diff options
-rw-r--r-- | fs/btrfs/block-group.c | 11 | ||||
-rw-r--r-- | fs/btrfs/block-group.h | 11 | ||||
-rw-r--r-- | fs/btrfs/scrub.c | 997 | ||||
-rw-r--r-- | fs/btrfs/scrub.h | 7 |
4 files changed, 14 insertions, 1012 deletions
diff --git a/fs/btrfs/block-group.c b/fs/btrfs/block-group.c index bb6024c17db4..957ad1c31c4f 100644 --- a/fs/btrfs/block-group.c +++ b/fs/btrfs/block-group.c @@ -160,15 +160,6 @@ void btrfs_put_block_group(struct btrfs_block_group *cache) btrfs_discard_cancel_work(&cache->fs_info->discard_ctl, cache); - /* - * If not empty, someone is still holding mutex of - * full_stripe_lock, which can only be released by caller. - * And it will definitely cause use-after-free when caller - * tries to release full stripe lock. - * - * No better way to resolve, but only to warn. - */ - WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); kfree(cache->free_space_ctl); kfree(cache->physical_map); kfree(cache); @@ -2124,8 +2115,6 @@ static struct btrfs_block_group *btrfs_create_block_group_cache( btrfs_init_free_space_ctl(cache, cache->free_space_ctl); atomic_set(&cache->frozen, 0); mutex_init(&cache->free_space_lock); - cache->full_stripe_locks_root.root = RB_ROOT; - mutex_init(&cache->full_stripe_locks_root.lock); return cache; } diff --git a/fs/btrfs/block-group.h b/fs/btrfs/block-group.h index db729ad7315b..cc0e4b37db2d 100644 --- a/fs/btrfs/block-group.h +++ b/fs/btrfs/block-group.h @@ -91,14 +91,6 @@ struct btrfs_caching_control { /* Once caching_thread() finds this much free space, it will wake up waiters. */ #define CACHING_CTL_WAKE_UP SZ_2M -/* - * Tree to record all locked full stripes of a RAID5/6 block group - */ -struct btrfs_full_stripe_locks_tree { - struct rb_root root; - struct mutex lock; -}; - struct btrfs_block_group { struct btrfs_fs_info *fs_info; struct inode *inode; @@ -229,9 +221,6 @@ struct btrfs_block_group { */ int swap_extents; - /* Record locked full stripes for RAID5/6 block group */ - struct btrfs_full_stripe_locks_tree full_stripe_locks_root; - /* * Allocation offset for the block group to implement sequential * allocation. This is used only on a zoned filesystem. diff --git a/fs/btrfs/scrub.c b/fs/btrfs/scrub.c index caf025f572cc..e311bb8e647b 100644 --- a/fs/btrfs/scrub.c +++ b/fs/btrfs/scrub.c @@ -183,12 +183,6 @@ struct scrub_stripe { struct work_struct work; }; -struct scrub_recover { - refcount_t refs; - struct btrfs_io_context *bioc; - u64 map_length; -}; - struct scrub_sector { struct scrub_block *sblock; struct list_head list; @@ -200,8 +194,6 @@ struct scrub_sector { unsigned int have_csum:1; unsigned int io_error:1; u8 csum[BTRFS_CSUM_SIZE]; - - struct scrub_recover *recover; }; struct scrub_bio { @@ -303,13 +295,6 @@ struct scrub_warning { struct btrfs_device *dev; }; -struct full_stripe_lock { - struct rb_node node; - u64 logical; - u64 refs; - struct mutex mutex; -}; - #ifndef CONFIG_64BIT /* This structure is for architectures whose (void *) is smaller than u64 */ struct scrub_page_private { @@ -406,11 +391,11 @@ static void wait_scrub_stripe_io(struct scrub_stripe *stripe) wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0); } -static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, - struct btrfs_device *dev, - u64 logical, u64 physical, - u64 physical_for_dev_replace, - int mirror_num) +struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, + struct btrfs_device *dev, + u64 logical, u64 physical, + u64 physical_for_dev_replace, + int mirror_num) { struct scrub_block *sblock; @@ -437,8 +422,7 @@ static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, * * Will also allocate new pages for @sblock if needed. */ -static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, - u64 logical) +struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, u64 logical) { const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT; struct scrub_sector *ssector; @@ -534,17 +518,6 @@ static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector, scrub_sector_get_page_offset(ssector)); } -static int scrub_setup_recheck_block(struct scrub_block *original_sblock, - struct scrub_block *sblocks_for_recheck[]); -static void scrub_recheck_block(struct btrfs_fs_info *fs_info, - struct scrub_block *sblock, - int retry_failed_mirror); -static void scrub_recheck_block_checksum(struct scrub_block *sblock); -static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, - struct