summaryrefslogtreecommitdiff
path: root/Documentation/usb/WUSB-Design-overview.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/usb/WUSB-Design-overview.txt')
-rw-r--r--Documentation/usb/WUSB-Design-overview.txt56
1 files changed, 37 insertions, 19 deletions
diff --git a/Documentation/usb/WUSB-Design-overview.txt b/Documentation/usb/WUSB-Design-overview.txt
index fdb47637720e..dc5e21609bb5 100644
--- a/Documentation/usb/WUSB-Design-overview.txt
+++ b/Documentation/usb/WUSB-Design-overview.txt
@@ -1,7 +1,9 @@
-
+================================
Linux UWB + Wireless USB + WiNET
+================================
+
+ Copyright (C) 2005-2006 Intel Corporation
- (C) 2005-2006 Intel Corporation
Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
This program is free software; you can redistribute it and/or
@@ -29,6 +31,7 @@ drivers for the USB based UWB radio controllers defined in the
Wireless USB 1.0 specification (including Wireless USB host controller
and an Intel WiNET controller).
+.. Contents
1. Introduction
1. HWA: Host Wire adapters, your Wireless USB dongle
@@ -51,7 +54,8 @@ and an Intel WiNET controller).
4. Glossary
- Introduction
+Introduction
+============
UWB is a wide-band communication protocol that is to serve also as the
low-level protocol for others (much like TCP sits on IP). Currently
@@ -93,7 +97,8 @@ The different logical parts of this driver are:
do the actual WUSB.
- HWA: Host Wire adapters, your Wireless USB dongle
+HWA: Host Wire adapters, your Wireless USB dongle
+-------------------------------------------------
WUSB also defines a device called a Host Wire Adaptor (HWA), which in
mere terms is a USB dongle that enables your PC to have UWB and Wireless
@@ -125,7 +130,8 @@ The HWA itself is broken in two or three main interfaces:
their type and kick into gear.
- DWA: Device Wired Adaptor, a Wireless USB hub for wired devices
+DWA: Device Wired Adaptor, a Wireless USB hub for wired devices
+---------------------------------------------------------------
These are the complement to HWAs. They are a USB host for connecting
wired devices, but it is connected to your PC connected via Wireless
@@ -137,7 +143,8 @@ code with the HWA-RC driver; there is a bunch of factorization work that
has been done to support that in upcoming releases.
- WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter
+WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter
+-------------------------------------------------------------------
This is your usual PCI device that implements WHCI. Similar in concept
to EHCI, it allows your wireless USB devices (including DWAs) to connect
@@ -148,7 +155,8 @@ There is still no driver support for this, but will be in upcoming
releases.
- The UWB stack
+The UWB stack
+=============
The main mission of the UWB stack is to keep a tally of which devices
are in radio proximity to allow drivers to connect to them. As well, it
@@ -156,7 +164,8 @@ provides an API for controlling the local radio controllers (RCs from
now on), such as to start/stop beaconing, scan, allocate bandwidth, etc.
- Devices and hosts: the basic structure
+Devices and hosts: the basic structure
+--------------------------------------
The main building block here is the UWB device (struct uwb_dev). For
each device that pops up in radio presence (ie: the UWB host receives a
@@ -187,7 +196,8 @@ the USB connected HWA. Eventually, drivers/whci-rc.c will do the same
for the PCI connected WHCI controller.
- Host Controller life cycle
+Host Controller life cycle
+--------------------------
So let's say we connect a dongle to the system: it is detected and
firmware uploaded if needed [for Intel's i1480
@@ -209,7 +219,8 @@ When a dongle is disconnected, /drivers/uwb/hwa-rc.c:hwarc_disconnect()/
takes time of tearing everything down safely (or not...).
- On the air: beacons and enumerating the radio neighborhood
+On the air: beacons and enumerating the radio neighborhood
+----------------------------------------------------------
So assuming we have devices and we have agreed for a channel to connect
on (let's say 9), we put the new RC to beacon:
@@ -235,12 +246,14 @@ are received in some time, the device is considered gone and wiped out
the beacon cache of dead devices].
- Device lists
+Device lists
+------------
All UWB devices are kept in the list of the struct bus_type uwb_bus_type.
- Bandwidth allocation
+Bandwidth allocation
+--------------------
The UWB stack maintains a local copy of DRP availability through
processing of incoming *DRP Availability Change* notifications. This
@@ -260,7 +273,8 @@ completion. [Note: The bandwidth reservation work is in progress and
subject to change.]
- Wireless USB Host Controller drivers
+Wireless USB Host Controller drivers
+====================================
*WARNING* This section needs a lot of work!
@@ -296,7 +310,8 @@ starts sending MMCs.
Now it all depends on external stimuli.
-*New device connection*
+New device connection
+---------------------
A new device pops up, it scans the radio looking for MMCs that give out
the existence of Wireless USB channels. Once one (or more) are found,
@@ -322,7 +337,8 @@ has seen the port status changes, as we have been toggling them. It will
start enumerating and doing transfers through usb_hcd->urb_enqueue() to
read descriptors and move our data.
-*Device life cycle and keep alives*
+Device life cycle and keep alives
+---------------------------------
Every time there is a successful transfer to/from a device, we update a
per-device activity timestamp. If not, every now and then we check and
@@ -340,7 +356,8 @@ device list looking for whom needs refreshing.
If the device wants to disconnect, it will either die (ugly) or send a
/DN_Disconnect/ that will prompt a disconnection from the system.
-*Sending and receiving data*
+Sending and receiving data
+--------------------------
Data is sent and received through /Remote Pipes/ (rpipes). An rpipe is
/aimed/ at an endpoint in a WUSB device. This is the same for HWAs and
@@ -394,7 +411,8 @@ finalize the transfer.
For IN xfers, we only issue URBs for the segments we want to read and
then wait for the xfer result data.
-*URB mapping into xfers*
+URB mapping into xfers
+^^^^^^^^^^^^^^^^^^^^^^
This is done by hwahc_op_urb_[en|de]queue(). In enqueue() we aim an
rpipe to the endpoint where we have to transmit, create a transfer
@@ -407,7 +425,8 @@ and not yet done and when all that is done, the xfer callback will be
called--this will call the URB callback.
- Glossary
+Glossary
+========
*DWA* -- Device Wire Adapter
@@ -436,4 +455,3 @@ the host.
Design-overview.txt-1.8 (last edited 2006-11-04 12:22:24 by
InakyPerezGonzalez)
-