summaryrefslogtreecommitdiff
path: root/Documentation/video4linux
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/video4linux')
-rw-r--r--Documentation/video4linux/et61x251.txt314
-rw-r--r--Documentation/video4linux/ibmcam.txt324
-rw-r--r--Documentation/video4linux/ov511.txt288
-rw-r--r--Documentation/video4linux/se401.txt54
-rw-r--r--Documentation/video4linux/sn9c102.txt518
-rw-r--r--Documentation/video4linux/stv680.txt53
-rw-r--r--Documentation/video4linux/w9968cf.txt461
-rw-r--r--Documentation/video4linux/zc0301.txt254
8 files changed, 2266 insertions, 0 deletions
diff --git a/Documentation/video4linux/et61x251.txt b/Documentation/video4linux/et61x251.txt
new file mode 100644
index 000000000000..29340282ab5f
--- /dev/null
+++ b/Documentation/video4linux/et61x251.txt
@@ -0,0 +1,314 @@
+
+ ET61X[12]51 PC Camera Controllers
+ Driver for Linux
+ =================================
+
+ - Documentation -
+
+
+Index
+=====
+1. Copyright
+2. Disclaimer
+3. License
+4. Overview and features
+5. Module dependencies
+6. Module loading
+7. Module parameters
+8. Optional device control through "sysfs"
+9. Supported devices
+10. Notes for V4L2 application developers
+11. Contact information
+
+
+1. Copyright
+============
+Copyright (C) 2006 by Luca Risolia <luca.risolia@studio.unibo.it>
+
+
+2. Disclaimer
+=============
+Etoms is a trademark of Etoms Electronics Corp.
+This software is not developed or sponsored by Etoms Electronics.
+
+
+3. License
+==========
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+4. Overview and features
+========================
+This driver supports the video interface of the devices mounting the ET61X151
+or ET61X251 PC Camera Controllers.
+
+It's worth to note that Etoms Electronics has never collaborated with the
+author during the development of this project; despite several requests,
+Etoms Electronics also refused to release enough detailed specifications of
+the video compression engine.
+
+The driver relies on the Video4Linux2 and USB core modules. It has been
+designed to run properly on SMP systems as well.
+
+The latest version of the ET61X[12]51 driver can be found at the following URL:
+http://www.linux-projects.org/
+
+Some of the features of the driver are:
+
+- full compliance with the Video4Linux2 API (see also "Notes for V4L2
+ application developers" paragraph);
+- available mmap or read/poll methods for video streaming through isochronous
+ data transfers;
+- automatic detection of image sensor;
+- support for any window resolutions and optional panning within the maximum
+ pixel area of image sensor;
+- image downscaling with arbitrary scaling factors from 1 and 2 in both
+ directions (see "Notes for V4L2 application developers" paragraph);
+- two different video formats for uncompressed or compressed data in low or
+ high compression quality (see also "Notes for V4L2 application developers"
+ paragraph);
+- full support for the capabilities of every possible image sensors that can
+ be connected to the ET61X[12]51 bridges, including, for istance, red, green,
+ blue and global gain adjustments and exposure control (see "Supported
+ devices" paragraph for details);
+- use of default color settings for sunlight conditions;
+- dynamic I/O interface for both ET61X[12]51 and image sensor control (see
+ "Optional device control through 'sysfs'" paragraph);
+- dynamic driver control thanks to various module parameters (see "Module
+ parameters" paragraph);
+- up to 64 cameras can be handled at the same time; they can be connected and
+ disconnected from the host many times without turning off the computer, if
+ the system supports hotplugging;
+- no known bugs.
+
+
+5. Module dependencies
+======================
+For it to work properly, the driver needs kernel support for Video4Linux and
+USB.
+
+The following options of the kernel configuration file must be enabled and
+corresponding modules must be compiled:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_DEV=m
+
+To enable advanced debugging functionality on the device through /sysfs:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_ADV_DEBUG=y
+
+ # USB support
+ #
+ CONFIG_USB=m
+
+In addition, depending on the hardware being used, the modules below are
+necessary:
+
+ # USB Host Controller Drivers
+ #
+ CONFIG_USB_EHCI_HCD=m
+ CONFIG_USB_UHCI_HCD=m
+ CONFIG_USB_OHCI_HCD=m
+
+And finally:
+
+ # USB Multimedia devices
+ #
+ CONFIG_USB_ET61X251=m
+
+
+6. Module loading
+=================
+To use the driver, it is necessary to load the "et61x251" module into memory
+after every other module required: "videodev", "usbcore" and, depending on
+the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
+
+Loading can be done as shown below:
+
+ [root@localhost home]# modprobe et61x251
+
+At this point the devices should be recognized. You can invoke "dmesg" to
+analyze kernel messages and verify that the loading process has gone well:
+
+ [user@localhost home]$ dmesg
+
+
+7. Module parameters
+====================
+Module parameters are listed below:
+-------------------------------------------------------------------------------
+Name: video_nr
+Type: short array (min = 0, max = 64)
+Syntax: <-1|n[,...]>
+Description: Specify V4L2 minor mode number:
+ -1 = use next available
+ n = use minor number n
+ You can specify up to 64 cameras this way.
+ For example:
+ video_nr=-1,2,-1 would assign minor number 2 to the second
+ registered camera and use auto for the first one and for every
+ other camera.
+Default: -1
+-------------------------------------------------------------------------------
+Name: force_munmap
+Type: bool array (min = 0, max = 64)
+Syntax: <0|1[,...]>
+Description: Force the application to unmap previously mapped buffer memory
+ before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
+ all the applications support this feature. This parameter is
+ specific for each detected camera.
+ 0 = do not force memory unmapping
+ 1 = force memory unmapping (save memory)
+Default: 0
+-------------------------------------------------------------------------------
+Name: frame_timeout
+Type: uint array (min = 0, max = 64)
+Syntax: <n[,...]>
+Description: Timeout for a video frame in seconds. This parameter is
+ specific for each detected camera. This parameter can be
+ changed at runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+Name: debug
+Type: ushort
+Syntax: <n>
+Description: Debugging information level, from 0 to 3:
+ 0 = none (use carefully)
+ 1 = critical errors
+ 2 = significant informations
+ 3 = more verbose messages
+ Level 3 is useful for testing only, when only one device
+ is used at the same time. It also shows some more informations
+ about the hardware being detected. This module parameter can be
+ changed at runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+
+
+8. Optional device control through "sysfs"
+==========================================
+If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled,
+it is possible to read and write both the ET61X[12]51 and the image sensor
+registers by using the "sysfs" filesystem interface.
+
+There are four files in the /sys/class/video4linux/videoX directory for each
+registered camera: "reg", "val", "i2c_reg" and "i2c_val". The first two files
+control the ET61X[12]51 bridge, while the other two control the sensor chip.
+"reg" and "i2c_reg" hold the values of the current register index where the
+following reading/writing operations are addressed at through "val" and
+"i2c_val". Their use is not intended for end-users, unless you know what you
+are doing. Remember that you must be logged in as root before writing to them.
+
+As an example, suppose we were to want to read the value contained in the
+register number 1 of the sensor register table - which is usually the product
+identifier - of the camera registered as "/dev/video0":
+
+ [root@localhost #] cd /sys/class/video4linux/video0
+ [root@localhost #] echo 1 > i2c_reg
+ [root@localhost #] cat i2c_val
+
+Note that if the sensor registers can not be read, "cat" will fail.
+To avoid race conditions, all the I/O accesses to the files are serialized.
+
+
+9. Supported devices
+====================
+None of the names of the companies as well as their products will be mentioned
+here. They have never collaborated with the author, so no advertising.
+
+From the point of view of a driver, what unambiguously identify a device are
+its vendor and product USB identifiers. Below is a list of known identifiers of
+devices mounting the ET61X[12]51 PC camera controllers:
+
+Vendor ID Product ID
+--------- ----------
+0x102c 0x6151
+0x102c 0x6251
+0x102c 0x6253
+0x102c 0x6254
+0x102c 0x6255
+0x102c 0x6256
+0x102c 0x6257
+0x102c 0x6258
+0x102c 0x6259
+0x102c 0x625a
+0x102c 0x625b
+0x102c 0x625c
+0x102c 0x625d
+0x102c 0x625e
+0x102c 0x625f
+0x102c 0x6260
+0x102c 0x6261
+0x102c 0x6262
+0x102c 0x6263
+0x102c 0x6264
+0x102c 0x6265
+0x102c 0x6266
+0x102c 0x6267
+0x102c 0x6268
+0x102c 0x6269
+
+The following image sensors are supported:
+
+Model Manufacturer
+----- ------------
+TAS5130D1B Taiwan Advanced Sensor Corporation
+
+All the available control settings of each image sensor are supported through
+the V4L2 interface.
+
+
+10. Notes for V4L2 application developers
+=========================================
+This driver follows the V4L2 API specifications. In particular, it enforces two
+rules:
+
+- exactly one I/O method, either "mmap" or "read", is associated with each
+file descriptor. Once it is selected, the application must close and reopen the
+device to switch to the other I/O method;
+
+- although it is not mandatory, previously mapped buffer memory should always
+be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's.
+The same number of buffers as before will be allocated again to match the size
+of the new video frames, so you have to map the buffers again before any I/O
+attempts on them.
+
+Consistently with the hardware limits, this driver also supports image
+downscaling with arbitrary scaling factors from 1 and 2 in both directions.
+However, the V4L2 API specifications don't correctly define how the scaling
+factor can be chosen arbitrarily by the "negotiation" of the "source" and
+"target" rectangles. To work around this flaw, we have added the convention
+that, during the negotiation, whenever the "VIDIOC_S_CROP" ioctl is issued, the
+scaling factor is restored to 1.
+
+This driver supports two different video formats: the first one is the "8-bit
+Sequential Bayer" format and can be used to obtain uncompressed video data
+from the device through the current I/O method, while the second one provides
+"raw" compressed video data (without frame headers not related to the
+compressed data). The current compression quality may vary from 0 to 1 and can
+be selected or queried thanks to the VIDIOC_S_JPEGCOMP and VIDIOC_G_JPEGCOMP
+V4L2 ioctl's.
