diff options
author | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2018-06-21 12:50:01 -0700 |
---|---|---|
committer | Paul E. McKenney <paulmck@linux.vnet.ibm.com> | 2018-08-30 16:02:34 -0700 |
commit | 3e31009898699dfca823893054748d85048dc7b3 (patch) | |
tree | db39491a0402a8484e3fd8c71116cf80ef4ea275 /kernel/rcu/tree_exp.h | |
parent | cf7614e13c8fcaf290c5ffaa04b2e1b4f704a52a (diff) | |
download | lwn-3e31009898699dfca823893054748d85048dc7b3.tar.gz lwn-3e31009898699dfca823893054748d85048dc7b3.zip |
rcu: Defer reporting RCU-preempt quiescent states when disabled
This commit defers reporting of RCU-preempt quiescent states at
rcu_read_unlock_special() time when any of interrupts, softirq, or
preemption are disabled. These deferred quiescent states are reported
at a later RCU_SOFTIRQ, context switch, idle entry, or CPU-hotplug
offline operation. Of course, if another RCU read-side critical
section has started in the meantime, the reporting of the quiescent
state will be further deferred.
This also means that disabling preemption, interrupts, and/or
softirqs will act as an RCU-preempt read-side critical section.
This is enforced by checking preempt_count() as needed.
Some special cases must be handled on an ad-hoc basis, for example,
context switch is a quiescent state even though both the scheduler and
do_exit() disable preemption. In these cases, additional calls to
rcu_preempt_deferred_qs() override the preemption disabling. Similar
logic overrides disabled interrupts in rcu_preempt_check_callbacks()
because in this case the quiescent state happened just before the
corresponding scheduling-clock interrupt.
In theory, this change lifts a long-standing restriction that required
that if interrupts were disabled across a call to rcu_read_unlock()
that the matching rcu_read_lock() also be contained within that
interrupts-disabled region of code. Because the reporting of the
corresponding RCU-preempt quiescent state is now deferred until
after interrupts have been enabled, it is no longer possible for this
situation to result in deadlocks involving the scheduler's runqueue and
priority-inheritance locks. This may allow some code simplification that
might reduce interrupt latency a bit. Unfortunately, in practice this
would also defer deboosting a low-priority task that had been subjected
to RCU priority boosting, so real-time-response considerations might
well force this restriction to remain in place.
Because RCU-preempt grace periods are now blocked not only by RCU
read-side critical sections, but also by disabling of interrupts,
preemption, and softirqs, it will be possible to eliminate RCU-bh and
RCU-sched in favor of RCU-preempt in CONFIG_PREEMPT=y kernels. This may
require some additional plumbing to provide the network denial-of-service
guarantees that have been traditionally provided by RCU-bh. Once these
are in place, CONFIG_PREEMPT=n kernels will be able to fold RCU-bh
into RCU-sched. This would mean that all kernels would have but
one flavor of RCU, which would open the door to significant code
cleanup.
Moving to a single flavor of RCU would also have the beneficial effect
of reducing the NOCB kthreads by at least a factor of two.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Apply rcu_read_unlock_special() preempt_count() feedback
from Joel Fernandes. ]
[ paulmck: Adjust rcu_eqs_enter() call to rcu_preempt_deferred_qs() in
response to bug reports from kbuild test robot. ]
[ paulmck: Fix bug located by kbuild test robot involving recursion
via rcu_preempt_deferred_qs(). ]
Diffstat (limited to 'kernel/rcu/tree_exp.h')
-rw-r--r-- | kernel/rcu/tree_exp.h | 71 |
1 files changed, 55 insertions, 16 deletions
diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h index 0b2c2ad69629..f9d5bbd8adce 100644 --- a/kernel/rcu/tree_exp.h +++ b/kernel/rcu/tree_exp.h @@ -262,6 +262,7 @@ static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp, static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp, bool wake) { + WRITE_ONCE(rdp->deferred_qs, false); rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake); } @@ -735,32 +736,70 @@ EXPORT_SYMBOL_GPL(synchronize_sched_expedited); */ static void sync_rcu_exp_handler(void *info) { - struct rcu_data *rdp; + unsigned long flags; struct rcu_state *rsp = info; + struct rcu_data *rdp = this_cpu_ptr(rsp->rda); + struct rcu_node *rnp = rdp->mynode; struct task_struct *t = current; /* - * Within an RCU read-side critical section, request that the next - * rcu_read_unlock() report. Unless this RCU read-side critical - * section has already blocked, in which case it is already set - * up for the expedited grace period to wait on it. + * First, the common case of not being in an RCU read-side + * critical section. If also enabled or idle, immediately + * report the quiescent state, otherwise defer. */ - if (t->rcu_read_lock_nesting > 0 && - !t->rcu_read_unlock_special.b.blocked) { - t->rcu_read_unlock_special.b.exp_need_qs = true; + if (!t->rcu_read_lock_nesting) { + if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || + rcu_dynticks_curr_cpu_in_eqs()) { + rcu_report_exp_rdp(rsp, rdp, true); + } else { + rdp->deferred_qs = true; + resched_cpu(rdp->cpu); + } return; } /* - * We are either exiting an RCU read-side critical section (negative - * values of t->rcu_read_lock_nesting) or are not in one at all - * (zero value of t->rcu_read_lock_nesting). Or we are in an RCU - * read-side critical section that blocked before this expedited - * grace period started. Either way, we can immediately report - * the quiescent state. + * Second, the less-common case of being in an RCU read-side + * critical section. In this case we can count on a future + * rcu_read_unlock(). However, this rcu_read_unlock() might + * execute on some other CPU, but in that case there will be + * a future context switch. Either way, if the expedited + * grace period is still waiting on this CPU, set ->deferred_qs + * so that the eventual quiescent state will be reported. + * Note that there is a large group of race conditions that + * can have caused this quiescent state to already have been + * reported, so we really do need to check ->expmask. */ - rdp = this_cpu_ptr(rsp->rda); - rcu_report_exp_rdp(rsp, rdp, true); + if (t->rcu_read_lock_nesting > 0) { + raw_spin_lock_irqsave_rcu_node(rnp, flags); + if (rnp->expmask & rdp->grpmask) + rdp->deferred_qs = true; + raw_spin_unlock_irqrestore_rcu_node(rnp, flags); + } + + /* + * The final and least likely case is where the interrupted + * code was just about to or just finished exiting the RCU-preempt + * read-side critical section, and no, we can't tell which. + * So either way, set ->deferred_qs to flag later code that + * a quiescent state is required. + * + * If the CPU is fully enabled (or if some buggy RCU-preempt + * read-side critical section is being used from idle), just + * invoke rcu_preempt_defer_qs() to immediately report the + * quiescent state. We cannot use rcu_read_unlock_special() + * because we are in an interrupt handler, which will cause that + * function to take an early exit without doing anything. + * + * Otherwise, use resched_cpu() to force a context switch after + * the CPU enables everything. + */ + rdp->deferred_qs = true; + if (!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK)) || + WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs())) + rcu_preempt_deferred_qs(t); + else + resched_cpu(rdp->cpu); } /** |