaImage VI
tv8532 0545:808b Veo Stingray
@@ -151,6 +161,7 @@ sunplus 0546:3191 Polaroid Ion 80
sunplus 0546:3273 Polaroid PDC2030
ov519 054c:0154 Sonny toy4
ov519 054c:0155 Sonny toy5
+cpia1 0553:0002 CPIA CPiA (version1) based cameras
zc3xx 055f:c005 Mustek Wcam300A
spca500 055f:c200 Mustek Gsmart 300
sunplus 055f:c211 Kowa Bs888e Microcamera
@@ -188,8 +199,7 @@ spca500 06bd:0404 Agfa CL20
spca500 06be:0800 Optimedia
sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom
spca506 06e1:a190 ADS Instant VCD
-ov534 06f8:3002 Hercules Blog Webcam
-ov534 06f8:3003 Hercules Dualpix HD Weblog
+ov534_9 06f8:3003 Hercules Dualpix HD Weblog
sonixj 06f8:3004 Hercules Classic Silver
sonixj 06f8:3008 Hercules Deluxe Optical Glass
pac7302 06f8:3009 Hercules Classic Link
@@ -204,6 +214,7 @@ sunplus 0733:2221 Mercury Digital Pro 3.1p
sunplus 0733:3261 Concord 3045 spca536a
sunplus 0733:3281 Cyberpix S550V
spca506 0734:043b 3DeMon USB Capture aka
+cpia1 0813:0001 QX3 camera
ov519 0813:0002 Dual Mode USB Camera Plus
spca500 084d:0003 D-Link DSC-350
spca500 08ca:0103 Aiptek PocketDV
@@ -225,7 +236,8 @@ sunplus 08ca:2050 Medion MD 41437
sunplus 08ca:2060 Aiptek PocketDV5300
tv8532 0923:010f ICM532 cams
mars 093a:050f Mars-Semi Pc-Camera
-mr97310a 093a:010f Sakar Digital no. 77379
+mr97310a 093a:010e All known CIF cams with this ID
+mr97310a 093a:010f All known VGA cams with this ID
pac207 093a:2460 Qtec Webcam 100
pac207 093a:2461 HP Webcam
pac207 093a:2463 Philips SPC 220 NC
@@ -246,6 +258,7 @@ pac7302 093a:2620 Apollo AC-905
pac7302 093a:2621 PAC731x
pac7302 093a:2622 Genius Eye 312
pac7302 093a:2624 PAC7302
+pac7302 093a:2625 Genius iSlim 310
pac7302 093a:2626 Labtec 2200
pac7302 093a:2628 Genius iLook 300
pac7302 093a:2629 Genious iSlim 300
@@ -283,6 +296,7 @@ sonixb 0c45:602e Genius VideoCam Messenger
sonixj 0c45:6040 Speed NVC 350K
sonixj 0c45:607c Sonix sn9c102p Hv7131R
sonixj 0c45:60c0 Sangha Sn535
+sonixj 0c45:60ce USB-PC-Camera-168 (TALK-5067)
sonixj 0c45:60ec SN9C105+MO4000
sonixj 0c45:60fb Surfer NoName
sonixj 0c45:60fc LG-LIC300
@@ -300,11 +314,14 @@ sonixj 0c45:6138 Sn9c120 Mo4000
sonixj 0c45:613a Microdia Sonix PC Camera
sonixj 0c45:613b Surfer SN-206
sonixj 0c45:613c Sonix Pccam168
+sonixj 0c45:6142 Hama PC-Webcam AC-150
sonixj 0c45:6143 Sonix Pccam168
sonixj 0c45:6148 Digitus DA-70811/ZSMC USB PC Camera ZS211/Microdia
+sonixj 0c45:614a Frontech E-Ccam (JIL-2225)
sn9c20x 0c45:6240 PC Camera (SN9C201 + MT9M001)
sn9c20x 0c45:6242 PC Camera (SN9C201 + MT9M111)
sn9c20x 0c45:6248 PC Camera (SN9C201 + OV9655)
+sn9c20x 0c45:624c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:624e PC Camera (SN9C201 + SOI968)
sn9c20x 0c45:624f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6251 PC Camera (SN9C201 + OV9650)
@@ -317,6 +334,7 @@ sn9c20x 0c45:627f PC Camera (SN9C201 + OV9650)
sn9c20x 0c45:6280 PC Camera (SN9C202 + MT9M001)
sn9c20x 0c45:6282 PC Camera (SN9C202 + MT9M111)
sn9c20x 0c45:6288 PC Camera (SN9C202 + OV9655)
+sn9c20x 0c45:628c PC Camera (SN9C201 + MT9M112)
sn9c20x 0c45:628e PC Camera (SN9C202 + SOI968)
sn9c20x 0c45:628f PC Camera (SN9C202 + OV9650)
sn9c20x 0c45:62a0 PC Camera (SN9C202 + OV7670)
@@ -324,6 +342,10 @@ sn9c20x 0c45:62b0 PC Camera (SN9C202 + MT9V011/MT9V111/MT9V112)
sn9c20x 0c45:62b3 PC Camera (SN9C202 + OV9655)
sn9c20x 0c45:62bb PC Camera (SN9C202 + OV7660)
sn9c20x 0c45:62bc PC Camera (SN9C202 + HV7131R)
+sn9c2028 0c45:8001 Wild Planet Digital Spy Camera
+sn9c2028 0c45:8003 Sakar #11199, #6637x, #67480 keychain cams
+sn9c2028 0c45:8008 Mini-Shotz ms-350
+sn9c2028 0c45:800a Vivitar Vivicam 3350B
sunplus 0d64:0303 Sunplus FashionCam DXG
ov519 0e96:c001 TRUST 380 USB2 SPACEC@M
etoms 102c:6151 Qcam Sangha CIF
@@ -341,10 +363,13 @@ spca501 1776:501c Arowana 300K CMOS Camera
t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
pac207 2001:f115 D-Link DSB-C120
-sq905c 2770:9050 sq905c
-sq905c 2770:905c DualCamera
-sq905 2770:9120 Argus Digital Camera DC1512
-sq905c 2770:913d sq905c
+sq905c 2770:9050 Disney pix micro (CIF)
+sq905c 2770:9052 Disney pix micro 2 (VGA)
+sq905c 2770:905c All 11 known cameras with this ID
+sq905 2770:9120 All 24 known cameras with this ID
+sq905c 2770:913d All 4 known cameras with this ID
+sq930x 2770:930b Sweex Motion Tracking / I-Tec iCam Tracer
+sq930x 2770:930c Trust WB-3500T / NSG Robbie 2.0
spca500 2899:012c Toptro Industrial
ov519 8020:ef04 ov519
spca508 8086:0110 Intel Easy PC Camera
diff --git a/Documentation/video4linux/hauppauge-wintv-cx88-ir.txt b/Documentation/video4linux/hauppauge-wintv-cx88-ir.txt
index faccee68f603..a2fd363c40c8 100644
--- a/Documentation/video4linux/hauppauge-wintv-cx88-ir.txt
+++ b/Documentation/video4linux/hauppauge-wintv-cx88-ir.txt
@@ -44,7 +44,7 @@ http://www.atmel.com/dyn/resources/prod_documents/doc2817.pdf
This data sheet (google search) seems to have a lovely description of the
RC5 basics
-http://users.pandora.be/nenya/electronics/rc5/ and more data
+http://www.nenya.be/beor/electronics/rc5.htm and more data
http://www.ee.washington.edu/circuit_archive/text/ir_decode.txt
and even a reference to how to decode a bi-phase data stream.
diff --git a/Documentation/video4linux/ibmcam.txt b/Documentation/video4linux/ibmcam.txt
index 397a94eb77b8..a51055211e62 100644
--- a/Documentation/video4linux/ibmcam.txt
+++ b/Documentation/video4linux/ibmcam.txt
@@ -27,9 +27,8 @@ SUPPORTED CAMERAS:
Xirlink "C-It" camera, also known as "IBM PC Camera".