+
+
+11. Contact information
+=======================
+The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
+
+GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is
+'FCE635A4'; the public 1024-bit key should be available at any keyserver;
+the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
diff --git a/Documentation/video4linux/ibmcam.txt b/Documentation/video4linux/ibmcam.txt
new file mode 100644
index 000000000000..4a40a2e99451
--- /dev/null
+++ b/Documentation/video4linux/ibmcam.txt
@@ -0,0 +1,324 @@
+README for Linux device driver for the IBM "C-It" USB video camera
+
+INTRODUCTION:
+
+This driver does not use all features known to exist in
+the IBM camera. However most of needed features work well.
+
+This driver was developed using logs of observed USB traffic
+which was produced by standard Windows driver (c-it98.sys).
+I did not have data sheets from Xirlink.
+
+Video formats:
+ 128x96 [model 1]
+ 176x144
+ 320x240 [model 2]
+ 352x240 [model 2]
+ 352x288
+Frame rate: 3 - 30 frames per second (FPS)
+External interface: USB
+Internal interface: Video For Linux (V4L)
+Supported controls:
+- by V4L: Contrast, Brightness, Color, Hue
+- by driver options: frame rate, lighting conditions, video format,
+ default picture settings, sharpness.
+
+SUPPORTED CAMERAS:
+
+Xirlink "C-It" camera, also known as "IBM PC Camera".
+The device uses proprietary ASIC (and compression method);
+it is manufactured by Xirlink. See http://www.xirlink.com/
+(renamed to http://www.veo.com), http://www.ibmpccamera.com,
+or http://www.c-itnow.com/ for details and pictures.
+
+This very chipset ("X Chip", as marked at the factory)
+is used in several other cameras, and they are supported
+as well:
+
+- IBM NetCamera
+- Veo Stingray
+
+The Linux driver was developed with camera with following
+model number (or FCC ID): KSX-XVP510. This camera has three
+interfaces, each with one endpoint (control, iso, iso). This
+type of cameras is referred to as "model 1". These cameras are
+no longer manufactured.
+
+Xirlink now manufactures new cameras which are somewhat different.
+In particular, following models [FCC ID] belong to that category:
+
+XVP300 [KSX-X9903]
+XVP600 [KSX-X9902]
+XVP610 [KSX-X9902]
+
+(see http://www.xirlink.com/ibmpccamera/ for updates, they refer
+to these new cameras by Windows driver dated 12-27-99, v3005 BETA)
+These cameras have two interfaces, one endpoint in each (iso, bulk).
+Such type of cameras is referred to as "model 2". They are supported
+(with exception of 352x288 native mode).
+
+Some IBM NetCameras (Model 4) are made to generate only compressed
+video streams. This is great for performance, but unfortunately
+nobody knows how to decompress the stream :-( Therefore, these
+cameras are *unsupported* and if you try to use one of those, all
+you get is random colored horizontal streaks, not the image!
+If you have one of those cameras, you probably should return it
+to the store and get something that is supported.
+
+Tell me more about all that "model" business
+--------------------------------------------
+
+I just invented model numbers to uniquely identify flavors of the
+hardware/firmware that were sold. It was very confusing to use
+brand names or some other internal numbering schemes. So I found
+by experimentation that all Xirlink chipsets fall into four big
+classes, and I called them "models". Each model is programmed in
+its own way, and each model sends back the video in its own way.
+
+Quirks of Model 2 cameras:
+-------------------------
+
+Model 2 does not have hardware contrast control. Corresponding V4L
+control is implemented in software, which is not very nice to your
+CPU, but at least it works.
+
+This driver provides 352x288 mode by switching the camera into
+quasi-352x288 RGB mode (800 Kbits per frame) essentially limiting
+this mode to 10 frames per second or less, in ideal conditions on
+the bus (USB is shared, after all). The frame rate
+has to be programmed very conservatively. Additional concern is that
+frame rate depends on brightness setting; therefore the picture can
+be good at one brightness and broken at another! I did not want to fix
+the frame rate at slowest setting, but I had to move it pretty much down
+the scale (so that framerate option barely matters). I also noticed that
+camera after first powering up produces frames slightly faster than during
+consecutive uses. All this means that if you use 352x288 (which is
+default), be warned - you may encounter broken picture on first connect;
+try to adjust brightness - brighter image is slower, so USB will be able
+to send all data. However if you regularly use Model 2 cameras you may
+prefer 176x144 which makes perfectly good I420, with no scaling and
+lesser demands on USB (300 Kbits per second, or 26 frames per second).
+
+Another strange effect of 352x288 mode is the fine vertical grid visible
+on some colored surfaces. I am sure it is caused by me not understanding
+what the camera is trying to say. Blame trade secrets for that.
+
+The camera that I had also has a hardware quirk: if disconnected,
+it needs few minutes to "relax" before it can be plugged in again
+(poorly designed USB processor reset circuit?)
+
+[Veo Stingray with Product ID 0x800C is also Model 2, but I haven't
+observed this particular flaw in it.]
+
+Model 2 camera can be programmed for very high sensitivity (even starlight
+may be enough), this makes it convenient for tinkering with. The driver
+code has enough comments to help a programmer to tweak the camera
+as s/he feels necessary.
+
+WHAT YOU NEED:
+
+- A supported IBM PC (C-it) camera (model 1 or 2)
+
+- A Linux box with USB support (2.3/2.4; 2.2 w/backport may work)
+
+- A Video4Linux compatible frame grabber program such as xawtv.
+
+HOW TO COMPILE THE DRIVER:
+
+You need to compile the driver only if you are a developer
+or if you want to make changes to the code. Most distributions
+precompile all modules, so you can go directly to the next
+section "HOW TO USE THE DRIVER".
+
+The ibmcam driver uses usbvideo helper library (module),
+so if you are studying the ibmcam code you will be led there.
+
+The driver itself consists of only one file in usb/ directory:
+ibmcam.c. This file is included into the Linux kernel build
+process if you configure the kernel for CONFIG_USB_IBMCAM.
+Run "make xconfig" and in USB section you will find the IBM
+camera driver. Select it, save the configuration and recompile.
+
+HOW TO USE THE DRIVER:
+
+I recommend to compile driver as a module. This gives you an
+easier access to its configuration. The camera has many more
+settings than V4L can operate, so some settings are done using
+module options.
+
+To begin with, on most modern Linux distributions the driver
+will be automatically loaded whenever you plug the supported
+camera in. Therefore, you don't need to do anything. However
+if you want to experiment with some module parameters then
+you can load and unload the driver manually, with camera
+plugged in or unplugged.
+
+Typically module is installed with command 'modprobe', like this:
+
+# modprobe ibmcam framerate=1
+
+Alternatively you can use 'insmod' in similar fashion:
+
+# insmod /lib/modules/2.x.y/usb/ibmcam.o framerate=1
+
+Module can be inserted with camera connected or disconnected.
+
+The driver can have options, though some defaults are provided.
+
+Driver options: (* indicates that option is model-dependent)
+
+Name Type Range [default] Example
+-------------- -------------- -------------- ------------------
+debug Integer 0-9 [0] debug=1
+flags Integer 0-0xFF [0] flags=0x0d
+framerate Integer 0-6 [2] framerate=1
+hue_correction Integer 0-255 [128] hue_correction=115
+init_brightness Integer 0-255 [128] init_brightness=100
+init_contrast Integer 0-255 [192] init_contrast=200
+init_color Integer 0-255 [128] init_color=130
+init_hue Integer 0-255 [128] init_hue=115
+lighting Integer 0-2* [1] lighting=2
+sharpness Integer 0-6* [4] sharpness=3
+size Integer 0-2* [2] size=1
+
+Options for Model 2 only:
+
+Name Type Range [default] Example
+-------------- -------------- -------------- ------------------
+init_model2_rg Integer 0..255 [0x70] init_model2_rg=128
+init_model2_rg2 Integer 0..255 [0x2f] init_model2_rg2=50
+init_model2_sat Integer 0..255 [0x34] init_model2_sat=65
+init_model2_yb Integer 0..255 [0xa0] init_model2_yb=200
+
+debug You don't need this option unless you are a developer.
+ If you are a developer then you will see in the code
+ what values do what. 0=off.
+
+flags This is a bit mask, and you can combine any number of
+ bits to produce what you want. Usually you don't want
+ any of extra features this option provides:
+
+ FLAGS_RETRY_VIDIOCSYNC 1 This bit allows to retry failed
+ VIDIOCSYNC ioctls without failing.
+ Will work with xawtv, will not
+ with xrealproducer. Default is
+ not set.
+ FLAGS_MONOCHROME 2 Activates monochrome (b/w) mode.
+ FLAGS_DISPLAY_HINTS 4 Shows colored pixels which have
+ magic meaning to developers.
+ FLAGS_OVERLAY_STATS 8 Shows tiny numbers on screen,
+ useful only for debugging.
+ FLAGS_FORCE_TESTPATTERN 16 Shows blue screen with numbers.
+ FLAGS_SEPARATE_FRAMES 32 Shows each frame separately, as
+ it was received from the camera.
+ Default (not set) is to mix the
+ preceding frame in to compensate
+ for occasional loss of Isoc data
+ on high frame rates.
+ FLAGS_CLEAN_FRAMES 64 Forces "cleanup" of each frame
+ prior to use; relevant only if
+ FLAGS_SEPARATE_FRAMES is set.
+ Default is not to clean frames,
+ this is a little faster but may
+ produce flicker if frame rate is
+ too high and Isoc data gets lost.
+ FLAGS_NO_DECODING 128 This flag turns the video stream
+ decoder off, and dumps the raw
+ Isoc data from the camera into
+ the reading process. Useful to
+ developers, but not to users.
+
+framerate This setting controls frame rate of the camera. This is
+ an approximate setting (in terms of "worst" ... "best")
+ because camera changes frame rate depending on amount
+ of light available. Setting 0 is slowest, 6 is fastest.
