summaryrefslogtreecommitdiff
path: root/mm/compaction.c
diff options
context:
space:
mode:
authorVlastimil Babka <vbabka@suse.cz>2016-07-28 15:49:30 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2016-07-28 16:07:41 -0700
commitc3486f5376696034d0fcbef8ba70c70cfcb26f51 (patch)
tree5faec99d3537ddabaaf79e90d3335f0812e69766 /mm/compaction.c
parenta5508cd83f10f663e05d212cb81f600a3af46e40 (diff)
downloadlwn-c3486f5376696034d0fcbef8ba70c70cfcb26f51.tar.gz
lwn-c3486f5376696034d0fcbef8ba70c70cfcb26f51.zip
mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f3f ("mm, compaction: khugepaged should not give up due to need_resched()") the code got quite complicated to distinguish these two up to the __alloc_pages_slowpath() level, so different decisions could be taken for khugepaged allocations. After the recent changes, khugepaged allocations don't check for contended compaction anymore, so we again don't need to distinguish lock and sched contention, and simplify the current convoluted code a lot. However, I believe it's also possible to simplify even more and completely remove the check for contended compaction after the initial async compaction for costly orders, which was originally aimed at THP page fault allocations. There are several reasons why this can be done now: - with the new defaults, THP page faults no longer do reclaim/compaction at all, unless the system admin has overridden the default, or application has indicated via madvise that it can benefit from THP's. In both cases, it means that the potential extra latency is expected and worth the benefits. - even if reclaim/compaction proceeds after this patch where it previously wouldn't, the second compaction attempt is still async and will detect the contention and back off, if the contention persists - there are still heuristics like deferred compaction and pageblock skip bits in place that prevent excessive THP page fault latencies Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/compaction.c')
-rw-r--r--mm/compaction.c72
1 files changed, 13 insertions, 59 deletions
diff --git a/mm/compaction.c b/mm/compaction.c
index 4719a391242f..9affb2908304 100644
--- a/mm/compaction.c
+++ b/mm/compaction.c
@@ -331,7 +331,7 @@ static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
{
if (cc->mode == MIGRATE_ASYNC) {
if (!spin_trylock_irqsave(lock, *flags)) {
- cc->contended = COMPACT_CONTENDED_LOCK;
+ cc->contended = true;
return false;
}
} else {
@@ -365,13 +365,13 @@ static bool compact_unlock_should_abort(spinlock_t *lock,
}
if (fatal_signal_pending(current)) {
- cc->contended = COMPACT_CONTENDED_SCHED;
+ cc->contended = true;
return true;
}
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
- cc->contended = COMPACT_CONTENDED_SCHED;
+ cc->contended = true;
return true;
}
cond_resched();
@@ -394,7 +394,7 @@ static inline bool compact_should_abort(struct compact_control *cc)
/* async compaction aborts if contended */
if (need_resched()) {
if (cc->mode == MIGRATE_ASYNC) {
- cc->contended = COMPACT_CONTENDED_SCHED;
+ cc->contended = true;
return true;
}
@@ -1619,14 +1619,11 @@ out:
trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
cc->free_pfn, end_pfn, sync, ret);
- if (ret == COMPACT_CONTENDED)
- ret = COMPACT_PARTIAL;
-
return ret;
}
static enum compact_result compact_zone_order(struct zone *zone, int order,
- gfp_t gfp_mask, enum compact_priority prio, int *contended,
+ gfp_t gfp_mask, enum compact_priority prio,
unsigned int alloc_flags, int classzone_idx)
{
enum compact_result ret;
@@ -1650,7 +1647,6 @@ static enum compact_result compact_zone_order(struct zone *zone, int order,
VM_BUG_ON(!list_empty(&cc.freepages));
VM_BUG_ON(!list_empty(&cc.migratepages));
- *contended = cc.contended;
return ret;
}
@@ -1663,23 +1659,18 @@ int sysctl_extfrag_threshold = 500;
* @alloc_flags: The allocation flags of the current allocation
* @ac: The context of current allocation
* @mode: The migration mode for async, sync light, or sync migration
- * @contended: Return value that determines if compaction was aborted due to
- * need_resched() or lock contention
*
* This is the main entry point for direct page compaction.
*/
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
unsigned int alloc_flags, const struct alloc_context *ac,
- enum compact_priority prio, int *contended)
+ enum compact_priority prio)
{
int may_enter_fs = gfp_mask & __GFP_FS;
int may_perform_io = gfp_mask & __GFP_IO;
struct zoneref *z;
struct zone *zone;
enum compact_result rc = COMPACT_SKIPPED;
- int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
-
- *contended = COMPACT_CONTENDED_NONE;
/* Check if the GFP flags allow compaction */
if (!may_enter_fs || !may_perform_io)
@@ -1691,7 +1682,6 @@ enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
ac->nodemask) {
enum compact_result status;
- int zone_contended;
if (compaction_deferred(zone, order)) {
rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
@@ -1699,14 +1689,8 @@ enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
}
status = compact_zone_order(zone, order, gfp_mask, prio,
- &zone_contended, alloc_flags,
- ac_classzone_idx(ac));
+ alloc_flags, ac_classzone_idx(ac));
rc = max(status, rc);
- /*
- * It takes at least one zone that wasn't lock contended
- * to clear all_zones_contended.
- */
- all_zones_contended &= zone_contended;
/* If a normal allocation would succeed, stop compacting */
if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
@@ -1718,59 +1702,29 @@ enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
* succeeds in this zone.
*/
compaction_defer_reset(zone, order, false);
- /*
- * It is possible that async compaction aborted due to
- * need_resched() and the watermarks were ok thanks to
- * somebody else freeing memory. The allocation can
- * however still fail so we better signal the
- * need_resched() contention anyway (this will not
- * prevent the allocation attempt).
- */
- if (zone_contended == COMPACT_CONTENDED_SCHED)
- *contended = COMPACT_CONTENDED_SCHED;
- goto break_loop;
+ break;
}
if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
- status == COMPACT_PARTIAL_SKIPPED)) {
+ status == COMPACT_PARTIAL_SKIPPED))
/*
* We think that allocation won't succeed in this zone
* so we defer compaction there. If it ends up
* succeeding after all, it will be reset.
*/
defer_compaction(zone, order);
- }
/*
* We might have stopped compacting due to need_resched() in
* async compaction, or due to a fatal signal detected. In that
- * case do not try further zones and signal need_resched()
- * contention.
- */
- if ((zone_contended == COMPACT_CONTENDED_SCHED)
- || fatal_signal_pending(current)) {
- *contended = COMPACT_CONTENDED_SCHED;
- goto break_loop;
- }
-
- continue;
-break_loop:
- /*
- * We might not have tried all the zones, so be conservative
- * and assume they are not all lock contended.
+ * case do not try further zones
*/
- all_zones_contended = 0;
- break;
+ if ((prio == COMPACT_PRIO_ASYNC && need_resched())
+ || fatal_signal_pending(current))
+ break;
}
- /*
- * If at least one zone wasn't deferred or skipped, we report if all
- * zones that were tried were lock contended.
- */
- if (rc > COMPACT_INACTIVE && all_zones_contended)
- *contended = COMPACT_CONTENDED_LOCK;
-
return rc;
}