The device uses proprietary ASIC (and compression method);
-it is manufactured by Xirlink. See http://www.xirlink.com/
-(renamed to http://www.veo.com), http://www.ibmpccamera.com,
-or http://www.c-itnow.com/ for details and pictures.
+it is manufactured by Xirlink. See http://xirlinkwebcam.sourceforge.net,
+http://www.ibmpccamera.com, or http://www.c-itnow.com/ for details and pictures.
This very chipset ("X Chip", as marked at the factory)
is used in several other cameras, and they are supported
diff --git a/Documentation/video4linux/se401.txt b/Documentation/video4linux/se401.txt
index 7b9d1c960a10..bd6526ec8dd7 100644
--- a/Documentation/video4linux/se401.txt
+++ b/Documentation/video4linux/se401.txt
@@ -49,6 +49,6 @@ order to increase the throughput (and thus framerate).
HELP:
The latest info on this driver can be found at:
-http://www.chello.nl/~j.vreeken/se401/
+http://members.chello.nl/~j.vreeken/se401/
And questions to me can be send to:
pe1rxq@amsat.org
diff --git a/Documentation/video4linux/sh_mobile_ceu_camera.txt b/Documentation/video4linux/sh_mobile_ceu_camera.txt
index 2ae16349a78d..cb47e723af74 100644
--- a/Documentation/video4linux/sh_mobile_ceu_camera.txt
+++ b/Documentation/video4linux/sh_mobile_ceu_camera.txt
@@ -17,18 +17,18 @@ Generic scaling / cropping scheme
-2-- -\
| --\
| --\
-+-5-- -\ -- -3--
-| ---\
-| --- -4-- -\
-| -\
-| - -6--
++-5-- . -- -3-- -\
+| `... -\
+| `... -4-- . - -7..
+| `.
+| `. .6--
|
-| - -6'-
-| -/
-| --- -4'- -/
-| ---/
-+-5'- -/
-| -- -3'-
+| . .6'-
+| .´
+| ... -4'- .´
+| ...´ - -7'.
++-5'- .´ -/
+| -- -3'- -/
| --/
| --/
-2'- -/
@@ -36,7 +36,11 @@ Generic scaling / cropping scheme
|
-1'-
-Produced by user requests:
+In the above chart minuses and slashes represent "real" data amounts, points and
+accents represent "useful" data, basically, CEU scaled amd cropped output,
+mapped back onto the client's source plane.
+
+Such a configuration can be produced by user requests:
S_CROP(left / top = (5) - (1), width / height = (5') - (5))
S_FMT(width / height = (6') - (6))
@@ -106,52 +110,30 @@ window:
S_CROP
------
-If old scale applied to new crop is invalid produce nearest new scale possible
-
-1. Calculate current combined scales.
-
- scale_comb = (((4') - (4)) / ((6') - (6))) * (((2') - (2)) / ((3') - (3)))
-
-2. Apply iterative sensor S_CROP for new input window.
-
-3. If old combined scales applied to new crop produce an impossible user window,
-adjust scales to produce nearest possible window.
-
- width_u_out = ((5') - (5)) / scale_comb
+The API at http://v4l2spec.bytesex.org/spec/x1904.htm says:
- if (width_u_out > max)
- scale_comb = ((5') - (5)) / max;
- else if (width_u_out < min)
- scale_comb = ((5') - (5)) / min;
+"...specification does not define an origin or units. However by convention
+drivers should horizontally count unscaled samples relative to 0H."
-4. Issue G_CROP to retrieve actual input window.
+We choose to follow the advise and interpret cropping units as client input
+pixels.
-5. Using actual input window and calculated combined scales calculate sensor
-target output window.
-
- width_s_out = ((3') - (3)) = ((2') - (2)) / scale_comb
-
-6. Apply iterative S_FMT for new sensor target output window.
-
-7. Issue G_FMT to retrieve the actual sensor output window.
-
-8. Calculate sensor scales.
-
- scale_s = ((3') - (3)) / ((2') - (2))
+Cropping is performed in the following 6 steps:
-9. Calculate sensor output subwindow to be cropped on CEU by applying sensor
-scales to the requested window.
+1. Request exactly user rectangle from the sensor.
- width_ceu = ((5') - (5)) / scale_s
+2. If smaller - iterate until a larger one is obtained. Result: sensor cropped
+ to 2 : 2', target crop 5 : 5', current output format 6' - 6.
-10. Use CEU cropping for above calculated window.
+3. In the previous step the sensor has tried to preserve its output frame as
+ good as possible, but it could have changed. Retrieve it again.
-11. Calculate CEU scales from sensor scales from results of (10) and user window
-from (3)
+4. Sensor scaled to 3 : 3'. Sensor's scale is (2' - 2) / (3' - 3). Calculate
+ intermediate window: 4' - 4 = (5' - 5) * (3' - 3) / (2' - 2)
- scale_ceu = calc_scale(((5') - (5)), &width_u_out)
+5. Calculate and apply host scale = (6' - 6) / (4' - 4)
-12. Apply CEU scales.
+6. Calculate and apply host crop: 6 - 7 = (5 - 2) * (6' - 6) / (5' - 5)
--
Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
diff --git a/Documentation/video4linux/v4l2-controls.txt b/Documentation/video4linux/v4l2-controls.txt
new file mode 100644
index 000000000000..8773778d23fc
--- /dev/null
+++ b/Documentation/video4linux/v4l2-controls.txt
@@ -0,0 +1,648 @@
+Introduction
+============
+
+The V4L2 control API seems simple enough, but quickly becomes very hard to
+implement correctly in drivers. But much of the code needed to handle controls
+is actually not driver specific and can be moved to the V4L core framework.
+
+After all, the only part that a driver developer is interested in is:
+
+1) How do I add a control?
+2) How do I set the control's value? (i.e. s_ctrl)
+
+And occasionally:
+
+3) How do I get the control's value? (i.e. g_volatile_ctrl)
+4) How do I validate the user's proposed control value? (i.e. try_ctrl)
+
+All the rest is something that can be done centrally.
+
+The control framework was created in order to implement all the rules of the
+V4L2 specification with respect to controls in a central place. And to make
+life as easy as possible for the driver developer.
+
+Note that the control framework relies on the presence of a struct v4l2_device
+for V4L2 drivers and struct v4l2_subdev for sub-device drivers.
+
+
+Objects in the framework
+========================
+
+There are two main objects:
+
+The v4l2_ctrl object describes the control properties and keeps track of the
+control's value (both the current value and the proposed new value).
+
+v4l2_ctrl_handler is the object that keeps track of controls. It maintains a
+list of v4l2_ctrl objects that it owns and another list of references to
+controls, possibly to controls owned by other handlers.
+
+
+Basic usage for V4L2 and sub-device drivers
+===========================================
+
+1) Prepare the driver:
+
+1.1) Add the handler to your driver's top-level struct:
+
+ struct foo_dev {
+ ...
+ struct v4l2_ctrl_handler ctrl_handler;
+ ...
+ };
+
+ struct foo_dev *foo;
+
+1.2) Initialize the handler:
+
+ v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
+
+ The second argument is a hint telling the function how many controls this
+ handler is expected to handle. It will allocate a hashtable based on this
+ information. It is a hint only.
+
+1.3) Hook the control handler into the driver:
+
+1.3.1) For V4L2 drivers do this:
+
+ struct foo_dev {
+ ...
+ struct v4l2_device v4l2_dev;
+ ...
+ struct v4l2_ctrl_handler ctrl_handler;
+ ...
+ };
+
+ foo->v4l2_dev.ctrl_handler = &foo->ctrl_handler;
+
+ Where foo->v4l2_dev is of type struct v4l2_device.
+
+ Finally, remove all control functions from your v4l2_ioctl_ops:
+ vidioc_queryctrl, vidioc_querymenu, vidioc_g_ctrl, vidioc_s_ctrl,
+ vidioc_g_ext_ctrls, vidioc_try_ext_ctrls and vidioc_s_ext_ctrls.
