diff options
author | Sebastian Andrzej Siewior <bigeasy@linutronix.de> | 2021-02-26 17:11:55 +0100 |
---|---|---|
committer | Vlastimil Babka <vbabka@suse.cz> | 2021-09-04 01:12:23 +0200 |
commit | 5a836bf6b09f99ead1b69457ff39ab3011ece57b (patch) | |
tree | 959be42f69d765d7198b8c1d6c8aa1a3f3e54ec7 /mm/slub.c | |
parent | 08beb547a1f7b66fbeaf40f2d3675a3ea0060c0b (diff) | |
download | lwn-5a836bf6b09f99ead1b69457ff39ab3011ece57b.tar.gz lwn-5a836bf6b09f99ead1b69457ff39ab3011ece57b.zip |
mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context
flush_all() flushes a specific SLAB cache on each CPU (where the cache
is present). The deactivate_slab()/__free_slab() invocation happens
within IPI handler and is problematic for PREEMPT_RT.
The flush operation is not a frequent operation or a hot path. The
per-CPU flush operation can be moved to within a workqueue.
Because a workqueue handler, unlike IPI handler, does not disable irqs,
flush_slab() now has to disable them for working with the kmem_cache_cpu
fields. deactivate_slab() is safe to call with irqs enabled.
[vbabka@suse.cz: adapt to new SLUB changes]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Diffstat (limited to 'mm/slub.c')
-rw-r--r-- | mm/slub.c | 94 |
1 files changed, 78 insertions, 16 deletions
diff --git a/mm/slub.c b/mm/slub.c index fa9a366d2d9c..b7f8b9d34e46 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -2496,16 +2496,25 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) { - void *freelist = c->freelist; - struct page *page = c->page; + unsigned long flags; + struct page *page; + void *freelist; + + local_irq_save(flags); + + page = c->page; + freelist = c->freelist; c->page = NULL; c->freelist = NULL; c->tid = next_tid(c->tid); - deactivate_slab(s, page, freelist); + local_irq_restore(flags); - stat(s, CPUSLAB_FLUSH); + if (page) { + deactivate_slab(s, page, freelist); + stat(s, CPUSLAB_FLUSH); + } } static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) @@ -2526,15 +2535,27 @@ static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) unfreeze_partials_cpu(s, c); } +struct slub_flush_work { + struct work_struct work; + struct kmem_cache *s; + bool skip; +}; + /* * Flush cpu slab. * - * Called from IPI handler with interrupts disabled. + * Called from CPU work handler with migration disabled. */ -static void flush_cpu_slab(void *d) +static void flush_cpu_slab(struct work_struct *w) { - struct kmem_cache *s = d; - struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab); + struct kmem_cache *s; + struct kmem_cache_cpu *c; + struct slub_flush_work *sfw; + + sfw = container_of(w, struct slub_flush_work, work); + + s = sfw->s; + c = this_cpu_ptr(s->cpu_slab); if (c->page) flush_slab(s, c); @@ -2542,17 +2563,51 @@ static void flush_cpu_slab(void *d) unfreeze_partials(s); } -static bool has_cpu_slab(int cpu, void *info) +static bool has_cpu_slab(int cpu, struct kmem_cache *s) { - struct kmem_cache *s = info; struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); return c->page || slub_percpu_partial(c); } +static DEFINE_MUTEX(flush_lock); +static DEFINE_PER_CPU(struct slub_flush_work, slub_flush); + +static void flush_all_cpus_locked(struct kmem_cache *s) +{ + struct slub_flush_work *sfw; + unsigned int cpu; + + lockdep_assert_cpus_held(); + mutex_lock(&flush_lock); + + for_each_online_cpu(cpu) { + sfw = &per_cpu(slub_flush, cpu); + if (!has_cpu_slab(cpu, s)) { + sfw->skip = true; + continue; + } + INIT_WORK(&sfw->work, flush_cpu_slab); + sfw->skip = false; + sfw->s = s; + schedule_work_on(cpu, &sfw->work); + } + + for_each_online_cpu(cpu) { + sfw = &per_cpu(slub_flush, cpu); + if (sfw->skip) + continue; + flush_work(&sfw->work); + } + + mutex_unlock(&flush_lock); +} + static void flush_all(struct kmem_cache *s) { - on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1); + cpus_read_lock(); + flush_all_cpus_locked(s); + cpus_read_unlock(); } /* @@ -4097,7 +4152,7 @@ int __kmem_cache_shutdown(struct kmem_cache *s) int node; struct kmem_cache_node *n; - flush_all(s); + flush_all_cpus_locked(s); /* Attempt to free all objects */ for_each_kmem_cache_node(s, node, n) { free_partial(s, n); @@ -4373,7 +4428,7 @@ EXPORT_SYMBOL(kfree); * being allocated from last increasing the chance that the last objects * are freed in them. */ -int __kmem_cache_shrink(struct kmem_cache *s) +static int __kmem_cache_do_shrink(struct kmem_cache *s) { int node; int i; @@ -4385,7 +4440,6 @@ int __kmem_cache_shrink(struct kmem_cache *s) unsigned long flags; int ret = 0; - flush_all(s); for_each_kmem_cache_node(s, node, n) { INIT_LIST_HEAD(&discard); for (i = 0; i < SHRINK_PROMOTE_MAX; i++) @@ -4435,13 +4489,21 @@ int __kmem_cache_shrink(struct kmem_cache *s) return ret; } +int __kmem_cache_shrink(struct kmem_cache *s) +{ + flush_all(s); + return __kmem_cache_do_shrink(s); +} + static int slab_mem_going_offline_callback(void *arg) { struct kmem_cache *s; mutex_lock(&slab_mutex); - list_for_each_entry(s, &slab_caches, list) - __kmem_cache_shrink(s); + list_for_each_entry(s, &slab_caches, list) { + flush_all_cpus_locked(s); + __kmem_cache_do_shrink(s); + } mutex_unlock(&slab_mutex); return 0; |