summaryrefslogtreecommitdiff
path: root/mm/migrate.c
diff options
context:
space:
mode:
authorHuang Ying <ying.huang@intel.com>2022-01-14 14:08:49 -0800
committerLinus Torvalds <torvalds@linux-foundation.org>2022-01-15 16:30:31 +0200
commitdcee9bf5bf2f59c173f3645ac2274595ac6c6aea (patch)
tree64674295aee373e75f146b89a9c80715aeb7b9e4 /mm/migrate.c
parent7813a1b5257b8eb2cb915cd08e7ba857070fdfd3 (diff)
downloadlwn-dcee9bf5bf2f59c173f3645ac2274595ac6c6aea.tar.gz
lwn-dcee9bf5bf2f59c173f3645ac2274595ac6c6aea.zip
mm/migrate: move node demotion code to near its user
Now, node_demotion and next_demotion_node() are placed between __unmap_and_move() and unmap_and_move(). This hurts code readability. So move them near their users in the file. There's no functionality change in this patch. Link: https://lkml.kernel.org/r/20211206031227.3323097-1-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Wei Xu <weixugc@google.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/migrate.c')
-rw-r--r--mm/migrate.c265
1 files changed, 132 insertions, 133 deletions
diff --git a/mm/migrate.c b/mm/migrate.c
index f50087d3ebf2..e50b80534d80 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -1093,139 +1093,6 @@ out:
return rc;
}
-
-/*
- * node_demotion[] example:
- *
- * Consider a system with two sockets. Each socket has
- * three classes of memory attached: fast, medium and slow.
- * Each memory class is placed in its own NUMA node. The
- * CPUs are placed in the node with the "fast" memory. The
- * 6 NUMA nodes (0-5) might be split among the sockets like
- * this:
- *
- * Socket A: 0, 1, 2
- * Socket B: 3, 4, 5
- *
- * When Node 0 fills up, its memory should be migrated to
- * Node 1. When Node 1 fills up, it should be migrated to
- * Node 2. The migration path start on the nodes with the
- * processors (since allocations default to this node) and
- * fast memory, progress through medium and end with the
- * slow memory:
- *
- * 0 -> 1 -> 2 -> stop
- * 3 -> 4 -> 5 -> stop
- *
- * This is represented in the node_demotion[] like this:
- *
- * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
- * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
- * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
- * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
- * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
- * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
- *
- * Moreover some systems may have multiple slow memory nodes.
- * Suppose a system has one socket with 3 memory nodes, node 0
- * is fast memory type, and node 1/2 both are slow memory
- * type, and the distance between fast memory node and slow
- * memory node is same. So the migration path should be:
- *
- * 0 -> 1/2 -> stop
- *
- * This is represented in the node_demotion[] like this:
- * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
- * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
- * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
- */
-
-/*
- * Writes to this array occur without locking. Cycles are
- * not allowed: Node X demotes to Y which demotes to X...
- *
- * If multiple reads are performed, a single rcu_read_lock()
- * must be held over all reads to ensure that no cycles are
- * observed.
- */
-#define DEFAULT_DEMOTION_TARGET_NODES 15
-
-#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
-#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
-#else
-#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
-#endif
-
-struct demotion_nodes {
- unsigned short nr;
- short nodes[DEMOTION_TARGET_NODES];
-};
-
-static struct demotion_nodes *node_demotion __read_mostly;
-
-/**
- * next_demotion_node() - Get the next node in the demotion path
- * @node: The starting node to lookup the next node
- *
- * Return: node id for next memory node in the demotion path hierarchy
- * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
- * @node online or guarantee that it *continues* to be the next demotion
- * target.
- */
-int next_demotion_node(int node)
-{
- struct demotion_nodes *nd;
- unsigned short target_nr, index;
- int target;
-
- if (!node_demotion)
- return NUMA_NO_NODE;
-
- nd = &node_demotion[node];
-
- /*
- * node_demotion[] is updated without excluding this
- * function from running. RCU doesn't provide any
- * compiler barriers, so the READ_ONCE() is required
- * to avoid compiler reordering or read merging.
- *
- * Make sure to use RCU over entire code blocks if
- * node_demotion[] reads need to be consistent.
- */
- rcu_read_lock();
- target_nr = READ_ONCE(nd->nr);
-
- switch (target_nr) {
- case 0:
- target = NUMA_NO_NODE;
- goto out;
- case 1:
- index = 0;
- break;
- default:
- /*
- * If there are multiple target nodes, just select one
- * target node randomly.
- *
- * In addition, we can also use round-robin to select
- * target node, but we should introduce another variable
- * for node_demotion[] to record last selected target node,
- * that may cause cache ping-pong due to the changing of
- * last target node. Or introducing per-cpu data to avoid
- * caching issue, which seems more complicated. So selecting
- * target node randomly seems better until now.
