diff options
author | Christoph Hellwig <hch@lst.de> | 2018-06-12 19:01:45 +0200 |
---|---|---|
committer | Christoph Hellwig <hch@lst.de> | 2018-06-14 08:50:37 +0200 |
commit | cf65a0f6f6ff7631ba0ac0513a14ca5b65320d80 (patch) | |
tree | a81edcdf00e5a6e99fc2064fbcd9de4f33a4684f /kernel | |
parent | e37460c1ca08cf9d3b82eb3b6f205888d8d01182 (diff) | |
download | lwn-cf65a0f6f6ff7631ba0ac0513a14ca5b65320d80.tar.gz lwn-cf65a0f6f6ff7631ba0ac0513a14ca5b65320d80.zip |
dma-mapping: move all DMA mapping code to kernel/dma
Currently the code is split over various files with dma- prefixes in the
lib/ and drives/base directories, and the number of files keeps growing.
Move them into a single directory to keep the code together and remove
the file name prefixes. To match the irq infrastructure this directory
is placed under the kernel/ directory.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 1 | ||||
-rw-r--r-- | kernel/dma/Kconfig | 50 | ||||
-rw-r--r-- | kernel/dma/Makefile | 11 | ||||
-rw-r--r-- | kernel/dma/coherent.c | 434 | ||||
-rw-r--r-- | kernel/dma/contiguous.c | 278 | ||||
-rw-r--r-- | kernel/dma/debug.c | 1773 | ||||
-rw-r--r-- | kernel/dma/direct.c | 204 | ||||
-rw-r--r-- | kernel/dma/mapping.c | 345 | ||||
-rw-r--r-- | kernel/dma/noncoherent.c | 102 | ||||
-rw-r--r-- | kernel/dma/swiotlb.c | 1087 | ||||
-rw-r--r-- | kernel/dma/virt.c | 59 |
11 files changed, 4344 insertions, 0 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index d2001624fe7a..04bc07c2b42a 100644 --- a/kernel/Makefile +++ b/kernel/Makefile @@ -41,6 +41,7 @@ obj-y += printk/ obj-y += irq/ obj-y += rcu/ obj-y += livepatch/ +obj-y += dma/ obj-$(CONFIG_CHECKPOINT_RESTORE) += kcmp.o obj-$(CONFIG_FREEZER) += freezer.o diff --git a/kernel/dma/Kconfig b/kernel/dma/Kconfig new file mode 100644 index 000000000000..9bd54304446f --- /dev/null +++ b/kernel/dma/Kconfig @@ -0,0 +1,50 @@ + +config HAS_DMA + bool + depends on !NO_DMA + default y + +config NEED_SG_DMA_LENGTH + bool + +config NEED_DMA_MAP_STATE + bool + +config ARCH_DMA_ADDR_T_64BIT + def_bool 64BIT || PHYS_ADDR_T_64BIT + +config HAVE_GENERIC_DMA_COHERENT + bool + +config ARCH_HAS_SYNC_DMA_FOR_DEVICE + bool + +config ARCH_HAS_SYNC_DMA_FOR_CPU + bool + select NEED_DMA_MAP_STATE + +config DMA_DIRECT_OPS + bool + depends on HAS_DMA + +config DMA_NONCOHERENT_OPS + bool + depends on HAS_DMA + select DMA_DIRECT_OPS + +config DMA_NONCOHERENT_MMAP + bool + depends on DMA_NONCOHERENT_OPS + +config DMA_NONCOHERENT_CACHE_SYNC + bool + depends on DMA_NONCOHERENT_OPS + +config DMA_VIRT_OPS + bool + depends on HAS_DMA + +config SWIOTLB + bool + select DMA_DIRECT_OPS + select NEED_DMA_MAP_STATE diff --git a/kernel/dma/Makefile b/kernel/dma/Makefile new file mode 100644 index 000000000000..6de44e4eb454 --- /dev/null +++ b/kernel/dma/Makefile @@ -0,0 +1,11 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_HAS_DMA) += mapping.o +obj-$(CONFIG_DMA_CMA) += contiguous.o +obj-$(CONFIG_HAVE_GENERIC_DMA_COHERENT) += coherent.o +obj-$(CONFIG_DMA_DIRECT_OPS) += direct.o +obj-$(CONFIG_DMA_NONCOHERENT_OPS) += noncoherent.o +obj-$(CONFIG_DMA_VIRT_OPS) += virt.o +obj-$(CONFIG_DMA_API_DEBUG) += debug.o +obj-$(CONFIG_SWIOTLB) += swiotlb.o + diff --git a/kernel/dma/coherent.c b/kernel/dma/coherent.c new file mode 100644 index 000000000000..597d40893862 --- /dev/null +++ b/kernel/dma/coherent.c @@ -0,0 +1,434 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Coherent per-device memory handling. + * Borrowed from i386 + */ +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/dma-mapping.h> + +struct dma_coherent_mem { + void *virt_base; + dma_addr_t device_base; + unsigned long pfn_base; + int size; + int flags; + unsigned long *bitmap; + spinlock_t spinlock; + bool use_dev_dma_pfn_offset; +}; + +static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init; + +static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev) +{ + if (dev && dev->dma_mem) + return dev->dma_mem; + return NULL; +} + +static inline dma_addr_t dma_get_device_base(struct device *dev, + struct dma_coherent_mem * mem) +{ + if (mem->use_dev_dma_pfn_offset) + return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT; + else + return mem->device_base; +} + +static int dma_init_coherent_memory( + phys_addr_t phys_addr, dma_addr_t device_addr, size_t size, int flags, + struct dma_coherent_mem **mem) +{ + struct dma_coherent_mem *dma_mem = NULL; + void __iomem *mem_base = NULL; + int pages = size >> PAGE_SHIFT; + int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long); + int ret; + + if (!size) { + ret = -EINVAL; + goto out; + } + + mem_base = memremap(phys_addr, size, MEMREMAP_WC); + if (!mem_base) { + ret = -EINVAL; + goto out; + } + dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL); + if (!dma_mem) { + ret = -ENOMEM; + goto out; + } + dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL); + if (!dma_mem->bitmap) { + ret = -ENOMEM; + goto out; + } + + dma_mem->virt_base = mem_base; + dma_mem->device_base = device_addr; + dma_mem->pfn_base = PFN_DOWN(phys_addr); + dma_mem->size = pages; + dma_mem->flags = flags; + spin_lock_init(&dma_mem->spinlock); + + *mem = dma_mem; + return 0; + +out: + kfree(dma_mem); + if (mem_base) + memunmap(mem_base); + return ret; +} + +static void dma_release_coherent_memory(struct dma_coherent_mem *mem) +{ + if (!mem) + return; + + memunmap(mem->virt_base); + kfree(mem->bitmap); + kfree(mem); +} + +static int dma_assign_coherent_memory(struct device *dev, + struct dma_coherent_mem *mem) +{ + if (!dev) + return -ENODEV; + + if (dev->dma_mem) + return -EBUSY; + + dev->dma_mem = mem; + return 0; +} + +int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, int flags) +{ + struct dma_coherent_mem *mem; + int ret; + + ret = dma_init_coherent_memory(phys_addr, device_addr, size, flags, &mem); + if (ret) + return ret; + + ret = dma_assign_coherent_memory(dev, mem); + if (ret) + dma_release_coherent_memory(mem); + return ret; +} +EXPORT_SYMBOL(dma_declare_coherent_memory); + +void dma_release_declared_memory(struct device *dev) +{ + struct dma_coherent_mem *mem = dev->dma_mem; + + if (!mem) + return; + dma_release_coherent_memory(mem); + dev->dma_mem = NULL; +} +EXPORT_SYMBOL(dma_release_declared_memory); + +void *dma_mark_declared_memory_occupied(struct device *dev, + dma_addr_t device_addr, size_t size) +{ + struct dma_coherent_mem *mem = dev->dma_mem; + unsigned long flags; + int pos, err; + + size += device_addr & ~PAGE_MASK; + + if (!mem) + return ERR_PTR(-EINVAL); + + spin_lock_irqsave(&mem->spinlock, flags); + pos = PFN_DOWN(device_addr - dma_get_device_base(dev, mem)); + err = bitmap_allocate_region(mem->bitmap, pos, get_order(size)); + spin_unlock_irqrestore(&mem->spinlock, flags); + + if (err != 0) + return ERR_PTR(err); + return mem->virt_base + (pos << PAGE_SHIFT); +} +EXPORT_SYMBOL(dma_mark_declared_memory_occupied); + +static void *__dma_alloc_from_coherent(struct dma_coherent_mem *mem, + ssize_t size, dma_addr_t *dma_handle) +{ + int order = get_order(size); + unsigned long flags; + int pageno; + void *ret; + + spin_lock_irqsave(&mem->spinlock, flags); + + if (unlikely(size > (mem->size << PAGE_SHIFT))) + goto err; + + pageno = bitmap_find_free_region(mem->bitmap, mem->size, order); + if (unlikely(pageno < 0)) + goto err; + + /* + * Memory was found in the coherent area. + */ + *dma_handle = mem->device_base + (pageno << PAGE_SHIFT); + ret = mem->virt_base + (pageno << PAGE_SHIFT); + spin_unlock_irqrestore(&mem->spinlock, flags); + memset(ret, 0, size); + return ret; +err: + spin_unlock_irqrestore(&mem->spinlock, flags); + return NULL; +} + +/** + * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool + * @dev: device from which we allocate memory + * @size: size of requested memory area + * @dma_handle: This will be filled with the correct dma handle + * @ret: This pointer will be filled with the virtual address + * to allocated area. + * + * This function should be only called from per-arch dma_alloc_coherent() + * to support allocation from per-device coherent memory pools. + * + * Returns 0 if dma_alloc_coherent should continue with allocating from + * generic memory areas, or !0 if dma_alloc_coherent should return @ret. + */ +int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size, + dma_addr_t *dma_handle, void **ret) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + if (!mem) + return 0; + + *ret = __dma_alloc_from_coherent(mem, size, dma_handle); + if (*ret) + return 1; + + /* + * In the case where the allocation can not be satisfied from the + * per-device area, try to fall back to generic memory if the + * constraints allow it. + */ + return mem->flags & DMA_MEMORY_EXCLUSIVE; +} +EXPORT_SYMBOL(dma_alloc_from_dev_coherent); + +void *dma_alloc_from_global_coherent(ssize_t size, dma_addr_t *dma_handle) +{ + if (!dma_coherent_default_memory) + return NULL; + + return __dma_alloc_from_coherent(dma_coherent_default_memory, size, + dma_handle); +} + +static int __dma_release_from_coherent(struct dma_coherent_mem *mem, + int order, void *vaddr) +{ + if (mem && vaddr >= mem->virt_base && vaddr < + (mem->virt_base + (mem->size << PAGE_SHIFT))) { + int page = (vaddr - mem->virt_base) >> PAGE_SHIFT; + unsigned long flags; + + spin_lock_irqsave(&mem->spinlock, flags); + bitmap_release_region(mem->bitmap, page, order); + spin_unlock_irqrestore(&mem->spinlock, flags); + return 1; + } + return 0; +} + +/** + * dma_release_from_dev_coherent() - free memory to device coherent memory pool + * @dev: device from which the memory was allocated + * @order: the order of pages allocated + * @vaddr: virtual address of allocated pages + * + * This checks whether the memory was allocated from the per-device + * coherent memory pool and if so, releases that memory. + * + * Returns 1 if we correctly released the memory, or 0 if the caller should + * proceed with releasing memory from generic pools. + */ +int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + return __dma_release_from_coherent(mem, order, vaddr); +} +EXPORT_SYMBOL(dma_release_from_dev_coherent); + +int dma_release_from_global_coherent(int order, void *vaddr) +{ + if (!dma_coherent_default_memory) + return 0; + + return __dma_release_from_coherent(dma_coherent_default_memory, order, + vaddr); +} + +static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem, + struct vm_area_struct *vma, void *vaddr, size_t size, int *ret) +{ + if (mem && vaddr >= mem->virt_base && vaddr + size <= + (mem->virt_base + (mem->size << PAGE_SHIFT))) { + unsigned long off = vma->vm_pgoff; + int start = (vaddr - mem->virt_base) >> PAGE_SHIFT; + int user_count = vma_pages(vma); + int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + + *ret = -ENXIO; + if (off < count && user_count <= count - off) { + unsigned long pfn = mem->pfn_base + start + off; + *ret = remap_pfn_range(vma, vma->vm_start, pfn, + user_count << PAGE_SHIFT, + vma->vm_page_prot); + } + return 1; + } + return 0; +} + +/** + * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool + * @dev: device from which the memory was allocated + * @vma: vm_area for the userspace memory + * @vaddr: cpu address returned by dma_alloc_from_dev_coherent + * @size: size of the memory buffer allocated + * @ret: result from remap_pfn_range() + * + * This checks whether the memory was allocated from the per-device + * coherent memory pool and if so, maps that memory to the provided vma. + * + * Returns 1 if @vaddr belongs to the device coherent pool and the caller + * should return @ret, or 0 if they should proceed with mapping memory from + * generic areas. + */ +int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma, + void *vaddr, size_t size, int *ret) +{ + struct dma_coherent_mem *mem = dev_get_coherent_memory(dev); + + return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret); +} +EXPORT_SYMBOL(dma_mmap_from_dev_coherent); + +int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr, + size_t size, int *ret) +{ + if (!dma_coherent_default_memory) + return 0; + + return __dma_mmap_from_coherent(dma_coherent_default_memory, vma, + vaddr, size, ret); +} + +/* + * Support for reserved memory regions defined in device tree + */ +#ifdef CONFIG_OF_RESERVED_MEM +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> + +static struct reserved_mem *dma_reserved_default_memory __initdata; + +static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev) +{ + struct dma_coherent_mem *mem = rmem->priv; + int ret; + + if (!mem) { + ret = dma_init_coherent_memory(rmem->base, rmem->base, + rmem->size, + DMA_MEMORY_EXCLUSIVE, &mem); + if (ret) { + pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return ret; + } + } + mem->use_dev_dma_pfn_offset = true; + rmem->priv = mem; + dma_assign_coherent_memory(dev, mem); + return 0; +} + +static void rmem_dma_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + if (dev) + dev->dma_mem = NULL; +} + +static const struct reserved_mem_ops rmem_dma_ops = { + .device_init = rmem_dma_device_init, + .device_release = rmem_dma_device_release, +}; + +static int __init rmem_dma_setup(struct reserved_mem *rmem) +{ + unsigned long node = rmem->fdt_node; + + if (of_get_flat_dt_prop(node, "reusable", NULL)) + return -EINVAL; + +#ifdef CONFIG_ARM + if (!of_get_flat_dt_prop(node, "no-map", NULL)) { + pr_err("Reserved memory: regions without no-map are not yet supported\n"); + return -EINVAL; + } + + if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) { + WARN(dma_reserved_default_memory, + "Reserved memory: region for default DMA coherent area is redefined\n"); + dma_reserved_default_memory = rmem; + } +#endif + + rmem->ops = &rmem_dma_ops; + pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + return 0; +} + +static int __init dma_init_reserved_memory(void) +{ + const struct reserved_mem_ops *ops; + int ret; + + if (!dma_reserved_default_memory) + return -ENOMEM; + + ops = dma_reserved_default_memory->ops; + + /* + * We rely on rmem_dma_device_init() does not propagate error of + * dma_assign_coherent_memory() for "NULL" device. + */ + ret = ops->device_init(dma_reserved_default_memory, NULL); + + if (!ret) { + dma_coherent_default_memory = dma_reserved_default_memory->priv; + pr_info("DMA: default coherent area is set\n"); + } + + return