+ Beware - fast settings are very demanding and may not
+ work well with all video sizes. Be conservative.
+
+hue_correction This highly optional setting allows to adjust the
+ hue of the image in a way slightly different from
+ what usual "hue" control does. Both controls affect
+ YUV colorspace: regular "hue" control adjusts only
+ U component, and this "hue_correction" option similarly
+ adjusts only V component. However usually it is enough
+ to tweak only U or V to compensate for colored light or
+ color temperature; this option simply allows more
+ complicated correction when and if it is necessary.
+
+init_brightness These settings specify _initial_ values which will be
+init_contrast used to set up the camera. If your V4L application has
+init_color its own controls to adjust the picture then these
+init_hue controls will be used too. These options allow you to
+ preconfigure the camera when it gets connected, before
+ any V4L application connects to it. Good for webcams.
+
+init_model2_rg These initial settings alter color balance of the
+init_model2_rg2 camera on hardware level. All four settings may be used
+init_model2_sat to tune the camera to specific lighting conditions. These
+init_model2_yb settings only apply to Model 2 cameras.
+
+lighting This option selects one of three hardware-defined
+ photosensitivity settings of the camera. 0=bright light,
+ 1=Medium (default), 2=Low light. This setting affects
+ frame rate: the dimmer the lighting the lower the frame
+ rate (because longer exposition time is needed). The
+ Model 2 cameras allow values more than 2 for this option,
+ thus enabling extremely high sensitivity at cost of frame
+ rate, color saturation and imaging sensor noise.
+
+sharpness This option controls smoothing (noise reduction)
+ made by camera. Setting 0 is most smooth, setting 6
+ is most sharp. Be aware that CMOS sensor used in the
+ camera is pretty noisy, so if you choose 6 you will
+ be greeted with "snowy" image. Default is 4. Model 2
+ cameras do not support this feature.
+
+size This setting chooses one of several image sizes that are
+ supported by this driver. Cameras may support more, but
+ it's difficult to reverse-engineer all formats.
+ Following video sizes are supported:
+
+ size=0 128x96 (Model 1 only)
+ size=1 160x120
+ size=2 176x144
+ size=3 320x240 (Model 2 only)
+ size=4 352x240 (Model 2 only)
+ size=5 352x288
+ size=6 640x480 (Model 3 only)
+
+ The 352x288 is the native size of the Model 1 sensor
+ array, so it's the best resolution the camera can
+ yield. The best resolution of Model 2 is 176x144, and
+ larger images are produced by stretching the bitmap.
+ Model 3 has sensor with 640x480 grid, and it works too,
+ but the frame rate will be exceptionally low (1-2 FPS);
+ it may be still OK for some applications, like security.
+ Choose the image size you need. The smaller image can
+ support faster frame rate. Default is 352x288.
+
+For more information and the Troubleshooting FAQ visit this URL:
+
+ http://www.linux-usb.org/ibmcam/
+
+WHAT NEEDS TO BE DONE:
+
+- The button on the camera is not used. I don't know how to get to it.
+ I know now how to read button on Model 2, but what to do with it?
+
+- Camera reports its status back to the driver; however I don't know
+ what returned data means. If camera fails at some initialization
+ stage then something should be done, and I don't do that because
+ I don't even know that some command failed. This is mostly Model 1
+ concern because Model 2 uses different commands which do not return
+ status (and seem to complete successfully every time).
+
+- Some flavors of Model 4 NetCameras produce only compressed video
+ streams, and I don't know how to decode them.
+
+CREDITS:
+
+The code is based in no small part on the CPiA driver by Johannes Erdfelt,
+Randy Dunlap, and others. Big thanks to them for their pioneering work on that
+and the USB stack.
+
+I also thank John Lightsey for his donation of the Veo Stingray camera.
diff --git a/Documentation/video4linux/ov511.txt b/Documentation/video4linux/ov511.txt
new file mode 100644
index 000000000000..142741e3c578
--- /dev/null
+++ b/Documentation/video4linux/ov511.txt
@@ -0,0 +1,288 @@
+-------------------------------------------------------------------------------
+Readme for Linux device driver for the OmniVision OV511 USB to camera bridge IC
+-------------------------------------------------------------------------------
+
+Author: Mark McClelland
+Homepage: http://alpha.dyndns.org/ov511
+
+INTRODUCTION:
+
+This is a driver for the OV511, a USB-only chip used in many "webcam" devices.
+Any camera using the OV511/OV511+ and the OV6620/OV7610/20/20AE should work.
+Video capture devices that use the Philips SAA7111A decoder also work. It
+supports streaming and capture of color or monochrome video via the Video4Linux
+API. Most V4L apps are compatible with it. Most resolutions with a width and
+height that are a multiple of 8 are supported.
+
+If you need more information, please visit the OV511 homepage at the above URL.
+
+WHAT YOU NEED:
+
+- If you want to help with the development, get the chip's specification docs at
+ http://www.ovt.com/omniusbp.html
+
+- A Video4Linux compatible frame grabber program (I recommend vidcat and xawtv)
+ vidcat is part of the w3cam package: http://mpx.freeshell.net/
+ xawtv is available at: http://linux.bytesex.org/xawtv/
+
+HOW TO USE IT:
+
+Note: These are simplified instructions. For complete instructions see:
+ http://alpha.dyndns.org/ov511/install.html
+
+You must have first compiled USB support, support for your specific USB host
+controller (UHCI or OHCI), and Video4Linux support for your kernel (I recommend
+making them modules.) Make sure "Enforce bandwidth allocation" is NOT enabled.
+
+Next, (as root):
+
+ modprobe usbcore
+ modprobe usb-uhci <OR> modprobe usb-ohci
+ modprobe videodev
+ modprobe ov511
+
+If it is not already there (it usually is), create the video device:
+
+ mknod /dev/video0 c 81 0
+
+Optionally, symlink /dev/video to /dev/video0
+
+You will have to set permissions on this device to allow you to read/write
+from it:
+
+ chmod 666 /dev/video
+ chmod 666 /dev/video0 (if necessary)
+
+Now you are ready to run a video app! Both vidcat and xawtv work well for me
+at 640x480.
+
+[Using vidcat:]
+
+ vidcat -s 640x480 -p c > test.jpg
+ xview test.jpg
+
+[Using xawtv:]
+
+From the main xawtv directory:
+
+ make clean
+ ./configure
+ make
+ make install
+
+Now you should be able to run xawtv. Right click for the options dialog.
+
+MODULE PARAMETERS:
+
+ You can set these with: insmod ov511 NAME=VALUE
+ There is currently no way to set these on a per-camera basis.
+
+ NAME: autobright
+ TYPE: integer (Boolean)
+ DEFAULT: 1
+ DESC: Brightness is normally under automatic control and can't be set
+ manually by the video app. Set to 0 for manual control.
+
+ NAME: autogain
+ TYPE: integer (Boolean)
+ DEFAULT: 1
+ DESC: Auto Gain Control enable. This feature is not yet implemented.
+
+ NAME: autoexp
+ TYPE: integer (Boolean)
+ DEFAULT: 1
+ DESC: Auto Exposure Control enable. This feature is not yet implemented.
+
+ NAME: debug
+ TYPE: integer (0-6)
+ DEFAULT: 3
+ DESC: Sets the threshold for printing debug messages. The higher the value,
+ the more is printed. The levels are cumulative, and are as follows:
+ 0=no debug messages
+ 1=init/detection/unload and other significant messages
+ 2=some warning messages
+ 3=config/control function calls
+ 4=most function calls and data parsing messages
+ 5=highly repetitive mesgs
+
+ NAME: snapshot
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: Set to 1 to enable snapshot mode. read()/VIDIOCSYNC will block until
+ the snapshot button is pressed. Note: enabling this mode disables
+ /proc/video/ov511/<minor#>/button
+
+ NAME: cams
+ TYPE: integer (1-4 for OV511, 1-31 for OV511+)
+ DEFAULT: 1
+ DESC: Number of cameras allowed to stream simultaneously on a single bus.
+ Values higher than 1 reduce the data rate of each camera, allowing two
+ or more to be used at once. If you have a complicated setup involving
+ both OV511 and OV511+ cameras, trial-and-error may be necessary for
+ finding the optimum setting.
+
+ NAME: compress
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: Set this to 1 to turn on the camera's compression engine. This can
+ potentially increase the frame rate at the expense of quality, if you
+ have a fast CPU. You must load the proper compression module for your
+ camera before starting your application (ov511_decomp or ov518_decomp).
+
+ NAME: testpat
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: This configures the camera's sensor to transmit a colored test-pattern
+ instead of an image. This does not work correctly yet.
+
+ NAME: dumppix
+ TYPE: integer (0-2)
+ DEFAULT: 0
+ DESC: Dumps raw pixel data and skips post-processing and format conversion.
+ It is for debugging purposes only. Options are:
+ 0: Disable (default)
+ 1: Dump raw data from camera, excluding headers and trailers
+ 2: Dumps data exactly as received from camera
+
+ NAME: led
+ TYPE: integer (0-2)
+ DEFAULT: 1 (Always on)
+ DESC: Controls whether the LED (the little light) on the front of the camera
+ is always off (0), always on (1), or only on when driver is open (2).
+ This is not supported with the OV511, and might only work with certain
+ cameras (ones that actually have the LED wired to the control pin, and
+ not just hard-wired to be on all the time).
+
+ NAME: dump_bridge
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: Dumps the bridge (OV511[+] or OV518[+]) register values to the system
+ log. Only useful for serious debugging/development purposes.
+
+ NAME: dump_sensor
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: Dumps the sensor register values to the system log. Only useful for
+ serious debugging/development purposes.
+
+ NAME: printph
+ TYPE: integer (Boolean)
+ DEFAULT: 0
+ DESC: Setting this to 1 will dump the first 12 bytes of each isoc frame. This
+ is only useful if you are trying to debug problems with the isoc data
+ stream (i.e.: camera initializes, but vidcat hangs until Ctrl-C). Be
+ warned that this dumps a large number of messages to your kernel log.