- */
- index = get_random_int() % target_nr;
- break;
- }
-
- target = READ_ONCE(nd->nodes[index]);
-
-out:
- rcu_read_unlock();
- return target;
-}
-
/*
* Obtain the lock on page, remove all ptes and migrate the page
* to the newly allocated page in newpage.
@@ -3059,6 +2926,138 @@ void migrate_vma_finalize(struct migrate_vma *migrate)
EXPORT_SYMBOL(migrate_vma_finalize);
#endif /* CONFIG_DEVICE_PRIVATE */
+/*
+ * node_demotion[] example:
+ *
+ * Consider a system with two sockets. Each socket has
+ * three classes of memory attached: fast, medium and slow.
+ * Each memory class is placed in its own NUMA node. The
+ * CPUs are placed in the node with the "fast" memory. The
+ * 6 NUMA nodes (0-5) might be split among the sockets like
+ * this:
+ *
+ * Socket A: 0, 1, 2
+ * Socket B: 3, 4, 5
+ *
+ * When Node 0 fills up, its memory should be migrated to
+ * Node 1. When Node 1 fills up, it should be migrated to
+ * Node 2. The migration path start on the nodes with the
+ * processors (since allocations default to this node) and
+ * fast memory, progress through medium and end with the
+ * slow memory:
+ *
+ * 0 -> 1 -> 2 -> stop
+ * 3 -> 4 -> 5 -> stop
+ *
+ * This is represented in the node_demotion[] like this:
+ *
+ * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
+ * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
+ * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
+ * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
+ * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
+ * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
+ *
+ * Moreover some systems may have multiple slow memory nodes.
+ * Suppose a system has one socket with 3 memory nodes, node 0
+ * is fast memory type, and node 1/2 both are slow memory
+ * type, and the distance between fast memory node and slow
+ * memory node is same. So the migration path should be:
+ *
+ * 0 -> 1/2 -> stop
+ *
+ * This is represented in the node_demotion[] like this:
+ * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
+ * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
+ * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
+ */
+
+/*
+ * Writes to this array occur without locking. Cycles are
+ * not allowed: Node X demotes to Y which demotes to X...
+ *
+ * If multiple reads are performed, a single rcu_read_lock()
+ * must be held over all reads to ensure that no cycles are
+ * observed.
+ */
+#define DEFAULT_DEMOTION_TARGET_NODES 15
+
+#if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
+#define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
+#else
+#define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
+#endif
+
+struct demotion_nodes {
+ unsigned short nr;
+ short nodes[DEMOTION_TARGET_NODES];
+};
+
+static struct demotion_nodes *node_demotion __read_mostly;
+
+/**
+ * next_demotion_node() - Get the next node in the demotion path
+ * @node: The starting node to lookup the next node
+ *
+ * Return: node id for next memory node in the demotion path hierarchy
+ * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
+ * @node online or guarantee that it *continues* to be the next demotion
+ * target.
+ */
+int next_demotion_node(int node)
+{
+ struct demotion_nodes *nd;
+ unsigned short target_nr, index;
+ int target;
+
+ if (!node_demotion)
+ return NUMA_NO_NODE;
+
+ nd = &node_demotion[node];
+
+ /*
+ * node_demotion[] is updated without excluding this
+ * function from running. RCU doesn't provide any
+ * compiler barriers, so the READ_ONCE() is required
+ * to avoid compiler reordering or read merging.
+ *
+ * Make sure to use RCU over entire code blocks if
+ * node_demotion[] reads need to be consistent.
+ */
+ rcu_read_lock();
+ target_nr = READ_ONCE(nd->nr);
+
+ switch (target_nr) {
+ case 0:
+ target = NUMA_NO_NODE;
+ goto out;
+ case 1:
+ index = 0;
+ break;
+ default:
+ /*
+ * If there are multiple target nodes, just select one
+ * target node randomly.
+ *
+ * In addition, we can also use round-robin to select
+ * target node, but we should introduce another variable
+ * for node_demotion[] to record last selected target node,
+ * that may cause cache ping-pong due to the changing of
+ * last target node. Or introducing per-cpu data to avoid
+ * caching issue, which seems more complicated. So selecting
+ * target node randomly seems better until now.
+ */
+ index = get_random_int() % target_nr;
+ break;
+ }
+
+ target = READ_ONCE(nd->nodes[index]);
+
+out:
+ rcu_read_unlock();
+ return target;
+}
+
#if defined(CONFIG_HOTPLUG_CPU)
/* Disable reclaim-based migration. */
static void __disable_all_migrate_targets(void)