diff options
author | David S. Miller <davem@davemloft.net> | 2017-03-23 15:11:56 -0700 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2017-03-23 16:41:27 -0700 |
commit | 16ae1f223601c44e5cb65c99257ffae003504704 (patch) | |
tree | 1f5284c0e82e4d94ca07eb022fa7911d99bb0cb6 /kernel | |
parent | 6f359f99b8c2ff3b09329611da00fe39a7c10e7e (diff) | |
parent | d038e3dcfff6e3de132726a9c7174d8170032aa4 (diff) | |
download | lwn-16ae1f223601c44e5cb65c99257ffae003504704.tar.gz lwn-16ae1f223601c44e5cb65c99257ffae003504704.zip |
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts:
drivers/net/ethernet/broadcom/genet/bcmmii.c
drivers/net/hyperv/netvsc.c
kernel/bpf/hashtab.c
Almost entirely overlapping changes.
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/bpf/hashtab.c | 144 | ||||
-rw-r--r-- | kernel/cpu.c | 28 | ||||
-rw-r--r-- | kernel/events/core.c | 64 | ||||
-rw-r--r-- | kernel/futex.c | 22 | ||||
-rw-r--r-- | kernel/locking/rwsem-spinlock.c | 16 | ||||
-rw-r--r-- | kernel/memremap.c | 4 | ||||
-rw-r--r-- | kernel/sched/deadline.c | 63 | ||||
-rw-r--r-- | kernel/sched/loadavg.c | 20 |
8 files changed, 226 insertions, 135 deletions
diff --git a/kernel/bpf/hashtab.c b/kernel/bpf/hashtab.c index 343fb5394c95..d5b0623ce87d 100644 --- a/kernel/bpf/hashtab.c +++ b/kernel/bpf/hashtab.c @@ -31,18 +31,12 @@ struct bpf_htab { struct pcpu_freelist freelist; struct bpf_lru lru; }; - void __percpu *extra_elems; + struct htab_elem *__percpu *extra_elems; atomic_t count; /* number of elements in this hashtable */ u32 n_buckets; /* number of hash buckets */ u32 elem_size; /* size of each element in bytes */ }; -enum extra_elem_state { - HTAB_NOT_AN_EXTRA_ELEM = 0, - HTAB_EXTRA_ELEM_FREE, - HTAB_EXTRA_ELEM_USED -}; - /* each htab element is struct htab_elem + key + value */ struct htab_elem { union { @@ -57,7 +51,6 @@ struct htab_elem { }; union { struct rcu_head rcu; - enum extra_elem_state state; struct bpf_lru_node lru_node; }; u32 hash; @@ -78,6 +71,11 @@ static bool htab_is_percpu(const struct bpf_htab *htab) htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH; } +static bool htab_is_prealloc(const struct bpf_htab *htab) +{ + return !(htab->map.map_flags & BPF_F_NO_PREALLOC); +} + static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size, void __percpu *pptr) { @@ -134,17 +132,20 @@ static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key, static int prealloc_init(struct bpf_htab *htab) { + u32 num_entries = htab->map.max_entries; int err = -ENOMEM, i; - htab->elems = bpf_map_area_alloc(htab->elem_size * - htab->map.max_entries); + if (!htab_is_percpu(htab) && !htab_is_lru(htab)) + num_entries += num_possible_cpus(); + + htab->elems = bpf_map_area_alloc(htab->elem_size * num_entries); if (!htab->elems) return -ENOMEM; if (!htab_is_percpu(htab)) goto skip_percpu_elems; - for (i = 0; i < htab->map.max_entries; i++) { + for (i = 0; i < num_entries; i++) { u32 size = round_up(htab->map.value_size, 8); void __percpu *pptr; @@ -172,11 +173,11 @@ skip_percpu_elems: if (htab_is_lru(htab)) bpf_lru_populate(&htab->lru, htab->elems, offsetof(struct htab_elem, lru_node), - htab->elem_size, htab->map.max_entries); + htab->elem_size, num_entries); else pcpu_freelist_populate(&htab->freelist, htab->elems + offsetof(struct htab_elem, fnode), - htab->elem_size, htab->map.max_entries); + htab->elem_size, num_entries); return 0; @@ -197,16 +198,22 @@ static void prealloc_destroy(struct bpf_htab *htab) static int alloc_extra_elems(struct bpf_htab *htab) { - void __percpu *pptr; + struct htab_elem *__percpu *pptr, *l_new; + struct pcpu_freelist_node *l; int cpu; - pptr = __alloc_percpu_gfp(htab->elem_size, 8, GFP_USER | __GFP_NOWARN); + pptr = __alloc_percpu_gfp(sizeof(struct htab_elem *), 8, + GFP_USER | __GFP_NOWARN); if (!pptr) return -ENOMEM; for_each_possible_cpu(cpu) { - ((struct htab_elem *)per_cpu_ptr(pptr, cpu))->state = - HTAB_EXTRA_ELEM_FREE; + l = pcpu_freelist_pop(&htab->freelist); + /* pop will succeed, since prealloc_init() + * preallocated extra num_possible_cpus elements + */ + l_new = container_of(l, struct htab_elem, fnode); + *per_cpu_ptr(pptr, cpu) = l_new; } htab->extra_elems = pptr; return 0; @@ -348,25 +355,25 @@ static struct bpf_map *htab_map_alloc(union bpf_attr *attr) raw_spin_lock_init(&htab->buckets[i].lock); } - if (!percpu && !lru) { - /* lru itself can remove the least used element, so - * there is no need for an extra elem during map_update. - */ - err = alloc_extra_elems(htab); - if (err) - goto free_buckets; - } - if (prealloc) { err = prealloc_init(htab); if (err) - goto free_extra_elems; + goto free_buckets; + + if (!percpu && !lru) { + /* lru itself can remove the least used element, so + * there is no need for an extra elem during map_update. + */ + err = alloc_extra_elems(htab); + if (err) + goto free_prealloc; + } } return &htab->map; -free_extra_elems: - free_percpu(htab->extra_elems); +free_prealloc: + prealloc_destroy(htab); free_buckets: bpf_map_area_free(htab->buckets); free_htab: @@ -617,12 +624,7 @@ static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l) map->ops->map_fd_put_ptr(ptr); } - if (l->state == HTAB_EXTRA_ELEM_USED) { - l->state = HTAB_EXTRA_ELEM_FREE; - return; - } - - if (!(htab->map.map_flags & BPF_F_NO_PREALLOC)) { + if (htab_is_prealloc(htab)) { pcpu_freelist_push(&htab->freelist, &l->fnode); } else { atomic_dec(&htab->count); @@ -652,47 +654,43 @@ static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr, static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key, void *value, u32 key_size, u32 hash, bool percpu, bool onallcpus, - bool old_elem_exists) + struct htab_elem *old_elem) { u32 size = htab->map.value_size; - bool prealloc = !(htab->map.map_flags & BPF_F_NO_PREALLOC); - struct htab_elem *l_new; + bool prealloc = htab_is_prealloc(htab); + struct htab_elem *l_new, **pl_new; void __percpu *pptr; - int err = 0; if (prealloc) { - struct pcpu_freelist_node *l; + if (old_elem) { + /* if we're updating the existing element, + * use per-cpu extra elems to avoid freelist_pop/push + */ + pl_new = this_cpu_ptr(htab->extra_elems); + l_new = *pl_new; + *pl_new = old_elem; + } else { + struct pcpu_freelist_node *l; - l = pcpu_freelist_pop(&htab->freelist); - if (!l) - err = -E2BIG; - else + l = pcpu_freelist_pop(&htab->freelist); + if (!l) + return ERR_PTR(-E2BIG); l_new = container_of(l, struct htab_elem, fnode); - } else { - if (atomic_inc_return(&htab->count) > htab->map.max_entries) { - atomic_dec(&htab->count); - err = -E2BIG; - } else { - l_new = kmalloc(htab->elem_size, - GFP_ATOMIC | __GFP_NOWARN); - if (!l_new) - return ERR_PTR(-ENOMEM); } - } - - if (err) { - if (!old_elem_exists) - return ERR_PTR(err); - - /* if we're updating the existing element and the hash table - * is full, use per-cpu extra elems - */ - l_new = this_cpu_ptr(htab->extra_elems); - if (l_new->state != HTAB_EXTRA_ELEM_FREE) - return ERR_PTR(-E2BIG); - l_new->state = HTAB_EXTRA_ELEM_USED; } else { - l_new->state = HTAB_NOT_AN_EXTRA_ELEM; + if (atomic_inc_return(&htab->count) > htab->map.max_entries) + if (!old_elem) { + /* when map is full and update() is replacing + * old element, it's ok to allocate, since + * old element will be freed immediately. + * Otherwise return an error + */ + atomic_dec(&htab->count); + return ERR_PTR(-E2BIG); + } + l_new = kmalloc(htab->elem_size, GFP_ATOMIC | __GFP_NOWARN); + if (!l_new) + return ERR_PTR(-ENOMEM); } memcpy(l_new->key, key, key_size); @@ -773,7 +771,7 @@ static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, goto err; l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false, - !!l_old); + l_old); if (IS_ERR(l_new)) { /* all pre-allocated elements are in use or memory exhausted */ ret = PTR_ERR(l_new); @@ -786,7 +784,8 @@ static int htab_map_update_elem(struct