+
+ NAME: phy, phuv, pvy, pvuv, qhy, qhuv, qvy, qvuv
+ TYPE: integer (0-63 for phy and phuv, 0-255 for rest)
+ DEFAULT: OV511 default values
+ DESC: These are registers 70h - 77h of the OV511, which control the
+ prediction ranges and quantization thresholds of the compressor, for
+ the Y and UV channels in the horizontal and vertical directions. See
+ the OV511 or OV511+ data sheet for more detailed descriptions. These
+ normally do not need to be changed.
+
+ NAME: lightfreq
+ TYPE: integer (0, 50, or 60)
+ DEFAULT: 0 (use sensor default)
+ DESC: Sets the sensor to match your lighting frequency. This can reduce the
+ appearance of "banding", i.e. horizontal lines or waves of light and
+ dark that are often caused by artificial lighting. Valid values are:
+ 0 - Use default (depends on sensor, most likely 60 Hz)
+ 50 - For European and Asian 50 Hz power
+ 60 - For American 60 Hz power
+
+ NAME: bandingfilter
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Enables the sensors banding filter exposure algorithm. This reduces
+ or stabilizes the "banding" caused by some artificial light sources
+ (especially fluorescent). You might have to set lightfreq correctly for
+ this to work right. As an added bonus, this sometimes makes it
+ possible to capture your monitors output.
+
+ NAME: fastset
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Allows picture settings (brightness, contrast, color, and hue) to take
+ effect immediately, even in the middle of a frame. This reduces the
+ time to change settings, but can ruin frames during the change. Only
+ affects OmniVision sensors.
+
+ NAME: force_palette
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Forces the palette (color format) to a specific value. If an
+ application requests a different palette, it will be rejected, thereby
+ forcing it to try others until it succeeds. This is useful for forcing
+ greyscale mode with a color camera, for example. Supported modes are:
+ 0 (Allows all the following formats)
+ 1 VIDEO_PALETTE_GREY (Linear greyscale)
+ 10 VIDEO_PALETTE_YUV420 (YUV 4:2:0 Planar)
+ 15 VIDEO_PALETTE_YUV420P (YUV 4:2:0 Planar, same as 10)
+
+ NAME: backlight
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Setting this flag changes the exposure algorithm for OmniVision sensors
+ such that objects in the camera's view (i.e. your head) can be clearly
+ seen when they are illuminated from behind. It reduces or eliminates
+ the sensor's auto-exposure function, so it should only be used when
+ needed. Additionally, it is only supported with the OV6620 and OV7620.
+
+ NAME: unit_video
+ TYPE: Up to 16 comma-separated integers
+ DEFAULT: 0,0,0... (automatically assign the next available minor(s))
+ DESC: You can specify up to 16 minor numbers to be assigned to ov511 devices.
+ For example, "unit_video=1,3" will make the driver use /dev/video1 and
+ /dev/video3 for the first two devices it detects. Additional devices
+ will be assigned automatically starting at the first available device
+ node (/dev/video0 in this case). Note that you cannot specify 0 as a
+ minor number. This feature requires kernel version 2.4.5 or higher.
+
+ NAME: remove_zeros
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (do not skip any incoming data)
+ DESC: Setting this to 1 will remove zero-padding from incoming data. This
+ will compensate for the blocks of corruption that can appear when the
+ camera cannot keep up with the speed of the USB bus (eg. at low frame
+ resolutions). This feature is always enabled when compression is on.
+
+ NAME: mirror
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Setting this to 1 will reverse ("mirror") the image horizontally. This
+ might be necessary if your camera has a custom lens assembly. This has
+ no effect with video capture devices.
+
+ NAME: ov518_color
+ TYPE: integer (Boolean)
+ DEFAULT: 0 (off)
+ DESC: Enable OV518 color support. This is off by default since it doesn't
+ work most of the time. If you want to try it, you must also load
+ ov518_decomp with the "nouv=0" parameter. If you get improper colors or
+ diagonal lines through the image, restart your video app and try again.
+ Repeat as necessary.
+
+WORKING FEATURES:
+ o Color streaming/capture at most widths and heights that are multiples of 8.
+ o Monochrome (use force_palette=1 to enable)
+ o Setting/getting of saturation, contrast, brightness, and hue (only some of
+ them work the OV7620 and OV7620AE)
+ o /proc status reporting
+ o SAA7111A video capture support at 320x240 and 640x480
+ o Compression support
+ o SMP compatibility
+
+HOW TO CONTACT ME:
+
+You can email me at mark@alpha.dyndns.org . Please prefix the subject line
+with "OV511: " so that I am certain to notice your message.
+
+CREDITS:
+
+The code is based in no small part on the CPiA driver by Johannes Erdfelt,
+Randy Dunlap, and others. Big thanks to them for their pioneering work on that
+and the USB stack. Thanks to Bret Wallach for getting camera reg IO, ISOC, and
+image capture working. Thanks to Orion Sky Lawlor, Kevin Moore, and Claudio
+Matsuoka for their work as well.
diff --git a/Documentation/video4linux/se401.txt b/Documentation/video4linux/se401.txt
new file mode 100644
index 000000000000..7b9d1c960a10
--- /dev/null
+++ b/Documentation/video4linux/se401.txt
@@ -0,0 +1,54 @@
+Linux driver for SE401 based USB cameras
+
+Copyright, 2001, Jeroen Vreeken
+
+
+INTRODUCTION:
+
+The SE401 chip is the used in low-cost usb webcams.
+It is produced by Endpoints Inc. (www.endpoints.com).
+It interfaces directly to a cmos image sensor and USB. The only other major
+part in a se401 based camera is a dram chip.
+
+The following cameras are known to work with this driver:
+
+Aox se401 (non-branded) cameras
+Philips PVCV665 USB VGA webcam 'Vesta Fun'
+Kensington VideoCAM PC Camera Model 67014
+Kensington VideoCAM PC Camera Model 67015
+Kensington VideoCAM PC Camera Model 67016
+Kensington VideoCAM PC Camera Model 67017
+
+
+WHAT YOU NEED:
+
+- USB support
+- VIDEO4LINUX support
+
+More information about USB support for linux can be found at:
+http://www.linux-usb.org
+
+
+MODULE OPTIONS:
+
+When the driver is compiled as a module you can also use the 'flickerless'
+option. With it exposure is limited to values that do not interfere with the
+net frequency. Valid options for this option are 0, 50 and 60. (0=disable,
+50=50hz, 60=60hz)
+
+
+KNOWN PROBLEMS:
+
+The driver works fine with the usb-ohci and uhci host controller drivers,
+the default settings also work with usb-uhci. But sending more than one bulk
+transfer at a time with usb-uhci doesn't work yet.
+Users of usb-ohci and uhci can safely enlarge SE401_NUMSBUF in se401.h in
+order to increase the throughput (and thus framerate).
+
+
+HELP:
+
+The latest info on this driver can be found at:
+http://www.chello.nl/~j.vreeken/se401/
+And questions to me can be send to:
+pe1rxq@amsat.org
diff --git a/Documentation/video4linux/sn9c102.txt b/Documentation/video4linux/sn9c102.txt
new file mode 100644
index 000000000000..142920bc011f
--- /dev/null
+++ b/Documentation/video4linux/sn9c102.txt
@@ -0,0 +1,518 @@
+
+ SN9C10x PC Camera Controllers
+ Driver for Linux
+ =============================
+
+ - Documentation -
+
+
+Index
+=====
+1. Copyright
+2. Disclaimer
+3. License
+4. Overview and features
+5. Module dependencies
+6. Module loading
+7. Module parameters
+8. Optional device control through "sysfs"
+9. Supported devices
+10. Notes for V4L2 application developers
+11. Video frame formats
+12. Contact information
+13. Credits
+
+
+1. Copyright
+============
+Copyright (C) 2004-2006 by Luca Risolia <luca.risolia@studio.unibo.it>
+
+
+2. Disclaimer
+=============
+SONiX is a trademark of SONiX Technology Company Limited, inc.
+This software is not sponsored or developed by SONiX.
+
+
+3. License
+==========
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+4. Overview and features
+========================
+This driver attempts to support the video interface of the devices mounting the
+SONiX SN9C101, SN9C102 and SN9C103 PC Camera Controllers.
+
+It's worth to note that SONiX has never collaborated with the author during the
+development of this project, despite several requests for enough detailed
+specifications of the register tables, compression engine and video data format
+of the above chips. Nevertheless, these informations are no longer necessary,
+becouse all the aspects related to these chips are known and have been
+described in detail in this documentation.
+
+The driver relies on the Video4Linux2 and USB core modules. It has been
+designed to run properly on SMP systems as well.
+
+The latest version of the SN9C10x driver can be found at the following URL:
+http://www.linux-projects.org/
+
+Some of the features of the driver are:
+
+- full compliance with the Video4Linux2 API (see also "Notes for V4L2
+ application developers" paragraph);
+- available mmap or read/poll methods for video streaming through isochronous
+ data transfers;
+- automatic detection of image sensor;
+- support for built-in microphone interface;
+- support for any window resolutions and optional panning within the maximum
+ pixel area of image sensor;
+- image downscaling with arbitrary scaling factors from 1, 2 and 4 in both
+ directions (see "Notes for V4L2 application developers" paragraph);
+- two different video formats for uncompressed or compressed data in low or
+ high compression quality (see also "Notes for V4L2 application developers"
+ and "Video frame formats" paragraphs);
+- full support for the capabilities of many of the possible image sensors that
+ can be connected to the SN9C10x bridges, including, for istance, red, green,
+ blue and global gain adjustments and exposure (see "Supported devices"
+ paragraph for details);
+- use of default color settings for sunlight conditions;
+- dynamic I/O interface for both SN9C10x and image sensor control and
+ monitoring (see "Optional device control through 'sysfs'" paragraph);
+- dynamic driver control thanks to various module parameters (see "Module
+ parameters" paragraph);
+- up to 64 cameras can be handled at the same time; they can be connected and
+ disconnected from the host many times without turning off the computer, if
+ the system supports hotplugging;
+- no known bugs.