+ Those are now no longer needed.
+
+1.3.2) For sub-device drivers do this:
+
+ struct foo_dev {
+ ...
+ struct v4l2_subdev sd;
+ ...
+ struct v4l2_ctrl_handler ctrl_handler;
+ ...
+ };
+
+ foo->sd.ctrl_handler = &foo->ctrl_handler;
+
+ Where foo->sd is of type struct v4l2_subdev.
+
+ And set all core control ops in your struct v4l2_subdev_core_ops to these
+ helpers:
+
+ .queryctrl = v4l2_subdev_queryctrl,
+ .querymenu = v4l2_subdev_querymenu,
+ .g_ctrl = v4l2_subdev_g_ctrl,
+ .s_ctrl = v4l2_subdev_s_ctrl,
+ .g_ext_ctrls = v4l2_subdev_g_ext_ctrls,
+ .try_ext_ctrls = v4l2_subdev_try_ext_ctrls,
+ .s_ext_ctrls = v4l2_subdev_s_ext_ctrls,
+
+ Note: this is a temporary solution only. Once all V4L2 drivers that depend
+ on subdev drivers are converted to the control framework these helpers will
+ no longer be needed.
+
+1.4) Clean up the handler at the end:
+
+ v4l2_ctrl_handler_free(&foo->ctrl_handler);
+
+
+2) Add controls:
+
+You add non-menu controls by calling v4l2_ctrl_new_std:
+
+ struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler *hdl,
+ const struct v4l2_ctrl_ops *ops,
+ u32 id, s32 min, s32 max, u32 step, s32 def);
+
+Menu controls are added by calling v4l2_ctrl_new_std_menu:
+
+ struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler *hdl,
+ const struct v4l2_ctrl_ops *ops,
+ u32 id, s32 max, s32 skip_mask, s32 def);
+
+These functions are typically called right after the v4l2_ctrl_handler_init:
+
+ v4l2_ctrl_handler_init(&foo->ctrl_handler, nr_of_controls);
+ v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
+ V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
+ v4l2_ctrl_new_std(&foo->ctrl_handler, &foo_ctrl_ops,
+ V4L2_CID_CONTRAST, 0, 255, 1, 128);
+ v4l2_ctrl_new_std_menu(&foo->ctrl_handler, &foo_ctrl_ops,
+ V4L2_CID_POWER_LINE_FREQUENCY,
+ V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0,
+ V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
+ ...
+ if (foo->ctrl_handler.error) {
+ int err = foo->ctrl_handler.error;
+
+ v4l2_ctrl_handler_free(&foo->ctrl_handler);
+ return err;
+ }
+
+The v4l2_ctrl_new_std function returns the v4l2_ctrl pointer to the new
+control, but if you do not need to access the pointer outside the control ops,
+then there is no need to store it.
+
+The v4l2_ctrl_new_std function will fill in most fields based on the control
+ID except for the min, max, step and default values. These are passed in the
+last four arguments. These values are driver specific while control attributes
+like type, name, flags are all global. The control's current value will be set
+to the default value.
+
+The v4l2_ctrl_new_std_menu function is very similar but it is used for menu
+controls. There is no min argument since that is always 0 for menu controls,
+and instead of a step there is a skip_mask argument: if bit X is 1, then menu
+item X is skipped.
+
+Note that if something fails, the function will return NULL or an error and
+set ctrl_handler->error to the error code. If ctrl_handler->error was already
+set, then it will just return and do nothing. This is also true for
+v4l2_ctrl_handler_init if it cannot allocate the internal data structure.
+
+This makes it easy to init the handler and just add all controls and only check
+the error code at the end. Saves a lot of repetitive error checking.
+
+It is recommended to add controls in ascending control ID order: it will be
+a bit faster that way.
+
+3) Optionally force initial control setup:
+
+ v4l2_ctrl_handler_setup(&foo->ctrl_handler);
+
+This will call s_ctrl for all controls unconditionally. Effectively this
+initializes the hardware to the default control values. It is recommended
+that you do this as this ensures that both the internal data structures and
+the hardware are in sync.
+
+4) Finally: implement the v4l2_ctrl_ops
+
+ static const struct v4l2_ctrl_ops foo_ctrl_ops = {
+ .s_ctrl = foo_s_ctrl,
+ };
+
+Usually all you need is s_ctrl:
+
+ static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
+ {
+ struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
+
+ switch (ctrl->id) {
+ case V4L2_CID_BRIGHTNESS:
+ write_reg(0x123, ctrl->val);
+ break;
+ case V4L2_CID_CONTRAST:
+ write_reg(0x456, ctrl->val);
+ break;
+ }
+ return 0;
+ }
+
+The control ops are called with the v4l2_ctrl pointer as argument.
+The new control value has already been validated, so all you need to do is
+to actually update the hardware registers.
+
+You're done! And this is sufficient for most of the drivers we have. No need
+to do any validation of control values, or implement QUERYCTRL/QUERYMENU. And
+G/S_CTRL as well as G/TRY/S_EXT_CTRLS are automatically supported.
+
+
+==============================================================================
+
+The remainder of this document deals with more advanced topics and scenarios.
+In practice the basic usage as described above is sufficient for most drivers.
+
+===============================================================================
+
+
+Inheriting Controls
+===================
+
+When a sub-device is registered with a V4L2 driver by calling
+v4l2_device_register_subdev() and the ctrl_handler fields of both v4l2_subdev
+and v4l2_device are set, then the controls of the subdev will become
+automatically available in the V4L2 driver as well. If the subdev driver
+contains controls that already exist in the V4L2 driver, then those will be
+skipped (so a V4L2 driver can always override a subdev control).
+
+What happens here is that v4l2_device_register_subdev() calls
+v4l2_ctrl_add_handler() adding the controls of the subdev to the controls
+of v4l2_device.
+
+
+Accessing Control Values
+========================
+
+The v4l2_ctrl struct contains these two unions:
+
+ /* The current control value. */
+ union {
+ s32 val;
+ s64 val64;
+ char *string;
+ } cur;
+
+ /* The new control value. */
+ union {
+ s32 val;
+ s64 val64;
+ char *string;
+ };
+
+Within the control ops you can freely use these. The val and val64 speak for
+themselves. The string pointers point to character buffers of length
+ctrl->maximum + 1, and are always 0-terminated.
+
+In most cases 'cur' contains the current cached control value. When you create
+a new control this value is made identical to the default value. After calling
+v4l2_ctrl_handler_setup() this value is passed to the hardware. It is generally
+a good idea to call this function.
+
+Whenever a new value is set that new value is automatically cached. This means
+that most drivers do not need to implement the g_volatile_ctrl() op. The
+exception is for controls that return a volatile register such as a signal
+strength read-out that changes continuously. In that case you will need to
+implement g_volatile_ctrl like this:
+
+ static int foo_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
+ {
+ switch (ctrl->id) {
+ case V4L2_CID_BRIGHTNESS:
+ ctrl->cur.val = read_reg(0x123);
+ break;
+ }
+ }
+
+The 'new value' union is not used in g_volatile_ctrl. In general controls
+that need to implement g_volatile_ctrl are read-only controls.
+
+To mark a control as volatile you have to set the is_volatile flag:
+
+ ctrl = v4l2_ctrl_new_std(&sd->ctrl_handler, ...);
+ if (ctrl)
+ ctrl->is_volatile = 1;
+
+For try/s_ctrl the new values (i.e. as passed by the user) are filled in and
+you can modify them in try_ctrl or set them in s_ctrl. The 'cur' union
+contains the current value, which you can use (but not change!) as well.
+
+If s_ctrl returns 0 (OK), then the control framework will copy the new final
+values to the 'cur' union.
+
+While in g_volatile/s/try_ctrl you can access the value of all controls owned
+by the same handler since the handler's lock is held. If you need to access
+the value of controls owned by other handlers, then you have to be very careful
+not to introduce deadlocks.