bpf_map *map, void *key, void *value, hlist_nulls_add_head_rcu(&l_new->hash_node, head); if (l_old) { hlist_nulls_del_rcu(&l_old->hash_node); - free_htab_elem(htab, l_old); + if (!htab_is_prealloc(htab)) + free_htab_elem(htab, l_old); } ret = 0; err: @@ -898,7 +897,7 @@ static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key, value, onallcpus); } else { l_new = alloc_htab_elem(htab, key, value, key_size, - hash, true, onallcpus, false); + hash, true, onallcpus, NULL); if (IS_ERR(l_new)) { ret = PTR_ERR(l_new); goto err; @@ -1066,8 +1065,7 @@ static void delete_all_elements(struct bpf_htab *htab) hlist_nulls_for_each_entry_safe(l, n, head, hash_node) { hlist_nulls_del_rcu(&l->hash_node); - if (l->state != HTAB_EXTRA_ELEM_USED) - htab_elem_free(htab, l); + htab_elem_free(htab, l); } } } @@ -1088,7 +1086,7 @@ static void htab_map_free(struct bpf_map *map) * not have executed. Wait for them. */ rcu_barrier(); - if (htab->map.map_flags & BPF_F_NO_PREALLOC) + if (!htab_is_prealloc(htab)) delete_all_elements(htab); else prealloc_destroy(htab); diff --git a/kernel/cpu.c b/kernel/cpu.c index f7c063239fa5..37b223e4fc05 100644 --- a/kernel/cpu.c +++ b/kernel/cpu.c @@ -1335,26 +1335,21 @@ static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, struct cpuhp_step *sp; int ret = 0; - mutex_lock(&cpuhp_state_mutex); - if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) { ret = cpuhp_reserve_state(state); if (ret < 0) - goto out; + return ret; state = ret; } sp = cpuhp_get_step(state); - if (name && sp->name) { - ret = -EBUSY; - goto out; - } + if (name && sp->name) + return -EBUSY; + sp->startup.single = startup; sp->teardown.single = teardown; sp->name = name; sp->multi_instance = multi_instance; INIT_HLIST_HEAD(&sp->list); -out: - mutex_unlock(&cpuhp_state_mutex); return ret; } @@ -1428,6 +1423,7 @@ int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, return -EINVAL; get_online_cpus(); + mutex_lock(&cpuhp_state_mutex); if (!invoke || !sp->startup.multi) goto add_node; @@ -1447,16 +1443,14 @@ int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, if (ret) { if (sp->teardown.multi) cpuhp_rollback_install(cpu, state, node); - goto err; + goto unlock; } } add_node: ret = 0; - mutex_lock(&cpuhp_state_mutex); hlist_add_head(node, &sp->list); +unlock: mutex_unlock(&cpuhp_state_mutex); - -err: put_online_cpus(); return ret; } @@ -1491,6 +1485,7 @@ int __cpuhp_setup_state(enum cpuhp_state state, return -EINVAL; get_online_cpus(); + mutex_lock(&cpuhp_state_mutex); ret = cpuhp_store_callbacks(state, name, startup, teardown, multi_instance); @@ -1524,6 +1519,7 @@ int __cpuhp_setup_state(enum cpuhp_state state, } } out: + mutex_unlock(&cpuhp_state_mutex); put_online_cpus(); /* * If the requested state is CPUHP_AP_ONLINE_DYN, return the @@ -1547,6 +1543,8 @@ int __cpuhp_state_remove_instance(enum cpuhp_state state, return -EINVAL; get_online_cpus(); + mutex_lock(&cpuhp_state_mutex); + if (!invoke || !cpuhp_get_teardown_cb(state)) goto remove; /* @@ -1563,7 +1561,6 @@ int __cpuhp_state_remove_instance(enum cpuhp_state state, } remove: - mutex_lock(&cpuhp_state_mutex); hlist_del(node); mutex_unlock(&cpuhp_state_mutex); put_online_cpus(); @@ -1571,6 +1568,7 @@ remove: return 0; } EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); + /** * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state * @state: The state to remove @@ -1589,6 +1587,7 @@ void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) get_online_cpus(); + mutex_lock(&cpuhp_state_mutex); if (sp->multi_instance) { WARN(!hlist_empty(&sp->list), "Error: Removing state %d which has instances left.