summaryrefslogtreecommitdiff
path: root/mm/mmap.c
diff options
context:
space:
mode:
authorJann Horn <jannh@google.com>2023-07-20 21:34:36 +0200
committerAndrew Morton <akpm@linux-foundation.org>2023-08-18 10:12:46 -0700
commit90717566f8f6b6761494ccfff43ea62af443fc9b (patch)
treefb94812cdeee7ae2960eb563177183fd76ad31eb /mm/mmap.c
parent98630cfdc4221e1455e13c1bd423d029c888dca6 (diff)
downloadlwn-90717566f8f6b6761494ccfff43ea62af443fc9b.tar.gz
lwn-90717566f8f6b6761494ccfff43ea62af443fc9b.zip
mm: don't drop VMA locks in mm_drop_all_locks()
Despite its name, mm_drop_all_locks() does not drop _all_ locks; the mmap lock is held write-locked by the caller, and the caller is responsible for dropping the mmap lock at a later point (which will also release the VMA locks). Calling vma_end_write_all() here is dangerous because the caller might have write-locked a VMA with the expectation that it will stay write-locked until the mmap_lock is released, as usual. This _almost_ becomes a problem in the following scenario: An anonymous VMA A and an SGX VMA B are mapped adjacent to each other. Userspace calls munmap() on a range starting at the start address of A and ending in the middle of B. Hypothetical call graph with additional notes in brackets: do_vmi_align_munmap [begin first for_each_vma_range loop] vma_start_write [on VMA A] vma_mark_detached [on VMA A] __split_vma [on VMA B] sgx_vma_open [== new->vm_ops->open] sgx_encl_mm_add __mmu_notifier_register [luckily THIS CAN'T ACTUALLY HAPPEN] mm_take_all_locks mm_drop_all_locks vma_end_write_all [drops VMA lock taken on VMA A before] vma_start_write [on VMA B] vma_mark_detached [on VMA B] [end first for_each_vma_range loop] vma_iter_clear_gfp [removes VMAs from maple tree] mmap_write_downgrade unmap_region mmap_read_unlock In this hypothetical scenario, while do_vmi_align_munmap() thinks it still holds a VMA write lock on VMA A, the VMA write lock has actually been invalidated inside __split_vma(). The call from sgx_encl_mm_add() to __mmu_notifier_register() can't actually happen here, as far as I understand, because we are duplicating an existing SGX VMA, but sgx_encl_mm_add() only calls __mmu_notifier_register() for the first SGX VMA created in a given process. So this could only happen in fork(), not on munmap(). But in my view it is just pure luck that this can't happen. Also, we wouldn't actually have any bad consequences from this in do_vmi_align_munmap(), because by the time the bug drops the lock on VMA A, we've already marked VMA A as detached, which makes it completely ineligible for any VMA-locked page faults. But again, that's just pure luck. So remove the vma_end_write_all(), so that VMA write locks are only ever released on mmap_write_unlock() or mmap_write_downgrade(). Also add comments to document the locking rules established by this patch. Link: https://lkml.kernel.org/r/20230720193436.454247-1-jannh@google.com Fixes: eeff9a5d47f8 ("mm/mmap: prevent pagefault handler from racing with mmu_notifier registration") Signed-off-by: Jann Horn <jannh@google.com> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'mm/mmap.c')
-rw-r--r--mm/mmap.c7
1 files changed, 6 insertions, 1 deletions
diff --git a/mm/mmap.c b/mm/mmap.c
index 7bd1caa09ddd..4a9466b76648 100644
--- a/mm/mmap.c
+++ b/mm/mmap.c
@@ -3642,6 +3642,12 @@ int mm_take_all_locks(struct mm_struct *mm)
mutex_lock(&mm_all_locks_mutex);
+ /*
+ * vma_start_write() does not have a complement in mm_drop_all_locks()
+ * because vma_start_write() is always asymmetrical; it marks a VMA as
+ * being written to until mmap_write_unlock() or mmap_write_downgrade()
+ * is reached.
+ */
mas_for_each(&mas, vma, ULONG_MAX) {
if (signal_pending(current))
goto out_unlock;
@@ -3738,7 +3744,6 @@ void mm_drop_all_locks(struct mm_struct *mm)
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
- vma_end_write_all(mm);
mutex_unlock(&mm_all_locks_mutex);
}