scrub_block *sblock_good); -static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, - struct scrub_block *sblock_good, - int sector_num, int force_write); static int scrub_checksum_data(struct scrub_block *sblock); static int scrub_checksum_tree_block(struct scrub_block *sblock); static int scrub_checksum_super(struct scrub_block *sblock); @@ -555,12 +528,6 @@ static void scrub_bio_end_io_worker(struct work_struct *work); static void scrub_block_complete(struct scrub_block *sblock); static void scrub_put_ctx(struct scrub_ctx *sctx); -static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) -{ - return sector->recover && - (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); -} - static void scrub_pending_bio_inc(struct scrub_ctx *sctx) { refcount_inc(&sctx->refs); @@ -606,223 +573,6 @@ static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) scrub_pause_off(fs_info); } -/* - * Insert new full stripe lock into full stripe locks tree - * - * Return pointer to existing or newly inserted full_stripe_lock structure if - * everything works well. - * Return ERR_PTR(-ENOMEM) if we failed to allocate memory - * - * NOTE: caller must hold full_stripe_locks_root->lock before calling this - * function - */ -static struct full_stripe_lock *insert_full_stripe_lock( - struct btrfs_full_stripe_locks_tree *locks_root, - u64 fstripe_logical) -{ - struct rb_node **p; - struct rb_node *parent = NULL; - struct full_stripe_lock *entry; - struct full_stripe_lock *ret; - - lockdep_assert_held(&locks_root->lock); - - p = &locks_root->root.rb_node; - while (*p) { - parent = *p; - entry = rb_entry(parent, struct full_stripe_lock, node); - if (fstripe_logical < entry->logical) { - p = &(*p)->rb_left; - } else if (fstripe_logical > entry->logical) { - p = &(*p)->rb_right; - } else { - entry->refs++; - return entry; - } - } - - /* - * Insert new lock. - */ - ret = kmalloc(sizeof(*ret), GFP_KERNEL); - if (!ret) - return ERR_PTR(-ENOMEM); - ret->logical = fstripe_logical; - ret->refs = 1; - mutex_init(&ret->mutex); - - rb_link_node(&ret->node, parent, p); - rb_insert_color(&ret->node, &locks_root->root); - return ret; -} - -/* - * Search for a full stripe lock of a block group - * - * Return pointer to existing full stripe lock if found - * Return NULL if not found - */ -static struct full_stripe_lock *search_full_stripe_lock( - struct btrfs_full_stripe_locks_tree *locks_root, - u64 fstripe_logical) -{ - struct rb_node *node; - struct full_stripe_lock *entry; - - lockdep_assert_held(&locks_root->lock); - - node = locks_root->root.rb_node; - while (node) { - entry = rb_entry(node, struct full_stripe_lock, node); - if (fstripe_logical < entry->logical) - node = node->rb_left; - else if (fstripe_logical > entry->logical) - node = node->rb_right; - else - return entry; - } - return NULL; -} - -/* - * Helper to get full stripe logical from a normal bytenr. - * - * Caller must ensure @cache is a RAID56 block group. - */ -static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) -{ - u64 ret; - - /* - * Due to chunk item size limit, full stripe length should not be - * larger than U32_MAX. Just a sanity check here. - */ - WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); - - /* - * round_down() can only handle power of 2, while RAID56 full - * stripe length can be 64KiB * n, so we need to manually round down. - */ - ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * - cache->full_stripe_len + cache->start; - return ret; -} - -/* - * Lock a full stripe to avoid concurrency of recovery and read - * - * It's only used for profiles with parities (RAID5/6), for other profiles it - * does nothing. - * - * Return 0 if we locked full stripe covering @bytenr, with a mutex held. - * So caller must call unlock_full_stripe() at the same context. - * - * Return <0 if encounters error. - */ -static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, - bool *locked_ret) -{ - struct btrfs_block_group *bg_cache; - struct btrfs_full_stripe_locks_tree *locks_root; - struct full_stripe_lock *existing; - u64 fstripe_start; - int ret = 0; - - *locked_ret = false; - bg_cache = btrfs_lookup_block_group(fs_info, bytenr); - if (!bg_cache) { - ASSERT(0); - return -ENOENT; - } - - /* Profiles not based on parity don't need full stripe lock */ - if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) - goto out; - locks_root = &bg_cache->full_stripe_locks_root; - - fstripe_start = get_full_stripe_logical(bg_cache, bytenr); - - /* Now insert the full stripe lock */ - mutex_lock(&locks_root->lock); - existing = insert_full_stripe_lock(locks_root, fstripe_start); - mutex_unlock(&locks_root->lock); - if (IS_ERR(existing)) { - ret = PTR_ERR(existing); - goto out; - } - mutex_lock(&existing->mutex); - *locked_ret = true; -out: - btrfs_put_block_group(bg_cache); - return ret; -} - -/* - * Unlock a full stripe. - * - * NOTE: Caller must ensure it's the same context calling corresponding - * lock_full_stripe(). - * - * Return 0 if we unlock full stripe without problem. - * Return <0 for error - */ -static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, - bool locked) -{ - struct btrfs_block_group *bg_cache; - struct btrfs_full_stripe_locks_tree *locks_root; - struct full_stripe_lock *fstripe_lock; - u64 fstripe_start; - bool freeit = false; - int ret = 0; - - /* If we didn't acquire full stripe lock, no need to continue */ - if (!locked) - return 0; - - bg_cache = btrfs_lookup_block_group(fs_info, bytenr); - if (!bg_cache) { - ASSERT(0); - return -ENOENT; - } - if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) - goto out; - - locks_root = &bg_cache->full_stripe_locks_root; - fstripe_start = get_full_stripe_logical(bg_cache, bytenr); - - mutex_lock(&locks_root->lock); - fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); - /* Unpaired unlock_full_stripe() detected */ - if (!fstripe_lock) { - WARN_ON(1); - ret = -ENOENT; - mutex_unlock(&locks_root->lock); - goto out; - } - - if (fstripe_lock->refs == 0) { - WARN_ON(1); - btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", - fstripe_lock->logical); - } else { - fstripe_lock->refs--; - } - - if (fstripe_lock->refs == 0) { - rb_erase(&fstripe_lock->node, &locks_root->root); - freeit = true; - } - mutex_unlock(&locks_root->lock); - - mutex_unlock(&fstripe_lock->mutex); - if (freeit) - kfree(fstripe_lock); -out: - btrfs_put_block_group(bg_cache); - return ret; -} - static void scrub_free_csums(struct scrub_ctx *sctx) { while (!list_empty(&sctx->csum_list)) { @@ -1101,444 +851,6 @@ out: btrfs_free_path(path); } -static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) -{ - scrub_print_common_warning(errstr, sblock->dev, - sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER, - sblock->logical, sblock->physical); -} - -static inline void scrub_get_recover(struct scrub_recover *recover) -{ - refcount_inc(&recover->refs); -} - -static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, - struct scrub_recover *recover) -{ - if (refcount_dec_and_test(&recover->refs)) { - btrfs_bio_counter_dec(fs_info); - btrfs_put_bioc(recover->bioc); - kfree(recover); - } -} - -/* - * scrub_handle_errored_block gets called when either verification of the - * sectors failed or the bio failed to read, e.g. with EIO. In the latter - * case, this function handles all sectors in the bio, even though only one - * may be bad. - * The goal of this function is to repair the errored block by using the - * contents of one of the mirrors. - */ -static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) -{ - struct scrub_ctx *sctx = sblock_to_check->sctx; - struct btrfs_device *dev = sblock_to_check->dev; - struct btrfs_fs_info *fs_info; - u64 logical; - unsigned int failed_mirror_index; - unsigned int is_metadata; - unsigned int have_csum; - /* One scrub_block for each mirror */ - struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 }; - struct scrub_block *sblock_bad; - int ret; - int mirror_index; - int sector_num; - int success; - bool full_stripe_locked; - unsigned int nofs_flag; - static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, - DEFAULT_RATELIMIT_BURST); - - BUG_ON(sblock_to_check->sector_count < 1); - fs_info = sctx->fs_info; - if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { - /* - * If we find an error in a super block, we just report it. - * They will get written with the next transaction commit - * anyway - */ - scrub_print_warning("super block error", sblock_to_check); - spin_lock(&sctx->stat_lock); - ++sctx->stat.super_errors; - spin_unlock(&sctx->stat_lock); - btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); - return 0; - } - logical = sblock_to_check->logical; - ASSERT(sblock_to_check->mirror_num); - failed_mirror_index = sblock_to_check->mirror_num - 1; - is_metadata = !