ret; +} + +core_initcall(dma_init_reserved_memory); + +RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup); +#endif diff --git a/kernel/dma/contiguous.c b/kernel/dma/contiguous.c new file mode 100644 index 000000000000..d987dcd1bd56 --- /dev/null +++ b/kernel/dma/contiguous.c @@ -0,0 +1,278 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * Contiguous Memory Allocator for DMA mapping framework + * Copyright (c) 2010-2011 by Samsung Electronics. + * Written by: + * Marek Szyprowski <m.szyprowski@samsung.com> + * Michal Nazarewicz <mina86@mina86.com> + */ + +#define pr_fmt(fmt) "cma: " fmt + +#ifdef CONFIG_CMA_DEBUG +#ifndef DEBUG +# define DEBUG +#endif +#endif + +#include <asm/page.h> +#include <asm/dma-contiguous.h> + +#include <linux/memblock.h> +#include <linux/err.h> +#include <linux/sizes.h> +#include <linux/dma-contiguous.h> +#include <linux/cma.h> + +#ifdef CONFIG_CMA_SIZE_MBYTES +#define CMA_SIZE_MBYTES CONFIG_CMA_SIZE_MBYTES +#else +#define CMA_SIZE_MBYTES 0 +#endif + +struct cma *dma_contiguous_default_area; + +/* + * Default global CMA area size can be defined in kernel's .config. + * This is useful mainly for distro maintainers to create a kernel + * that works correctly for most supported systems. + * The size can be set in bytes or as a percentage of the total memory + * in the system. + * + * Users, who want to set the size of global CMA area for their system + * should use cma= kernel parameter. + */ +static const phys_addr_t size_bytes = (phys_addr_t)CMA_SIZE_MBYTES * SZ_1M; +static phys_addr_t size_cmdline = -1; +static phys_addr_t base_cmdline; +static phys_addr_t limit_cmdline; + +static int __init early_cma(char *p) +{ + pr_debug("%s(%s)\n", __func__, p); + size_cmdline = memparse(p, &p); + if (*p != '@') + return 0; + base_cmdline = memparse(p + 1, &p); + if (*p != '-') { + limit_cmdline = base_cmdline + size_cmdline; + return 0; + } + limit_cmdline = memparse(p + 1, &p); + + return 0; +} +early_param("cma", early_cma); + +#ifdef CONFIG_CMA_SIZE_PERCENTAGE + +static phys_addr_t __init __maybe_unused cma_early_percent_memory(void) +{ + struct memblock_region *reg; + unsigned long total_pages = 0; + + /* + * We cannot use memblock_phys_mem_size() here, because + * memblock_analyze() has not been called yet. + */ + for_each_memblock(memory, reg) + total_pages += memblock_region_memory_end_pfn(reg) - + memblock_region_memory_base_pfn(reg); + + return (total_pages * CONFIG_CMA_SIZE_PERCENTAGE / 100) << PAGE_SHIFT; +} + +#else + +static inline __maybe_unused phys_addr_t cma_early_percent_memory(void) +{ + return 0; +} + +#endif + +/** + * dma_contiguous_reserve() - reserve area(s) for contiguous memory handling + * @limit: End address of the reserved memory (optional, 0 for any). + * + * This function reserves memory from early allocator. It should be + * called by arch specific code once the early allocator (memblock or bootmem) + * has been activated and all other subsystems have already allocated/reserved + * memory. + */ +void __init dma_contiguous_reserve(phys_addr_t limit) +{ + phys_addr_t selected_size = 0; + phys_addr_t selected_base = 0; + phys_addr_t selected_limit = limit; + bool fixed = false; + + pr_debug("%s(limit %08lx)\n", __func__, (unsigned long)limit); + + if (size_cmdline != -1) { + selected_size = size_cmdline; + selected_base = base_cmdline; + selected_limit = min_not_zero(limit_cmdline, limit); + if (base_cmdline + size_cmdline == limit_cmdline) + fixed = true; + } else { +#ifdef CONFIG_CMA_SIZE_SEL_MBYTES + selected_size = size_bytes; +#elif defined(CONFIG_CMA_SIZE_SEL_PERCENTAGE) + selected_size = cma_early_percent_memory(); +#elif defined(CONFIG_CMA_SIZE_SEL_MIN) + selected_size = min(size_bytes, cma_early_percent_memory()); +#elif defined(CONFIG_CMA_SIZE_SEL_MAX) + selected_size = max(size_bytes, cma_early_percent_memory()); +#endif + } + + if (selected_size && !dma_contiguous_default_area) { + pr_debug("%s: reserving %ld MiB for global area\n", __func__, + (unsigned long)selected_size / SZ_1M); + + dma_contiguous_reserve_area(selected_size, selected_base, + selected_limit, + &dma_contiguous_default_area, + fixed); + } +} + +/** + * dma_contiguous_reserve_area() - reserve custom contiguous area + * @size: Size of the reserved area (in bytes), + * @base: Base address of the reserved area optional, use 0 for any + * @limit: End address of the reserved memory (optional, 0 for any). + * @res_cma: Pointer to store the created cma region. + * @fixed: hint about where to place the reserved area + * + * This function reserves memory from early allocator. It should be + * called by arch specific code once the early allocator (memblock or bootmem) + * has been activated and all other subsystems have already allocated/reserved + * memory. This function allows to create custom reserved areas for specific + * devices. + * + * If @fixed is true, reserve contiguous area at exactly @base. If false, + * reserve in range from @base to @limit. + */ +int __init dma_contiguous_reserve_area(phys_addr_t size, phys_addr_t base, + phys_addr_t limit, struct cma **res_cma, + bool fixed) +{ + int ret; + + ret = cma_declare_contiguous(base, size, limit, 0, 0, fixed, + "reserved", res_cma); + if (ret) + return ret; + + /* Architecture specific contiguous memory fixup. */ + dma_contiguous_early_fixup(cma_get_base(*res_cma), + cma_get_size(*res_cma)); + + return 0; +} + +/** + * dma_alloc_from_contiguous() - allocate pages from contiguous area + * @dev: Pointer to device for which the allocation is performed. + * @count: Requested number of pages. + * @align: Requested alignment of pages (in PAGE_SIZE order). + * @gfp_mask: GFP flags to use for this allocation. + * + * This function allocates memory buffer for specified device. It uses + * device specific contiguous memory area if available or the default + * global one. Requires architecture specific dev_get_cma_area() helper + * function. + */ +struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, + unsigned int align, gfp_t gfp_mask) +{ + if (align > CONFIG_CMA_ALIGNMENT) + align = CONFIG_CMA_ALIGNMENT; + + return cma_alloc(dev_get_cma_area(dev), count, align, gfp_mask); +} + +/** + * dma_release_from_contiguous() - release allocated pages + * @dev: Pointer to device for which the pages were allocated. + * @pages: Allocated pages. + * @count: Number of allocated pages. + * + * This function releases memory allocated by dma_alloc_from_contiguous(). + * It returns false when provided pages do not belong to contiguous area and + * true otherwise. + */ +bool dma_release_from_contiguous(struct device *dev, struct page *pages, + int count) +{ + return cma_release(dev_get_cma_area(dev), pages, count); +} + +/* + * Support for reserved memory regions defined in device tree + */ +#ifdef CONFIG_OF_RESERVED_MEM +#include <linux/of.h> +#include <linux/of_fdt.h> +#include <linux/of_reserved_mem.h> + +#undef pr_fmt +#define pr_fmt(fmt) fmt + +static int rmem_cma_device_init(struct reserved_mem *rmem, struct device *dev) +{ + dev_set_cma_area(dev, rmem->priv); + return 0; +} + +static void rmem_cma_device_release(struct reserved_mem *rmem, + struct device *dev) +{ + dev_set_cma_area(dev, NULL); +} + +static const struct reserved_mem_ops rmem_cma_ops = { + .device_init = rmem_cma_device_init, + .device_release = rmem_cma_device_release, +}; + +static int __init rmem_cma_setup(struct reserved_mem *rmem) +{ + phys_addr_t align = PAGE_SIZE << max(MAX_ORDER - 1, pageblock_order); + phys_addr_t mask = align - 1; + unsigned long node = rmem->fdt_node; + struct cma *cma; + int err; + + if (!of_get_flat_dt_prop(node, "reusable", NULL) || + of_get_flat_dt_prop(node, "no-map", NULL)) + return -EINVAL; + + if ((rmem->base & mask) || (rmem->size & mask)) { + pr_err("Reserved memory: incorrect alignment of CMA region\n"); + return -EINVAL; + } + + err = cma_init_reserved_mem(rmem->base, rmem->size, 0, rmem->name, &cma); + if (err) { + pr_err("Reserved memory: unable to setup CMA region\n"); + return err; + } + /* Architecture specific contiguous memory fixup. */ + dma_contiguous_early_fixup(rmem->base, rmem->size); + + if (of_get_flat_dt_prop(node, "linux,cma-default", NULL)) + dma_contiguous_set_default(cma); + + rmem->ops = &rmem_cma_ops; + rmem->priv = cma; + + pr_info("Reserved memory: created CMA memory pool at %pa, size %ld MiB\n", + &rmem->base, (unsigned long)rmem->size / SZ_1M); + + return 0; +} +RESERVEDMEM_OF_DECLARE(cma, "shared-dma-pool", rmem_cma_setup); +#endif diff --git a/kernel/dma/debug.c b/kernel/dma/debug.c new file mode 100644 index 000000000000..c007d25bee09 --- /dev/null +++ b/kernel/dma/debug.c @@ -0,0 +1,1773 @@ +/* + * Copyright (C) 2008 Advanced Micro Devices, Inc. + * + * Author: Joerg Roedel <joerg.roedel@amd.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/sched/task_stack.h> +#include <linux/scatterlist.h> +#include <linux/dma-mapping.h> +#include <linux/sched/task.h> +#include <linux/stacktrace.h> +#include <linux/dma-debug.h> +#include <linux/spinlock.h> +#include <linux/vmalloc.h> +#include <linux/debugfs.h> +#include <linux/uaccess.h> +#include <linux/export.h> +#include <linux/device.h> +#include <linux/types.h> +#include <linux/sched.h> +#include <linux/ctype.h> +#include <linux/list.h> +#include <linux/slab.h> + +#include <asm/sections.h> + +#define HASH_SIZE 1024ULL +#define HASH_FN_SHIFT 13 +#define HASH_FN_MASK (HASH_SIZE - 1) + +/* allow architectures to override this if absolutely required */ +#ifndef PREALLOC_DMA_DEBUG_ENTRIES +#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) +#endif + +enum { + dma_debug_single, + dma_debug_page, + dma_debug_sg, + dma_debug_coherent, + dma_debug_resource, +}; + +enum map_err_types { + MAP_ERR_CHECK_NOT_APPLICABLE, + MAP_ERR_NOT_CHECKED, + MAP_ERR_CHECKED, +}; + +#define DMA_DEBUG_STACKTRACE_ENTRIES 5 + +/** + * struct dma_debug_entry - track a dma_map* or dma_alloc_coherent mapping + * @list: node on pre-allocated free_entries list + * @dev: 'dev' argument to dma_map_{page|single|sg} or dma_alloc_coherent + * @type: single, page, sg, coherent + * @pfn: page frame of the start address + * @offset: offset of mapping relative to pfn + * @size: length of the mapping + * @direction: enum dma_data_direction + * @sg_call_ents: 'nents' from dma_map_sg + * @sg_mapped_ents: 'mapped_ents' from dma_map_sg + * @map_err_type: track whether dma_mapping_error() was checked + * @stacktrace: support backtraces when a violation is detected + */ +struct dma_debug_entry { + struct list_head list; + struct device *dev; + int type; + unsigned long pfn; + size_t offset; + u64 dev_addr; + u64 size; + int direction; + int sg_call_ents; + int sg_mapped_ents; + enum map_err_types map_err_type; +#ifdef CONFIG_STACKTRACE + struct stack_trace stacktrace; + unsigned long st_entries[DMA_DEBUG_STACKTRACE_ENTRIES]; +#endif +}; + +typedef bool (*match_fn)(struct dma_debug_entry *, struct dma_debug_entry *); + +struct hash_bucket { + struct list_head list; + spinlock_t lock; +} ____cacheline_aligned_in_smp; + +/* Hash list to save the allocated dma addresses */ +static struct hash_bucket dma_entry_hash[HASH_SIZE]; +/* List of pre-allocated dma_debug_entry's */ +static LIST_HEAD(free_entries); +/* Lock for the list above */ +static DEFINE_SPINLOCK(free_entries_lock); + +/* Global disable flag - will be set in case of an error */ +static bool global_disable __read_mostly; + +/* Early initialization disable flag, set at the end of dma_debug_init */ +static bool dma_debug_initialized __read_mostly; + +static inline bool dma_debug_disabled(void) +{ + return global_disable || !dma_debug_initialized; +} + +/* Global error count */ +static u32 error_count; + +/* Global error show enable*/ +static u32 show_all_errors __read_mostly; +/* Number of errors to show */ +static u32 show_num_errors = 1; + +static u32 num_free_entries; +static u32 min_free_entries; +static u32 nr_total_entries; + +/* number of preallocated entries requested by kernel cmdline */ +static u32 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; + +/* debugfs dentry's for the stuff above */ +static struct dentry *dma_debug_dent __read_mostly; +static struct dentry *global_disable_dent __read_mostly; +static struct dentry *error_count_dent __read_mostly; +static struct dentry *show_all_errors_dent __read_mostly; +static struct dentry *show_num_errors_dent __read_mostly; +static struct dentry *num_free_entries_dent __read_mostly; +static struct dentry *min_free_entries_dent __read_mostly; +static struct dentry *filter_dent __read_mostly; + +/* per-driver filter related state */ + +#define NAME_MAX_LEN 64 + +static char current_driver_name[NAME_MAX_LEN] __read_mostly; +static struct device_driver *current_driver __read_mostly; + +static DEFINE_RWLOCK(driver_name_lock); + +static const char *const maperr2str[] = { + [MAP_ERR_CHECK_NOT_APPLICABLE] = "dma map error check not applicable", + [MAP_ERR_NOT_CHECKED] = "dma map error not checked", + [MAP_ERR_CHECKED] = "dma map error checked", +}; + +static const char *type2name[5] = { "single", "page", + "scather-gather", "coherent", + "resource" }; + +static const char *dir2name[4] = { "DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", + "DMA_FROM_DEVICE", "DMA_NONE" }; + +/* + * The access to some variables in this macro is racy. We can't use atomic_t + * here because all these variables are exported to debugfs. Some of them even + * writeable. This is also the reason why a lock won't help much. But anyway, + * the races are no big deal. Here is why: + * + * error_count: the addition is racy, but the worst thing that can happen is + * that we don't count some errors + * show_num_errors: the subtraction is racy. Also no big deal because in + * worst case this will result in one warning more in the + * system log than the user configured. This variable is + * writeable via debugfs. + */ +static inline void dump_entry_trace(struct dma_debug_entry *entry) +{ +#ifdef CONFIG_STACKTRACE + if (entry) { + pr_warning("Mapped at:\n"); + print_stack_trace(&entry->stacktrace, 0); + } +#endif +} + +static bool driver_filter(struct device *dev) +{ + struct device_driver *drv; + unsigned long flags; + bool ret; + + /* driver filter off */ + if (likely(!current_driver_name[0])) + return true; + + /* driver filter on and initialized */ + if (current_driver && dev && dev->driver == current_driver) + return true; + + /* driver filter on, but we can't filter on a NULL device... */ + if (!dev) + return false; + + if (current_driver || !current_driver_name[0]) + return false; + + /* driver filter on but not yet initialized */ + drv = dev->driver; + if (!drv) + return false; + + /* lock to protect against change of current_driver_name */ + read_lock_irqsave(&driver_name_lock, flags); + + ret = false; + if (drv->name && + strncmp(current_driver_name, drv->name, NAME_MAX_LEN - 1) == 0) { + current_driver = drv; + ret = true; + } + + read_unlock_irqrestore(&driver_name_lock, flags); + + return ret; +} + +#define err_printk(dev, entry, format, arg...) do { \ + error_count += 1; \ + if (driver_filter(dev) && \ + (show_all_errors || show_num_errors > 0)) { \ + WARN(1, "%s %s: " format, \ + dev ? dev_driver_string(dev) : "NULL", \ + dev ? dev_name(dev) : "NULL", ## arg); \ + dump_entry_trace(entry); \ + } \ + if (!show_all_errors && show_num_errors > 0) \ + show_num_errors -= 1; \ + } while (0); + +/* + * Hash related functions + * + * Every DMA-API request is saved into a struct dma_debug_entry. To + * have quick access to these structs they are stored into a hash. + */ +static int hash_fn(struct dma_debug_entry *entry) +{ + /* + * Hash function is based on the dma address. + * We use bits 20-27 here as the index into the hash + */ + return (entry->dev_addr >> HASH_FN_SHIFT) & HASH_FN_MASK; +} + +/* + * Request exclusive access to a hash bucket for a given dma_debug_entry. + */ +static struct hash_bucket *get_hash_bucket(struct dma_debug_entry *entry, + unsigned long *flags) + __acquires(&dma_entry_hash[idx].lock) +{ + int idx = hash_fn(entry); + unsigned long __flags; + + spin_lock_irqsave(&dma_entry_hash[idx].lock, __flags); + *flags = __flags; + return &dma_entry_hash[idx]; +} + +/* + * Give up exclusive access to the hash bucket + */ +static void put_hash_bucket(struct hash_bucket *bucket, + unsigned long *flags) + __releases(&bucket->lock) +{ + unsigned long __flags = *flags; + + spin_unlock_irqrestore(&bucket->lock, __flags); +} + +static bool exact_match(struct dma_debug_entry *a, struct dma_debug_entry *b) +{ + return ((a->dev_addr == b->dev_addr) && + (a->dev == b->dev)) ? true : false; +} + +static bool containing_match(struct dma_debug_entry *a, + struct dma_debug_entry *b) +{ + if (a->dev != b->dev) + return false; + + if ((b->dev_addr <= a->dev_addr) && + ((b->dev_addr + b->size) >= (a->dev_addr + a->size))) + return true; + + return false; +} + +/* + * Search a given entry in the hash bucket list + */ +static struct dma_debug_entry *__hash_bucket_find(struct hash_bucket *bucket, + struct dma_debug_entry *ref, + match_fn match) +{ + struct dma_debug_entry *entry, *ret = NULL; + int matches = 0, match_lvl, last_lvl = -1; + + list_for_each_entry(entry, &bucket->list, list) { + if (!match(ref, entry)) + continue; + + /* + * Some drivers map the same physical address multiple + * times. Without a hardware IOMMU this results in the + * same device addresses being put into the dma-debug + * hash multiple times too. This can result in false + * positives being reported. Therefore we implement a + * best-fit algorithm here which returns the entry from + * the hash which fits best to the reference value + * instead of the first-fit. + */ + matches += 1; + match_lvl = 0; + entry->size == ref->size ? ++match_lvl : 0; + entry->type == ref->type ? ++match_lvl : 0; + entry->direction == ref->direction ? ++match_lvl : 0; + entry->sg_call_ents == ref->sg_call_ents ? ++match_lvl : 0; + + if (match_lvl == 4) { + /* perfect-fit - return the result */ + return entry; + } else if (match_lvl > last_lvl) { + /* + * We found an entry that fits better then the + * previous one or it is the 1st match. + */ + last_lvl = match_lvl; + ret = entry; + } + } + + /* + * If we have multiple matches but no perfect-fit, just return + * NULL. + */ + ret = (matches == 1) ? ret : NULL; + + return ret; +} + +static struct dma_debug_entry *bucket_find_exact(struct hash_bucket *bucket, + struct dma_debug_entry *ref) +{ + return __hash_bucket_find(bucket, ref, exact_match); +} + +static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, + struct dma_debug_entry *ref, + unsigned long *flags) +{ + + unsigned int max_range = dma_get_max_seg_size(ref->dev); + struct dma_debug_entry *entry, index = *ref; + unsigned int range = 0; + + while (range <= max_range) { + entry = __hash_bucket_find(*bucket, ref, containing_match); + + if (entry) + return entry; + + /* + * Nothing found, go back a hash bucket + */ + put_hash_bucket(*bucket, flags); + range += (1 << HASH_FN_SHIFT); + index.dev_addr -= (1 << HASH_FN_SHIFT); + *bucket = get_hash_bucket(&index, flags); + } + + return NULL; +} + +/* + * Add an entry to a hash bucket + */ +static void hash_bucket_add(struct hash_bucket *bucket, + struct dma_debug_entry *entry) +{ + list_add_tail(&entry->list, &bucket->list); +} + +/* + * Remove entry from a hash bucket list + */ +static void hash_bucket_del(struct dma_debug_entry *entry) +{ + list_del(&entry->list); +} + +static unsigned long long phys_addr(struct dma_debug_entry *entry) +{ + if (entry->type == dma_debug_resource) + return __pfn_to_phys(entry->pfn) + entry->offset; + + return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset; +} + +/* + * Dump mapping entries for debugging purposes + */ +void debug_dma_dump_mappings(struct device *dev) +{ + int idx; + + for (idx = 0; idx < HASH_SIZE; idx++) { + struct hash_bucket *bucket = &dma_entry_hash[idx]; + struct dma_debug_entry *entry; + unsigned long flags; + + spin_lock_irqsave(&bucket->lock, flags); + + list_for_each_entry(entry, &bucket->list, list) { + if (!dev || dev == entry->dev) { + dev_info(entry->dev, + "%s idx %d P=%Lx N=%lx D=%Lx L=%Lx %s %s\n", + type2name[entry->type], idx, + phys_addr(entry), entry->pfn, + entry->dev_addr, entry->size, + dir2name[entry->direction], + maperr2str[entry->map_err_type]); + } + } + + spin_unlock_irqrestore(&bucket->lock, flags); + } +} + +/* + * For each mapping (initial cacheline in the case of + * dma_alloc_coherent/dma_map_page, initial cacheline in each page of a + * scatterlist, or the cacheline specified in dma_map_single) insert + * into this tree using the cacheline as the key. At + * dma_unmap_{single|sg|page} or dma_free_coherent delete the entry. If + * the entry already exists at insertion time add a tag as a reference + * count for the overlapping mappings. For now, the overlap tracking + * just ensures that 'unmaps' balance 'maps' before marking the + * cacheline idle, but we should also be flagging overlaps as an API + * violation. + * + * Memory usage is mostly constrained by the maximum number of available + * dma-debug entries in that we need a free dma_debug_entry before + * inserting into the tree. In the case of dma_map_page and + * dma_alloc_coherent there is only one dma_debug_entry and one + * dma_active_cacheline entry to track per event. dma_map_sg(), on the + * other hand, consumes a single dma_debug_entry, but inserts 'nents' + * entries into the tree. + * + * At any time debug_dma_assert_idle() can be called to trigger a + * warning if any cachelines in the given page are in the active set. + */ +static RADIX_TREE(dma_active_cacheline, GFP_NOWAIT); +static DEFINE_SPINLOCK(radix_lock); +#define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) +#define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) +#define CACHELINES_PER_PAGE (1 << CACHELINE_PER_PAGE_SHIFT) + +static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry) +{ + return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) + + (entry->offset >> L1_CACHE_SHIFT); +} + +static int active_cacheline_read_overlap(phys_addr_t cln) +{ + int overlap = 0, i; + + for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) + if (radix_tree_tag_get(&dma_active_cacheline, cln, i)) + overlap |= 1 << i; + return overlap; +} + +static int active_cacheline_set_overlap(phys_addr_t cln, int overlap) +{ + int i; + + if (overlap > ACTIVE_CACHELINE_MAX_OVERLAP || overlap < 0) + return overlap; + + for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) + if (overlap & 1 << i) + radix_tree_tag_set(&dma_active_cacheline, cln, i); + else + radix_tree_tag_clear(&dma_active_cacheline, cln, i); + + return overlap; +} + +static void active_cacheline_inc_overlap(phys_addr_t cln) +{ + int overlap = active_cacheline_read_overlap(cln); + + overlap = active_cacheline_set_overlap(cln, ++overlap); + + /* If we overflowed the overlap counter then we're potentially + * leaking dma-mappings. Otherwise, if maps and unmaps are + * balanced then this overflow may cause false negatives in + * debug_dma_assert_idle() as the cacheline may be marked idle + * prematurely. + */ + WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, + "DMA-API: exceeded %d overlapping mappings of cacheline %pa\n", + ACTIVE_CACHELINE_MAX_OVERLAP, &cln); +} + +static int active_cacheline_dec_overlap(phys_addr_t cln) +{ + int overlap = active_cacheline_read_overlap(cln); + + return active_cacheline_set_overlap(cln, --overlap); +} + +static int active_cacheline_insert(struct dma_debug_entry *entry) +{ + phys_addr_t cln = to_cacheline_number(entry); + unsigned long flags; + int rc; + + /* If the device is not writing memory then we don't have any + * concerns about the cpu consuming stale data. This mitigates + * legitimate usages of overlapping mappings. + */ + if (entry->direction == DMA_TO_DEVICE) + return 0; + + spin_lock_irqsave(&radix_lock, flags); + rc = radix_tree_insert(&dma_active_cacheline, cln, entry); + if (rc == -EEXIST) + active_cacheline_inc_overlap(cln); + spin_unlock_irqrestore(&radix_lock, flags); + + return rc; +} + +static void active_cacheline_remove(struct dma_debug_entry *entry) +{ + phys_addr_t cln = to_cacheline_number(entry); + unsigned long flags; + + /* ...mirror the insert case */ + if (entry->direction == DMA_TO_DEVICE) + return; + + spin_lock_irqsave(&radix_lock, flags); + /* since we are counting overlaps the final put of the + * cacheline will occur when the overlap count is 0. + * active_cacheline_dec_overlap() returns -1 in that case + */ + if (active_cacheline_dec_overlap(cln) < 0) + radix_tree_delete(&dma_active_cacheline, cln); + spin_unlock_irqrestore(&radix_lock, flags); +} + +/** + * debug_dma_assert_idle() - assert that a page is not undergoing dma + * @page: page to lookup in the dma_active_cacheline tree + * + * Place a call to this routine in cases where the cpu touching the page + * before the dma completes (page is dma_unmapped) will lead to data + * corruption. + */ +void debug_dma_assert_idle(struct page *page) +{ + static struct dma_debug_entry *ents[CACHELINES_PER_PAGE]; + struct dma_debug_entry *entry = NULL; + void **results = (void **) &ents; + unsigned int nents, i; + unsigned long flags; + phys_addr_t cln; + + if (dma_debug_disabled()) + return; + + if (!page) + return; + + cln = (phys_addr_t) page_to_pfn(page) << CACHELINE_PER_PAGE_SHIFT; + spin_lock_irqsave(&radix_lock, flags); + nents = radix_tree_gang_lookup(&dma_active_cacheline, results, cln, + CACHELINES_PER_PAGE); + for (i = 0; i < nents; i++) { + phys_addr_t ent_cln = to_cacheline_number(ents[i]); + + if (ent_cln == cln) { + entry = ents[i]; + break; + } else if (ent_cln >= cln + CACHELINES_PER_PAGE) + break; + } + spin_unlock_irqrestore(&radix_lock, flags); + + if (!entry) + return; + + cln = to_cacheline_number(entry); + err_printk(entry->dev, entry, + "DMA-API: cpu touching an active dma mapped cacheline [cln=%pa]\n", + &cln); +} + +/* + * Wrapper function for adding an entry to the hash. + * This function takes care of locking itself. + */ +static void add_dma_entry(struct dma_debug_entry *entry) +{ + struct hash_bucket *bucket; + unsigned long flags; + int rc; + + bucket = get_hash_bucket(entry, &flags); + hash_bucket_add(bucket, entry); + put_hash_bucket(bucket, &flags); + + rc = active_cacheline_insert(entry); + if (rc == -ENOMEM) { + pr_err("DMA-API: cacheline tracking ENOMEM, dma-debug disabled\n"); + global_disable = true; + } + + /* TODO: report -EEXIST errors here as overlapping mappings are + * not supported by the DMA API + */ +} + +static struct dma_debug_entry *__dma_entry_alloc(void) +{ + struct dma_debug_entry *entry; + + entry = list_entry(free_entries.next, struct dma_debug_entry, list); + list_del(&entry->list); + memset(entry, 0, sizeof(*entry)); + + num_free_entries -= 1; + if (num_free_entries < min_free_entries) + min_free_entries = num_free_entries; + + return entry; +} + +/* struct dma_entry allocator + * + * The next two functions implement the allocator for + * struct dma_debug_entries. + */ +static struct dma_debug_entry *dma_entry_alloc(void) +{ + struct dma_debug_entry *entry; + unsigned long flags; + + spin_lock_irqsave(&free_entries_lock, flags); + + if (list_empty(&free_entries)) { + global_disable = true; + spin_unlock_irqrestore(&free_entries_lock, flags); + pr_err("DMA-API: debugging out of memory - disabling\n"); + return NULL; + } + + entry = __dma_entry_alloc(); + + spin_unlock_irqrestore(&free_entries_lock, flags); + +#ifdef CONFIG_STACKTRACE + entry->stacktrace.max_entries = DMA_DEBUG_STACKTRACE_ENTRIES; + entry->stacktrace.entries = entry->st_entries; + entry->stacktrace.skip = 2; + save_stack_trace(&entry->stacktrace); +#endif + + return entry; +} + +static void dma_entry_free(struct dma_debug_entry *entry) +{ + unsigned long flags; + + active_cacheline_remove(entry); + + /* + * add to beginning of the list - this way the entries are + * more likely cache hot when they are reallocated. + */ + spin_lock_irqsave(&free_entries_lock, flags); + list_add(&entry->list, &free_entries); + num_free_entries += 1; + spin_unlock_irqrestore(&free_entries_lock, flags); +} + +int dma_debug_resize_entries(u32 num_entries) +{ + int i, delta, ret = 0; + unsigned long flags; + struct dma_debug_entry *entry; + LIST_HEAD(tmp); + + spin_lock_irqsave(&free_entries_lock, flags); + + if (nr_total_entries < num_entries) { + delta = num_entries - nr_total_entries; + + spin_unlock_irqrestore(&free_entries_lock, flags); + + for (i = 0; i < delta; i++) { + entry = kzalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + break; + + list_add_tail(&entry->list, &tmp); + } + + spin_lock_irqsave(&free_entries_lock, flags); + + list_splice(&tmp, &free_entries); + nr_total_entries += i; + num_free_entries += i; + } else { + delta = nr_total_entries - num_entries; + + for (i = 0; i < delta && !list_empty(&free_entries); i++) { + entry = __dma_entry_alloc(); + kfree(entry); + } + + nr_total_entries -= i; + } + + if (nr_total_entries != num_entries) + ret = 1; + + spin_unlock_irqrestore(&free_entries_lock, flags); + + return ret; +} + +/* + * DMA-API debugging init code + * + * The init code does two things: + * 1. Initialize core data structures + * 2. Preallocate a given number of dma_debug_entry structs + */ + +static int prealloc_memory(u32 num_entries) +{ + struct dma_debug_entry *entry, *next_entry; + int i; + + for (i = 0; i < num_entries; ++i) { + entry = kzalloc(sizeof(*entry), GFP_KERNEL); + if (!entry) + goto out_err; + + list_add_tail(&entry->list, &free_entries); + } + + num_free_entries = num_entries; + min_free_entries = num_entries; + + pr_info("DMA-API: preallocated %d debug entries\n", num_entries); + + return 0; + +out_err: + + list_for_each_entry_safe(entry, next_entry, &free_entries, list) { + list_del(&entry->list); + kfree(entry); + } + + return -ENOMEM; +} + +static ssize_t filter_read(struct file *file, char __user *user_buf, + size_t count, loff_t *ppos) +{ + char buf[NAME_MAX_LEN + 1]; + unsigned long flags; + int len; + + if (!current_driver_name[0]) + return 0; + + /* + * We can't copy to userspace directly because current_driver_name can + * only be read under the driver_name_lock with irqs disabled. So + * create a temporary copy first. + */ + read_lock_irqsave(&driver_name_lock, flags); + len = scnprintf(buf, NAME_MAX_LEN + 1, "%s\n", current_driver_name); + read_unlock_irqrestore(&driver_name_lock, flags); + + return simple_read_from_buffer(user_buf, count, ppos, buf, len); +} + +static ssize_t filter_write(struct file *file, const char __user *userbuf, + size_t count, loff_t *ppos) +{ + char buf[NAME_MAX_LEN]; + unsigned long flags; + size_t len; + int i; + + /* + * We can't copy from userspace directly. Access to + * current_driver_name is protected with a write_lock with irqs + * disabled. Since copy_from_user can fault and may sleep we + * need to copy to temporary buffer first + */ + len = min(count, (size_t)(NAME_MAX_LEN - 1)); + if (copy_from_user(buf, userbuf, len)) + return -EFAULT; + + buf[len] = 0; + + write_lock_irqsave(&driver_name_lock, flags); + + /* + * Now handle the string we got from userspace very carefully. + * The rules are: + * - only use the first token we got + * - token delimiter is everything looking like a space + * character (' ', '\n', '\t' ...) + * + */ + if (!isalnum(buf[0])) { + /* + * If the first character userspace gave us is not + * alphanumerical then assume the filter should be + * switched off. + */ + if (current_driver_name[0]) + pr_info("DMA-API: switching off dma-debug driver filter\n"); + current_driver_name[0] = 0; + current_driver = NULL; + goto out_unlock; + } + + /* + * Now parse out the first token and use it as the name for the + * driver to filter for. + */ + for (i = 0; i < NAME_MAX_LEN - 1; ++i) { + current_driver_name[i] = buf[i]; + if (isspace(buf[i]) || buf[i] == ' ' || buf[i] == 0) + break; + } + current_driver_name[i] = 0; + current_driver = NULL; + + pr_info("DMA-API: enable driver filter for driver [%s]\n", + current_driver_name); + +out_unlock: + write_unlock_irqrestore(&driver_name_lock, flags); + + return count; +} + +static const struct file_operations filter_fops = { + .read = filter_read, + .write = filter_write, + .llseek = default_llseek, +}; + +static int dma_debug_fs_init(void) +{ + dma_debug_dent = debugfs_create_dir("dma-api", NULL); + if (!dma_debug_dent) { + pr_err("DMA-API: can not create debugfs directory\n"); + return -ENOMEM; + } + + global_disable_dent = debugfs_create_bool("disabled", 0444, + dma_debug_dent, + &global_disable); + if (!global_disable_dent) + goto out_err; + + error_count_dent = debugfs_create_u32("error_count", 0444, + dma_debug_dent, &error_count); + if (!error_count_dent) + goto out_err; + + show_all_errors_dent = debugfs_create_u32("all_errors", 0644, + dma_debug_dent, + &show_all_errors); + if (!show_all_errors_dent) + goto out_err; + + show_num_errors_dent = debugfs_create_u32("num_errors", 0644, + dma_debug_dent, + &show_num_errors); + if (!show_num_errors_dent) + goto out_err; + + num_free_entries_dent = debugfs_create_u32("num_free_entries", 0444, + dma_debug_dent, + &num_free_entries); + if (!num_free_entries_dent) + goto out_err; + + min_free_entries_dent = debugfs_create_u32("min_free_entries", 0444, + dma_debug_dent, + &min_free_entries); + if (!min_free_entries_dent) + goto out_err; + + filter_dent = debugfs_create_file("driver_filter", 0644, + dma_debug_dent, NULL, &filter_fops); + if (!filter_dent) + goto out_err; + + return 0; + +out_err: + debugfs_remove_recursive(dma_debug_dent); + + return -ENOMEM; +} + +static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) +{ + struct dma_debug_entry *entry; + unsigned long flags; + int count = 0, i; + + for (i = 0; i < HASH_SIZE; ++i) { + spin_lock_irqsave(&dma_entry_hash[i].lock, flags); + list_for_each_entry(entry, &dma_entry_hash[i].list, list) { + if (entry->dev == dev) { + count += 1; + *out_entry = entry; + } + } + spin_unlock_irqrestore(&dma_entry_hash[i].lock, flags); + } + + return count; +} + +static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) +{ + struct device *dev = data; + struct dma_debug_entry *uninitialized_var(entry); + int count; + + if (dma_debug_disabled()) + return 0; + + switch (action) { + case BUS_NOTIFY_UNBOUND_DRIVER: + count = device_dma_allocations(dev, &entry); + if (count == 0) + break; + err_printk(dev, entry, "DMA-API: device driver has pending " + "DMA allocations while released from device " + "[count=%d]\n" + "One of leaked entries details: " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [mapped as %s]\n", + count, entry->dev_addr, entry->size, + dir2name[entry->direction], type2name[entry->type]); + break; + default: + break; + } + + return 0; +} + +void dma_debug_add_bus(struct bus_type *bus) +{ + struct notifier_block *nb; + + if (dma_debug_disabled()) + return; + + nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); + if (nb == NULL) { + pr_err("dma_debug_add_bus: out of memory\n"); + return; + } + + nb->notifier_call = dma_debug_device_change; + + bus_register_notifier(bus, nb); +} + +static int dma_debug_init(void) +{ + int i; + + /* Do not use dma_debug_initialized here, since we really want to be + * called to set dma_debug_initialized + */ + if (global_disable) + return 0; + + for (i = 0; i < HASH_SIZE; ++i) { + INIT_LIST_HEAD(&dma_entry_hash[i].list); + spin_lock_init(&dma_entry_hash[i].lock); + } + + if (dma_debug_fs_init() != 0) { + pr_err("DMA-API: error creating debugfs entries - disabling\n"); + global_disable = true; + + return 0; + } + + if (prealloc_memory(nr_prealloc_entries) != 0) { + pr_err("DMA-API: debugging out of memory error - disabled\n"); + global_disable = true; + + return 0; + } + + nr_total_entries = num_free_entries; + + dma_debug_initialized = true; + + pr_info("DMA-API: debugging enabled by kernel config\n"); + return 0; +} +core_initcall(dma_debug_init); + +static __init int dma_debug_cmdline(char *str) +{ + if (!str) + return -EINVAL; + + if (strncmp(str, "off", 3) == 0) { + pr_info("DMA-API: debugging disabled on kernel command line\n"); + global_disable = true; + } + + return 0; +} + +static __init int dma_debug_entries_cmdline(char *str) +{ + if (!str) + return -EINVAL; + if (!get_option(&str, &nr_prealloc_entries)) + nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; + return 0; +} + +__setup("dma_debug=", dma_debug_cmdline); +__setup("dma_debug_entries=", dma_debug_entries_cmdline); + +static void check_unmap(struct dma_debug_entry *ref) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + bucket = get_hash_bucket(ref, &flags); + entry = bucket_find_exact(bucket, ref); + + if (!entry) { + /* must drop lock before calling dma_mapping_error */ + put_hash_bucket(bucket, &flags); + + if (dma_mapping_error(ref->dev, ref->dev_addr)) { + err_printk(ref->dev, NULL, + "DMA-API: device driver tries to free an " + "invalid DMA memory address\n"); + } else { + err_printk(ref->dev, NULL, + "DMA-API: device driver tries to free DMA " + "memory it has not allocated [device " + "address=0x%016llx] [size=%llu bytes]\n", + ref->dev_addr, ref->size); + } + return; + } + + if (ref->size != entry->size) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different size " + "[device address=0x%016llx] [map size=%llu bytes] " + "[unmap size=%llu bytes]\n", + ref->dev_addr, entry->size, ref->size); + } + + if (ref->type != entry->type) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with wrong function " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped as %s] [unmapped as %s]\n", + ref->dev_addr, ref->size, + type2name[entry->type], type2name[ref->type]); + } else if ((entry->type == dma_debug_coherent) && + (phys_addr(ref) != phys_addr(entry))) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different CPU address " + "[device address=0x%016llx] [size=%llu bytes] " + "[cpu alloc address=0x%016llx] " + "[cpu free address=0x%016llx]", + ref->dev_addr, ref->size, + phys_addr(entry), + phys_addr(ref)); + } + + if (ref->sg_call_ents && ref->type == dma_debug_sg && + ref->sg_call_ents != entry->sg_call_ents) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA sg list with different entry count " + "[map count=%d] [unmap count=%d]\n", + entry->sg_call_ents, ref->sg_call_ents); + } + + /* + * This may be no bug in reality - but most implementations of the + * DMA API don't handle this properly, so check for it here + */ + if (ref->direction != entry->direction) { + err_printk(ref->dev, entry, "DMA-API: device driver frees " + "DMA memory with different direction " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [unmapped with %s]\n", + ref->dev_addr, ref->size, + dir2name[entry->direction], + dir2name[ref->direction]); + } + + /* + * Drivers should use dma_mapping_error() to check the returned + * addresses of dma_map_single() and dma_map_page(). + * If not, print this warning message. See Documentation/DMA-API.txt. + */ + if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { + err_printk(ref->dev, entry, + "DMA-API: device driver failed to check map error" + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped as %s]", + ref->dev_addr, ref->size, + type2name[entry->type]); + } + + hash_bucket_del(entry); + dma_entry_free(entry); + + put_hash_bucket(bucket, &flags); +} + +static void check_for_stack(struct device *dev, + struct page *page, size_t offset) +{ + void *addr; + struct vm_struct *stack_vm_area = task_stack_vm_area(current); + + if (!stack_vm_area) { + /* Stack is direct-mapped. */ + if (PageHighMem(page)) + return; + addr = page_address(page) + offset; + if (object_is_on_stack(addr)) + err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [addr=%p]\n", addr); + } else { + /* Stack is vmalloced. */ + int i; + + for (i = 0; i < stack_vm_area->nr_pages; i++) { + if (page != stack_vm_area->pages[i]) + continue; + + addr = (u8 *)current->stack + i * PAGE_SIZE + offset; + err_printk(dev, NULL, "DMA-API: device driver maps memory from stack [probable addr=%p]\n", addr); + break; + } + } +} + +static inline bool overlap(void *addr, unsigned long len, void *start, void *end) +{ + unsigned long a1 = (unsigned long)addr; + unsigned long b1 = a1 + len; + unsigned long a2 = (unsigned long)start; + unsigned long b2 = (unsigned long)end; + + return !(b1 <= a2 || a1 >= b2); +} + +static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) +{ + if (overlap(addr, len, _stext, _etext) || + overlap(addr, len, __start_rodata, __end_rodata)) + err_printk(dev, NULL, "DMA-API: device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); +} + +static void check_sync(struct device *dev, + struct dma_debug_entry *ref, + bool to_cpu) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + bucket = get_hash_bucket(ref, &flags); + + entry = bucket_find_contain(&bucket, ref, &flags); + + if (!entry) { + err_printk(dev, NULL, "DMA-API: device driver tries " + "to sync DMA memory it has not allocated " + "[device address=0x%016llx] [size=%llu bytes]\n", + (unsigned long long)ref->dev_addr, ref->size); + goto out; + } + + if (ref->size > entry->size) { + err_printk(dev, entry, "DMA-API: device driver syncs" + " DMA memory outside allocated range " + "[device address=0x%016llx] " + "[allocation size=%llu bytes] " + "[sync offset+size=%llu]\n", + entry->dev_addr, entry->size, + ref->size); + } + + if (entry->direction == DMA_BIDIRECTIONAL) + goto out; + + if (ref->direction != entry->direction) { + err_printk(dev, entry, "DMA-API: device driver syncs " + "DMA memory with different direction " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + } + + if (to_cpu && !(entry->direction == DMA_FROM_DEVICE) && + !(ref->direction == DMA_TO_DEVICE)) + err_printk(dev, entry, "DMA-API: device driver syncs " + "device read-only DMA memory for cpu " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + + if (!to_cpu && !(entry->direction == DMA_TO_DEVICE) && + !