summaryrefslogtreecommitdiff
path: root/include/linux/sched.h
diff options
context:
space:
mode:
authorPatrick Bellasi <patrick.bellasi@arm.com>2018-03-09 09:52:42 +0000
committerIngo Molnar <mingo@kernel.org>2018-03-20 08:11:06 +0100
commit7f65ea42eb00bc902f1c37a71e984e4f4064cfa9 (patch)
tree67b6425dc2cf32268acfe36e7324bb583579326f /include/linux/sched.h
parent10c18c44a6494167e7a7ca3a3a61a67972017bdf (diff)
downloadlwn-7f65ea42eb00bc902f1c37a71e984e4f4064cfa9.tar.gz
lwn-7f65ea42eb00bc902f1c37a71e984e4f4064cfa9.zip
sched/fair: Add util_est on top of PELT
The util_avg signal computed by PELT is too variable for some use-cases. For example, a big task waking up after a long sleep period will have its utilization almost completely decayed. This introduces some latency before schedutil will be able to pick the best frequency to run a task. The same issue can affect task placement. Indeed, since the task utilization is already decayed at wakeup, when the task is enqueued in a CPU, this can result in a CPU running a big task as being temporarily represented as being almost empty. This leads to a race condition where other tasks can be potentially allocated on a CPU which just started to run a big task which slept for a relatively long period. Moreover, the PELT utilization of a task can be updated every [ms], thus making it a continuously changing value for certain longer running tasks. This means that the instantaneous PELT utilization of a RUNNING task is not really meaningful to properly support scheduler decisions. For all these reasons, a more stable signal can do a better job of representing the expected/estimated utilization of a task/cfs_rq. Such a signal can be easily created on top of PELT by still using it as an estimator which produces values to be aggregated on meaningful events. This patch adds a simple implementation of util_est, a new signal built on top of PELT's util_avg where: util_est(task) = max(task::util_avg, f(task::util_avg@dequeue)) This allows to remember how big a task has been reported by PELT in its previous activations via f(task::util_avg@dequeue), which is the new _task_util_est(struct task_struct*) function added by this patch. If a task should change its behavior and it runs longer in a new activation, after a certain time its util_est will just track the original PELT signal (i.e. task::util_avg). The estimated utilization of cfs_rq is defined only for root ones. That's because the only sensible consumer of this signal are the scheduler and schedutil when looking for the overall CPU utilization due to FAIR tasks. For this reason, the estimated utilization of a root cfs_rq is simply defined as: util_est(cfs_rq) = max(cfs_rq::util_avg, cfs_rq::util_est::enqueued) where: cfs_rq::util_est::enqueued = sum(_task_util_est(task)) for each RUNNABLE task on that root cfs_rq It's worth noting that the estimated utilization is tracked only for objects of interests, specifically: - Tasks: to better support tasks placement decisions - root cfs_rqs: to better support both tasks placement decisions as well as frequencies selection Signed-off-by: Patrick Bellasi <patrick.bellasi@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Joel Fernandes <joelaf@google.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten Rasmussen <morten.rasmussen@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com> Cc: Steve Muckle <smuckle@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@android.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Viresh Kumar <viresh.kumar@linaro.org> Link: http://lkml.kernel.org/r/20180309095245.11071-2-patrick.bellasi@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r--include/linux/sched.h29
1 files changed, 29 insertions, 0 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 21b1168da951..f228c6033832 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -274,6 +274,34 @@ struct load_weight {
u32 inv_weight;
};
+/**
+ * struct util_est - Estimation utilization of FAIR tasks
+ * @enqueued: instantaneous estimated utilization of a task/cpu
+ * @ewma: the Exponential Weighted Moving Average (EWMA)
+ * utilization of a task
+ *
+ * Support data structure to track an Exponential Weighted Moving Average
+ * (EWMA) of a FAIR task's utilization. New samples are added to the moving
+ * average each time a task completes an activation. Sample's weight is chosen
+ * so that the EWMA will be relatively insensitive to transient changes to the
+ * task's workload.
+ *
+ * The enqueued attribute has a slightly different meaning for tasks and cpus:
+ * - task: the task's util_avg at last task dequeue time
+ * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
+ * Thus, the util_est.enqueued of a task represents the contribution on the
+ * estimated utilization of the CPU where that task is currently enqueued.
+ *
+ * Only for tasks we track a moving average of the past instantaneous
+ * estimated utilization. This allows to absorb sporadic drops in utilization
+ * of an otherwise almost periodic task.
+ */
+struct util_est {
+ unsigned int enqueued;
+ unsigned int ewma;
+#define UTIL_EST_WEIGHT_SHIFT 2
+};
+
/*
* The load_avg/util_avg accumulates an infinite geometric series
* (see __update_load_avg() in kernel/sched/fair.c).
@@ -335,6 +363,7 @@ struct sched_avg {
unsigned long load_avg;
unsigned long runnable_load_avg;
unsigned long util_avg;
+ struct util_est util_est;
};
struct sched_statistics {