+
+Outside of the control ops you have to go through to helper functions to get
+or set a single control value safely in your driver:
+
+ s32 v4l2_ctrl_g_ctrl(struct v4l2_ctrl *ctrl);
+ int v4l2_ctrl_s_ctrl(struct v4l2_ctrl *ctrl, s32 val);
+
+These functions go through the control framework just as VIDIOC_G/S_CTRL ioctls
+do. Don't use these inside the control ops g_volatile/s/try_ctrl, though, that
+will result in a deadlock since these helpers lock the handler as well.
+
+You can also take the handler lock yourself:
+
+ mutex_lock(&state->ctrl_handler.lock);
+ printk(KERN_INFO "String value is '%s'\n", ctrl1->cur.string);
+ printk(KERN_INFO "Integer value is '%s'\n", ctrl2->cur.val);
+ mutex_unlock(&state->ctrl_handler.lock);
+
+
+Menu Controls
+=============
+
+The v4l2_ctrl struct contains this union:
+
+ union {
+ u32 step;
+ u32 menu_skip_mask;
+ };
+
+For menu controls menu_skip_mask is used. What it does is that it allows you
+to easily exclude certain menu items. This is used in the VIDIOC_QUERYMENU
+implementation where you can return -EINVAL if a certain menu item is not
+present. Note that VIDIOC_QUERYCTRL always returns a step value of 1 for
+menu controls.
+
+A good example is the MPEG Audio Layer II Bitrate menu control where the
+menu is a list of standardized possible bitrates. But in practice hardware
+implementations will only support a subset of those. By setting the skip
+mask you can tell the framework which menu items should be skipped. Setting
+it to 0 means that all menu items are supported.
+
+You set this mask either through the v4l2_ctrl_config struct for a custom
+control, or by calling v4l2_ctrl_new_std_menu().
+
+
+Custom Controls
+===============
+
+Driver specific controls can be created using v4l2_ctrl_new_custom():
+
+ static const struct v4l2_ctrl_config ctrl_filter = {
+ .ops = &ctrl_custom_ops,
+ .id = V4L2_CID_MPEG_CX2341X_VIDEO_SPATIAL_FILTER,
+ .name = "Spatial Filter",
+ .type = V4L2_CTRL_TYPE_INTEGER,
+ .flags = V4L2_CTRL_FLAG_SLIDER,
+ .max = 15,
+ .step = 1,
+ };
+
+ ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_filter, NULL);
+
+The last argument is the priv pointer which can be set to driver-specific
+private data.
+
+The v4l2_ctrl_config struct also has fields to set the is_private and is_volatile
+flags.
+
+If the name field is not set, then the framework will assume this is a standard
+control and will fill in the name, type and flags fields accordingly.
+
+
+Active and Grabbed Controls
+===========================
+
+If you get more complex relationships between controls, then you may have to
+activate and deactivate controls. For example, if the Chroma AGC control is
+on, then the Chroma Gain control is inactive. That is, you may set it, but
+the value will not be used by the hardware as long as the automatic gain
+control is on. Typically user interfaces can disable such input fields.
+
+You can set the 'active' status using v4l2_ctrl_activate(). By default all
+controls are active. Note that the framework does not check for this flag.
+It is meant purely for GUIs. The function is typically called from within
+s_ctrl.
+
+The other flag is the 'grabbed' flag. A grabbed control means that you cannot
+change it because it is in use by some resource. Typical examples are MPEG
+bitrate controls that cannot be changed while capturing is in progress.
+
+If a control is set to 'grabbed' using v4l2_ctrl_grab(), then the framework
+will return -EBUSY if an attempt is made to set this control. The
+v4l2_ctrl_grab() function is typically called from the driver when it
+starts or stops streaming.
+
+
+Control Clusters
+================
+
+By default all controls are independent from the others. But in more
+complex scenarios you can get dependencies from one control to another.
+In that case you need to 'cluster' them:
+
+ struct foo {
+ struct v4l2_ctrl_handler ctrl_handler;
+#define AUDIO_CL_VOLUME (0)
+#define AUDIO_CL_MUTE (1)
+ struct v4l2_ctrl *audio_cluster[2];
+ ...
+ };
+
+ state->audio_cluster[AUDIO_CL_VOLUME] =
+ v4l2_ctrl_new_std(&state->ctrl_handler, ...);
+ state->audio_cluster[AUDIO_CL_MUTE] =
+ v4l2_ctrl_new_std(&state->ctrl_handler, ...);
+ v4l2_ctrl_cluster(ARRAY_SIZE(state->audio_cluster), state->audio_cluster);
+
+From now on whenever one or more of the controls belonging to the same
+cluster is set (or 'gotten', or 'tried'), only the control ops of the first
+control ('volume' in this example) is called. You effectively create a new
+composite control. Similar to how a 'struct' works in C.
+
+So when s_ctrl is called with V4L2_CID_AUDIO_VOLUME as argument, you should set
+all two controls belonging to the audio_cluster:
+
+ static int foo_s_ctrl(struct v4l2_ctrl *ctrl)
+ {
+ struct foo *state = container_of(ctrl->handler, struct foo, ctrl_handler);
+
+ switch (ctrl->id) {
+ case V4L2_CID_AUDIO_VOLUME: {
+ struct v4l2_ctrl *mute = ctrl->cluster[AUDIO_CL_MUTE];
+
+ write_reg(0x123, mute->val ? 0 : ctrl->val);
+ break;
+ }
+ case V4L2_CID_CONTRAST:
+ write_reg(0x456, ctrl->val);
+ break;
+ }
+ return 0;
+ }
+
+In the example above the following are equivalent for the VOLUME case:
+
+ ctrl == ctrl->cluster[AUDIO_CL_VOLUME] == state->audio_cluster[AUDIO_CL_VOLUME]
+ ctrl->cluster[AUDIO_CL_MUTE] == state->audio_cluster[AUDIO_CL_MUTE]
+
+Note that controls in a cluster may be NULL. For example, if for some
+reason mute was never added (because the hardware doesn't support that
+particular feature), then mute will be NULL. So in that case we have a
+cluster of 2 controls, of which only 1 is actually instantiated. The
+only restriction is that the first control of the cluster must always be
+present, since that is the 'master' control of the cluster. The master
+control is the one that identifies the cluster and that provides the
+pointer to the v4l2_ctrl_ops struct that is used for that cluster.
+
+Obviously, all controls in the cluster array must be initialized to either
+a valid control or to NULL.
+
+
+VIDIOC_LOG_STATUS Support
+=========================
+
+This ioctl allow you to dump the current status of a driver to the kernel log.
+The v4l2_ctrl_handler_log_status(ctrl_handler, prefix) can be used to dump the
+value of the controls owned by the given handler to the log. You can supply a
+prefix as well. If the prefix didn't end with a space, then ': ' will be added
+for you.
+
+
+Different Handlers for Different Video Nodes
+============================================
+
+Usually the V4L2 driver has just one control handler that is global for
+all video nodes. But you can also specify different control handlers for
+different video nodes. You can do that by manually setting the ctrl_handler
+field of struct video_device.
+
+That is no problem if there are no subdevs involved but if there are, then
+you need to block the automatic merging of subdev controls to the global
+control handler. You do that by simply setting the ctrl_handler field in
+struct v4l2_device to NULL. Now v4l2_device_register_subdev() will no longer
+merge subdev controls.
+
+After each subdev was added, you will then have to call v4l2_ctrl_add_handler
+manually to add the subdev's control handler (sd->ctrl_handler) to the desired
+control handler. This control handler may be specific to the video_device or
+for a subset of video_device's. For example: the radio device nodes only have
+audio controls, while the video and vbi device nodes share the same control
+handler for the audio and video controls.
