diff options
author | Mathieu Desnoyers <mathieu.desnoyers@efficios.com> | 2017-07-28 16:40:40 -0400 |
---|---|---|
committer | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2017-08-17 07:28:05 -0700 |
commit | 22e4ebb975822833b083533035233d128b30e98f (patch) | |
tree | 973b3dda0e0b79af883482f66b49da2dd74225f1 /kernel/sched/core.c | |
parent | 955dbdf4ce87fd9be4bc8378e26b8c2eb8b3d184 (diff) | |
download | lwn-22e4ebb975822833b083533035233d128b30e98f.tar.gz lwn-22e4ebb975822833b083533035233d128b30e98f.zip |
membarrier: Provide expedited private command
Implement MEMBARRIER_CMD_PRIVATE_EXPEDITED with IPIs using cpumask built
from all runqueues for which current thread's mm is the same as the
thread calling sys_membarrier. It executes faster than the non-expedited
variant (no blocking). It also works on NOHZ_FULL configurations.
Scheduler-wise, it requires a memory barrier before and after context
switching between processes (which have different mm). The memory
barrier before context switch is already present. For the barrier after
context switch:
* Our TSO archs can do RELEASE without being a full barrier. Look at
x86 spin_unlock() being a regular STORE for example. But for those
archs, all atomics imply smp_mb and all of them have atomic ops in
switch_mm() for mm_cpumask(), and on x86 the CR3 load acts as a full
barrier.
* From all weakly ordered machines, only ARM64 and PPC can do RELEASE,
the rest does indeed do smp_mb(), so there the spin_unlock() is a full
barrier and we're good.
* ARM64 has a very heavy barrier in switch_to(), which suffices.
* PPC just removed its barrier from switch_to(), but appears to be
talking about adding something to switch_mm(). So add a
smp_mb__after_unlock_lock() for now, until this is settled on the PPC
side.
Changes since v3:
- Properly document the memory barriers provided by each architecture.
Changes since v2:
- Address comments from Peter Zijlstra,
- Add smp_mb__after_unlock_lock() after finish_lock_switch() in
finish_task_switch() to add the memory barrier we need after storing
to rq->curr. This is much simpler than the previous approach relying
on atomic_dec_and_test() in mmdrop(), which actually added a memory
barrier in the common case of switching between userspace processes.
- Return -EINVAL when MEMBARRIER_CMD_SHARED is used on a nohz_full
kernel, rather than having the whole membarrier system call returning
-ENOSYS. Indeed, CMD_PRIVATE_EXPEDITED is compatible with nohz_full.
Adapt the CMD_QUERY mask accordingly.
Changes since v1:
- move membarrier code under kernel/sched/ because it uses the
scheduler runqueue,
- only add the barrier when we switch from a kernel thread. The case
where we switch from a user-space thread is already handled by
the atomic_dec_and_test() in mmdrop().
- add a comment to mmdrop() documenting the requirement on the implicit
memory barrier.
CC: Peter Zijlstra <peterz@infradead.org>
CC: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
CC: Boqun Feng <boqun.feng@gmail.com>
CC: Andrew Hunter <ahh@google.com>
CC: Maged Michael <maged.michael@gmail.com>
CC: gromer@google.com
CC: Avi Kivity <avi@scylladb.com>
CC: Benjamin Herrenschmidt <benh@kernel.crashing.org>
CC: Paul Mackerras <paulus@samba.org>
CC: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Dave Watson <davejwatson@fb.com>
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r-- | kernel/sched/core.c | 25 |
1 files changed, 25 insertions, 0 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c index bfee6ea7db49..f77269c6c2f8 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2640,6 +2640,16 @@ static struct rq *finish_task_switch(struct task_struct *prev) prev_state = prev->state; vtime_task_switch(prev); perf_event_task_sched_in(prev, current); + /* + * The membarrier system call requires a full memory barrier + * after storing to rq->curr, before going back to user-space. + * + * TODO: This smp_mb__after_unlock_lock can go away if PPC end + * up adding a full barrier to switch_mm(), or we should figure + * out if a smp_mb__after_unlock_lock is really the proper API + * to use. + */ + smp_mb__after_unlock_lock(); finish_lock_switch(rq, prev); finish_arch_post_lock_switch(); @@ -3329,6 +3339,21 @@ static void __sched notrace __schedule(bool preempt) if (likely(prev != next)) { rq->nr_switches++; rq->curr = next; + /* + * The membarrier system call requires each architecture + * to have a full memory barrier after updating + * rq->curr, before returning to user-space. For TSO + * (e.g. x86), the architecture must provide its own + * barrier in switch_mm(). For weakly ordered machines + * for which spin_unlock() acts as a full memory + * barrier, finish_lock_switch() in common code takes + * care of this barrier. For weakly ordered machines for + * which spin_unlock() acts as a RELEASE barrier (only + * arm64 and PowerPC), arm64 has a full barrier in + * switch_to(), and PowerPC has + * smp_mb__after_unlock_lock() before + * finish_lock_switch(). + */ ++*switch_count; trace_sched_switch(preempt, prev, next); |