(sblock_to_check->sectors[0]->flags & - BTRFS_EXTENT_FLAG_DATA); - have_csum = sblock_to_check->sectors[0]->have_csum; - - if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) - return 0; - - /* - * We must use GFP_NOFS because the scrub task might be waiting for a - * worker task executing this function and in turn a transaction commit - * might be waiting the scrub task to pause (which needs to wait for all - * the worker tasks to complete before pausing). - * We do allocations in the workers through insert_full_stripe_lock() - * and scrub_add_sector_to_wr_bio(), which happens down the call chain of - * this function. - */ - nofs_flag = memalloc_nofs_save(); - /* - * For RAID5/6, race can happen for a different device scrub thread. - * For data corruption, Parity and Data threads will both try - * to recovery the data. - * Race can lead to doubly added csum error, or even unrecoverable - * error. - */ - ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); - if (ret < 0) { - memalloc_nofs_restore(nofs_flag); - spin_lock(&sctx->stat_lock); - if (ret == -ENOMEM) - sctx->stat.malloc_errors++; - sctx->stat.read_errors++; - sctx->stat.uncorrectable_errors++; - spin_unlock(&sctx->stat_lock); - return ret; - } - - /* - * read all mirrors one after the other. This includes to - * re-read the extent or metadata block that failed (that was - * the cause that this fixup code is called) another time, - * sector by sector this time in order to know which sectors - * caused I/O errors and which ones are good (for all mirrors). - * It is the goal to handle the situation when more than one - * mirror contains I/O errors, but the errors do not - * overlap, i.e. the data can be repaired by selecting the - * sectors from those mirrors without I/O error on the - * particular sectors. One example (with blocks >= 2 * sectorsize) - * would be that mirror #1 has an I/O error on the first sector, - * the second sector is good, and mirror #2 has an I/O error on - * the second sector, but the first sector is good. - * Then the first sector of the first mirror can be repaired by - * taking the first sector of the second mirror, and the - * second sector of the second mirror can be repaired by - * copying the contents of the 2nd sector of the 1st mirror. - * One more note: if the sectors of one mirror contain I/O - * errors, the checksum cannot be verified. In order to get - * the best data for repairing, the first attempt is to find - * a mirror without I/O errors and with a validated checksum. - * Only if this is not possible, the sectors are picked from - * mirrors with I/O errors without considering the checksum. - * If the latter is the case, at the end, the checksum of the - * repaired area is verified in order to correctly maintain - * the statistics. - */ - for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { - /* - * Note: the two members refs and outstanding_sectors are not - * used in the blocks that are used for the recheck procedure. - * - * But alloc_scrub_block() will initialize sblock::ref anyway, - * so we can use scrub_block_put() to clean them up. - * - * And here we don't setup the physical/dev for the sblock yet, - * they will be correctly initialized in scrub_setup_recheck_block(). - */ - sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL, - logical, 0, 0, mirror_index); - if (!sblocks_for_recheck[mirror_index]) { - spin_lock(&sctx->stat_lock); - sctx->stat.malloc_errors++; - sctx->stat.read_errors++; - sctx->stat.uncorrectable_errors++; - spin_unlock(&sctx->stat_lock); - btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); - goto out; - } - } - - /* Setup the context, map the logical blocks and alloc the sectors */ - ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); - if (ret) { - spin_lock(&sctx->stat_lock); - sctx->stat.read_errors++; - sctx->stat.uncorrectable_errors++; - spin_unlock(&sctx->stat_lock); - btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); - goto out; - } - BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); - sblock_bad = sblocks_for_recheck[failed_mirror_index]; - - /* build and submit the bios for the failed mirror, check checksums */ - scrub_recheck_block(fs_info, sblock_bad, 1); - - if (!sblock_bad->header_error && !sblock_bad->checksum_error && - sblock_bad->no_io_error_seen) { - /* - * The error disappeared after reading sector by sector, or - * the area was part of a huge bio and other parts of the - * bio caused I/O errors, or