(ref->direction == DMA_FROM_DEVICE)) + err_printk(dev, entry, "DMA-API: device driver syncs " + "device write-only DMA memory to device " + "[device address=0x%016llx] [size=%llu bytes] " + "[mapped with %s] [synced with %s]\n", + (unsigned long long)ref->dev_addr, entry->size, + dir2name[entry->direction], + dir2name[ref->direction]); + + if (ref->sg_call_ents && ref->type == dma_debug_sg && + ref->sg_call_ents != entry->sg_call_ents) { + err_printk(ref->dev, entry, "DMA-API: device driver syncs " + "DMA sg list with different entry count " + "[map count=%d] [sync count=%d]\n", + entry->sg_call_ents, ref->sg_call_ents); + } + +out: + put_hash_bucket(bucket, &flags); +} + +static void check_sg_segment(struct device *dev, struct scatterlist *sg) +{ +#ifdef CONFIG_DMA_API_DEBUG_SG + unsigned int max_seg = dma_get_max_seg_size(dev); + u64 start, end, boundary = dma_get_seg_boundary(dev); + + /* + * Either the driver forgot to set dma_parms appropriately, or + * whoever generated the list forgot to check them. + */ + if (sg->length > max_seg) + err_printk(dev, NULL, "DMA-API: mapping sg segment longer than device claims to support [len=%u] [max=%u]\n", + sg->length, max_seg); + /* + * In some cases this could potentially be the DMA API + * implementation's fault, but it would usually imply that + * the scatterlist was built inappropriately to begin with. + */ + start = sg_dma_address(sg); + end = start + sg_dma_len(sg) - 1; + if ((start ^ end) & ~boundary) + err_printk(dev, NULL, "DMA-API: mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n", + start, end, boundary); +#endif +} + +void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, + size_t size, int direction, dma_addr_t dma_addr, + bool map_single) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + if (dma_mapping_error(dev, dma_addr)) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->dev = dev; + entry->type = dma_debug_page; + entry->pfn = page_to_pfn(page); + entry->offset = offset, + entry->dev_addr = dma_addr; + entry->size = size; + entry->direction = direction; + entry->map_err_type = MAP_ERR_NOT_CHECKED; + + if (map_single) + entry->type = dma_debug_single; + + check_for_stack(dev, page, offset); + + if (!PageHighMem(page)) { + void *addr = page_address(page) + offset; + + check_for_illegal_area(dev, addr, size); + } + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_map_page); + +void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) +{ + struct dma_debug_entry ref; + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + + if (unlikely(dma_debug_disabled())) + return; + + ref.dev = dev; + ref.dev_addr = dma_addr; + bucket = get_hash_bucket(&ref, &flags); + + list_for_each_entry(entry, &bucket->list, list) { + if (!exact_match(&ref, entry)) + continue; + + /* + * The same physical address can be mapped multiple + * times. Without a hardware IOMMU this results in the + * same device addresses being put into the dma-debug + * hash multiple times too. This can result in false + * positives being reported. Therefore we implement a + * best-fit algorithm here which updates the first entry + * from the hash which fits the reference value and is + * not currently listed as being checked. + */ + if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { + entry->map_err_type = MAP_ERR_CHECKED; + break; + } + } + + put_hash_bucket(bucket, &flags); +} +EXPORT_SYMBOL(debug_dma_mapping_error); + +void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, int direction, bool map_single) +{ + struct dma_debug_entry ref = { + .type = dma_debug_page, + .dev = dev, + .dev_addr = addr, + .size = size, + .direction = direction, + }; + + if (unlikely(dma_debug_disabled())) + return; + + if (map_single) + ref.type = dma_debug_single; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_unmap_page); + +void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, + int nents, int mapped_ents, int direction) +{ + struct dma_debug_entry *entry; + struct scatterlist *s; + int i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, mapped_ents, i) { + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_sg; + entry->dev = dev; + entry->pfn = page_to_pfn(sg_page(s)); + entry->offset = s->offset, + entry->size = sg_dma_len(s); + entry->dev_addr = sg_dma_address(s); + entry->direction = direction; + entry->sg_call_ents = nents; + entry->sg_mapped_ents = mapped_ents; + + check_for_stack(dev, sg_page(s), s->offset); + + if (!PageHighMem(sg_page(s))) { + check_for_illegal_area(dev, sg_virt(s), sg_dma_len(s)); + } + + check_sg_segment(dev, s); + + add_dma_entry(entry); + } +} +EXPORT_SYMBOL(debug_dma_map_sg); + +static int get_nr_mapped_entries(struct device *dev, + struct dma_debug_entry *ref) +{ + struct dma_debug_entry *entry; + struct hash_bucket *bucket; + unsigned long flags; + int mapped_ents; + + bucket = get_hash_bucket(ref, &flags); + entry = bucket_find_exact(bucket, ref); + mapped_ents = 0; + + if (entry) + mapped_ents = entry->sg_mapped_ents; + put_hash_bucket(bucket, &flags); + + return mapped_ents; +} + +void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, + int nelems, int dir) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sglist, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = dir, + .sg_call_ents = nelems, + }; + + if (mapped_ents && i >= mapped_ents) + break; + + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + check_unmap(&ref); + } +} +EXPORT_SYMBOL(debug_dma_unmap_sg); + +void debug_dma_alloc_coherent(struct device *dev, size_t size, + dma_addr_t dma_addr, void *virt) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + if (unlikely(virt == NULL)) + return; + + /* handle vmalloc and linear addresses */ + if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_coherent; + entry->dev = dev; + entry->offset = offset_in_page(virt); + entry->size = size; + entry->dev_addr = dma_addr; + entry->direction = DMA_BIDIRECTIONAL; + + if (is_vmalloc_addr(virt)) + entry->pfn = vmalloc_to_pfn(virt); + else + entry->pfn = page_to_pfn(virt_to_page(virt)); + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_alloc_coherent); + +void debug_dma_free_coherent(struct device *dev, size_t size, + void *virt, dma_addr_t addr) +{ + struct dma_debug_entry ref = { + .type = dma_debug_coherent, + .dev = dev, + .offset = offset_in_page(virt), + .dev_addr = addr, + .size = size, + .direction = DMA_BIDIRECTIONAL, + }; + + /* handle vmalloc and linear addresses */ + if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) + return; + + if (is_vmalloc_addr(virt)) + ref.pfn = vmalloc_to_pfn(virt); + else + ref.pfn = page_to_pfn(virt_to_page(virt)); + + if (unlikely(dma_debug_disabled())) + return; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_free_coherent); + +void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, + int direction, dma_addr_t dma_addr) +{ + struct dma_debug_entry *entry; + + if (unlikely(dma_debug_disabled())) + return; + + entry = dma_entry_alloc(); + if (!entry) + return; + + entry->type = dma_debug_resource; + entry->dev = dev; + entry->pfn = PHYS_PFN(addr); + entry->offset = offset_in_page(addr); + entry->size = size; + entry->dev_addr = dma_addr; + entry->direction = direction; + entry->map_err_type = MAP_ERR_NOT_CHECKED; + + add_dma_entry(entry); +} +EXPORT_SYMBOL(debug_dma_map_resource); + +void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, + size_t size, int direction) +{ + struct dma_debug_entry ref = { + .type = dma_debug_resource, + .dev = dev, + .dev_addr = dma_addr, + .size = size, + .direction = direction, + }; + + if (unlikely(dma_debug_disabled())) + return; + + check_unmap(&ref); +} +EXPORT_SYMBOL(debug_dma_unmap_resource); + +void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, + size_t size, int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, true); +} +EXPORT_SYMBOL(debug_dma_sync_single_for_cpu); + +void debug_dma_sync_single_for_device(struct device *dev, + dma_addr_t dma_handle, size_t size, + int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, false); +} +EXPORT_SYMBOL(debug_dma_sync_single_for_device); + +void debug_dma_sync_single_range_for_cpu(struct device *dev, + dma_addr_t dma_handle, + unsigned long offset, size_t size, + int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = offset + size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, true); +} +EXPORT_SYMBOL(debug_dma_sync_single_range_for_cpu); + +void debug_dma_sync_single_range_for_device(struct device *dev, + dma_addr_t dma_handle, + unsigned long offset, + size_t size, int direction) +{ + struct dma_debug_entry ref; + + if (unlikely(dma_debug_disabled())) + return; + + ref.type = dma_debug_single; + ref.dev = dev; + ref.dev_addr = dma_handle; + ref.size = offset + size; + ref.direction = direction; + ref.sg_call_ents = 0; + + check_sync(dev, &ref, false); +} +EXPORT_SYMBOL(debug_dma_sync_single_range_for_device); + +void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, + int nelems, int direction) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = direction, + .sg_call_ents = nelems, + }; + + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + if (i >= mapped_ents) + break; + + check_sync(dev, &ref, true); + } +} +EXPORT_SYMBOL(debug_dma_sync_sg_for_cpu); + +void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, + int nelems, int direction) +{ + struct scatterlist *s; + int mapped_ents = 0, i; + + if (unlikely(dma_debug_disabled())) + return; + + for_each_sg(sg, s, nelems, i) { + + struct dma_debug_entry ref = { + .type = dma_debug_sg, + .dev = dev, + .pfn = page_to_pfn(sg_page(s)), + .offset = s->offset, + .dev_addr = sg_dma_address(s), + .size = sg_dma_len(s), + .direction = direction, + .sg_call_ents = nelems, + }; + if (!i) + mapped_ents = get_nr_mapped_entries(dev, &ref); + + if (i >= mapped_ents) + break; + + check_sync(dev, &ref, false); + } +} +EXPORT_SYMBOL(debug_dma_sync_sg_for_device); + +static int __init dma_debug_driver_setup(char *str) +{ + int i; + + for (i = 0; i < NAME_MAX_LEN - 1; ++i, ++str) { + current_driver_name[i] = *str; + if (*str == 0) + break; + } + + if (current_driver_name[0]) + pr_info("DMA-API: enable driver filter for driver [%s]\n", + current_driver_name); + + + return 1; +} +__setup("dma_debug_driver=", dma_debug_driver_setup); diff --git a/kernel/dma/direct.c b/kernel/dma/direct.c new file mode 100644 index 000000000000..8be8106270c2 --- /dev/null +++ b/kernel/dma/direct.c @@ -0,0 +1,204 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * DMA operations that map physical memory directly without using an IOMMU or + * flushing caches. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-direct.h> +#include <linux/scatterlist.h> +#include <linux/dma-contiguous.h> +#include <linux/pfn.h> +#include <linux/set_memory.h> + +#define DIRECT_MAPPING_ERROR 0 + +/* + * Most architectures use ZONE_DMA for the first 16 Megabytes, but + * some use it for entirely different regions: + */ +#ifndef ARCH_ZONE_DMA_BITS +#define ARCH_ZONE_DMA_BITS 24 +#endif + +/* + * For AMD SEV all DMA must be to unencrypted addresses. + */ +static inline bool force_dma_unencrypted(void) +{ + return sev_active(); +} + +static bool +check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, + const char *caller) +{ + if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { + if (!dev->dma_mask) { + dev_err(dev, + "%s: call on device without dma_mask\n", + caller); + return false; + } + + if (*dev->dma_mask >= DMA_BIT_MASK(32)) { + dev_err(dev, + "%s: overflow %pad+%zu of device mask %llx\n", + caller, &dma_addr, size, *dev->dma_mask); + } + return false; + } + return true; +} + +static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) +{ + dma_addr_t addr = force_dma_unencrypted() ? + __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); + return addr + size - 1 <= dev->coherent_dma_mask; +} + +void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + int page_order = get_order(size); + struct page *page = NULL; + void *ret; + + /* we always manually zero the memory once we are done: */ + gfp &= ~__GFP_ZERO; + + /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ + if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) + gfp |= GFP_DMA; + if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) + gfp |= GFP_DMA32; + +again: + /* CMA can be used only in the context which permits sleeping */ + if (gfpflags_allow_blocking(gfp)) { + page = dma_alloc_from_contiguous(dev, count, page_order, gfp); + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + dma_release_from_contiguous(dev, page, count); + page = NULL; + } + } + if (!page) + page = alloc_pages_node(dev_to_node(dev), gfp, page_order); + + if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { + __free_pages(page, page_order); + page = NULL; + + if (IS_ENABLED(CONFIG_ZONE_DMA32) && + dev->coherent_dma_mask < DMA_BIT_MASK(64) && + !(gfp & (GFP_DMA32 | GFP_DMA))) { + gfp |= GFP_DMA32; + goto again; + } + + if (IS_ENABLED(CONFIG_ZONE_DMA) && + dev->coherent_dma_mask < DMA_BIT_MASK(32) && + !(gfp & GFP_DMA)) { + gfp = (gfp & ~GFP_DMA32) | GFP_DMA; + goto again; + } + } + + if (!page) + return NULL; + ret = page_address(page); + if (force_dma_unencrypted()) { + set_memory_decrypted((unsigned long)ret, 1 << page_order); + *dma_handle = __phys_to_dma(dev, page_to_phys(page)); + } else { + *dma_handle = phys_to_dma(dev, page_to_phys(page)); + } + memset(ret, 0, size); + return ret; +} + +/* + * NOTE: this function must never look at the dma_addr argument, because we want + * to be able to use it as a helper for iommu implementations as well. + */ +void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, + dma_addr_t dma_addr, unsigned long attrs) +{ + unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned int page_order = get_order(size); + + if (force_dma_unencrypted()) + set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); + if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) + free_pages((unsigned long)cpu_addr, page_order); +} + +dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; + + if (!check_addr(dev, dma_addr, size, __func__)) + return DIRECT_MAPPING_ERROR; + return dma_addr; +} + +int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, + enum dma_data_direction dir, unsigned long attrs) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + BUG_ON(!sg_page(sg)); + + sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); + if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) + return 0; + sg_dma_len(sg) = sg->length; + } + + return nents; +} + +int dma_direct_supported(struct device *dev, u64 mask) +{ +#ifdef CONFIG_ZONE_DMA + if (mask < DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) + return 0; +#else + /* + * Because 32-bit DMA masks are so common we expect every architecture + * to be able to satisfy them - either by not supporting more physical + * memory, or by providing a ZONE_DMA32. If neither is the case, the + * architecture needs to use an IOMMU instead of the direct mapping. + */ + if (mask < DMA_BIT_MASK(32)) + return 0; +#endif + /* + * Various PCI/PCIe bridges have broken support for > 32bit DMA even + * if the device itself might support it. + */ + if (dev->dma_32bit_limit && mask > DMA_BIT_MASK(32)) + return 0; + return 1; +} + +int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) +{ + return dma_addr == DIRECT_MAPPING_ERROR; +} + +const struct dma_map_ops dma_direct_ops = { + .alloc = dma_direct_alloc, + .free = dma_direct_free, + .map_page = dma_direct_map_page, + .map_sg = dma_direct_map_sg, + .dma_supported = dma_direct_supported, + .mapping_error = dma_direct_mapping_error, +}; +EXPORT_SYMBOL(dma_direct_ops); diff --git a/kernel/dma/mapping.c b/kernel/dma/mapping.c new file mode 100644 index 000000000000..d2a92ddaac4d --- /dev/null +++ b/kernel/dma/mapping.c @@ -0,0 +1,345 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * arch-independent dma-mapping routines + * + * Copyright (c) 2006 SUSE Linux Products GmbH + * Copyright (c) 2006 Tejun Heo <teheo@suse.de> + */ + +#include <linux/acpi.h> +#include <linux/dma-mapping.h> +#include <linux/export.h> +#include <linux/gfp.h> +#include <linux/of_device.