+
+
+5. Module dependencies
+======================
+For it to work properly, the driver needs kernel support for Video4Linux and
+USB.
+
+The following options of the kernel configuration file must be enabled and
+corresponding modules must be compiled:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_DEV=m
+
+To enable advanced debugging functionality on the device through /sysfs:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_ADV_DEBUG=y
+
+ # USB support
+ #
+ CONFIG_USB=m
+
+In addition, depending on the hardware being used, the modules below are
+necessary:
+
+ # USB Host Controller Drivers
+ #
+ CONFIG_USB_EHCI_HCD=m
+ CONFIG_USB_UHCI_HCD=m
+ CONFIG_USB_OHCI_HCD=m
+
+The SN9C103 controller also provides a built-in microphone interface. It is
+supported by the USB Audio driver thanks to the ALSA API:
+
+ # Sound
+ #
+ CONFIG_SOUND=y
+
+ # Advanced Linux Sound Architecture
+ #
+ CONFIG_SND=m
+
+ # USB devices
+ #
+ CONFIG_SND_USB_AUDIO=m
+
+And finally:
+
+ # USB Multimedia devices
+ #
+ CONFIG_USB_SN9C102=m
+
+
+6. Module loading
+=================
+To use the driver, it is necessary to load the "sn9c102" module into memory
+after every other module required: "videodev", "usbcore" and, depending on
+the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
+
+Loading can be done as shown below:
+
+ [root@localhost home]# modprobe sn9c102
+
+At this point the devices should be recognized. You can invoke "dmesg" to
+analyze kernel messages and verify that the loading process has gone well:
+
+ [user@localhost home]$ dmesg
+
+
+7. Module parameters
+====================
+Module parameters are listed below:
+-------------------------------------------------------------------------------
+Name: video_nr
+Type: short array (min = 0, max = 64)
+Syntax: <-1|n[,...]>
+Description: Specify V4L2 minor mode number:
+ -1 = use next available
+ n = use minor number n
+ You can specify up to 64 cameras this way.
+ For example:
+ video_nr=-1,2,-1 would assign minor number 2 to the second
+ recognized camera and use auto for the first one and for every
+ other camera.
+Default: -1
+-------------------------------------------------------------------------------
+Name: force_munmap
+Type: bool array (min = 0, max = 64)
+Syntax: <0|1[,...]>
+Description: Force the application to unmap previously mapped buffer memory
+ before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
+ all the applications support this feature. This parameter is
+ specific for each detected camera.
+ 0 = do not force memory unmapping
+ 1 = force memory unmapping (save memory)
+Default: 0
+-------------------------------------------------------------------------------
+Name: frame_timeout
+Type: uint array (min = 0, max = 64)
+Syntax: <n[,...]>
+Description: Timeout for a video frame in seconds. This parameter is
+ specific for each detected camera. This parameter can be
+ changed at runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+Name: debug
+Type: ushort
+Syntax: <n>
+Description: Debugging information level, from 0 to 3:
+ 0 = none (use carefully)
+ 1 = critical errors
+ 2 = significant informations
+ 3 = more verbose messages
+ Level 3 is useful for testing only, when only one device
+ is used. It also shows some more informations about the
+ hardware being detected. This parameter can be changed at
+ runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+
+
+8. Optional device control through "sysfs" [1]
+==========================================
+If the kernel has been compiled with the CONFIG_VIDEO_ADV_DEBUG option enabled,
+it is possible to read and write both the SN9C10x and the image sensor
+registers by using the "sysfs" filesystem interface.
+
+Every time a supported device is recognized, a write-only file named "green" is
+created in the /sys/class/video4linux/videoX directory. You can set the green
+channel's gain by writing the desired value to it. The value may range from 0
+to 15 for SN9C101 or SN9C102 bridges, from 0 to 127 for SN9C103 bridges.
+Similarly, only for SN9C103 controllers, blue and red gain control files are
+available in the same directory, for which accepted values may range from 0 to
+127.
+
+There are other four entries in the directory above for each registered camera:
+"reg", "val", "i2c_reg" and "i2c_val". The first two files control the
+SN9C10x bridge, while the other two control the sensor chip. "reg" and
+"i2c_reg" hold the values of the current register index where the following
+reading/writing operations are addressed at through "val" and "i2c_val". Their
+use is not intended for end-users. Note that "i2c_reg" and "i2c_val" will not
+be created if the sensor does not actually support the standard I2C protocol or
+its registers are not 8-bit long. Also, remember that you must be logged in as
+root before writing to them.
+
+As an example, suppose we were to want to read the value contained in the
+register number 1 of the sensor register table - which is usually the product
+identifier - of the camera registered as "/dev/video0":
+
+ [root@localhost #] cd /sys/class/video4linux/video0
+ [root@localhost #] echo 1 > i2c_reg
+ [root@localhost #] cat i2c_val
+
+Note that "cat" will fail if sensor registers cannot be read.
+
+Now let's set the green gain's register of the SN9C101 or SN9C102 chips to 2:
+
+ [root@localhost #] echo 0x11 > reg
+ [root@localhost #] echo 2 > val
+
+Note that the SN9C10x always returns 0 when some of its registers are read.
+To avoid race conditions, all the I/O accesses to the above files are
+serialized.
+
+The sysfs interface also provides the "frame_header" entry, which exports the
+frame header of the most recent requested and captured video frame. The header
+is always 18-bytes long and is appended to every video frame by the SN9C10x
+controllers. As an example, this additional information can be used by the user
+application for implementing auto-exposure features via software.
+
+The following table describes the frame header:
+
+Byte # Value Description
+------ ----- -----------
+0x00 0xFF Frame synchronisation pattern.
+0x01 0xFF Frame synchronisation pattern.
+0x02 0x00 Frame synchronisation pattern.
+0x03 0xC4 Frame synchronisation pattern.
+0x04 0xC4 Frame synchronisation pattern.
+0x05 0x96 Frame synchronisation pattern.
+0x06 0xXX Unknown meaning. The exact value depends on the chip;
+ possible values are 0x00, 0x01 and 0x20.
+0x07 0xXX Variable value, whose bits are ff00uzzc, where ff is a
+ frame counter, u is unknown, zz is a size indicator
+ (00 = VGA, 01 = SIF, 10 = QSIF) and c stands for
+ "compression enabled" (1 = yes, 0 = no).
+0x08 0xXX Brightness sum inside Auto-Exposure area (low-byte).
+0x09 0xXX Brightness sum inside Auto-Exposure area (high-byte).
+ For a pure white image, this number will be equal to 500
+ times the area of the specified AE area. For images
+ that are not pure white, the value scales down according
+ to relative whiteness.
+0x0A 0xXX Brightness sum outside Auto-Exposure area (low-byte).
+0x0B 0xXX Brightness sum outside Auto-Exposure area (high-byte).
+ For a pure white image, this number will be equal to 125
+ times the area outside of the specified AE area. For
+ images that are not pure white, the value scales down
+ according to relative whiteness.
+ according to relative whiteness.
+
+The following bytes are used by the SN9C103 bridge only:
+
+0x0C 0xXX Unknown meaning
+0x0D 0xXX Unknown meaning
+0x0E 0xXX Unknown meaning
+0x0F 0xXX Unknown meaning
+0x10 0xXX Unknown meaning
+0x11 0xXX Unknown meaning
+
+The AE area (sx, sy, ex, ey) in the active window can be set by programming the
+registers 0x1c, 0x1d, 0x1e and 0x1f of the SN9C10x controllers, where one unit
+corresponds to 32 pixels.
+
+[1] Part of the meaning of the frame header has been documented by Bertrik
+ Sikken.
+
+
+9. Supported devices
+====================
+None of the names of the companies as well as their products will be mentioned
+here. They have never collaborated with the author, so no advertising.
+
+From the point of view of a driver, what unambiguously identify a device are
+its vendor and product USB identifiers. Below is a list of known identifiers of
+devices mounting the SN9C10x PC camera controllers:
+
+Vendor ID Product ID
+--------- ----------
+0x0c45 0x6001
+0x0c45 0x6005
+0x0c45 0x6007
+0x0c45 0x6009
+0x0c45 0x600d
+0x0c45 0x6024
+0x0c45 0x6025
+0x0c45 0x6028
+0x0c45 0x6029
+0x0c45 0x602a
+0x0c45 0x602b
+0x0c45 0x602c
+0x0c45 0x602d
+0x0c45 0x602e
+0x0c45 0x6030
+0x0c45 0x6080
+0x0c45 0x6082
+0x0c45 0x6083
+0x0c45 0x6088
+0x0c45 0x608a
+0x0c45 0x608b
+0x0c45 0x608c
+0x0c45 0x608e
+0x0c45 0x608f
+0x0c45 0x60a0
+0x0c45 0x60a2
+0x0c45 0x60a3
+0x0c45 0x60a8
+0x0c45 0x60aa
+0x0c45 0x60ab
+0x0c45 0x60ac
+0x0c45 0x60ae
+0x0c45 0x60af
+0x0c45 0x60b0
+0x0c45 0x60b2
+0x0c45 0x60b3
+0x0c45 0x60b8
+0x0c45 0x60ba
+0x0c45 0x60bb
+0x0c45 0x60bc
+0x0c45 0x60be
+
+The list above does not imply that all those devices work with this driver: up
+until now only the ones that mount the following image sensors are supported;
+kernel messages will always tell you whether this is the case:
+
+Model Manufacturer
+----- ------------
+HV7131D Hynix Semiconductor, Inc.
+MI-0343 Micron Technology, Inc.
+OV7630 OmniVision Technologies, Inc.
+PAS106B PixArt Imaging, Inc.
+PAS202BCA PixArt Imaging, Inc.
+PAS202BCB PixArt Imaging, Inc.