\n", @@ -1613,6 +1612,7 @@ void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) } remove: cpuhp_store_callbacks(state, NULL, NULL, NULL, false); + mutex_unlock(&cpuhp_state_mutex); put_online_cpus(); } EXPORT_SYMBOL(__cpuhp_remove_state); diff --git a/kernel/events/core.c b/kernel/events/core.c index a17ed56c8ce1..ff01cba86f43 100644 --- a/kernel/events/core.c +++ b/kernel/events/core.c @@ -4256,7 +4256,7 @@ int perf_event_release_kernel(struct perf_event *event) raw_spin_lock_irq(&ctx->lock); /* - * Mark this even as STATE_DEAD, there is no external reference to it + * Mark this event as STATE_DEAD, there is no external reference to it * anymore. * * Anybody acquiring event->child_mutex after the below loop _must_ @@ -10417,21 +10417,22 @@ void perf_event_free_task(struct task_struct *task) continue; mutex_lock(&ctx->mutex); -again: - list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, - group_entry) - perf_free_event(event, ctx); + raw_spin_lock_irq(&ctx->lock); + /* + * Destroy the task <-> ctx relation and mark the context dead. + * + * This is important because even though the task hasn't been + * exposed yet the context has been (through child_list). + */ + RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL); + WRITE_ONCE(ctx->task, TASK_TOMBSTONE); + put_task_struct(task); /* cannot be last */ + raw_spin_unlock_irq(&ctx->lock); - list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, - group_entry) + list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) perf_free_event(event, ctx); - if (!list_empty(&ctx->pinned_groups) || - !list_empty(&ctx->flexible_groups)) - goto again; - mutex_unlock(&ctx->mutex); - put_ctx(ctx); } } @@ -10469,7 +10470,12 @@ const struct perf_event_attr *perf_event_attrs(struct perf_event *event) } /* - * inherit a event from parent task to child task: + * Inherit a event from parent task to child task. + * + * Returns: + * - valid pointer on success + * - NULL for orphaned events + * - IS_ERR() on error */ static struct perf_event * inherit_event(struct perf_event *parent_event, @@ -10563,6 +10569,16 @@ inherit_event(struct perf_event *parent_event, return child_event; } +/* + * Inherits an event group. + * + * This will quietly suppress orphaned events; !inherit_event() is not an error. + * This matches with perf_event_release_kernel() removing all child events. + * + * Returns: + * - 0 on success + * - <0 on error + */ static int inherit_group(struct perf_event *parent_event, struct task_struct *parent, struct perf_event_context *parent_ctx, @@ -10577,6 +10593,11 @@ static int inherit_group(struct perf_event *parent_event, child, NULL, child_ctx); if (IS_ERR(leader)) return PTR_ERR(leader); + /* + * @leader can be NULL here because of is_orphaned_event(). In this + * case inherit_event() will create individual events, similar to what + * perf_group_detach() would do anyway. + */ list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { child_ctr = inherit_event(sub, parent, parent_ctx, child, leader, child_ctx); @@ -10586,6 +10607,17 @@ static int inherit_group(struct perf_event *parent_event, return 0; } +/* + * Creates the child task context and tries to inherit the event-group. + * + * Clears @inherited_all on !attr.inherited or error. Note that we'll leave + * inherited_all set when we 'fail' to inherit an orphaned event; this is + * consistent with perf_event_release_kernel() removing all child events. + * + * Returns: + * - 0 on success + * - <0 on error + */ static int inherit_task_group(struct perf_event *event, struct task_struct *parent, struct perf_event_context *parent_ctx, @@ -10608,7 +10640,6 @@ inherit_task_group(struct perf_event *event, struct task_struct *parent, * First allocate and initialize a context for the * child. */ - child_ctx = alloc_perf_context(parent_ctx->pmu, child); if (!child_ctx) return -ENOMEM; @@ -10670,7 +10701,7 @@ static int perf_event_init_context(struct task_struct *child, int ctxn) ret = inherit_task_group(event, parent, parent_ctx, child, ctxn, &inherited_all); if (ret) - break; + goto out_unlock; } /* @@ -10686,7 +10717,7 @@ static int perf_event_init_context(struct task_struct *child, int ctxn) ret = inherit_task_group(event, parent, parent_ctx, child, ctxn, &inherited_all); if (ret) - break; + goto out_unlock; } raw_spin_lock_irqsave(&parent_ctx->lock, flags); @@ -10714,6 +10745,7 @@ static int perf_event_init_context(struct task_struct *child, int ctxn) } raw_spin_unlock_irqrestore(&parent_ctx->lock, flags); +out_unlock: mutex_unlock(&parent_ctx->mutex); perf_unpin_context(parent_ctx); diff --git a/kernel/futex.c b/kernel/futex.c index 229a744b1781..45858ec73941 100644 --- a/kernel/futex.c +++ b/kernel/futex.c @@ -2815,7 +2815,6 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, { struct hrtimer_sleeper timeout, *to = NULL; struct rt_mutex_waiter rt_waiter; - struct rt_mutex *pi_mutex = NULL; struct futex_hash_bucket *hb; union futex_key key2 = FUTEX_KEY_INIT; struct futex_q q = futex_q_init; @@ -2899,6 +2898,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, if (q.pi_state && (q.pi_state->owner != current)) { spin_lock(q.lock_ptr); ret = fixup_pi_state_owner(uaddr2, &q, current); + if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) + rt_mutex_unlock(&q.pi_state->pi_mutex); /* * Drop the reference to the pi state which * the requeue_pi() code acquired for us. @@ -2907,6 +2908,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, spin_unlock(q.lock_ptr); } } else { + struct rt_mutex *pi_mutex; + /* * We have been woken up by futex_unlock_pi(), a timeout, or a * signal. futex_unlock_pi() will not destroy the lock_ptr nor @@ -2930,18 +2933,19 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, if (res) ret = (res < 0) ? res : 0; + /* + * If fixup_pi_state_owner() faulted and was unable to handle + * the fault, unlock the rt_mutex and return the fault to + * userspace. + */ + if (ret && rt_mutex_owner(pi_mutex) == current) + rt_mutex_unlock(pi_mutex); + /* Unqueue and drop the lock. */ unqueue_me_pi(&q); } - /* - * If fixup_pi_state_owner() faulted and was unable to handle the - * fault, unlock the rt_mutex and return the fault to userspace. - */ - if (ret == -EFAULT) { - if (pi_mutex && rt_mutex_owner(pi_mutex) == current) - rt_mutex_unlock(pi_mutex); - } else if (ret == -EINTR) { + if (ret == -EINTR) { /* * We've already been requeued, but cannot restart by calling * futex_lock_pi() directly. We could restart this syscall, but diff --git a/kernel/locking/rwsem-spinlock.c b/kernel/locking/rwsem-spinlock.c index 7bc24d477805..c65f7989f850 100644 --- a/kernel/locking/rwsem-spinlock.c +++ b/kernel/locking/rwsem-spinlock.c @@ -213,10 +213,9 @@ int __sched __down_write_common(struct rw_semaphore *sem, int state) */ if (sem->count == 0) break; - if (signal_pending_state(state, current)) { - ret = -EINTR; - goto out; - } + if (signal_pending_state(state, current)) + goto out_nolock; + set_current_state(state); raw_spin_unlock_irqrestore(&sem->wait_lock, flags); schedule(); @@ -224,12 +223,19 @@ int __sched __down_write_common(struct rw_semaphore *sem, int state) } /* got the lock */ sem->count = -1; -out: list_del(&waiter.list); raw_spin_unlock_irqrestore(&sem->wait_lock, flags); return ret; + +out_nolock: + list_del(&waiter.list); + if (!list_empty(&sem->wait_list)) + __rwsem_do_wake(sem, 1); + raw_spin_unlock_irqrestore(&sem->wait_lock, flags); + + return -EINTR; } void __sched __down_write(struct rw_semaphore *sem) diff --git a/kernel/memremap.c b/kernel/memremap.c index 06123234f118..07e85e5229da 100644 --- a/kernel/memremap.c +++ b/kernel/memremap.c @@ -247,11 +247,9 @@ static void devm_memremap_pages_release(struct device *dev, void *data) align_start = res->start & ~(SECTION_SIZE - 1); align_size = ALIGN(resource_size(res), SECTION_SIZE); - lock_device_hotplug(); mem_hotplug_begin(); arch_remove_memory(align_start, align_size); mem_hotplug_done(); - unlock_device_hotplug(); untrack_pfn(NULL, PHYS_PFN(align_start), align_size); pgmap_radix_release(res); @@ -364,11 +362,9 @@ void *devm_memremap_pages(struct device *dev, struct resource *res, if (error) goto err_pfn_remap; - lock_device_hotplug(); mem_hotplug_begin(); error = arch_add_memory(nid, align_start, align_size, true); mem_hotplug_done(); - unlock_device_hotplug(); if (error) goto err_add_memory; diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c index 99b2c33a9fbc..a2ce59015642 100644 --- a/kernel/sched/deadline.c +++ b/kernel/sched/deadline.c @@ -445,13 +445,13 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se, * * This function returns true if: * - * runtime / (deadline - t) > dl_runtime / dl_period , + * runtime / (deadline - t) > dl_runtime / dl_deadline , * * IOW we can't recycle current parameters. * - * Notice that the bandwidth check is done against the period. For + * Notice that the bandwidth check is done against the deadline. For * task with deadline equal to period this is the same of using - * dl_deadline instead of dl_period in the equation above. + * dl_period instead of dl_deadline in the equation above. */ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, struct sched_dl_entity *pi_se, u64 t) @@ -476,7 +476,7 @@ static bool dl_entity_overflow(struct sched_dl_entity *dl_se, * of anything below microseconds resolution is actually fiction * (but still we want to give the user that illusion >;). */ - left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); + left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); right = ((dl_se->deadline - t) >> DL_SCALE) * (pi_se->dl_runtime >> DL_SCALE); @@ -505,10 +505,15 @@ static void update_dl_entity(struct sched_dl_entity *dl_se, } } +static inline u64 dl_next_period(struct sched_dl_entity *dl_se) +{ + return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period; +} + /* * If the entity depleted all its runtime, and if we want it to sleep * while waiting for some new execution time to become available, we - * set the bandwidth enforcement timer to the replenishment instant + * set the bandwidth replenishment timer to the replenishment instant * and try to activate it. * * Notice that it is important for the caller to know if the timer @@ -530,7 +535,7 @@ static int start_dl_timer(struct task_struct *p) * that it is actually coming from rq->clock and not from * hrtimer's time base reading. */ - act = ns_to_ktime(dl_se->deadline); + act = ns_to_ktime(dl_next_period(dl_se)); now = hrtimer_cb_get_time(timer); delta = ktime_to_ns(now) - rq_clock(rq); act = ktime_add_ns(act, delta); @@ -638,6 +643,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) lockdep_unpin_lock(&rq->lock, rf.cookie); rq = dl_task_offline_migration(rq, p); rf.cookie = lockdep_pin_lock(&rq->lock); + update_rq_clock(rq); /* * Now that the task has been migrated to the new RQ and we @@ -689,6 +695,37 @@ void init_dl_task_timer(struct sched_dl_entity *dl_se) timer->function = dl_task_timer; } +/* + * During the activation, CBS checks if it can reuse the current task's + * runtime and period. If the deadline of the task is in the past, CBS + * cannot use the runtime, and so it replenishes the task. This rule + * works fine for implicit deadline tasks (deadline == period), and the + * CBS was designed for implicit deadline tasks. However, a task with + * constrained deadline (deadine < period) might be awakened after the + * deadline, but before the next period. In this case, replenishing the + * task would allow it to run for runtime / deadline. As in this case + * deadline < period, CBS enables a task to run for more than the + * runtime / period. In a very loaded system, this can cause a domino + * effect, making other tasks miss their deadlines. + * + * To avoid this problem, in the activation of a constrained deadline + * task after the deadline but before the next period, throttle the + * task and set the replenishing timer to the begin of the next period, + * unless it is boosted. + */ +static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se) +{ + struct task_struct *p = dl_task_of(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se)); + + if (dl_time_before(dl_se->deadline, rq_clock(rq)) && + dl_time_before(rq_clock(rq), dl_next_period(dl_se))) { + if (unlikely(dl_se->dl_boosted || !start_dl_timer(p))) + return; + dl_se->dl_throttled = 1; + } +} + static int dl_runtime_exceeded(struct sched_dl_entity *dl_se) { @@ -922,6 +959,11 @@ static void dequeue_dl_entity(struct sched_dl_entity *dl_se) __dequeue_dl_entity(dl_se); } +static inline bool dl_is_constrained(struct sched_dl_entity *dl_se) +{ + return dl_se->dl_deadline < dl_se->dl_period; +} + static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) { struct task_struct *pi_task = rt_mutex_get_top_task(p); @@ -948,6 +990,15 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) } /* + * Check if a constrained deadline task was activated + * after the deadline but before the next period. + * If that is the case, the task will be throttled and + * the replenishment timer will be set to the next period. + */ + if (!p->dl.dl_throttled && dl_is_constrained(&p->dl)) + dl_check_constrained_dl(&p->dl); + + /* * If p is throttled, we do nothing. In fact, if it exhausted * its budget it needs a replenishment and, since it now is on * its rq, the bandwidth timer callback (which clearly has not diff --git a/kernel/sched/loadavg.c b/kernel/sched/loadavg.c index 7296b7308eca..f15fb2bdbc0d 100644 --- a/kernel/sched/loadavg.c +++ b/kernel/sched/loadavg.c @@ -169,7 +169,7 @@ static inline int calc_load_write_idx(void) * If the folding window started, make sure we start writing in the * next idle-delta. */ - if (!time_before(jiffies, calc_load_update)) + if (!time_before(jiffies, READ_ONCE(calc_load_update))) idx++; return idx & 1; @@ -202,8 +202,9 @@ void calc_load_exit_idle(void) struct rq *this_rq = this_rq(); /* - * If we're still before the sample window, we're done. + * If we're still before the pending sample window, we're done. */ + this_rq->calc_load_update = READ_ONCE(calc_load_update); if (time_before(jiffies, this_rq->calc_load_update)) return; @@ -212,7 +213,6 @@ void calc_load_exit_idle(void) * accounted through the nohz accounting, so skip the entire deal and * sync up for the next window. */ - this_rq->calc_load_update = calc_load_update; if (time_before(jiffies, this_rq->calc_load_update + 10)) this_rq->calc_load_update += LOAD_FREQ; } @@ -308,13 +308,15 @@ calc_load_n(unsigned long load, unsigned long exp, */ static void calc_global_nohz(void) { + unsigned long sample_window; long delta, active, n; - if (!time_before(jiffies, calc_load_update + 10)) { + sample_window = READ_ONCE(calc_load_update); + if (!time_before(jiffies, sample_window + 10)) { /* * Catch-up, fold however many we are behind still */ - delta = jiffies - calc_load_update - 10; + delta = jiffies - sample_window - 10; n = 1 + (delta / LOAD_FREQ); active = atomic_long_read(&calc_load_tasks); @@ -324,7 +326,7 @@ static void calc_global_nohz(void) avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n); avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n); - calc_load_update += n * LOAD_FREQ; + WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ); } /* @@ -352,9 +354,11 @@ static inline void calc_global_nohz(void) { } */ void calc_global_load(unsigned long ticks) { + unsigned long sample_window; long active, delta; - if (time_before(jiffies, calc_load_update + 10)) + sample_window = READ_ONCE(calc_load_update); + if (time_before(jiffies, sample_window + 10)) return; /* @@ -371,7 +375,7 @@ void calc_global_load(unsigned long ticks) avenrun[1] = calc_load(avenrun[1], EXP_5, active); avenrun[2] = calc_load(avenrun[2], EXP_15, active); - calc_load_update += LOAD_FREQ; + WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ); /* * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk. |