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> + +/* + * Managed DMA API + */ +struct dma_devres { + size_t size; + void *vaddr; + dma_addr_t dma_handle; + unsigned long attrs; +}; + +static void dmam_release(struct device *dev, void *res) +{ + struct dma_devres *this = res; + + dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, + this->attrs); +} + +static int dmam_match(struct device *dev, void *res, void *match_data) +{ + struct dma_devres *this = res, *match = match_data; + + if (this->vaddr == match->vaddr) { + WARN_ON(this->size != match->size || + this->dma_handle != match->dma_handle); + return 1; + } + return 0; +} + +/** + * dmam_alloc_coherent - Managed dma_alloc_coherent() + * @dev: Device to allocate coherent memory for + * @size: Size of allocation + * @dma_handle: Out argument for allocated DMA handle + * @gfp: Allocation flags + * + * Managed dma_alloc_coherent(). Memory allocated using this function + * will be automatically released on driver detach. + * + * RETURNS: + * Pointer to allocated memory on success, NULL on failure. + */ +void *dmam_alloc_coherent(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp) +{ + struct dma_devres *dr; + void *vaddr; + + dr = devres_alloc(dmam_release, sizeof(*dr), gfp); + if (!dr) + return NULL; + + vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp); + if (!vaddr) { + devres_free(dr); + return NULL; + } + + dr->vaddr = vaddr; + dr->dma_handle = *dma_handle; + dr->size = size; + + devres_add(dev, dr); + + return vaddr; +} +EXPORT_SYMBOL(dmam_alloc_coherent); + +/** + * dmam_free_coherent - Managed dma_free_coherent() + * @dev: Device to free coherent memory for + * @size: Size of allocation + * @vaddr: Virtual address of the memory to free + * @dma_handle: DMA handle of the memory to free + * + * Managed dma_free_coherent(). + */ +void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_handle) +{ + struct dma_devres match_data = { size, vaddr, dma_handle }; + + dma_free_coherent(dev, size, vaddr, dma_handle); + WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); +} +EXPORT_SYMBOL(dmam_free_coherent); + +/** + * dmam_alloc_attrs - Managed dma_alloc_attrs() + * @dev: Device to allocate non_coherent memory for + * @size: Size of allocation + * @dma_handle: Out argument for allocated DMA handle + * @gfp: Allocation flags + * @attrs: Flags in the DMA_ATTR_* namespace. + * + * Managed dma_alloc_attrs(). Memory allocated using this function will be + * automatically released on driver detach. + * + * RETURNS: + * Pointer to allocated memory on success, NULL on failure. + */ +void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + struct dma_devres *dr; + void *vaddr; + + dr = devres_alloc(dmam_release, sizeof(*dr), gfp); + if (!dr) + return NULL; + + vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); + if (!vaddr) { + devres_free(dr); + return NULL; + } + + dr->vaddr = vaddr; + dr->dma_handle = *dma_handle; + dr->size = size; + dr->attrs = attrs; + + devres_add(dev, dr); + + return vaddr; +} +EXPORT_SYMBOL(dmam_alloc_attrs); + +#ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT + +static void dmam_coherent_decl_release(struct device *dev, void *res) +{ + dma_release_declared_memory(dev); +} + +/** + * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory() + * @dev: Device to declare coherent memory for + * @phys_addr: Physical address of coherent memory to be declared + * @device_addr: Device address of coherent memory to be declared + * @size: Size of coherent memory to be declared + * @flags: Flags + * + * Managed dma_declare_coherent_memory(). + * + * RETURNS: + * 0 on success, -errno on failure. + */ +int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, + dma_addr_t device_addr, size_t size, int flags) +{ + void *res; + int rc; + + res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL); + if (!res) + return -ENOMEM; + + rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size, + flags); + if (!rc) + devres_add(dev, res); + else + devres_free(res); + + return rc; +} +EXPORT_SYMBOL(dmam_declare_coherent_memory); + +/** + * dmam_release_declared_memory - Managed dma_release_declared_memory(). + * @dev: Device to release declared coherent memory for + * + * Managed dmam_release_declared_memory(). + */ +void dmam_release_declared_memory(struct device *dev) +{ + WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL)); +} +EXPORT_SYMBOL(dmam_release_declared_memory); + +#endif + +/* + * Create scatter-list for the already allocated DMA buffer. + */ +int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, + void *cpu_addr, dma_addr_t handle, size_t size) +{ + struct page *page = virt_to_page(cpu_addr); + int ret; + + ret = sg_alloc_table(sgt, 1, GFP_KERNEL); + if (unlikely(ret)) + return ret; + + sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); + return 0; +} +EXPORT_SYMBOL(dma_common_get_sgtable); + +/* + * Create userspace mapping for the DMA-coherent memory. + */ +int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, + void *cpu_addr, dma_addr_t dma_addr, size_t size) +{ + int ret = -ENXIO; +#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP + unsigned long user_count = vma_pages(vma); + unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; + unsigned long off = vma->vm_pgoff; + + vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); + + if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) + return ret; + + if (off < count && user_count <= (count - off)) + ret = remap_pfn_range(vma, vma->vm_start, + page_to_pfn(virt_to_page(cpu_addr)) + off, + user_count << PAGE_SHIFT, + vma->vm_page_prot); +#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */ + + return ret; +} +EXPORT_SYMBOL(dma_common_mmap); + +#ifdef CONFIG_MMU +static struct vm_struct *__dma_common_pages_remap(struct page **pages, + size_t size, unsigned long vm_flags, pgprot_t prot, + const void *caller) +{ + struct vm_struct *area; + + area = get_vm_area_caller(size, vm_flags, caller); + if (!area) + return NULL; + + if (map_vm_area(area, prot, pages)) { + vunmap(area->addr); + return NULL; + } + + return area; +} + +/* + * remaps an array of PAGE_SIZE pages into another vm_area + * Cannot be used in non-sleeping contexts + */ +void *dma_common_pages_remap(struct page **pages, size_t size, + unsigned long vm_flags, pgprot_t prot, + const void *caller) +{ + struct vm_struct *area; + + area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); + if (!area) + return NULL; + + area->pages = pages; + + return area->addr; +} + +/* + * remaps an allocated contiguous region into another vm_area. + * Cannot be used in non-sleeping contexts + */ + +void *dma_common_contiguous_remap(struct page *page, size_t size, + unsigned long vm_flags, + pgprot_t prot, const void *caller) +{ + int i; + struct page **pages; + struct vm_struct *area; + + pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL); + if (!pages) + return NULL; + + for (i = 0; i < (size >> PAGE_SHIFT); i++) + pages[i] = nth_page(page, i); + + area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller); + + kfree(pages); + + if (!area) + return NULL; + return area->addr; +} + +/* + * unmaps a range previously mapped by dma_common_*_remap + */ +void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags) +{ + struct vm_struct *area = find_vm_area(cpu_addr); + + if (!area || (area->flags & vm_flags) != vm_flags) { + WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); + return; + } + + unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size)); + vunmap(cpu_addr); +} +#endif + +/* + * enables DMA API use for a device + */ +int dma_configure(struct device *dev) +{ + if (dev->bus->dma_configure) + return dev->bus->dma_configure(dev); + return 0; +} + +void dma_deconfigure(struct device *dev) +{ + of_dma_deconfigure(dev); + acpi_dma_deconfigure(dev); +} diff --git a/kernel/dma/noncoherent.c b/kernel/dma/noncoherent.c new file mode 100644 index 000000000000..79e9a757387f --- /dev/null +++ b/kernel/dma/noncoherent.c @@ -0,0 +1,102 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (C) 2018 Christoph Hellwig. + * + * DMA operations that map physical memory directly without providing cache + * coherence. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-direct.h> +#include <linux/dma-noncoherent.h> +#include <linux/scatterlist.h> + +static void dma_noncoherent_sync_single_for_device(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + arch_sync_dma_for_device(dev, dma_to_phys(dev, addr), size, dir); +} + +static void dma_noncoherent_sync_sg_for_device(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) + arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir); +} + +static dma_addr_t dma_noncoherent_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + dma_addr_t addr; + + addr = dma_direct_map_page(dev, page, offset, size, dir, attrs); + if (!dma_mapping_error(dev, addr) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + arch_sync_dma_for_device(dev, page_to_phys(page) + offset, + size, dir); + return addr; +} + +static int dma_noncoherent_map_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + nents = dma_direct_map_sg(dev, sgl, nents, dir, attrs); + if (nents > 0 && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_sg_for_device(dev, sgl, nents, dir); + return nents; +} + +#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU +static void dma_noncoherent_sync_single_for_cpu(struct device *dev, + dma_addr_t addr, size_t size, enum dma_data_direction dir) +{ + arch_sync_dma_for_cpu(dev, dma_to_phys(dev, addr), size, dir); +} + +static void dma_noncoherent_sync_sg_for_cpu(struct device *dev, + struct scatterlist *sgl, int nents, enum dma_data_direction dir) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nents, i) + arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir); +} + +static void dma_noncoherent_unmap_page(struct device *dev, dma_addr_t addr, + size_t size, enum dma_data_direction dir, unsigned long attrs) +{ + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_single_for_cpu(dev, addr, size, dir); +} + +static void dma_noncoherent_unmap_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, unsigned long attrs) +{ + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) + dma_noncoherent_sync_sg_for_cpu(dev, sgl, nents, dir); +} +#endif + +const struct dma_map_ops dma_noncoherent_ops = { + .alloc = arch_dma_alloc, + .free = arch_dma_free, + .mmap = arch_dma_mmap, + .sync_single_for_device = dma_noncoherent_sync_single_for_device, + .sync_sg_for_device = dma_noncoherent_sync_sg_for_device, + .map_page = dma_noncoherent_map_page, + .map_sg = dma_noncoherent_map_sg, +#ifdef CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU + .sync_single_for_cpu = dma_noncoherent_sync_single_for_cpu, + .sync_sg_for_cpu = dma_noncoherent_sync_sg_for_cpu, + .unmap_page = dma_noncoherent_unmap_page, + .unmap_sg = dma_noncoherent_unmap_sg, +#endif + .dma_supported = dma_direct_supported, + .mapping_error = dma_direct_mapping_error, + .cache_sync = arch_dma_cache_sync, +}; +EXPORT_SYMBOL(dma_noncoherent_ops); diff --git a/kernel/dma/swiotlb.c b/kernel/dma/swiotlb.c new file mode 100644 index 000000000000..04b68d9dffac --- /dev/null +++ b/kernel/dma/swiotlb.c @@ -0,0 +1,1087 @@ +/* + * Dynamic DMA mapping support. + * + * This implementation is a fallback for platforms that do not support + * I/O TLBs (aka DMA address translation hardware). + * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> + * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> + * Copyright (C) 2000, 2003 Hewlett-Packard Co + * David Mosberger-Tang <davidm@hpl.hp.com> + * + * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API. + * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid + * unnecessary i-cache flushing. + * 04/07/.. ak Better overflow handling. Assorted fixes. + * 05/09/10 linville Add support for syncing ranges, support syncing for + * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. + * 08/12/11 beckyb Add highmem support + */ + +#include <linux/cache.h> +#include <linux/dma-direct.h> +#include <linux/mm.h> +#include <linux/export.h> +#include <linux/spinlock.h> +#include <linux/string.h> +#include <linux/swiotlb.h> +#include <linux/pfn.h> +#include <linux/types.h> +#include <linux/ctype.h> +#include <linux/highmem.h> +#include <linux/gfp.h> +#include <linux/scatterlist.h> +#include <linux/mem_encrypt.h> +#include <linux/set_memory.h> + +#include <asm/io.h> +#include <asm/dma.h> + +#include <linux/init.h> +#include <linux/bootmem.h> +#include <linux/iommu-helper.