+TAS5110C1B Taiwan Advanced Sensor Corporation
+TAS5130D1B Taiwan Advanced Sensor Corporation
+
+All the available control settings of each image sensor are supported through
+the V4L2 interface.
+
+Donations of new models for further testing and support would be much
+appreciated. Non-available hardware will not be supported by the author of this
+driver.
+
+
+10. Notes for V4L2 application developers
+=========================================
+This driver follows the V4L2 API specifications. In particular, it enforces two
+rules:
+
+- exactly one I/O method, either "mmap" or "read", is associated with each
+file descriptor. Once it is selected, the application must close and reopen the
+device to switch to the other I/O method;
+
+- although it is not mandatory, previously mapped buffer memory should always
+be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's.
+The same number of buffers as before will be allocated again to match the size
+of the new video frames, so you have to map the buffers again before any I/O
+attempts on them.
+
+Consistently with the hardware limits, this driver also supports image
+downscaling with arbitrary scaling factors from 1, 2 and 4 in both directions.
+However, the V4L2 API specifications don't correctly define how the scaling
+factor can be chosen arbitrarily by the "negotiation" of the "source" and
+"target" rectangles. To work around this flaw, we have added the convention
+that, during the negotiation, whenever the "VIDIOC_S_CROP" ioctl is issued, the
+scaling factor is restored to 1.
+
+This driver supports two different video formats: the first one is the "8-bit
+Sequential Bayer" format and can be used to obtain uncompressed video data
+from the device through the current I/O method, while the second one provides
+"raw" compressed video data (without frame headers not related to the
+compressed data). The compression quality may vary from 0 to 1 and can be
+selected or queried thanks to the VIDIOC_S_JPEGCOMP and VIDIOC_G_JPEGCOMP V4L2
+ioctl's. For maximum flexibility, both the default active video format and the
+default compression quality depend on how the image sensor being used is
+initialized (as described in the documentation of the API for the image sensors
+supplied by this driver).
+
+
+11. Video frame formats [1]
+=======================
+The SN9C10x PC Camera Controllers can send images in two possible video
+formats over the USB: either native "Sequential RGB Bayer" or Huffman
+compressed. The latter is used to achieve high frame rates. The current video
+format may be selected or queried from the user application by calling the
+VIDIOC_S_FMT or VIDIOC_G_FMT ioctl's, as described in the V4L2 API
+specifications.
+
+The name "Sequential Bayer" indicates the organization of the red, green and
+blue pixels in one video frame. Each pixel is associated with a 8-bit long
+value and is disposed in memory according to the pattern shown below:
+
+B[0] G[1] B[2] G[3] ... B[m-2] G[m-1]
+G[m] R[m+1] G[m+2] R[m+2] ... G[2m-2] R[2m-1]
+...
+... B[(n-1)(m-2)] G[(n-1)(m-1)]
+... G[n(m-2)] R[n(m-1)]
+
+The above matrix also represents the sequential or progressive read-out mode of
+the (n, m) Bayer color filter array used in many CCD/CMOS image sensors.
+
+One compressed video frame consists of a bitstream that encodes for every R, G,
+or B pixel the difference between the value of the pixel itself and some
+reference pixel value. Pixels are organised in the Bayer pattern and the Bayer
+sub-pixels are tracked individually and alternatingly. For example, in the
+first line values for the B and G1 pixels are alternatingly encoded, while in
+the second line values for the G2 and R pixels are alternatingly encoded.
+
+The pixel reference value is calculated as follows:
+- the 4 top left pixels are encoded in raw uncompressed 8-bit format;
+- the value in the top two rows is the value of the pixel left of the current
+ pixel;
+- the value in the left column is the value of the pixel above the current
+ pixel;
+- for all other pixels, the reference value is the average of the value of the
+ pixel on the left and the value of the pixel above the current pixel;
+- there is one code in the bitstream that specifies the value of a pixel
+ directly (in 4-bit resolution);
+- pixel values need to be clamped inside the range [0..255] for proper
+ decoding.
+
+The algorithm purely describes the conversion from compressed Bayer code used
+in the SN9C10x chips to uncompressed Bayer. Additional steps are required to
+convert this to a color image (i.e. a color interpolation algorithm).
+
+The following Huffman codes have been found:
+0: +0 (relative to reference pixel value)
+100: +4
+101: -4?
+1110xxxx: set absolute value to xxxx.0000
+1101: +11
+1111: -11
+11001: +20
+110000: -20
+110001: ??? - these codes are apparently not used
+
+[1] The Huffman compression algorithm has been reverse-engineered and
+ documented by Bertrik Sikken.
+
+
+12. Contact information
+=======================
+The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
+
+GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is
+'FCE635A4'; the public 1024-bit key should be available at any keyserver;
+the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
+
+
+13. Credits
+===========
+Many thanks to following persons for their contribute (listed in alphabetical
+order):
+
+- Luca Capello for the donation of a webcam;
+- Philippe Coval for having helped testing the PAS202BCA image sensor;
+- Joao Rodrigo Fuzaro, Joao Limirio, Claudio Filho and Caio Begotti for the
+ donation of a webcam;
+- Jon Hollstrom for the donation of a webcam;
+- Carlos Eduardo Medaglia Dyonisio, who added the support for the PAS202BCB
+ image sensor;
+- Stefano Mozzi, who donated 45 EU;
+- Andrew Pearce for the donation of a webcam;
+- Bertrik Sikken, who reverse-engineered and documented the Huffman compression
+ algorithm used in the SN9C10x controllers and implemented the first decoder;
+- Mizuno Takafumi for the donation of a webcam;
+- an "anonymous" donator (who didn't want his name to be revealed) for the
+ donation of a webcam.
diff --git a/Documentation/video4linux/stv680.txt b/Documentation/video4linux/stv680.txt
new file mode 100644
index 000000000000..4f8946f32f51
--- /dev/null
+++ b/Documentation/video4linux/stv680.txt
@@ -0,0 +1,53 @@
+Linux driver for STV0680 based USB cameras
+
+Copyright, 2001, Kevin Sisson
+
+
+INTRODUCTION:
+
+STMicroelectronics produces the STV0680B chip, which comes in two
+types, -001 and -003. The -003 version allows the recording and downloading
+of sound clips from the camera, and allows a flash attachment. Otherwise,
+it uses the same commands as the -001 version. Both versions support a
+variety of SDRAM sizes and sensors, allowing for a maximum of 26 VGA or 20
+CIF pictures. The STV0680 supports either a serial or a usb interface, and
+video is possible through the usb interface.
+
+The following cameras are known to work with this driver, although any
+camera with Vendor/Product codes of 0553/0202 should work:
+
+Aiptek Pencam (various models)
+Nisis QuickPix 2
+Radio Shack 'Kid's digital camera' (#60-1207)
+At least one Trust Spycam model
+Several other European brand models
+
+WHAT YOU NEED:
+
+- USB support
+- VIDEO4LINUX support
+
+More information about USB support for linux can be found at:
+http://www.linux-usb.org
+
+
+MODULE OPTIONS:
+
+When the driver is compiled as a module, you can set a "swapRGB=1"
+option, if necessary, for those applications that require it
+(such as xawtv). However, the driver should detect and set this
+automatically, so this option should not normally be used.
+
+
+KNOWN PROBLEMS:
+
+The driver seems to work better with the usb-ohci than the usb-uhci host
+controller driver.
+
+HELP:
+
+The latest info on this driver can be found at:
+http://personal.clt.bellsouth.net/~kjsisson or at
+http://stv0680-usb.sourceforge.net
+
+Any questions to me can be send to: kjsisson@bellsouth.net \ No newline at end of file
diff --git a/Documentation/video4linux/w9968cf.txt b/Documentation/video4linux/w9968cf.txt
new file mode 100644
index 000000000000..3b704f2aae6d
--- /dev/null
+++ b/Documentation/video4linux/w9968cf.txt
@@ -0,0 +1,461 @@
+
+ W996[87]CF JPEG USB Dual Mode Camera Chip
+ Driver for Linux 2.6 (basic version)
+ =========================================
+
+ - Documentation -
+
+
+Index
+=====
+1. Copyright
+2. Disclaimer
+3. License
+4. Overview
+5. Supported devices
+6. Module dependencies
+7. Module loading
+8. Module paramaters
+9. Contact information
+10. Credits
+
+
+1. Copyright
+============
+Copyright (C) 2002-2004 by Luca Risolia <luca.risolia@studio.unibo.it>
+
+
+2. Disclaimer
+=============
+Winbond is a trademark of Winbond Electronics Corporation.
+This software is not sponsored or developed by Winbond.
+
+
+3. License
+==========
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+4. Overview
+===========
+This driver supports the video streaming capabilities of the devices mounting
+Winbond W9967CF and Winbond W9968CF JPEG USB Dual Mode Camera Chips. OV681
+based cameras should be supported as well.
+
+The driver is divided into two modules: the basic one, "w9968cf", is needed for
+the supported devices to work; the second one, "w9968cf-vpp", is an optional
+module, which provides some useful video post-processing functions like video
+decoding, up-scaling and colour conversions.
+
+Note that the official kernels do neither include nor support the second
+module for performance purposes. Therefore, it is always recommended to
+download and install the latest and complete release of the driver,
+replacing the existing one, if present.
+
+The latest and full-featured version of the W996[87]CF driver can be found at:
+http://www.linux-projects.org. Please refer to the documentation included in
+that package, if you are going to use it.
+
+Up to 32 cameras can be handled at the same time. They can be connected and
+disconnected from the host many times without turning off the computer, if
+your system supports the hotplug facility.
+
+To change the default settings for each camera, many parameters can be passed
+through command line when the module is loaded into memory.
+
+The driver relies on the Video4Linux, USB and I2C core modules. It has been
+designed to run properly on SMP systems as well. An additional module,
+"ovcamchip", is mandatory; it provides support for some OmniVision image
+sensors connected to the W996[87]CF chips; if found in the system, the module
+will be automatically loaded by default (provided that the kernel has been
+compiled with the automatic module loading option).
