summaryrefslogtreecommitdiff
path: root/kernel/rcu/rcu_segcblist.c
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.ibm.com>2019-07-02 16:03:33 -0700
committerPaul E. McKenney <paulmck@linux.ibm.com>2019-08-13 14:37:32 -0700
commitd1b222c6be1f8bfc77099e034219732ecaeaaf96 (patch)
treee9da6ce477c530ed6584bd922484ad992f994cda /kernel/rcu/rcu_segcblist.c
parenteda669a6a2c517fd6db41d0fe3c95c1b749c60bd (diff)
downloadlwn-d1b222c6be1f8bfc77099e034219732ecaeaaf96.tar.gz
lwn-d1b222c6be1f8bfc77099e034219732ecaeaaf96.zip
rcu/nocb: Add bypass callback queueing
Use of the rcu_data structure's segmented ->cblist for no-CBs CPUs takes advantage of unrelated grace periods, thus reducing the memory footprint in the face of floods of call_rcu() invocations. However, the ->cblist field is a more-complex rcu_segcblist structure which must be protected via locking. Even though there are only three entities which can acquire this lock (the CPU invoking call_rcu(), the no-CBs grace-period kthread, and the no-CBs callbacks kthread), the contention on this lock is excessive under heavy stress. This commit therefore greatly reduces contention by provisioning an rcu_cblist structure field named ->nocb_bypass within the rcu_data structure. Each no-CBs CPU is permitted only a limited number of enqueues onto the ->cblist per jiffy, controlled by a new nocb_nobypass_lim_per_jiffy kernel boot parameter that defaults to about 16 enqueues per millisecond (16 * 1000 / HZ). When that limit is exceeded, the CPU instead enqueues onto the new ->nocb_bypass. The ->nocb_bypass is flushed into the ->cblist every jiffy or when the number of callbacks on ->nocb_bypass exceeds qhimark, whichever happens first. During call_rcu() floods, this flushing is carried out by the CPU during the course of its call_rcu() invocations. However, a CPU could simply stop invoking call_rcu() at any time. The no-CBs grace-period kthread therefore carries out less-aggressive flushing (every few jiffies or when the number of callbacks on ->nocb_bypass exceeds (2 * qhimark), whichever comes first). This means that the no-CBs grace-period kthread cannot be permitted to do unbounded waits while there are callbacks on ->nocb_bypass. A ->nocb_bypass_timer is used to provide the needed wakeups. [ paulmck: Apply Coverity feedback reported by Colin Ian King. ] Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Diffstat (limited to 'kernel/rcu/rcu_segcblist.c')
-rw-r--r--kernel/rcu/rcu_segcblist.c30
1 files changed, 30 insertions, 0 deletions
diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c
index ff431cc83037..495c58ce1640 100644
--- a/kernel/rcu/rcu_segcblist.c
+++ b/kernel/rcu/rcu_segcblist.c
@@ -37,6 +37,36 @@ void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp)
}
/*
+ * Flush the second rcu_cblist structure onto the first one, obliterating
+ * any contents of the first. If rhp is non-NULL, enqueue it as the sole
+ * element of the second rcu_cblist structure, but ensuring that the second
+ * rcu_cblist structure, if initially non-empty, always appears non-empty
+ * throughout the process. If rdp is NULL, the second rcu_cblist structure
+ * is instead initialized to empty.
+ */
+void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp,
+ struct rcu_cblist *srclp,
+ struct rcu_head *rhp)
+{
+ drclp->head = srclp->head;
+ if (drclp->head)
+ drclp->tail = srclp->tail;
+ else
+ drclp->tail = &drclp->head;
+ drclp->len = srclp->len;
+ drclp->len_lazy = srclp->len_lazy;
+ if (!rhp) {
+ rcu_cblist_init(srclp);
+ } else {
+ rhp->next = NULL;
+ srclp->head = rhp;
+ srclp->tail = &rhp->next;
+ WRITE_ONCE(srclp->len, 1);
+ srclp->len_lazy = 0;
+ }
+}
+
+/*
* Dequeue the oldest rcu_head structure from the specified callback
* list. This function assumes that the callback is non-lazy, but
* the caller can later invoke rcu_cblist_dequeued_lazy() if it