+
+If you want to have one handler (e.g. for a radio device node) have a subset
+of another handler (e.g. for a video device node), then you should first add
+the controls to the first handler, add the other controls to the second
+handler and finally add the first handler to the second. For example:
+
+ v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_VOLUME, ...);
+ v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
+ v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
+ v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
+ v4l2_ctrl_add_handler(&video_ctrl_handler, &radio_ctrl_handler);
+
+Or you can add specific controls to a handler:
+
+ volume = v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_AUDIO_VOLUME, ...);
+ v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_BRIGHTNESS, ...);
+ v4l2_ctrl_new_std(&video_ctrl_handler, &ops, V4L2_CID_CONTRAST, ...);
+ v4l2_ctrl_add_ctrl(&radio_ctrl_handler, volume);
+
+What you should not do is make two identical controls for two handlers.
+For example:
+
+ v4l2_ctrl_new_std(&radio_ctrl_handler, &radio_ops, V4L2_CID_AUDIO_MUTE, ...);
+ v4l2_ctrl_new_std(&video_ctrl_handler, &video_ops, V4L2_CID_AUDIO_MUTE, ...);
+
+This would be bad since muting the radio would not change the video mute
+control. The rule is to have one control for each hardware 'knob' that you
+can twiddle.
+
+
+Finding Controls
+================
+
+Normally you have created the controls yourself and you can store the struct
+v4l2_ctrl pointer into your own struct.
+
+But sometimes you need to find a control from another handler that you do
+not own. For example, if you have to find a volume control from a subdev.
+
+You can do that by calling v4l2_ctrl_find:
+
+ struct v4l2_ctrl *volume;
+
+ volume = v4l2_ctrl_find(sd->ctrl_handler, V4L2_CID_AUDIO_VOLUME);
+
+Since v4l2_ctrl_find will lock the handler you have to be careful where you
+use it. For example, this is not a good idea:
+
+ struct v4l2_ctrl_handler ctrl_handler;
+
+ v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_BRIGHTNESS, ...);
+ v4l2_ctrl_new_std(&ctrl_handler, &video_ops, V4L2_CID_CONTRAST, ...);
+
+...and in video_ops.s_ctrl:
+
+ case V4L2_CID_BRIGHTNESS:
+ contrast = v4l2_find_ctrl(&ctrl_handler, V4L2_CID_CONTRAST);
+ ...
+
+When s_ctrl is called by the framework the ctrl_handler.lock is already taken, so
+attempting to find another control from the same handler will deadlock.
+
+It is recommended not to use this function from inside the control ops.
+
+
+Inheriting Controls
+===================
+
+When one control handler is added to another using v4l2_ctrl_add_handler, then
+by default all controls from one are merged to the other. But a subdev might
+have low-level controls that make sense for some advanced embedded system, but
+not when it is used in consumer-level hardware. In that case you want to keep
+those low-level controls local to the subdev. You can do this by simply
+setting the 'is_private' flag of the control to 1:
+
+ static const struct v4l2_ctrl_config ctrl_private = {
+ .ops = &ctrl_custom_ops,
+ .id = V4L2_CID_...,
+ .name = "Some Private Control",
+ .type = V4L2_CTRL_TYPE_INTEGER,
+ .max = 15,
+ .step = 1,
+ .is_private = 1,
+ };
+
+ ctrl = v4l2_ctrl_new_custom(&foo->ctrl_handler, &ctrl_private, NULL);
+
+These controls will now be skipped when v4l2_ctrl_add_handler is called.
+
+
+V4L2_CTRL_TYPE_CTRL_CLASS Controls
+==================================
+
+Controls of this type can be used by GUIs to get the name of the control class.
+A fully featured GUI can make a dialog with multiple tabs with each tab
+containing the controls belonging to a particular control class. The name of
+each tab can be found by querying a special control with ID <control class | 1>.
+
+Drivers do not have to care about this. The framework will automatically add
+a control of this type whenever the first control belonging to a new control
+class is added.
+
+
+Differences from the Spec
+=========================
+
+There are a few places where the framework acts slightly differently from the
+V4L2 Specification. Those differences are described in this section. We will
+have to see whether we need to adjust the spec or not.
+
+1) It is no longer required to have all controls contained in a
+v4l2_ext_control array be from the same control class. The framework will be
+able to handle any type of control in the array. You need to set ctrl_class
+to 0 in order to enable this. If ctrl_class is non-zero, then it will still
+check that all controls belong to that control class.
+
+If you set ctrl_class to 0 and count to 0, then it will only return an error
+if there are no controls at all.
+
+2) Clarified the way error_idx works. For get and set it will be equal to
+count if nothing was done yet. If it is less than count then only the controls
+up to error_idx-1 were successfully applied.
+
+3) When attempting to read a button control the framework will return -EACCES
+instead of -EINVAL as stated in the spec. It seems to make more sense since
+button controls are write-only controls.
+
+4) Attempting to write to a read-only control will return -EACCES instead of
+-EINVAL as the spec says.
+
+5) The spec does not mention what should happen when you try to set/get a
+control class controls. ivtv currently returns -EINVAL (indicating that the
+control ID does not exist) while the framework will return -EACCES, which
+makes more sense.
+
+
+Proposals for Extensions
+========================
+
+Some ideas for future extensions to the spec:
+
+1) Add a V4L2_CTRL_FLAG_HEX to have values shown as hexadecimal instead of
+decimal. Useful for e.g. video_mute_yuv.
+
+2) It is possible to mark in the controls array which controls have been
+successfully written and which failed by for example adding a bit to the
+control ID. Not sure if it is worth the effort, though.
+
+3) Trying to set volatile inactive controls should result in -EACCESS.
+
+4) Add a new flag to mark volatile controls. Any application that wants
+to store the state of the controls can then skip volatile inactive controls.
+Currently it is not possible to detect such controls.
diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt
index 74d677c8b036..e831aaca66f8 100644
--- a/Documentation/video4linux/v4l2-framework.txt
+++ b/Documentation/video4linux/v4l2-framework.txt
@@ -545,12 +545,11 @@ unregister them:
This will remove the device nodes from sysfs (causing udev to remove them
from /dev).
-After video_unregister_device() returns no new opens can be done.
-
-However, in the case of USB devices some application might still have one
-of these device nodes open. You should block all new accesses to read,
-write, poll, etc. except possibly for certain ioctl operations like
-queueing buffers.
+After video_unregister_device() returns no new opens can be done. However,
+in the case of USB devices some application might still have one of these
+device nodes open. So after the unregister all file operations will return
+an error as well, except for the ioctl and unlocked_ioctl file operations:
+those will still be passed on since some buffer ioctls may still be needed.
When the last user of the video device node exits, then the vdev->release()
callback is called and you can do the final cleanup there.
@@ -599,99 +598,145 @@ video_device::minor fields.
video buffer helper functions
-----------------------------
-The v4l2 core API provides a standard method for dealing with video
-buffers. Those methods allow a driver to implement read(), mmap() and
-overlay() on a consistent way.
-
-There are currently methods for using video buffers on devices that
-supports DMA with scatter/gather method (videobuf-dma-sg), DMA with
-linear access (videobuf-dma-contig), and vmalloced buffers, mostly
-used on USB drivers (videobuf-vmalloc).
-
-Any driver using videobuf should provide operations (callbacks) for
-four handlers:
-
-ops->buf_setup - calculates the size of the video buffers and avoid they
- to waste more than some maximum limit of RAM;
-ops->buf_prepare - fills the video buffer structs and calls
- videobuf_iolock() to alloc and prepare mmaped memory;
-ops->buf_queue - advices the driver that another buffer were
- requested (by read() or by QBUF);
-ops->buf_release - frees any buffer that were allocated.
-
-In order to use it, the driver need to have a code (generally called at
-interrupt context) that will properly handle the buffer request lists,
-announcing that a new buffer were filled.
