diff options
author | Zach O'Keefe <zokeefe@google.com> | 2022-09-22 15:40:39 -0700 |
---|---|---|
committer | Andrew Morton <akpm@linux-foundation.org> | 2022-10-03 14:03:33 -0700 |
commit | 34488399fa08faaf664743fa54b271eb6f9e1321 (patch) | |
tree | 14bcc2fa4457d1a72993af24d719abd7352e0173 /include/trace/events/huge_memory.h | |
parent | 58ac9a8993a13ebcbb0682ede0e3a158b4a41b28 (diff) | |
download | lwn-34488399fa08faaf664743fa54b271eb6f9e1321.tar.gz lwn-34488399fa08faaf664743fa54b271eb6f9e1321.zip |
mm/madvise: add file and shmem support to MADV_COLLAPSE
Add support for MADV_COLLAPSE to collapse shmem-backed and file-backed
memory into THPs (requires CONFIG_READ_ONLY_THP_FOR_FS=y).
On success, the backing memory will be a hugepage. For the memory range
and process provided, the page tables will synchronously have a huge pmd
installed, mapping the THP. Other mappings of the file extent mapped by
the memory range may be added to a set of entries that khugepaged will
later process and attempt update their page tables to map the THP by a
pmd.
This functionality unlocks two important uses:
(1) Immediately back executable text by THPs. Current support provided
by CONFIG_READ_ONLY_THP_FOR_FS may take a long time on a large
system which might impair services from serving at their full rated
load after (re)starting. Tricks like mremap(2)'ing text onto
anonymous memory to immediately realize iTLB performance prevents
page sharing and demand paging, both of which increase steady state
memory footprint. Now, we can have the best of both worlds: Peak
upfront performance and lower RAM footprints.
(2) userfaultfd-based live migration of virtual machines satisfy UFFD
faults by fetching native-sized pages over the network (to avoid
latency of transferring an entire hugepage). However, after guest
memory has been fully copied to the new host, MADV_COLLAPSE can
be used to immediately increase guest performance.
Since khugepaged is single threaded, this change now introduces
possibility of collapse contexts racing in file collapse path. There a
important few places to consider:
(1) hpage_collapse_scan_file(), when we xas_pause() and drop RCU.
We could have the memory collapsed out from under us, but
the next xas_for_each() iteration will correctly pick up the
hugepage. The hugepage might not be up to date (insofar as
copying of small page contents might not have completed - the
page still may be locked), but regardless what small page index
we were iterating over, we'll find the hugepage and identify it
as a suitably aligned compound page of order HPAGE_PMD_ORDER.
In khugepaged path, we locklessly check the value of the pmd,
and only add it to deferred collapse array if we find pmd
mapping pte table. This is fine, since other values that could
have raced in right afterwards denote failure, or that the
memory was successfully collapsed, so we don't need further
processing.
In madvise path, we'll take mmap_lock() in write to serialize
against page table updates and will know what to do based on the
true value of the pmd: recheck all ptes if we point to a pte table,
directly install the pmd, if the pmd has been cleared, but
memory not yet faulted, or nothing at all if we find a huge pmd.
It's worth putting emphasis here on how we treat the none pmd
here. If khugepaged has processed this mm's page tables
already, it will have left the pmd cleared (ready for refault by
the process). Depending on the VMA flags and sysfs settings,
amount of RAM on the machine, and the current load, could be a
relatively common occurrence - and as such is one we'd like to
handle successfully in MADV_COLLAPSE. When we see the none pmd
in collapse_pte_mapped_thp(), we've locked mmap_lock in write
and checked (a) huepaged_vma_check() to see if the backing
memory is appropriate still, along with VMA sizing and
appropriate hugepage alignment within the file, and (b) we've
found a hugepage head of order HPAGE_PMD_ORDER at the offset
in the file mapped by our hugepage-aligned virtual address.
Even though the common-case is likely race with khugepaged,
given these checks (regardless how we got here - we could be
operating on a completely different file than originally checked
in hpage_collapse_scan_file() for all we know) it should be safe
to directly make the pmd a huge pmd pointing to this hugepage.
(2) collapse_file() is mostly serialized on the same file extent by
lock sequence:
| lock hupepage
| lock mapping->i_pages
| lock 1st page
| unlock mapping->i_pages
| <page checks>
| lock mapping->i_pages
| page_ref_freeze(3)
| xas_store(hugepage)
| unlock mapping->i_pages
| page_ref_unfreeze(1)
| unlock 1st page
V unlock hugepage
Once a context (who already has their fresh hugepage locked)
locks mapping->i_pages exclusively, it will hold said lock
until it locks the first page, and it will hold that lock until
the after the hugepage has been added to the page cache (and
will unlock the hugepage after page table update, though that
isn't important here).
A racing context that loses the race for mapping->i_pages will
then lose the race to locking the first page. Here - depending
on how far the other racing context has gotten - we might find
the new hugepage (in which case we'll exit cleanly when we
check PageTransCompound()), or we'll find the "old" 1st small
page (in which we'll exit cleanly when we discover unexpected
refcount of 2 after isolate_lru_page()). This is assuming we
are able to successfully lock the page we find - in shmem path,
we could just fail the trylock and exit cleanly anyways.
Failure path in collapse_file() is similar: once we hold lock
on 1st small page, we are serialized against other collapse
contexts. Before the 1st small page is unlocked, we add it
back to the pagecache and unfreeze the refcount appropriately.
Contexts who lost the race to the 1st small page will then find
the same 1st small page with the correct refcount and will be
able to proceed.
[zokeefe@google.com: don't check pmd value twice in collapse_pte_mapped_thp()]
Link: https://lkml.kernel.org/r/20220927033854.477018-1-zokeefe@google.com
[shy828301@gmail.com: Delete hugepage_vma_revalidate_anon(), remove
check for multi-add in khugepaged_add_pte_mapped_thp()]
Link: https://lore.kernel.org/linux-mm/CAHbLzkrtpM=ic7cYAHcqkubah5VTR8N5=k5RT8MTvv5rN1Y91w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220907144521.3115321-4-zokeefe@google.com
Link: https://lkml.kernel.org/r/20220922224046.1143204-4-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'include/trace/events/huge_memory.h')
-rw-r--r-- | include/trace/events/huge_memory.h | 1 |
1 files changed, 1 insertions, 0 deletions
diff --git a/include/trace/events/huge_memory.h b/include/trace/events/huge_memory.h index fbbb25494d60..df33453b70fc 100644 --- a/include/trace/events/huge_memory.h +++ b/include/trace/events/huge_memory.h @@ -11,6 +11,7 @@ EM( SCAN_FAIL, "failed") \ EM( SCAN_SUCCEED, "succeeded") \ EM( SCAN_PMD_NULL, "pmd_null") \ + EM( SCAN_PMD_NONE, "pmd_none") \ EM( SCAN_PMD_MAPPED, "page_pmd_mapped") \ EM( SCAN_EXCEED_NONE_PTE, "exceed_none_pte") \ EM( SCAN_EXCEED_SWAP_PTE, "exceed_swap_pte") \ |