the block layer merged several - * read requests into one and the error is caused by a - * different bio (usually one of the two latter cases is - * the cause) - */ - spin_lock(&sctx->stat_lock); - sctx->stat.unverified_errors++; - sblock_to_check->data_corrected = 1; - spin_unlock(&sctx->stat_lock); - - goto out; - } - - if (!sblock_bad->no_io_error_seen) { - spin_lock(&sctx->stat_lock); - sctx->stat.read_errors++; - spin_unlock(&sctx->stat_lock); - if (__ratelimit(&rs)) - scrub_print_warning("i/o error", sblock_to_check); - btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); - } else if (sblock_bad->checksum_error) { - spin_lock(&sctx->stat_lock); - sctx->stat.csum_errors++; - spin_unlock(&sctx->stat_lock); - if (__ratelimit(&rs)) - scrub_print_warning("checksum error", sblock_to_check); - btrfs_dev_stat_inc_and_print(dev, - BTRFS_DEV_STAT_CORRUPTION_ERRS); - } else if (sblock_bad->header_error) { - spin_lock(&sctx->stat_lock); - sctx->stat.verify_errors++; - spin_unlock(&sctx->stat_lock); - if (__ratelimit(&rs)) - scrub_print_warning("checksum/header error", - sblock_to_check); - if (sblock_bad->generation_error) - btrfs_dev_stat_inc_and_print(dev, - BTRFS_DEV_STAT_GENERATION_ERRS); - else - btrfs_dev_stat_inc_and_print(dev, - BTRFS_DEV_STAT_CORRUPTION_ERRS); - } - - if (sctx->readonly) { - ASSERT(!sctx->is_dev_replace); - goto out; - } - - /* - * now build and submit the bios for the other mirrors, check - * checksums. - * First try to pick the mirror which is completely without I/O - * errors and also does not have a checksum error. - * If one is found, and if a checksum is present, the full block - * that is known to contain an error is rewritten. Afterwards - * the block is known to be corrected. - * If a mirror is found which is completely correct, and no - * checksum is present, only those sectors are rewritten that had - * an I/O error in the block to be repaired, since it cannot be - * determined, which copy of the other sectors is better (and it - * could happen otherwise that a correct sector would be - * overwritten by a bad one). - */ - for (mirror_index = 0; ;mirror_index++) { - struct scrub_block *sblock_other; - - if (mirror_index == failed_mirror_index) - continue; - - /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ - if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { - if (mirror_index >= BTRFS_MAX_MIRRORS) - break; - if (!sblocks_for_recheck[mirror_index]->sector_count) - break; - - sblock_other = sblocks_for_recheck[mirror_index]; - } else { - struct scrub_recover *r = sblock_bad->sectors[0]->recover; - int max_allowed = r->bioc->num_stripes - r->bioc->replace_nr_stripes; - - if (mirror_index >= max_allowed) - break; - if (!sblocks_for_recheck[1]->sector_count) - break; - - ASSERT(failed_mirror_index == 0); - sblock_other = sblocks_for_recheck[1]; - sblock_other->mirror_num = 1 + mirror_index; - } - - /* build and submit the bios, check checksums */ - scrub_recheck_block(fs_info, sblock_other, 0); - - if (!sblock_other->header_error && - !sblock_other->checksum_error && - sblock_other->no_io_error_seen) { - if (sctx->is_dev_replace) { - goto corrected_error; - } else { - ret = scrub_repair_block_from_good_copy( - sblock_bad, sblock_other); - if (!ret) - goto corrected_error; - } - } - } - - if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) - goto did_not_correct_error; - - /* - * In case of I/O errors in the area that is supposed to be - * repaired, continue by picking good copies of those sectors. - * Select the good sectors from mirrors to rewrite bad sectors from - * the area to fix. Afterwards verify the checksum of the block - * that is supposed to be repaired. This verification step is - * only done for the purpose of statistic counting and for the - * final scrub report, whether errors remain. - * A perfect algorithm could make use of the checksum and try - * all possible combinations of sectors from the different mirrors - * until the checksum verification succeeds. For example, when - * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector - * of mirror #2 is readable but the final checksum test fails, - * then the 2nd sector of mirror #3 could be tried, whether now - * the final checksum succeeds. But this would be a rare - * exception and is therefore not implemented. At least it is - * avoided that the good copy is overwritten. - * A more useful improvement would be to pick