-
-The irq handling code should handle the videobuf task lists, in order
-to advice videobuf that a new frame were filled, in order to honor to a
-request. The code is generally like this one:
- if (list_empty(&dma_q->active))
- return;
-
- buf = list_entry(dma_q->active.next, struct vbuffer, vb.queue);
-
- if (!waitqueue_active(&buf->vb.done))
- return;
-
- /* Some logic to handle the buf may be needed here */
-
- list_del(&buf->vb.queue);
- do_gettimeofday(&buf->vb.ts);
- wake_up(&buf->vb.done);
-
-Those are the videobuffer functions used on drivers, implemented on
-videobuf-core:
-
-- Videobuf init functions
- videobuf_queue_sg_init()
- Initializes the videobuf infrastructure. This function should be
- called before any other videobuf function on drivers that uses DMA
- Scatter/Gather buffers.
-
- videobuf_queue_dma_contig_init
- Initializes the videobuf infrastructure. This function should be
- called before any other videobuf function on drivers that need DMA
- contiguous buffers.
-
- videobuf_queue_vmalloc_init()
- Initializes the videobuf infrastructure. This function should be
- called before any other videobuf function on USB (and other drivers)
- that need a vmalloced type of videobuf.
-
-- videobuf_iolock()
- Prepares the videobuf memory for the proper method (read, mmap, overlay).
-
-- videobuf_queue_is_busy()
- Checks if a videobuf is streaming.
-
-- videobuf_queue_cancel()
- Stops video handling.
-
-- videobuf_mmap_free()
- frees mmap buffers.
-
-- videobuf_stop()
- Stops video handling, ends mmap and frees mmap and other buffers.
-
-- V4L2 api functions. Those functions correspond to VIDIOC_foo ioctls:
- videobuf_reqbufs(), videobuf_querybuf(), videobuf_qbuf(),
- videobuf_dqbuf(), videobuf_streamon(), videobuf_streamoff().
-
-- V4L1 api function (corresponds to VIDIOCMBUF ioctl):
- videobuf_cgmbuf()
- This function is used to provide backward compatibility with V4L1
- API.
-
-- Some help functions for read()/poll() operations:
- videobuf_read_stream()
- For continuous stream read()
- videobuf_read_one()
- For snapshot read()
- videobuf_poll_stream()
- polling help function
-
-The better way to understand it is to take a look at vivi driver. One
-of the main reasons for vivi is to be a videobuf usage example. the
-vivi_thread_tick() does the task that the IRQ callback would do on PCI
-drivers (or the irq callback on USB).
+The v4l2 core API provides a set of standard methods (called "videobuf")
+for dealing with video buffers. Those methods allow a driver to implement
+read(), mmap() and overlay() in a consistent way. There are currently
+methods for using video buffers on devices that supports DMA with
+scatter/gather method (videobuf-dma-sg), DMA with linear access
+(videobuf-dma-contig), and vmalloced buffers, mostly used on USB drivers
+(videobuf-vmalloc).
+
+Please see Documentation/video4linux/videobuf for more information on how
+to use the videobuf layer.
+
+struct v4l2_fh
+--------------
+
+struct v4l2_fh provides a way to easily keep file handle specific data
+that is used by the V4L2 framework. Using v4l2_fh is optional for
+drivers.
+
+The users of v4l2_fh (in the V4L2 framework, not the driver) know
+whether a driver uses v4l2_fh as its file->private_data pointer by
+testing the V4L2_FL_USES_V4L2_FH bit in video_device->flags.
+
+Useful functions:
+
+- v4l2_fh_init()
+
+ Initialise the file handle. This *MUST* be performed in the driver's
+ v4l2_file_operations->open() handler.
+
+- v4l2_fh_add()
+
+ Add a v4l2_fh to video_device file handle list. May be called after
+ initialising the file handle.
+
+- v4l2_fh_del()
+
+ Unassociate the file handle from video_device(). The file handle
+ exit function may now be called.
+
+- v4l2_fh_exit()
+
+ Uninitialise the file handle. After uninitialisation the v4l2_fh
+ memory can be freed.
+
+struct v4l2_fh is allocated as a part of the driver's own file handle
+structure and is set to file->private_data in the driver's open
+function by the driver. Drivers can extract their own file handle
+structure by using the container_of macro. Example:
+
+struct my_fh {
+ int blah;
+ struct v4l2_fh fh;
+};
+
+...
+
+int my_open(struct file *file)
+{
+ struct my_fh *my_fh;
+ struct video_device *vfd;
+ int ret;
+
+ ...
+
+ ret = v4l2_fh_init(&my_fh->fh, vfd);
+ if (ret)
+ return ret;
+
+ v4l2_fh_add(&my_fh->fh);
+
+ file->private_data = &my_fh->fh;
+
+ ...
+}
+
+int my_release(struct file *file)
+{
+ struct v4l2_fh *fh = file->private_data;
+ struct my_fh *my_fh = container_of(fh, struct my_fh, fh);
+
+ ...
+}
+
+V4L2 events
+-----------
+
+The V4L2 events provide a generic way to pass events to user space.
+The driver must use v4l2_fh to be able to support V4L2 events.
+
+Useful functions:
+
+- v4l2_event_alloc()
+
+ To use events, the driver must allocate events for the file handle. By
+ calling the function more than once, the driver may assure that at least n
+ events in total have been allocated. The function may not be called in
+ atomic context.
+
+- v4l2_event_queue()
+
+ Queue events to video device. The driver's only responsibility is to fill
+ in the type and the data fields. The other fields will be filled in by
+ V4L2.
+
+- v4l2_event_subscribe()
+
+ The video_device->ioctl_ops->vidioc_subscribe_event must check the driver
+ is able to produce events with specified event id. Then it calls
+ v4l2_event_subscribe() to subscribe the event.
+
+- v4l2_event_unsubscribe()
+
+ vidioc_unsubscribe_event in struct v4l2_ioctl_ops. A driver may use
+ v4l2_event_unsubscribe() directly unless it wants to be involved in
+ unsubscription process.
+
+ The special type V4L2_EVENT_ALL may be used to unsubscribe all events. The
+ drivers may want to handle this in a special way.
+
+- v4l2_event_pending()
+
+ Returns the number of pending events. Useful when implementing poll.
+
+Drivers do not initialise events directly. The events are initialised
+through v4l2_fh_init() if video_device->ioctl_ops->vidioc_subscribe_event is
+non-NULL. This *MUST* be performed in the driver's
+v4l2_file_operations->open() handler.
+
+Events are delivered to user space through the poll system call. The driver
+can use v4l2_fh->events->wait wait_queue_head_t as the argument for
+poll_wait().
+
+There are standard and private events. New standard events must use the
+smallest available event type. The drivers must allocate their events from
+their own class starting from class base. Class base is
+V4L2_EVENT_PRIVATE_START + n * 1000 where n is the lowest available number.
+The first event type in the class is reserved for future use, so the first
+available event type is 'class base + 1'.
+
+An example on how the V4L2 events may be used can be found in the OMAP
+3 ISP driver available at <URL:http://gitorious.org/omap3camera> as of
+writing this.
diff --git a/Documentation/video4linux/videobuf b/Documentation/video4linux/videobuf
new file mode 100644
index 000000000000..17a1f9abf260
--- /dev/null
+++ b/Documentation/video4linux/videobuf
@@ -0,0 +1,360 @@
+An introduction to the videobuf layer
+Jonathan Corbet <corbet@lwn.net>
+Current as of 2.6.33
+
+The videobuf layer functions as a sort of glue layer between a V4L2 driver
+and user space. It handles the allocation and management of buffers for
+the storage of video frames. There is a set of functions which can be used
+to implement many of the standard POSIX I/O system calls, including read(),
+poll(), and, happily, mmap(). Another set of functions can be used to
+implement the bulk of the V4L2 ioctl() calls related to streaming I/O,
+including buffer allocation, queueing and dequeueing, and streaming
+control. Using videobuf imposes a few design decisions on the driver
+author, but the payback comes in the form of reduced code in the driver and
+a consistent implementation of the V4L2 user-space API.