+
+
+5. Supported devices
+====================
+At the moment, known W996[87]CF and OV681 based devices are:
+- Aroma Digi Pen VGA Dual Mode ADG-5000 (unknown image sensor)
+- AVerMedia AVerTV USB (SAA7111A, Philips FI1216Mk2 tuner, PT2313L audio chip)
+- Creative Labs Video Blaster WebCam Go (OmniVision OV7610 sensor)
+- Creative Labs Video Blaster WebCam Go Plus (OmniVision OV7620 sensor)
+- Lebon LDC-035A (unknown image sensor)
+- Ezonics EZ-802 EZMega Cam (OmniVision OV8610C sensor)
+- OmniVision OV8610-EDE (OmniVision OV8610 sensor)
+- OPCOM Digi Pen VGA Dual Mode Pen Camera (unknown image sensor)
+- Pretec Digi Pen-II (OmniVision OV7620 sensor)
+- Pretec DigiPen-480 (OmniVision OV8610 sensor)
+
+If you know any other W996[87]CF or OV681 based cameras, please contact me.
+
+The list above does not imply that all those devices work with this driver: up
+until now only webcams that have an image sensor supported by the "ovcamchip"
+module work. Kernel messages will always tell you whether this is case.
+
+Possible external microcontrollers of those webcams are not supported: this
+means that still images cannot be downloaded from the device memory.
+
+Furthermore, it's worth to note that I was only able to run tests on my
+"Creative Labs Video Blaster WebCam Go". Donations of other models, for
+additional testing and full support, would be much appreciated.
+
+
+6. Module dependencies
+======================
+For it to work properly, the driver needs kernel support for Video4Linux, USB
+and I2C, and the "ovcamchip" module for the image sensor. Make sure you are not
+actually using any external "ovcamchip" module, given that the W996[87]CF
+driver depends on the version of the module present in the official kernels.
+
+The following options of the kernel configuration file must be enabled and
+corresponding modules must be compiled:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_DEV=m
+
+ # I2C support
+ #
+ CONFIG_I2C=m
+
+The I2C core module can be compiled statically in the kernel as well.
+
+ # OmniVision Camera Chip support
+ #
+ CONFIG_VIDEO_OVCAMCHIP=m
+
+ # USB support
+ #
+ CONFIG_USB=m
+
+In addition, depending on the hardware being used, only one of the modules
+below is necessary:
+
+ # USB Host Controller Drivers
+ #
+ CONFIG_USB_EHCI_HCD=m
+ CONFIG_USB_UHCI_HCD=m
+ CONFIG_USB_OHCI_HCD=m
+
+And finally:
+
+ # USB Multimedia devices
+ #
+ CONFIG_USB_W9968CF=m
+
+
+7. Module loading
+=================
+To use the driver, it is necessary to load the "w9968cf" module into memory
+after every other module required.
+
+Loading can be done this way, from root:
+
+ [root@localhost home]# modprobe usbcore
+ [root@localhost home]# modprobe i2c-core
+ [root@localhost home]# modprobe videodev
+ [root@localhost home]# modprobe w9968cf
+
+At this point the pertinent devices should be recognized: "dmesg" can be used
+to analyze kernel messages:
+
+ [user@localhost home]$ dmesg
+
+There are a lot of parameters the module can use to change the default
+settings for each device. To list every possible parameter with a brief
+explanation about them and which syntax to use, it is recommended to run the
+"modinfo" command:
+
+ [root@locahost home]# modinfo w9968cf
+
+
+8. Module parameters
+====================
+Module parameters are listed below:
+-------------------------------------------------------------------------------
+Name: ovmod_load
+Type: bool
+Syntax: <0|1>
+Description: Automatic 'ovcamchip' module loading: 0 disabled, 1 enabled.
+ If enabled, 'insmod' searches for the required 'ovcamchip'
+ module in the system, according to its configuration, and
+ loads that module automatically. This action is performed as
+ once soon as the 'w9968cf' module is loaded into memory.
+Default: 1
+Note: The kernel must be compiled with the CONFIG_KMOD option
+ enabled for the 'ovcamchip' module to be loaded and for
+ this parameter to be present.
+-------------------------------------------------------------------------------
+Name: simcams
+Type: int
+Syntax: <n>
+Description: Number of cameras allowed to stream simultaneously.
+ n may vary from 0 to 32.
+Default: 32
+-------------------------------------------------------------------------------
+Name: video_nr
+Type: int array (min = 0, max = 32)
+Syntax: <-1|n[,...]>
+Description: Specify V4L minor mode number.
+ -1 = use next available
+ n = use minor number n
+ You can specify up to 32 cameras this way.
+ For example:
+ video_nr=-1,2,-1 would assign minor number 2 to the second
+ recognized camera and use auto for the first one and for every
+ other camera.
+Default: -1
+-------------------------------------------------------------------------------
+Name: packet_size
+Type: int array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Specify the maximum data payload size in bytes for alternate
+ settings, for each device. n is scaled between 63 and 1023.
+Default: 1023
+-------------------------------------------------------------------------------
+Name: max_buffers
+Type: int array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: For advanced users.
+ Specify the maximum number of video frame buffers to allocate
+ for each device, from 2 to 32.
+Default: 2
+-------------------------------------------------------------------------------
+Name: double_buffer
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Hardware double buffering: 0 disabled, 1 enabled.
+ It should be enabled if you want smooth video output: if you
+ obtain out of sync. video, disable it, or try to
+ decrease the 'clockdiv' module parameter value.
+Default: 1 for every device.
+-------------------------------------------------------------------------------
+Name: clamping
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Video data clamping: 0 disabled, 1 enabled.
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: filter_type
+Type: int array (min = 0, max = 32)
+Syntax: <0|1|2[,...]>
+Description: Video filter type.
+ 0 none, 1 (1-2-1) 3-tap filter, 2 (2-3-6-3-2) 5-tap filter.
+ The filter is used to reduce noise and aliasing artifacts
+ produced by the CCD or CMOS image sensor.
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: largeview
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Large view: 0 disabled, 1 enabled.
+Default: 1 for every device.
+-------------------------------------------------------------------------------
+Name: upscaling
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Software scaling (for non-compressed video only):
+ 0 disabled, 1 enabled.
+ Disable it if you have a slow CPU or you don't have enough
+ memory.
+Default: 0 for every device.
+Note: If 'w9968cf-vpp' is not present, this parameter is set to 0.
+-------------------------------------------------------------------------------
+Name: decompression
+Type: int array (min = 0, max = 32)
+Syntax: <0|1|2[,...]>
+Description: Software video decompression:
+ 0 = disables decompression
+ (doesn't allow formats needing decompression).
+ 1 = forces decompression
+ (allows formats needing decompression only).
+ 2 = allows any permitted formats.
+ Formats supporting (de)compressed video are YUV422P and
+ YUV420P/YUV420 in any resolutions where width and height are
+ multiples of 16.
+Default: 2 for every device.
+Note: If 'w9968cf-vpp' is not present, forcing decompression is not
+ allowed; in this case this parameter is set to 2.
+-------------------------------------------------------------------------------
+Name: force_palette
+Type: int array (min = 0, max = 32)
+Syntax: <0|9|10|13|15|8|7|1|6|3|4|5[,...]>
+Description: Force picture palette.
+ In order:
+ 0 = Off - allows any of the following formats:
+ 9 = UYVY 16 bpp - Original video, compression disabled
+ 10 = YUV420 12 bpp - Original video, compression enabled
+ 13 = YUV422P 16 bpp - Original video, compression enabled
+ 15 = YUV420P 12 bpp - Original video, compression enabled
+ 8 = YUVY 16 bpp - Software conversion from UYVY
+ 7 = YUV422 16 bpp - Software conversion from UYVY
+ 1 = GREY 8 bpp - Software conversion from UYVY
+ 6 = RGB555 16 bpp - Software conversion from UYVY
+ 3 = RGB565 16 bpp - Software conversion from UYVY
+ 4 = RGB24 24 bpp - Software conversion from UYVY
+ 5 = RGB32 32 bpp - Software conversion from UYVY
+ When not 0, this parameter will override 'decompression'.
+Default: 0 for every device. Initial palette is 9 (UYVY).
+Note: If 'w9968cf-vpp' is not present, this parameter is set to 9.
+-------------------------------------------------------------------------------
+Name: force_rgb
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Read RGB video data instead of BGR:
+ 1 = use RGB component ordering.
+ 0 = use BGR component ordering.
+ This parameter has effect when using RGBX palettes only.
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: autobright
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Image sensor automatically changes brightness:
+ 0 = no, 1 = yes
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: autoexp
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Image sensor automatically changes exposure:
+ 0 = no, 1 = yes
+Default: 1 for every device.
+-------------------------------------------------------------------------------
+Name: lightfreq
+Type: int array (min = 0, max = 32)
+Syntax: <50|60[,...]>
+Description: Light frequency in Hz:
+ 50 for European and Asian lighting, 60 for American lighting.
+Default: 50 for every device.
+-------------------------------------------------------------------------------
+Name: bandingfilter
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Banding filter to reduce effects of fluorescent
+ lighting:
+ 0 disabled, 1 enabled.
+ This filter tries to reduce the pattern of horizontal
+ light/dark bands caused by some (usually fluorescent) lighting.
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: clockdiv
+Type: int array (min = 0, max = 32)
+Syntax: <-1|n[,...]>
+Description: Force pixel clock divisor to a specific value (for experts):
+ n may vary from 0 to 127.
+ -1 for automatic value.
+ See also the 'double_buffer' module parameter.
+Default: -1 for every device.
+-------------------------------------------------------------------------------
+Name: backlight
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Objects are lit from behind:
+ 0 = no, 1 = yes
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: mirror
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: Reverse image horizontally:
+ 0 = no, 1 = yes
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: monochrome
+Type: bool array (min = 0, max = 32)
+Syntax: <0|1[,...]>
+Description: The image sensor is monochrome:
+ 0 = no, 1 = yes
+Default: 0 for every device.
