summaryrefslogtreecommitdiff
path: root/kernel/user_namespace.c
diff options
context:
space:
mode:
authorDavid Howells <dhowells@redhat.com>2013-09-24 10:35:19 +0100
committerDavid Howells <dhowells@redhat.com>2013-09-24 10:35:19 +0100
commitf36f8c75ae2e7d4da34f4c908cebdb4aa42c977e (patch)
tree09d5dd4ffe2e8cc499f97b0fc3895b7e3f35ccbf /kernel/user_namespace.c
parentab3c3587f8cda9083209a61dbe3a4407d3cada10 (diff)
downloadlwn-f36f8c75ae2e7d4da34f4c908cebdb4aa42c977e.tar.gz
lwn-f36f8c75ae2e7d4da34f4c908cebdb4aa42c977e.zip
KEYS: Add per-user_namespace registers for persistent per-UID kerberos caches
Add support for per-user_namespace registers of persistent per-UID kerberos caches held within the kernel. This allows the kerberos cache to be retained beyond the life of all a user's processes so that the user's cron jobs can work. The kerberos cache is envisioned as a keyring/key tree looking something like: struct user_namespace \___ .krb_cache keyring - The register \___ _krb.0 keyring - Root's Kerberos cache \___ _krb.5000 keyring - User 5000's Kerberos cache \___ _krb.5001 keyring - User 5001's Kerberos cache \___ tkt785 big_key - A ccache blob \___ tkt12345 big_key - Another ccache blob Or possibly: struct user_namespace \___ .krb_cache keyring - The register \___ _krb.0 keyring - Root's Kerberos cache \___ _krb.5000 keyring - User 5000's Kerberos cache \___ _krb.5001 keyring - User 5001's Kerberos cache \___ tkt785 keyring - A ccache \___ krbtgt/REDHAT.COM@REDHAT.COM big_key \___ http/REDHAT.COM@REDHAT.COM user \___ afs/REDHAT.COM@REDHAT.COM user \___ nfs/REDHAT.COM@REDHAT.COM user \___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key \___ http/KERNEL.ORG@KERNEL.ORG big_key What goes into a particular Kerberos cache is entirely up to userspace. Kernel support is limited to giving you the Kerberos cache keyring that you want. The user asks for their Kerberos cache by: krb_cache = keyctl_get_krbcache(uid, dest_keyring); The uid is -1 or the user's own UID for the user's own cache or the uid of some other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to mess with the cache. The cache returned is a keyring named "_krb.<uid>" that the possessor can read, search, clear, invalidate, unlink from and add links to. Active LSMs get a chance to rule on whether the caller is permitted to make a link. Each uid's cache keyring is created when it first accessed and is given a timeout that is extended each time this function is called so that the keyring goes away after a while. The timeout is configurable by sysctl but defaults to three days. Each user_namespace struct gets a lazily-created keyring that serves as the register. The cache keyrings are added to it. This means that standard key search and garbage collection facilities are available. The user_namespace struct's register goes away when it does and anything left in it is then automatically gc'd. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Simo Sorce <simo@redhat.com> cc: Serge E. Hallyn <serge.hallyn@ubuntu.com> cc: Eric W. Biederman <ebiederm@xmission.com>
Diffstat (limited to 'kernel/user_namespace.c')
-rw-r--r--kernel/user_namespace.c6
1 files changed, 6 insertions, 0 deletions
diff --git a/kernel/user_namespace.c b/kernel/user_namespace.c
index 13fb1134ba58..240fb62cf394 100644
--- a/kernel/user_namespace.c
+++ b/kernel/user_namespace.c
@@ -101,6 +101,9 @@ int create_user_ns(struct cred *new)
set_cred_user_ns(new, ns);
+#ifdef CONFIG_PERSISTENT_KEYRINGS
+ init_rwsem(&ns->persistent_keyring_register_sem);
+#endif
return 0;
}
@@ -130,6 +133,9 @@ void free_user_ns(struct user_namespace *ns)
do {
parent = ns->parent;
+#ifdef CONFIG_PERSISTENT_KEYRINGS
+ key_put(ns->persistent_keyring_register);
+#endif
proc_free_inum(ns->proc_inum);
kmem_cache_free(user_ns_cachep, ns);
ns = parent;