+
+Buffer types
+
+Not all video devices use the same kind of buffers. In fact, there are (at
+least) three common variations:
+
+ - Buffers which are scattered in both the physical and (kernel) virtual
+ address spaces. (Almost) all user-space buffers are like this, but it
+ makes great sense to allocate kernel-space buffers this way as well when
+ it is possible. Unfortunately, it is not always possible; working with
+ this kind of buffer normally requires hardware which can do
+ scatter/gather DMA operations.
+
+ - Buffers which are physically scattered, but which are virtually
+ contiguous; buffers allocated with vmalloc(), in other words. These
+ buffers are just as hard to use for DMA operations, but they can be
+ useful in situations where DMA is not available but virtually-contiguous
+ buffers are convenient.
+
+ - Buffers which are physically contiguous. Allocation of this kind of
+ buffer can be unreliable on fragmented systems, but simpler DMA
+ controllers cannot deal with anything else.
+
+Videobuf can work with all three types of buffers, but the driver author
+must pick one at the outset and design the driver around that decision.
+
+[It's worth noting that there's a fourth kind of buffer: "overlay" buffers
+which are located within the system's video memory. The overlay
+functionality is considered to be deprecated for most use, but it still
+shows up occasionally in system-on-chip drivers where the performance
+benefits merit the use of this technique. Overlay buffers can be handled
+as a form of scattered buffer, but there are very few implementations in
+the kernel and a description of this technique is currently beyond the
+scope of this document.]
+
+Data structures, callbacks, and initialization
+
+Depending on which type of buffers are being used, the driver should
+include one of the following files:
+
+ <media/videobuf-dma-sg.h> /* Physically scattered */
+ <media/videobuf-vmalloc.h> /* vmalloc() buffers */
+ <media/videobuf-dma-contig.h> /* Physically contiguous */
+
+The driver's data structure describing a V4L2 device should include a
+struct videobuf_queue instance for the management of the buffer queue,
+along with a list_head for the queue of available buffers. There will also
+need to be an interrupt-safe spinlock which is used to protect (at least)
+the queue.
+
+The next step is to write four simple callbacks to help videobuf deal with
+the management of buffers:
+
+ struct videobuf_queue_ops {
+ int (*buf_setup)(struct videobuf_queue *q,
+ unsigned int *count, unsigned int *size);
+ int (*buf_prepare)(struct videobuf_queue *q,
+ struct videobuf_buffer *vb,
+ enum v4l2_field field);
+ void (*buf_queue)(struct videobuf_queue *q,
+ struct videobuf_buffer *vb);
+ void (*buf_release)(struct videobuf_queue *q,
+ struct videobuf_buffer *vb);
+ };
+
+buf_setup() is called early in the I/O process, when streaming is being
+initiated; its purpose is to tell videobuf about the I/O stream. The count
+parameter will be a suggested number of buffers to use; the driver should
+check it for rationality and adjust it if need be. As a practical rule, a
+minimum of two buffers are needed for proper streaming, and there is
+usually a maximum (which cannot exceed 32) which makes sense for each
+device. The size parameter should be set to the expected (maximum) size
+for each frame of data.
+
+Each buffer (in the form of a struct videobuf_buffer pointer) will be
+passed to buf_prepare(), which should set the buffer's size, width, height,
+and field fields properly. If the buffer's state field is
+VIDEOBUF_NEEDS_INIT, the driver should pass it to:
+
+ int videobuf_iolock(struct videobuf_queue* q, struct videobuf_buffer *vb,
+ struct v4l2_framebuffer *fbuf);
+
+Among other things, this call will usually allocate memory for the buffer.
+Finally, the buf_prepare() function should set the buffer's state to
+VIDEOBUF_PREPARED.
+
+When a buffer is queued for I/O, it is passed to buf_queue(), which should
+put it onto the driver's list of available buffers and set its state to
+VIDEOBUF_QUEUED. Note that this function is called with the queue spinlock
+held; if it tries to acquire it as well things will come to a screeching
+halt. Yes, this is the voice of experience. Note also that videobuf may
+wait on the first buffer in the queue; placing other buffers in front of it
+could again gum up the works. So use list_add_tail() to enqueue buffers.
+
+Finally, buf_release() is called when a buffer is no longer intended to be
+used. The driver should ensure that there is no I/O active on the buffer,
+then pass it to the appropriate free routine(s):
+
+ /* Scatter/gather drivers */
+ int videobuf_dma_unmap(struct videobuf_queue *q,
+ struct videobuf_dmabuf *dma);
+ int videobuf_dma_free(struct videobuf_dmabuf *dma);
+
+ /* vmalloc drivers */
+ void videobuf_vmalloc_free (struct videobuf_buffer *buf);
+
+ /* Contiguous drivers */
+ void videobuf_dma_contig_free(struct videobuf_queue *q,
+ struct videobuf_buffer *buf);
+
+One way to ensure that a buffer is no longer under I/O is to pass it to:
+
+ int videobuf_waiton(struct videobuf_buffer *vb, int non_blocking, int intr);
+
+Here, vb is the buffer, non_blocking indicates whether non-blocking I/O
+should be used (it should be zero in the buf_release() case), and intr
+controls whether an interruptible wait is used.
+
+File operations
+
+At this point, much of the work is done; much of the rest is slipping
+videobuf calls into the implementation of the other driver callbacks. The
+first step is in the open() function, which must initialize the
+videobuf queue. The function to use depends on the type of buffer used:
+
+ void videobuf_queue_sg_init(struct videobuf_queue *q,
+ struct videobuf_queue_ops *ops,
+ struct device *dev,
+ spinlock_t *irqlock,
+ enum v4l2_buf_type type,
+ enum v4l2_field field,
+ unsigned int msize,
+ void *priv);
+
+ void videobuf_queue_vmalloc_init(struct videobuf_queue *q,
+ struct videobuf_queue_ops *ops,
+ struct device *dev,
+ spinlock_t *irqlock,
+ enum v4l2_buf_type type,
+ enum v4l2_field field,
+ unsigned int msize,
+ void *priv);
+
+ void videobuf_queue_dma_contig_init(struct videobuf_queue *q,
+ struct videobuf_queue_ops *ops,
+ struct device *dev,
+ spinlock_t *irqlock,
+ enum v4l2_buf_type type,
+ enum v4l2_field field,
+ unsigned int msize,
+ void *priv);
+
+In each case, the parameters are the same: q is the queue structure for the
+device, ops is the set of callbacks as described above, dev is the device
+structure for this video device, irqlock is an interrupt-safe spinlock to
+protect access to the data structures, type is the buffer type used by the
+device (cameras will use V4L2_BUF_TYPE_VIDEO_CAPTURE, for example), field
+describes which field is being captured (often V4L2_FIELD_NONE for
+progressive devices), msize is the size of any containing structure used
+around struct videobuf_buffer, and priv is a private data pointer which
+shows up in the priv_data field of struct videobuf_queue. Note that these
+are void functions which, evidently, are immune to failure.
+
+V4L2 capture drivers can be written to support either of two APIs: the
+read() system call and the rather more complicated streaming mechanism. As
+a general rule, it is necessary to support both to ensure that all
+applications have a chance of working with the device. Videobuf makes it
+easy to do that with the same code. To implement read(), the driver need
+only make a call to one of:
+
+ ssize_t videobuf_read_one(struct videobuf_queue *q,
+ char __user *data, size_t count,
+ loff_t *ppos, int nonblocking);
+
+ ssize_t videobuf_read_stream(struct videobuf_queue *q,
+ char __user *data, size_t count,
+ loff_t *ppos, int vbihack, int nonblocking);
+
+Either one of these functions will read frame data into data, returning the
+amount actually read; the difference is that videobuf_read_one() will only
+read a single frame, while videobuf_read_stream() will read multiple frames
+if they are needed to satisfy the count requested by the application. A
+typical driver read() implementation will start the capture engine, call
+one of the above functions, then stop the engine before returning (though a
+smarter implementation might leave the engine running for a little while in
+anticipation of another read() call happening in the near future).