+-------------------------------------------------------------------------------
+Name: brightness
+Type: long array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Set picture brightness (0-65535).
+ This parameter has no effect if 'autobright' is enabled.
+Default: 31000 for every device.
+-------------------------------------------------------------------------------
+Name: hue
+Type: long array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Set picture hue (0-65535).
+Default: 32768 for every device.
+-------------------------------------------------------------------------------
+Name: colour
+Type: long array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Set picture saturation (0-65535).
+Default: 32768 for every device.
+-------------------------------------------------------------------------------
+Name: contrast
+Type: long array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Set picture contrast (0-65535).
+Default: 50000 for every device.
+-------------------------------------------------------------------------------
+Name: whiteness
+Type: long array (min = 0, max = 32)
+Syntax: <n[,...]>
+Description: Set picture whiteness (0-65535).
+Default: 32768 for every device.
+-------------------------------------------------------------------------------
+Name: debug
+Type: int
+Syntax: <n>
+Description: Debugging information level, from 0 to 6:
+ 0 = none (use carefully)
+ 1 = critical errors
+ 2 = significant informations
+ 3 = configuration or general messages
+ 4 = warnings
+ 5 = called functions
+ 6 = function internals
+ Level 5 and 6 are useful for testing only, when only one
+ device is used.
+Default: 2
+-------------------------------------------------------------------------------
+Name: specific_debug
+Type: bool
+Syntax: <0|1>
+Description: Enable or disable specific debugging messages:
+ 0 = print messages concerning every level <= 'debug' level.
+ 1 = print messages concerning the level indicated by 'debug'.
+Default: 0
+-------------------------------------------------------------------------------
+
+
+9. Contact information
+======================
+I may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
+
+I can accept GPG/PGP encrypted e-mail. My GPG key ID is 'FCE635A4'.
+My public 1024-bit key should be available at your keyserver; the fingerprint
+is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
+
+
+10. Credits
+==========
+The development would not have proceed much further without having looked at
+the source code of other drivers and without the help of several persons; in
+particular:
+
+- the I2C interface to kernel and high-level image sensor control routines have
+ been taken from the OV511 driver by Mark McClelland;
+
+- memory management code has been copied from the bttv driver by Ralph Metzler,
+ Marcus Metzler and Gerd Knorr;
+
+- the low-level I2C read function has been written by Frederic Jouault;
+
+- the low-level I2C fast write function has been written by Piotr Czerczak.
diff --git a/Documentation/video4linux/zc0301.txt b/Documentation/video4linux/zc0301.txt
new file mode 100644
index 000000000000..f55262c6733b
--- /dev/null
+++ b/Documentation/video4linux/zc0301.txt
@@ -0,0 +1,254 @@
+
+ ZC0301 Image Processor and Control Chip
+ Driver for Linux
+ =======================================
+
+ - Documentation -
+
+
+Index
+=====
+1. Copyright
+2. Disclaimer
+3. License
+4. Overview and features
+5. Module dependencies
+6. Module loading
+7. Module parameters
+8. Supported devices
+9. Notes for V4L2 application developers
+10. Contact information
+11. Credits
+
+
+1. Copyright
+============
+Copyright (C) 2006 by Luca Risolia <luca.risolia@studio.unibo.it>
+
+
+2. Disclaimer
+=============
+This software is not developed or sponsored by Z-Star Microelectronics Corp.
+Trademarks are property of their respective owner.
+
+
+3. License
+==========
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+
+
+4. Overview and features
+========================
+This driver supports the video interface of the devices mounting the ZC0301
+Image Processor and Control Chip.
+
+The driver relies on the Video4Linux2 and USB core modules. It has been
+designed to run properly on SMP systems as well.
+
+The latest version of the ZC0301 driver can be found at the following URL:
+http://www.linux-projects.org/
+
+Some of the features of the driver are:
+
+- full compliance with the Video4Linux2 API (see also "Notes for V4L2
+ application developers" paragraph);
+- available mmap or read/poll methods for video streaming through isochronous
+ data transfers;
+- automatic detection of image sensor;
+- video format is standard JPEG;
+- dynamic driver control thanks to various module parameters (see "Module
+ parameters" paragraph);
+- up to 64 cameras can be handled at the same time; they can be connected and
+ disconnected from the host many times without turning off the computer, if
+ the system supports hotplugging;
+
+
+5. Module dependencies
+======================
+For it to work properly, the driver needs kernel support for Video4Linux and
+USB.
+
+The following options of the kernel configuration file must be enabled and
+corresponding modules must be compiled:
+
+ # Multimedia devices
+ #
+ CONFIG_VIDEO_DEV=m
+
+ # USB support
+ #
+ CONFIG_USB=m
+
+In addition, depending on the hardware being used, the modules below are
+necessary:
+
+ # USB Host Controller Drivers
+ #
+ CONFIG_USB_EHCI_HCD=m
+ CONFIG_USB_UHCI_HCD=m
+ CONFIG_USB_OHCI_HCD=m
+
+The ZC0301 controller also provides a built-in microphone interface. It is
+supported by the USB Audio driver thanks to the ALSA API:
+
+ # Sound
+ #
+ CONFIG_SOUND=y
+
+ # Advanced Linux Sound Architecture
+ #
+ CONFIG_SND=m
+
+ # USB devices
+ #
+ CONFIG_SND_USB_AUDIO=m
+
+And finally:
+
+ # USB Multimedia devices
+ #
+ CONFIG_USB_ZC0301=m
+
+
+6. Module loading
+=================
+To use the driver, it is necessary to load the "zc0301" module into memory
+after every other module required: "videodev", "usbcore" and, depending on
+the USB host controller you have, "ehci-hcd", "uhci-hcd" or "ohci-hcd".
+
+Loading can be done as shown below:
+
+ [root@localhost home]# modprobe zc0301
+
+At this point the devices should be recognized. You can invoke "dmesg" to
+analyze kernel messages and verify that the loading process has gone well:
+
+ [user@localhost home]$ dmesg
+
+
+7. Module parameters
+====================
+Module parameters are listed below:
+-------------------------------------------------------------------------------
+Name: video_nr
+Type: short array (min = 0, max = 64)
+Syntax: <-1|n[,...]>
+Description: Specify V4L2 minor mode number:
+ -1 = use next available
+ n = use minor number n
+ You can specify up to 64 cameras this way.
+ For example:
+ video_nr=-1,2,-1 would assign minor number 2 to the second
+ registered camera and use auto for the first one and for every
+ other camera.
+Default: -1
+-------------------------------------------------------------------------------
+Name: force_munmap
+Type: bool array (min = 0, max = 64)
+Syntax: <0|1[,...]>
+Description: Force the application to unmap previously mapped buffer memory
+ before calling any VIDIOC_S_CROP or VIDIOC_S_FMT ioctl's. Not
+ all the applications support this feature. This parameter is
+ specific for each detected camera.
+ 0 = do not force memory unmapping
+ 1 = force memory unmapping (save memory)
+Default: 0
+-------------------------------------------------------------------------------
+Name: frame_timeout
+Type: uint array (min = 0, max = 64)
+Syntax: <n[,...]>
+Description: Timeout for a video frame in seconds. This parameter is
+ specific for each detected camera. This parameter can be
+ changed at runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+Name: debug
+Type: ushort
+Syntax: <n>
+Description: Debugging information level, from 0 to 3:
+ 0 = none (use carefully)
+ 1 = critical errors
+ 2 = significant informations
+ 3 = more verbose messages
+ Level 3 is useful for testing only, when only one device
+ is used at the same time. It also shows some more informations
+ about the hardware being detected. This module parameter can be
+ changed at runtime thanks to the /sys filesystem interface.
+Default: 2
+-------------------------------------------------------------------------------
+
+
+8. Supported devices
+====================
+None of the names of the companies as well as their products will be mentioned
+here. They have never collaborated with the author, so no advertising.
+
+From the point of view of a driver, what unambiguously identify a device are
+its vendor and product USB identifiers. Below is a list of known identifiers of
+devices mounting the ZC0301 Image Processor and Control Chips:
+
+Vendor ID Product ID
+--------- ----------
+0x041e 0x4017
+0x041e 0x401c
+0x041e 0x401e
+0x041e 0x4034
+0x041e 0x4035
+0x046d 0x08ae
+0x0ac8 0x0301
+0x10fd 0x8050
+
+The list above does not imply that all those devices work with this driver: up
+until now only the ones that mount the following image sensors are supported;
+kernel messages will always tell you whether this is the case:
+
+Model Manufacturer
+----- ------------
+PAS202BCB PixArt Imaging, Inc.
+
+
+9. Notes for V4L2 application developers
+========================================
+This driver follows the V4L2 API specifications. In particular, it enforces two
+rules:
+
+- exactly one I/O method, either "mmap" or "read", is associated with each
+file descriptor. Once it is selected, the application must close and reopen the
+device to switch to the other I/O method;
+
+- although it is not mandatory, previously mapped buffer memory should always
+be unmapped before calling any "VIDIOC_S_CROP" or "VIDIOC_S_FMT" ioctl's.
+The same number of buffers as before will be allocated again to match the size
+of the new video frames, so you have to map the buffers again before any I/O
+attempts on them.
+
+
+10. Contact information
+=======================
+The author may be contacted by e-mail at <luca.risolia@studio.unibo.it>.
+
+GPG/PGP encrypted e-mail's are accepted. The GPG key ID of the author is
+'FCE635A4'; the public 1024-bit key should be available at any keyserver;
+the fingerprint is: '88E8 F32F 7244 68BA 3958 5D40 99DA 5D2A FCE6 35A4'.
+
+
+11. Credits
+===========
+- Informations about the chip internals needed to enable the I2C protocol have
+ been taken from the documentation of the ZC030x Video4Linux1 driver written
+ by Andrew Birkett <andy@nobugs.org>;
+- The initialization values of the ZC0301 controller connected to the PAS202BCB
+ image sensor have been taken from the SPCA5XX driver maintained by
+ Michel Xhaard <mxhaard@magic.fr>.