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/swiotlb.h> + +#define OFFSET(val,align) ((unsigned long) \ + ( (val) & ( (align) - 1))) + +#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) + +/* + * Minimum IO TLB size to bother booting with. Systems with mainly + * 64bit capable cards will only lightly use the swiotlb. If we can't + * allocate a contiguous 1MB, we're probably in trouble anyway. + */ +#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) + +enum swiotlb_force swiotlb_force; + +/* + * Used to do a quick range check in swiotlb_tbl_unmap_single and + * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this + * API. + */ +static phys_addr_t io_tlb_start, io_tlb_end; + +/* + * The number of IO TLB blocks (in groups of 64) between io_tlb_start and + * io_tlb_end. This is command line adjustable via setup_io_tlb_npages. + */ +static unsigned long io_tlb_nslabs; + +/* + * When the IOMMU overflows we return a fallback buffer. This sets the size. + */ +static unsigned long io_tlb_overflow = 32*1024; + +static phys_addr_t io_tlb_overflow_buffer; + +/* + * This is a free list describing the number of free entries available from + * each index + */ +static unsigned int *io_tlb_list; +static unsigned int io_tlb_index; + +/* + * Max segment that we can provide which (if pages are contingous) will + * not be bounced (unless SWIOTLB_FORCE is set). + */ +unsigned int max_segment; + +/* + * We need to save away the original address corresponding to a mapped entry + * for the sync operations. + */ +#define INVALID_PHYS_ADDR (~(phys_addr_t)0) +static phys_addr_t *io_tlb_orig_addr; + +/* + * Protect the above data structures in the map and unmap calls + */ +static DEFINE_SPINLOCK(io_tlb_lock); + +static int late_alloc; + +static int __init +setup_io_tlb_npages(char *str) +{ + if (isdigit(*str)) { + io_tlb_nslabs = simple_strtoul(str, &str, 0); + /* avoid tail segment of size < IO_TLB_SEGSIZE */ + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + if (*str == ',') + ++str; + if (!strcmp(str, "force")) { + swiotlb_force = SWIOTLB_FORCE; + } else if (!strcmp(str, "noforce")) { + swiotlb_force = SWIOTLB_NO_FORCE; + io_tlb_nslabs = 1; + } + + return 0; +} +early_param("swiotlb", setup_io_tlb_npages); +/* make io_tlb_overflow tunable too? */ + +unsigned long swiotlb_nr_tbl(void) +{ + return io_tlb_nslabs; +} +EXPORT_SYMBOL_GPL(swiotlb_nr_tbl); + +unsigned int swiotlb_max_segment(void) +{ + return max_segment; +} +EXPORT_SYMBOL_GPL(swiotlb_max_segment); + +void swiotlb_set_max_segment(unsigned int val) +{ + if (swiotlb_force == SWIOTLB_FORCE) + max_segment = 1; + else + max_segment = rounddown(val, PAGE_SIZE); +} + +/* default to 64MB */ +#define IO_TLB_DEFAULT_SIZE (64UL<<20) +unsigned long swiotlb_size_or_default(void) +{ + unsigned long size; + + size = io_tlb_nslabs << IO_TLB_SHIFT; + + return size ? size : (IO_TLB_DEFAULT_SIZE); +} + +static bool no_iotlb_memory; + +void swiotlb_print_info(void) +{ + unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; + unsigned char *vstart, *vend; + + if (no_iotlb_memory) { + pr_warn("software IO TLB: No low mem\n"); + return; + } + + vstart = phys_to_virt(io_tlb_start); + vend = phys_to_virt(io_tlb_end); + + printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n", + (unsigned long long)io_tlb_start, + (unsigned long long)io_tlb_end, + bytes >> 20, vstart, vend - 1); +} + +/* + * Early SWIOTLB allocation may be too early to allow an architecture to + * perform the desired operations. This function allows the architecture to + * call SWIOTLB when the operations are possible. It needs to be called + * before the SWIOTLB memory is used. + */ +void __init swiotlb_update_mem_attributes(void) +{ + void *vaddr; + unsigned long bytes; + + if (no_iotlb_memory || late_alloc) + return; + + vaddr = phys_to_virt(io_tlb_start); + bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT); + set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); + memset(vaddr, 0, bytes); + + vaddr = phys_to_virt(io_tlb_overflow_buffer); + bytes = PAGE_ALIGN(io_tlb_overflow); + set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); + memset(vaddr, 0, bytes); +} + +int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) +{ + void *v_overflow_buffer; + unsigned long i, bytes; + + bytes = nslabs << IO_TLB_SHIFT; + + io_tlb_nslabs = nslabs; + io_tlb_start = __pa(tlb); + io_tlb_end = io_tlb_start + bytes; + + /* + * Get the overflow emergency buffer + */ + v_overflow_buffer = memblock_virt_alloc_low_nopanic( + PAGE_ALIGN(io_tlb_overflow), + PAGE_SIZE); + if (!v_overflow_buffer) + return -ENOMEM; + + io_tlb_overflow_buffer = __pa(v_overflow_buffer); + + /* + * Allocate and initialize the free list array. This array is used + * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE + * between io_tlb_start and io_tlb_end. + */ + io_tlb_list = memblock_virt_alloc( + PAGE_ALIGN(io_tlb_nslabs * sizeof(int)), + PAGE_SIZE); + io_tlb_orig_addr = memblock_virt_alloc( + PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)), + PAGE_SIZE); + for (i = 0; i < io_tlb_nslabs; i++) { + io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + io_tlb_index = 0; + + if (verbose) + swiotlb_print_info(); + + swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); + return 0; +} + +/* + * Statically reserve bounce buffer space and initialize bounce buffer data + * structures for the software IO TLB used to implement the DMA API. + */ +void __init +swiotlb_init(int verbose) +{ + size_t default_size = IO_TLB_DEFAULT_SIZE; + unsigned char *vstart; + unsigned long bytes; + + if (!io_tlb_nslabs) { + io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + + bytes = io_tlb_nslabs << IO_TLB_SHIFT; + + /* Get IO TLB memory from the low pages */ + vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE); + if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) + return; + + if (io_tlb_start) + memblock_free_early(io_tlb_start, + PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); + pr_warn("Cannot allocate SWIOTLB buffer"); + no_iotlb_memory = true; +} + +/* + * Systems with larger DMA zones (those that don't support ISA) can + * initialize the swiotlb later using the slab allocator if needed. + * This should be just like above, but with some error catching. + */ +int +swiotlb_late_init_with_default_size(size_t default_size) +{ + unsigned long bytes, req_nslabs = io_tlb_nslabs; + unsigned char *vstart = NULL; + unsigned int order; + int rc = 0; + + if (!io_tlb_nslabs) { + io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); + io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); + } + + /* + * Get IO TLB memory from the low pages + */ + order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); + io_tlb_nslabs = SLABS_PER_PAGE << order; + bytes = io_tlb_nslabs << IO_TLB_SHIFT; + + while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { + vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, + order); + if (vstart) + break; + order--; + } + + if (!vstart) { + io_tlb_nslabs = req_nslabs; + return -ENOMEM; + } + if (order != get_order(bytes)) { + printk(KERN_WARNING "Warning: only able to allocate %ld MB " + "for software IO TLB\n", (PAGE_SIZE << order) >> 20); + io_tlb_nslabs = SLABS_PER_PAGE << order; + } + rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); + if (rc) + free_pages((unsigned long)vstart, order); + + return rc; +} + +int +swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) +{ + unsigned long i, bytes; + unsigned char *v_overflow_buffer; + + bytes = nslabs << IO_TLB_SHIFT; + + io_tlb_nslabs = nslabs; + io_tlb_start = virt_to_phys(tlb); + io_tlb_end = io_tlb_start + bytes; + + set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); + memset(tlb, 0, bytes); + + /* + * Get the overflow emergency buffer + */ + v_overflow_buffer = (void *)__get_free_pages(GFP_DMA, + get_order(io_tlb_overflow)); + if (!v_overflow_buffer) + goto cleanup2; + + set_memory_decrypted((unsigned long)v_overflow_buffer, + io_tlb_overflow >> PAGE_SHIFT); + memset(v_overflow_buffer, 0, io_tlb_overflow); + io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer); + + /* + * Allocate and initialize the free list array. This array is used + * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE + * between io_tlb_start and io_tlb_end. + */ + io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, + get_order(io_tlb_nslabs * sizeof(int))); + if (!io_tlb_list) + goto cleanup3; + + io_tlb_orig_addr = (phys_addr_t *) + __get_free_pages(GFP_KERNEL, + get_order(io_tlb_nslabs * + sizeof(phys_addr_t))); + if (!io_tlb_orig_addr) + goto cleanup4; + + for (i = 0; i < io_tlb_nslabs; i++) { + io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + io_tlb_index = 0; + + swiotlb_print_info(); + + late_alloc = 1; + + swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); + + return 0; + +cleanup4: + free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * + sizeof(int))); + io_tlb_list = NULL; +cleanup3: + free_pages((unsigned long)v_overflow_buffer, + get_order(io_tlb_overflow)); + io_tlb_overflow_buffer = 0; +cleanup2: + io_tlb_end = 0; + io_tlb_start = 0; + io_tlb_nslabs = 0; + max_segment = 0; + return -ENOMEM; +} + +void __init swiotlb_exit(void) +{ + if (!io_tlb_orig_addr) + return; + + if (late_alloc) { + free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer), + get_order(io_tlb_overflow)); + free_pages((unsigned long)io_tlb_orig_addr, + get_order(io_tlb_nslabs * sizeof(phys_addr_t))); + free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * + sizeof(int))); + free_pages((unsigned long)phys_to_virt(io_tlb_start), + get_order(io_tlb_nslabs << IO_TLB_SHIFT)); + } else { + memblock_free_late(io_tlb_overflow_buffer, + PAGE_ALIGN(io_tlb_overflow)); + memblock_free_late(__pa(io_tlb_orig_addr), + PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t))); + memblock_free_late(__pa(io_tlb_list), + PAGE_ALIGN(io_tlb_nslabs * sizeof(int))); + memblock_free_late(io_tlb_start, + PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); + } + io_tlb_nslabs = 0; + max_segment = 0; +} + +int is_swiotlb_buffer(phys_addr_t paddr) +{ + return paddr >= io_tlb_start && paddr < io_tlb_end; +} + +/* + * Bounce: copy the swiotlb buffer back to the original dma location + */ +static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir) +{ + unsigned long pfn = PFN_DOWN(orig_addr); + unsigned char *vaddr = phys_to_virt(tlb_addr); + + if (PageHighMem(pfn_to_page(pfn))) { + /* The buffer does not have a mapping. Map it in and copy */ + unsigned int offset = orig_addr & ~PAGE_MASK; + char *buffer; + unsigned int sz = 0; + unsigned long flags; + + while (size) { + sz = min_t(size_t, PAGE_SIZE - offset, size); + + local_irq_save(flags); + buffer = kmap_atomic(pfn_to_page(pfn)); + if (dir == DMA_TO_DEVICE) + memcpy(vaddr, buffer + offset, sz); + else + memcpy(buffer + offset, vaddr, sz); + kunmap_atomic(buffer); + local_irq_restore(flags); + + size -= sz; + pfn++; + vaddr += sz; + offset = 0; + } + } else if (dir == DMA_TO_DEVICE) { + memcpy(vaddr, phys_to_virt(orig_addr), size); + } else { + memcpy(phys_to_virt(orig_addr), vaddr, size); + } +} + +phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, + dma_addr_t tbl_dma_addr, + phys_addr_t orig_addr, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + unsigned long flags; + phys_addr_t tlb_addr; + unsigned int nslots, stride, index, wrap; + int i; + unsigned long mask; + unsigned long offset_slots; + unsigned long max_slots; + + if (no_iotlb_memory) + panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); + + if (mem_encrypt_active()) + pr_warn_once("%s is active and system is using DMA bounce buffers\n", + sme_active() ? "SME" : "SEV"); + + mask = dma_get_seg_boundary(hwdev); + + tbl_dma_addr &= mask; + + offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + + /* + * Carefully handle integer overflow which can occur when mask == ~0UL. + */ + max_slots = mask + 1 + ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT + : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT); + + /* + * For mappings greater than or equal to a page, we limit the stride + * (and hence alignment) to a page size. + */ + nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + if (size >= PAGE_SIZE) + stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); + else + stride = 1; + + BUG_ON(!nslots); + + /* + * Find suitable number of IO TLB entries size that will fit this + * request and allocate a buffer from that IO TLB pool. + */ + spin_lock_irqsave(&io_tlb_lock, flags); + index = ALIGN(io_tlb_index, stride); + if (index >= io_tlb_nslabs) + index = 0; + wrap = index; + + do { + while (iommu_is_span_boundary(index, nslots, offset_slots, + max_slots)) { + index += stride; + if (index >= io_tlb_nslabs) + index = 0; + if (index == wrap) + goto not_found; + } + + /* + * If we find a slot that indicates we have 'nslots' number of + * contiguous buffers, we allocate the buffers from that slot + * and mark the entries as '0' indicating unavailable. + */ + if (io_tlb_list[index] >= nslots) { + int count = 0; + + for (i = index; i < (int) (index + nslots); i++) + io_tlb_list[i] = 0; + for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--) + io_tlb_list[i] = ++count; + tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT); + + /* + * Update the indices to avoid searching in the next + * round. + */ + io_tlb_index = ((index + nslots) < io_tlb_nslabs + ? (index + nslots) : 0); + + goto found; + } + index += stride; + if (index >= io_tlb_nslabs) + index = 0; + } while (index != wrap); + +not_found: + spin_unlock_irqrestore(&io_tlb_lock, flags); + if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) + dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size); + return SWIOTLB_MAP_ERROR; +found: + spin_unlock_irqrestore(&io_tlb_lock, flags); + + /* + * Save away the mapping from the original address to the DMA address. + * This is needed when we sync the memory. Then we sync the buffer if + * needed. + */ + for (i = 0; i < nslots; i++) + io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT); + if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE); + + return tlb_addr; +} + +/* + * Allocates bounce buffer and returns its physical address. + */ +static phys_addr_t +map_single(struct device *hwdev, phys_addr_t phys, size_t size, + enum dma_data_direction dir, unsigned long attrs) +{ + dma_addr_t start_dma_addr; + + if (swiotlb_force == SWIOTLB_NO_FORCE) { + dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n", + &phys); + return SWIOTLB_MAP_ERROR; + } + + start_dma_addr = __phys_to_dma(hwdev, io_tlb_start); + return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, + dir, attrs); +} + +/* + * tlb_addr is the physical address of the bounce buffer to unmap. + */ +void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + unsigned long flags; + int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; + int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; + phys_addr_t orig_addr = io_tlb_orig_addr[index]; + + /* + * First, sync the memory before unmapping the entry + */ + if (orig_addr != INVALID_PHYS_ADDR && + !