+
+The poll() function can usually be implemented with a direct call to:
+
+ unsigned int videobuf_poll_stream(struct file *file,
+ struct videobuf_queue *q,
+ poll_table *wait);
+
+Note that the actual wait queue eventually used will be the one associated
+with the first available buffer.
+
+When streaming I/O is done to kernel-space buffers, the driver must support
+the mmap() system call to enable user space to access the data. In many
+V4L2 drivers, the often-complex mmap() implementation simplifies to a
+single call to:
+
+ int videobuf_mmap_mapper(struct videobuf_queue *q,
+ struct vm_area_struct *vma);
+
+Everything else is handled by the videobuf code.
+
+The release() function requires two separate videobuf calls:
+
+ void videobuf_stop(struct videobuf_queue *q);
+ int videobuf_mmap_free(struct videobuf_queue *q);
+
+The call to videobuf_stop() terminates any I/O in progress - though it is
+still up to the driver to stop the capture engine. The call to
+videobuf_mmap_free() will ensure that all buffers have been unmapped; if
+so, they will all be passed to the buf_release() callback. If buffers
+remain mapped, videobuf_mmap_free() returns an error code instead. The
+purpose is clearly to cause the closing of the file descriptor to fail if
+buffers are still mapped, but every driver in the 2.6.32 kernel cheerfully
+ignores its return value.
+
+ioctl() operations
+
+The V4L2 API includes a very long list of driver callbacks to respond to
+the many ioctl() commands made available to user space. A number of these
+- those associated with streaming I/O - turn almost directly into videobuf
+calls. The relevant helper functions are:
+
+ int videobuf_reqbufs(struct videobuf_queue *q,
+ struct v4l2_requestbuffers *req);
+ int videobuf_querybuf(struct videobuf_queue *q, struct v4l2_buffer *b);
+ int videobuf_qbuf(struct videobuf_queue *q, struct v4l2_buffer *b);
+ int videobuf_dqbuf(struct videobuf_queue *q, struct v4l2_buffer *b,
+ int nonblocking);
+ int videobuf_streamon(struct videobuf_queue *q);
+ int videobuf_streamoff(struct videobuf_queue *q);
+ int videobuf_cgmbuf(struct videobuf_queue *q, struct video_mbuf *mbuf,
+ int count);
+
+So, for example, a VIDIOC_REQBUFS call turns into a call to the driver's
+vidioc_reqbufs() callback which, in turn, usually only needs to locate the
+proper struct videobuf_queue pointer and pass it to videobuf_reqbufs().
+These support functions can replace a great deal of buffer management
+boilerplate in a lot of V4L2 drivers.
+
+The vidioc_streamon() and vidioc_streamoff() functions will be a bit more
+complex, of course, since they will also need to deal with starting and
+stopping the capture engine. videobuf_cgmbuf(), called from the driver's
+vidiocgmbuf() function, only exists if the V4L1 compatibility module has
+been selected with CONFIG_VIDEO_V4L1_COMPAT, so its use must be surrounded
+with #ifdef directives.
+
+Buffer allocation
+
+Thus far, we have talked about buffers, but have not looked at how they are
+allocated. The scatter/gather case is the most complex on this front. For
+allocation, the driver can leave buffer allocation entirely up to the
+videobuf layer; in this case, buffers will be allocated as anonymous
+user-space pages and will be very scattered indeed. If the application is
+using user-space buffers, no allocation is needed; the videobuf layer will
+take care of calling get_user_pages() and filling in the scatterlist array.
+
+If the driver needs to do its own memory allocation, it should be done in
+the vidioc_reqbufs() function, *after* calling videobuf_reqbufs(). The
+first step is a call to:
+
+ struct videobuf_dmabuf *videobuf_to_dma(struct videobuf_buffer *buf);
+
+The returned videobuf_dmabuf structure (defined in
+<media/videobuf-dma-sg.h>) includes a couple of relevant fields:
+
+ struct scatterlist *sglist;
+ int sglen;
+
+The driver must allocate an appropriately-sized scatterlist array and
+populate it with pointers to the pieces of the allocated buffer; sglen
+should be set to the length of the array.
+
+Drivers using the vmalloc() method need not (and cannot) concern themselves
+with buffer allocation at all; videobuf will handle those details. The
+same is normally true of contiguous-DMA drivers as well; videobuf will
+allocate the buffers (with dma_alloc_coherent()) when it sees fit. That
+means that these drivers may be trying to do high-order allocations at any
+time, an operation which is not always guaranteed to work. Some drivers
+play tricks by allocating DMA space at system boot time; videobuf does not
+currently play well with those drivers.
+
+As of 2.6.31, contiguous-DMA drivers can work with a user-supplied buffer,
+as long as that buffer is physically contiguous. Normal user-space
+allocations will not meet that criterion, but buffers obtained from other
+kernel drivers, or those contained within huge pages, will work with these
+drivers.
+
+Filling the buffers
+
+The final part of a videobuf implementation has no direct callback - it's
+the portion of the code which actually puts frame data into the buffers,
+usually in response to interrupts from the device. For all types of
+drivers, this process works approximately as follows:
+
+ - Obtain the next available buffer and make sure that somebody is actually
+ waiting for it.
+
+ - Get a pointer to the memory and put video data there.
+
+ - Mark the buffer as done and wake up the process waiting for it.
+
+Step (1) above is done by looking at the driver-managed list_head structure
+- the one which is filled in the buf_queue() callback. Because starting
+the engine and enqueueing buffers are done in separate steps, it's possible
+for the engine to be running without any buffers available - in the
+vmalloc() case especially. So the driver should be prepared for the list
+to be empty. It is equally possible that nobody is yet interested in the
+buffer; the driver should not remove it from the list or fill it until a
+process is waiting on it. That test can be done by examining the buffer's
+done field (a wait_queue_head_t structure) with waitqueue_active().
+
+A buffer's state should be set to VIDEOBUF_ACTIVE before being mapped for
+DMA; that ensures that the videobuf layer will not try to do anything with
+it while the device is transferring data.
+
+For scatter/gather drivers, the needed memory pointers will be found in the
+scatterlist structure described above. Drivers using the vmalloc() method
+can get a memory pointer with:
+
+ void *videobuf_to_vmalloc(struct videobuf_buffer *buf);
+
+For contiguous DMA drivers, the function to use is:
+
+ dma_addr_t videobuf_to_dma_contig(struct videobuf_buffer *buf);
+
+The contiguous DMA API goes out of its way to hide the kernel-space address
+of the DMA buffer from drivers.
+
+The final step is to set the size field of the relevant videobuf_buffer
+structure to the actual size of the captured image, set state to
+VIDEOBUF_DONE, then call wake_up() on the done queue. At this point, the
+buffer is owned by the videobuf layer and the driver should not touch it
+again.
+
+Developers who are interested in more information can go into the relevant
+header files; there are a few low-level functions declared there which have
+not been talked about here. Also worthwhile is the vivi driver
+(drivers/media/video/vivi.c), which is maintained as an example of how V4L2
+drivers should be written. Vivi only uses the vmalloc() API, but it's good
+enough to get started with. Note also that all of these calls are exported
+GPL-only, so they will not be available to non-GPL kernel modules.
diff --git a/Documentation/video4linux/w9966.txt b/Documentation/video4linux/w9966.txt
index 78a651254b84..855024525fd2 100644
--- a/Documentation/video4linux/w9966.txt
+++ b/Documentation/video4linux/w9966.txt
@@ -24,7 +24,7 @@ where every two pixels take 4 bytes. In SDL (www.libsdl.org) this format
is called VIDEO_PALETTE_YUV422 (16 bpp).
A minimal test application (with source) is available from:
- http://hem.fyristorg.com/mogul/w9966.html
+ http://www.slackwaresupport.com/howtos/Webcam-HOWTO
The slow framerate is due to missing DMA ECP read support in the
parport drivers. I might add working EPP support later.