the sectors - * without I/O error based on sector sizes (512 bytes on legacy - * disks) instead of on sectorsize. Then maybe 512 byte of one - * mirror could be repaired by taking 512 byte of a different - * mirror, even if other 512 byte sectors in the same sectorsize - * area are unreadable. - */ - success = 1; - for (sector_num = 0; sector_num < sblock_bad->sector_count; - sector_num++) { - struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; - struct scrub_block *sblock_other = NULL; - - /* Skip no-io-error sectors in scrub */ - if (!sector_bad->io_error && !sctx->is_dev_replace) - continue; - - if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { - /* - * In case of dev replace, if raid56 rebuild process - * didn't work out correct data, then copy the content - * in sblock_bad to make sure target device is identical - * to source device, instead of writing garbage data in - * sblock_for_recheck array to target device. - */ - sblock_other = NULL; - } else if (sector_bad->io_error) { - /* Try to find no-io-error sector in mirrors */ - for (mirror_index = 0; - mirror_index < BTRFS_MAX_MIRRORS && - sblocks_for_recheck[mirror_index]->sector_count > 0; - mirror_index++) { - if (!sblocks_for_recheck[mirror_index]-> - sectors[sector_num]->io_error) { - sblock_other = sblocks_for_recheck[mirror_index]; - break; - } - } - if (!sblock_other) - success = 0; - } - - if (sctx->is_dev_replace) { - /* - * Did not find a mirror to fetch the sector from. - * scrub_write_sector_to_dev_replace() handles this - * case (sector->io_error), by filling the block with - * zeros before submitting the write request - */ - if (!sblock_other) - sblock_other = sblock_bad; - } else if (sblock_other) { - ret = scrub_repair_sector_from_good_copy(sblock_bad, - sblock_other, - sector_num, 0); - if (0 == ret) - sector_bad->io_error = 0; - else - success = 0; - } - } - - if (success && !sctx->is_dev_replace) { - if (is_metadata || have_csum) { - /* - * need to verify the checksum now that all - * sectors on disk are repaired (the write - * request for data to be repaired is on its way). - * Just be lazy and use scrub_recheck_block() - * which re-reads the data before the checksum - * is verified, but most likely the data comes out - * of the page cache. - */ - scrub_recheck_block(fs_info, sblock_bad, 1); - if (!sblock_bad->header_error && - !sblock_bad->checksum_error && - sblock_bad->no_io_error_seen) - goto corrected_error; - else - goto did_not_correct_error; - } else { -corrected_error: - spin_lock(&sctx->stat_lock); - sctx->stat.corrected_errors++; - sblock_to_check->data_corrected = 1; - spin_unlock(&sctx->stat_lock); - btrfs_err_rl_in_rcu(fs_info, - "fixed up error at logical %llu on dev %s", - logical, btrfs_dev_name(dev)); - } - } else { -did_not_correct_error: - spin_lock(&sctx->stat_lock); - sctx->stat.uncorrectable_errors++; - spin_unlock(&sctx->stat_lock); - btrfs_err_rl_in_rcu(fs_info, - "unable to fixup (regular) error at logical %llu on dev %s", - logical, btrfs_dev_name(dev)); - } - -out: - for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { - struct scrub_block *sblock = sblocks_for_recheck[mirror_index]; - struct scrub_recover *recover; - int sector_index; - - /* Not allocated, continue checking the next mirror */ - if (!sblock) - continue; - - for (sector_index = 0; sector_index < sblock->sector_count; - sector_index++) { - /* - * Here we just cleanup the recover, each sector will be - * properly cleaned up by later scrub_block_put() - */ - recover = sblock->sectors[sector_index]->recover; - if (recover) { - scrub_put_recover(fs_info, recover); - sblock->sectors[sector_index]->recover = NULL; - } - } - scrub_block_put(sblock); - } - - ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); - memalloc_nofs_restore(nofs_flag); - if (ret < 0) - return ret; - return 0; -} - static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) { if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) @@ -1581,224 +893,6 @@ static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, } } -static int scrub_setup_recheck_block(struct scrub_block *original_sblock, - struct scrub_block *sblocks_for_recheck[]) -{ - struct scrub_ctx *sctx = original_sblock->sctx; - struct btrfs_fs_info *fs_info = sctx->fs_info; - u64 logical = original_sblock->logical; - u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; - u64 generation = original_sblock->sectors[0]->generation; - u64 