(attrs & DMA_ATTR_SKIP_CPU_SYNC) && + ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) + swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE); + + /* + * Return the buffer to the free list by setting the corresponding + * entries to indicate the number of contiguous entries available. + * While returning the entries to the free list, we merge the entries + * with slots below and above the pool being returned. + */ + spin_lock_irqsave(&io_tlb_lock, flags); + { + count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? + io_tlb_list[index + nslots] : 0); + /* + * Step 1: return the slots to the free list, merging the + * slots with superceeding slots + */ + for (i = index + nslots - 1; i >= index; i--) { + io_tlb_list[i] = ++count; + io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; + } + /* + * Step 2: merge the returned slots with the preceding slots, + * if available (non zero) + */ + for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) + io_tlb_list[i] = ++count; + } + spin_unlock_irqrestore(&io_tlb_lock, flags); +} + +void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, + size_t size, enum dma_data_direction dir, + enum dma_sync_target target) +{ + int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; + phys_addr_t orig_addr = io_tlb_orig_addr[index]; + + if (orig_addr == INVALID_PHYS_ADDR) + return; + orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1); + + switch (target) { + case SYNC_FOR_CPU: + if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, + size, DMA_FROM_DEVICE); + else + BUG_ON(dir != DMA_TO_DEVICE); + break; + case SYNC_FOR_DEVICE: + if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) + swiotlb_bounce(orig_addr, tlb_addr, + size, DMA_TO_DEVICE); + else + BUG_ON(dir != DMA_FROM_DEVICE); + break; + default: + BUG(); + } +} + +static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr, + size_t size) +{ + u64 mask = DMA_BIT_MASK(32); + + if (dev && dev->coherent_dma_mask) + mask = dev->coherent_dma_mask; + return addr + size - 1 <= mask; +} + +static void * +swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle, + unsigned long attrs) +{ + phys_addr_t phys_addr; + + if (swiotlb_force == SWIOTLB_NO_FORCE) + goto out_warn; + + phys_addr = swiotlb_tbl_map_single(dev, + __phys_to_dma(dev, io_tlb_start), + 0, size, DMA_FROM_DEVICE, attrs); + if (phys_addr == SWIOTLB_MAP_ERROR) + goto out_warn; + + *dma_handle = __phys_to_dma(dev, phys_addr); + if (!dma_coherent_ok(dev, *dma_handle, size)) + goto out_unmap; + + memset(phys_to_virt(phys_addr), 0, size); + return phys_to_virt(phys_addr); + +out_unmap: + dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n", + (unsigned long long)dev->coherent_dma_mask, + (unsigned long long)*dma_handle); + + /* + * DMA_TO_DEVICE to avoid memcpy in unmap_single. + * DMA_ATTR_SKIP_CPU_SYNC is optional. + */ + swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); +out_warn: + if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) { + dev_warn(dev, + "swiotlb: coherent allocation failed, size=%zu\n", + size); + dump_stack(); + } + return NULL; +} + +static bool swiotlb_free_buffer(struct device *dev, size_t size, + dma_addr_t dma_addr) +{ + phys_addr_t phys_addr = dma_to_phys(dev, dma_addr); + + WARN_ON_ONCE(irqs_disabled()); + + if (!is_swiotlb_buffer(phys_addr)) + return false; + + /* + * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single. + * DMA_ATTR_SKIP_CPU_SYNC is optional. + */ + swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE, + DMA_ATTR_SKIP_CPU_SYNC); + return true; +} + +static void +swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir, + int do_panic) +{ + if (swiotlb_force == SWIOTLB_NO_FORCE) + return; + + /* + * Ran out of IOMMU space for this operation. This is very bad. + * Unfortunately the drivers cannot handle this operation properly. + * unless they check for dma_mapping_error (most don't) + * When the mapping is small enough return a static buffer to limit + * the damage, or panic when the transfer is too big. + */ + dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n", + size); + + if (size <= io_tlb_overflow || !do_panic) + return; + + if (dir == DMA_BIDIRECTIONAL) + panic("DMA: Random memory could be DMA accessed\n"); + if (dir == DMA_FROM_DEVICE) + panic("DMA: Random memory could be DMA written\n"); + if (dir == DMA_TO_DEVICE) + panic("DMA: Random memory could be DMA read\n"); +} + +/* + * Map a single buffer of the indicated size for DMA in streaming mode. The + * physical address to use is returned. + * + * Once the device is given the dma address, the device owns this memory until + * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed. + */ +dma_addr_t swiotlb_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + phys_addr_t map, phys = page_to_phys(page) + offset; + dma_addr_t dev_addr = phys_to_dma(dev, phys); + + BUG_ON(dir == DMA_NONE); + /* + * If the address happens to be in the device's DMA window, + * we can safely return the device addr and not worry about bounce + * buffering it. + */ + if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE) + return dev_addr; + + trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force); + + /* Oh well, have to allocate and map a bounce buffer. */ + map = map_single(dev, phys, size, dir, attrs); + if (map == SWIOTLB_MAP_ERROR) { + swiotlb_full(dev, size, dir, 1); + return __phys_to_dma(dev, io_tlb_overflow_buffer); + } + + dev_addr = __phys_to_dma(dev, map); + + /* Ensure that the address returned is DMA'ble */ + if (dma_capable(dev, dev_addr, size)) + return dev_addr; + + attrs |= DMA_ATTR_SKIP_CPU_SYNC; + swiotlb_tbl_unmap_single(dev, map, size, dir, attrs); + + return __phys_to_dma(dev, io_tlb_overflow_buffer); +} + +/* + * Unmap a single streaming mode DMA translation. The dma_addr and size must + * match what was provided for in a previous swiotlb_map_page call. All + * other usages are undefined. + * + * After this call, reads by the cpu to the buffer are guaranteed to see + * whatever the device wrote there. + */ +static void unmap_single(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); + + BUG_ON(dir == DMA_NONE); + + if (is_swiotlb_buffer(paddr)) { + swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs); + return; + } + + if (dir != DMA_FROM_DEVICE) + return; + + /* + * phys_to_virt doesn't work with hihgmem page but we could + * call dma_mark_clean() with hihgmem page here. However, we + * are fine since dma_mark_clean() is null on POWERPC. We can + * make dma_mark_clean() take a physical address if necessary. + */ + dma_mark_clean(phys_to_virt(paddr), size); +} + +void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + unsigned long attrs) +{ + unmap_single(hwdev, dev_addr, size, dir, attrs); +} + +/* + * Make physical memory consistent for a single streaming mode DMA translation + * after a transfer. + * + * If you perform a swiotlb_map_page() but wish to interrogate the buffer + * using the cpu, yet do not wish to teardown the dma mapping, you must + * call this function before doing so. At the next point you give the dma + * address back to the card, you must first perform a + * swiotlb_dma_sync_for_device, and then the device again owns the buffer + */ +static void +swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir, + enum dma_sync_target target) +{ + phys_addr_t paddr = dma_to_phys(hwdev, dev_addr); + + BUG_ON(dir == DMA_NONE); + + if (is_swiotlb_buffer(paddr)) { + swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target); + return; + } + + if (dir != DMA_FROM_DEVICE) + return; + + dma_mark_clean(phys_to_virt(paddr), size); +} + +void +swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir) +{ + swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); +} + +void +swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, + size_t size, enum dma_data_direction dir) +{ + swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); +} + +/* + * Map a set of buffers described by scatterlist in streaming mode for DMA. + * This is the scatter-gather version of the above swiotlb_map_page + * interface. Here the scatter gather list elements are each tagged with the + * appropriate dma address and length. They are obtained via + * sg_dma_{address,length}(SG). + * + * NOTE: An implementation may be able to use a smaller number of + * DMA address/length pairs than there are SG table elements. + * (for example via virtual mapping capabilities) + * The routine returns the number of addr/length pairs actually + * used, at most nents. + * + * Device ownership issues as mentioned above for swiotlb_map_page are the + * same here. + */ +int +swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems, + enum dma_data_direction dir, unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + BUG_ON(dir == DMA_NONE); + + for_each_sg(sgl, sg, nelems, i) { + phys_addr_t paddr = sg_phys(sg); + dma_addr_t dev_addr = phys_to_dma(hwdev, paddr); + + if (swiotlb_force == SWIOTLB_FORCE || + !dma_capable(hwdev, dev_addr, sg->length)) { + phys_addr_t map = map_single(hwdev, sg_phys(sg), + sg->length, dir, attrs); + if (map == SWIOTLB_MAP_ERROR) { + /* Don't panic here, we expect map_sg users + to do proper error handling. */ + swiotlb_full(hwdev, sg->length, dir, 0); + attrs |= DMA_ATTR_SKIP_CPU_SYNC; + swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir, + attrs); + sg_dma_len(sgl) = 0; + return 0; + } + sg->dma_address = __phys_to_dma(hwdev, map); + } else + sg->dma_address = dev_addr; + sg_dma_len(sg) = sg->length; + } + return nelems; +} + +/* + * Unmap a set of streaming mode DMA translations. Again, cpu read rules + * concerning calls here are the same as for swiotlb_unmap_page() above. + */ +void +swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + unsigned long attrs) +{ + struct scatterlist *sg; + int i; + + BUG_ON(dir == DMA_NONE); + + for_each_sg(sgl, sg, nelems, i) + unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir, + attrs); +} + +/* + * Make physical memory consistent for a set of streaming mode DMA translations + * after a transfer. + * + * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules + * and usage. + */ +static void +swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl, + int nelems, enum dma_data_direction dir, + enum dma_sync_target target) +{ + struct scatterlist *sg; + int i; + + for_each_sg(sgl, sg, nelems, i) + swiotlb_sync_single(hwdev, sg->dma_address, + sg_dma_len(sg), dir, target); +} + +void +swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); +} + +void +swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, + int nelems, enum dma_data_direction dir) +{ + swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); +} + +int +swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr) +{ + return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer)); +} + +/* + * Return whether the given device DMA address mask can be supported + * properly. For example, if your device can only drive the low 24-bits + * during bus mastering, then you would pass 0x00ffffff as the mask to + * this function. + */ +int +swiotlb_dma_supported(struct device *hwdev, u64 mask) +{ + return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask; +} + +void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, + gfp_t gfp, unsigned long attrs) +{ + void *vaddr; + + /* temporary workaround: */ + if (gfp & __GFP_NOWARN) + attrs |= DMA_ATTR_NO_WARN; + + /* + * Don't print a warning when the first allocation attempt fails. + * swiotlb_alloc_coherent() will print a warning when the DMA memory + * allocation ultimately failed. + */ + gfp |= __GFP_NOWARN; + + vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); + if (!vaddr) + vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs); + return vaddr; +} + +void swiotlb_free(struct device *dev, size_t size, void *vaddr, + dma_addr_t dma_addr, unsigned long attrs) +{ + if (!swiotlb_free_buffer(dev, size, dma_addr)) + dma_direct_free(dev, size, vaddr, dma_addr, attrs); +} + +const struct dma_map_ops swiotlb_dma_ops = { + .mapping_error = swiotlb_dma_mapping_error, + .alloc = swiotlb_alloc, + .free = swiotlb_free, + .sync_single_for_cpu = swiotlb_sync_single_for_cpu, + .sync_single_for_device = swiotlb_sync_single_for_device, + .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, + .sync_sg_for_device = swiotlb_sync_sg_for_device, + .map_sg = swiotlb_map_sg_attrs, + .unmap_sg = swiotlb_unmap_sg_attrs, + .map_page = swiotlb_map_page, + .unmap_page = swiotlb_unmap_page, + .dma_supported = dma_direct_supported, +}; diff --git a/kernel/dma/virt.c b/kernel/dma/virt.c new file mode 100644 index 000000000000..631ddec4b60a --- /dev/null +++ b/kernel/dma/virt.c @@ -0,0 +1,59 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * DMA operations that map to virtual addresses without flushing memory. + */ +#include <linux/export.h> +#include <linux/mm.h> +#include <linux/dma-mapping.h> +#include <linux/scatterlist.h> + +static void *dma_virt_alloc(struct device *dev, size_t size, + dma_addr_t *dma_handle, gfp_t gfp, + unsigned long attrs) +{ + void *ret; + + ret = (void *)__get_free_pages(gfp, get_order(size)); + if (ret) + *dma_handle = (uintptr_t)ret; + return ret; +} + +static void dma_virt_free(struct device *dev, size_t size, + void *cpu_addr, dma_addr_t dma_addr, + unsigned long attrs) +{ + free_pages((unsigned long)cpu_addr, get_order(size)); +} + +static dma_addr_t dma_virt_map_page(struct device *dev, struct page *page, + unsigned long offset, size_t size, + enum dma_data_direction dir, + unsigned long attrs) +{ + return (uintptr_t)(page_address(page) + offset); +} + +static int dma_virt_map_sg(struct device *dev, struct scatterlist *sgl, + int nents, enum dma_data_direction dir, + unsigned long attrs) +{ + int i; + struct scatterlist *sg; + + for_each_sg(sgl, sg, nents, i) { + BUG_ON(!sg_page(sg)); + sg_dma_address(sg) = (uintptr_t)sg_virt(sg); + sg_dma_len(sg) = sg->length; + } + + return nents; +} + +const struct dma_map_ops dma_virt_ops = { + .alloc = dma_virt_alloc, + .free = dma_virt_free, + .map_page = dma_virt_map_page, + .map_sg = dma_virt_map_sg, +}; +EXPORT_SYMBOL(dma_virt_ops); |