diff options
author | Andy Whitcroft <apw@shadowen.org> | 2008-11-06 12:53:26 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2008-11-06 15:41:18 -0800 |
commit | 69d177c2fc702d402b17fdca2190d5a7e3ca55c5 (patch) | |
tree | 2040e0a84b7c07c29ac6fb6e51e125de52256f5d /mm/hugetlb.c | |
parent | 22bece00dc1f28dd3374c55e464c9f02eb642876 (diff) | |
download | lwn-69d177c2fc702d402b17fdca2190d5a7e3ca55c5.tar.gz lwn-69d177c2fc702d402b17fdca2190d5a7e3ca55c5.zip |
hugetlbfs: handle pages higher order than MAX_ORDER
When working with hugepages, hugetlbfs assumes that those hugepages are
smaller than MAX_ORDER. Specifically it assumes that the mem_map is
contigious and uses that to optimise access to the elements of the mem_map
that represent the hugepage. Gigantic pages (such as 16GB pages on
powerpc) by definition are of greater order than MAX_ORDER (larger than
MAX_ORDER_NR_PAGES in size). This means that we can no longer make use of
the buddy alloctor guarentees for the contiguity of the mem_map, which
ensures that the mem_map is at least contigious for maximmally aligned
areas of MAX_ORDER_NR_PAGES pages.
This patch adds new mem_map accessors and iterator helpers which handle
any discontiguity at MAX_ORDER_NR_PAGES boundaries. It then uses these to
implement gigantic page versions of copy_huge_page and clear_huge_page,
and to allow follow_hugetlb_page handle gigantic pages.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/hugetlb.c')
-rw-r--r-- | mm/hugetlb.c | 37 |
1 files changed, 36 insertions, 1 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 421aee99b84a..e6afe527bd09 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -354,11 +354,26 @@ static int vma_has_reserves(struct vm_area_struct *vma) return 0; } +static void clear_gigantic_page(struct page *page, + unsigned long addr, unsigned long sz) +{ + int i; + struct page *p = page; + + might_sleep(); + for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { + cond_resched(); + clear_user_highpage(p, addr + i * PAGE_SIZE); + } +} static void clear_huge_page(struct page *page, unsigned long addr, unsigned long sz) { int i; + if (unlikely(sz > MAX_ORDER_NR_PAGES)) + return clear_gigantic_page(page, addr, sz); + might_sleep(); for (i = 0; i < sz/PAGE_SIZE; i++) { cond_resched(); @@ -366,12 +381,32 @@ static void clear_huge_page(struct page *page, } } +static void copy_gigantic_page(struct page *dst, struct page *src, + unsigned long addr, struct vm_area_struct *vma) +{ + int i; + struct hstate *h = hstate_vma(vma); + struct page *dst_base = dst; + struct page *src_base = src; + might_sleep(); + for (i = 0; i < pages_per_huge_page(h); ) { + cond_resched(); + copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); + + i++; + dst = mem_map_next(dst, dst_base, i); + src = mem_map_next(src, src_base, i); + } +} static void copy_huge_page(struct page *dst, struct page *src, unsigned long addr, struct vm_area_struct *vma) { int i; struct hstate *h = hstate_vma(vma); + if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) + return copy_gigantic_page(dst, src, addr, vma); + might_sleep(); for (i = 0; i < pages_per_huge_page(h); i++) { cond_resched(); @@ -2130,7 +2165,7 @@ same_page: if (zeropage_ok) pages[i] = ZERO_PAGE(0); else - pages[i] = page + pfn_offset; + pages[i] = mem_map_offset(page, pfn_offset); get_page(pages[i]); } |