flags = original_sblock->sectors[0]->flags; - u64 have_csum = original_sblock->sectors[0]->have_csum; - struct scrub_recover *recover; - struct btrfs_io_context *bioc; - u64 sublen; - u64 mapped_length; - u64 stripe_offset; - int stripe_index; - int sector_index = 0; - int mirror_index; - int nmirrors; - int ret; - - while (length > 0) { - sublen = min_t(u64, length, fs_info->sectorsize); - mapped_length = sublen; - bioc = NULL; - - /* - * With a length of sectorsize, each returned stripe represents - * one mirror - */ - btrfs_bio_counter_inc_blocked(fs_info); - ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, - logical, &mapped_length, &bioc); - if (ret || !bioc || mapped_length < sublen) { - btrfs_put_bioc(bioc); - btrfs_bio_counter_dec(fs_info); - return -EIO; - } - - recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL); - if (!recover) { - btrfs_put_bioc(bioc); - btrfs_bio_counter_dec(fs_info); - return -ENOMEM; - } - - refcount_set(&recover->refs, 1); - recover->bioc = bioc; - recover->map_length = mapped_length; - - ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); - - nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); - - for (mirror_index = 0; mirror_index < nmirrors; - mirror_index++) { - struct scrub_block *sblock; - struct scrub_sector *sector; - - sblock = sblocks_for_recheck[mirror_index]; - sblock->sctx = sctx; - - sector = alloc_scrub_sector(sblock, logical); - if (!sector) { - spin_lock(&sctx->stat_lock); - sctx->stat.malloc_errors++; - spin_unlock(&sctx->stat_lock); - scrub_put_recover(fs_info, recover); - return -ENOMEM; - } - sector->flags = flags; - sector->generation = generation; - sector->have_csum = have_csum; - if (have_csum) - memcpy(sector->csum, - original_sblock->sectors[0]->csum, - sctx->fs_info->csum_size); - - scrub_stripe_index_and_offset(logical, - bioc->map_type, - bioc->full_stripe_logical, - bioc->num_stripes - - bioc->replace_nr_stripes, - mirror_index, - &stripe_index, - &stripe_offset); - /* - * We're at the first sector, also populate @sblock - * physical and dev. - */ - if (sector_index == 0) { - sblock->physical = - bioc->stripes[stripe_index].physical + - stripe_offset; - sblock->dev = bioc->stripes[stripe_index].dev; - sblock->physical_for_dev_replace = - original_sblock->physical_for_dev_replace; - } - - BUG_ON(sector_index >= original_sblock->sector_count); - scrub_get_recover(recover); - sector->recover = recover; - } - scrub_put_recover(fs_info, recover); - length -= sublen; - logical += sublen; - sector_index++; - } - - return 0; -} - -static void scrub_bio_wait_endio(struct bio *bio) -{ - complete(bio->bi_private); -} - -static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, - struct bio *bio, - struct scrub_sector *sector) -{ - DECLARE_COMPLETION_ONSTACK(done); - - bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >> - SECTOR_SHIFT; - bio->bi_private = &done; - bio->bi_end_io = scrub_bio_wait_endio; - raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num); - - wait_for_completion_io(&done); - return blk_status_to_errno(bio->bi_status); -} - -static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, - struct scrub_block *sblock) -{ - struct scrub_sector *first_sector = sblock->sectors[0]; - struct bio *bio; - int i; - - /* All sectors in sblock belong to the same stripe on the same device. */ - ASSERT(sblock->dev); - if (!sblock->dev->bdev) - goto out; - - bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); - - for (i = 0; i < sblock->sector_count; i++) { - struct scrub_sector *sector = sblock->sectors[i]; - - bio_add_scrub_sector(bio, sector, fs_info->sectorsize); - } - - if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { - bio_put(bio); - goto out; - } - - bio_put(bio); - - scrub_recheck_block_checksum(sblock); - - return; -out: - for (i = 0; i < sblock->sector_count; i++) - sblock->sectors[i]->io_error = 1; - - sblock->no_io_error_seen = 0; -} - -/* - * This function will check the on disk data for checksum errors, header errors - * and read I/O errors. If any I/O errors happen, the exact sectors which are - * errored are marked as being bad. The goal is to enable scrub to take those - * sectors that are not errored from all the mirrors so that the sectors that - * are errored in the just handled mirror can be repaired. - */ -static void scrub_recheck_block(struct btrfs_fs_info *fs_info, - struct scrub_block *sblock, - int retry_failed_mirror) -{ - int i; - - sblock->no_io_error_seen = 1; - - /* short cut for raid56 */ - if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) - return scrub_recheck_block_on_raid56(fs_info, sblock); - - for (i = 0; i < sblock->sector_count; i++) { - struct scrub_sector *sector = sblock->sectors[i]; - struct bio bio; - struct bio_vec bvec; - - if (sblock->dev->bdev == NULL) { - sector->io_error = 1; - sblock->no_io_error_seen = 0; - continue; - } - - bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ); - bio_add_scrub_sector(&bio, sector, fs_info->sectorsize); - bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >> - SECTOR_SHIFT; - - btrfsic_check_bio(&bio); - if (submit_bio_wait(&bio)) { - sector->io_error = 1; - sblock->no_io_error_seen = 0; - } - - bio_uninit(&bio); - } - - if (sblock->no_io_error_seen) - scrub_recheck_block_checksum(sblock); -} - static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) { struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices; @@ -1808,77 +902,6 @@ static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) return !ret; } -static void scrub_recheck_block_checksum(struct scrub_block *sblock) -{ - sblock->header_error = 0; - sblock->checksum_error = 0; - sblock->generation_error = 0; - - if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) - scrub_checksum_data(sblock); - else - scrub_checksum_tree_block(sblock); -} - -static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, - struct scrub_block *sblock_good) -{ - int i; - int ret = 0; - - for (i = 0; i < sblock_bad->sector_count; i++) { - int ret_sub; - - ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, - sblock_good, i, 1); - if (ret_sub) - ret = ret_sub; - } - - return ret; -} - -static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, - struct scrub_block *sblock_good, - int sector_num, int force_write) -{ - struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; - struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; - struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; - const u32 sectorsize = fs_info->sectorsize; - - if (force_write || sblock_bad->header_error || - sblock_bad->checksum_error || sector_bad->io_error) { - struct bio bio; - struct bio_vec bvec; - int ret; - - if (!sblock_bad->dev->bdev) { - btrfs_warn_rl(fs_info, - "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); - return -EIO; - } - - bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); - bio.bi_iter.bi_sector = (sblock_bad->physical + - sector_bad->offset) >> SECTOR_SHIFT; - ret = bio_add_scrub_sector(&bio, sector_good, sectorsize); - - btrfsic_check_bio(&bio); - ret = submit_bio_wait(&bio); - bio_uninit(&bio); - - if (ret) { - btrfs_dev_stat_inc_and_print(sblock_bad->dev, - BTRFS_DEV_STAT_WRITE_ERRS); - atomic64_inc(&fs_info->dev_replace.num_write_errors); - return -EIO; - } - } - - return 0; -} - static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) { int ret = 0; @@ -1934,9 +957,6 @@ static int scrub_checksum(struct scrub_block *sblock) ret = scrub_checksum_super(sblock); else WARN_ON(1); - if (ret) - scrub_handle_errored_block(sblock); - return ret; } @@ -2916,16 +1936,13 @@ static void scrub_bio_end_io_worker(struct work_struct *work) static void scrub_block_complete(struct scrub_block *sblock) { - if (!sblock->no_io_error_seen) { - scrub_handle_errored_block(sblock); - } else { + if (sblock->no_io_error_seen) /* * if has checksum error, write via repair mechanism in * dev replace case, otherwise write here in dev replace * case. */ scrub_checksum(sblock); - } } static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) diff --git a/fs/btrfs/scrub.h b/fs/btrfs/scrub.h index f47492e78e1c..7d1982893363 100644 --- a/fs/btrfs/scrub.h +++ b/fs/btrfs/scrub.h @@ -16,9 +16,16 @@ int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, /* Temporary declaration, would be deleted later. */ struct scrub_ctx; struct scrub_sector; +struct scrub_block; int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum); int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, struct scrub_sector *sector); void scrub_sector_get(struct scrub_sector *sector); +struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, u64 logical); +struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, + struct btrfs_device *dev, + u64 logical, u64 physical, + u64 physical_for_dev_replace, + int mirror_num); #endif |