diff options
author | Mike Rapoport <rppt@linux.ibm.com> | 2020-06-08 21:32:38 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-06-09 09:39:13 -0700 |
commit | ca5999fde0a1761665a38e4c9a72dbcd7d190a81 (patch) | |
tree | 0ce961c9b4e7619753b858dd7997ffc0c1f087ef /include/linux/pgtable.h | |
parent | e31cf2f4ca422ac9b14ecc4a1295b8977a20f812 (diff) | |
download | lwn-ca5999fde0a1761665a38e4c9a72dbcd7d190a81.tar.gz lwn-ca5999fde0a1761665a38e4c9a72dbcd7d190a81.zip |
mm: introduce include/linux/pgtable.h
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/pgtable.h')
-rw-r--r-- | include/linux/pgtable.h | 1323 |
1 files changed, 1323 insertions, 0 deletions
diff --git a/include/linux/pgtable.h b/include/linux/pgtable.h new file mode 100644 index 000000000000..6e274da637fd --- /dev/null +++ b/include/linux/pgtable.h @@ -0,0 +1,1323 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef _LINUX_PGTABLE_H +#define _LINUX_PGTABLE_H + +#include <linux/pfn.h> +#include <asm/pgtable.h> + +#ifndef __ASSEMBLY__ +#ifdef CONFIG_MMU + +#include <linux/mm_types.h> +#include <linux/bug.h> +#include <linux/errno.h> +#include <asm-generic/pgtable_uffd.h> + +#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ + defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS +#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED +#endif + +/* + * On almost all architectures and configurations, 0 can be used as the + * upper ceiling to free_pgtables(): on many architectures it has the same + * effect as using TASK_SIZE. However, there is one configuration which + * must impose a more careful limit, to avoid freeing kernel pgtables. + */ +#ifndef USER_PGTABLES_CEILING +#define USER_PGTABLES_CEILING 0UL +#endif + +#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS +extern int ptep_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep, + pte_t entry, int dirty); +#endif + +#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +extern int pmdp_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, + pmd_t entry, int dirty); +extern int pudp_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pud_t *pudp, + pud_t entry, int dirty); +#else +static inline int pmdp_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, + pmd_t entry, int dirty) +{ + BUILD_BUG(); + return 0; +} +static inline int pudp_set_access_flags(struct vm_area_struct *vma, + unsigned long address, pud_t *pudp, + pud_t entry, int dirty) +{ + BUILD_BUG(); + return 0; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG +static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pte_t *ptep) +{ + pte_t pte = *ptep; + int r = 1; + if (!pte_young(pte)) + r = 0; + else + set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); + return r; +} +#endif + +#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp) +{ + pmd_t pmd = *pmdp; + int r = 1; + if (!pmd_young(pmd)) + r = 0; + else + set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); + return r; +} +#else +static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp) +{ + BUILD_BUG(); + return 0; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH +int ptep_clear_flush_young(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep); +#endif + +#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +extern int pmdp_clear_flush_young(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp); +#else +/* + * Despite relevant to THP only, this API is called from generic rmap code + * under PageTransHuge(), hence needs a dummy implementation for !THP + */ +static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp) +{ + BUILD_BUG(); + return 0; +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR +static inline pte_t ptep_get_and_clear(struct mm_struct *mm, + unsigned long address, + pte_t *ptep) +{ + pte_t pte = *ptep; + pte_clear(mm, address, ptep); + return pte; +} +#endif + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR +static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, + unsigned long address, + pmd_t *pmdp) +{ + pmd_t pmd = *pmdp; + pmd_clear(pmdp); + return pmd; +} +#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ +#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR +static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, + unsigned long address, + pud_t *pudp) +{ + pud_t pud = *pudp; + + pud_clear(pudp); + return pud; +} +#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL +static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, + int full) +{ + return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); +} +#endif + +#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL +static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, + unsigned long address, pud_t *pudp, + int full) +{ + return pudp_huge_get_and_clear(mm, address, pudp); +} +#endif +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL +static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, + unsigned long address, pte_t *ptep, + int full) +{ + pte_t pte; + pte = ptep_get_and_clear(mm, address, ptep); + return pte; +} +#endif + + +/* + * If two threads concurrently fault at the same page, the thread that + * won the race updates the PTE and its local TLB/Cache. The other thread + * gives up, simply does nothing, and continues; on architectures where + * software can update TLB, local TLB can be updated here to avoid next page + * fault. This function updates TLB only, do nothing with cache or others. + * It is the difference with function update_mmu_cache. + */ +#ifndef __HAVE_ARCH_UPDATE_MMU_TLB +static inline void update_mmu_tlb(struct vm_area_struct *vma, + unsigned long address, pte_t *ptep) +{ +} +#define __HAVE_ARCH_UPDATE_MMU_TLB +#endif + +/* + * Some architectures may be able to avoid expensive synchronization + * primitives when modifications are made to PTE's which are already + * not present, or in the process of an address space destruction. + */ +#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL +static inline void pte_clear_not_present_full(struct mm_struct *mm, + unsigned long address, + pte_t *ptep, + int full) +{ + pte_clear(mm, address, ptep); +} +#endif + +#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH +extern pte_t ptep_clear_flush(struct vm_area_struct *vma, + unsigned long address, + pte_t *ptep); +#endif + +#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH +extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp); +extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, + unsigned long address, + pud_t *pudp); +#endif + +#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT +struct mm_struct; +static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) +{ + pte_t old_pte = *ptep; + set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); +} +#endif + +/* + * On some architectures hardware does not set page access bit when accessing + * memory page, it is responsibilty of software setting this bit. It brings + * out extra page fault penalty to track page access bit. For optimization page + * access bit can be set during all page fault flow on these arches. + * To be differentiate with macro pte_mkyoung, this macro is used on platforms + * where software maintains page access bit. + */ +#ifndef pte_sw_mkyoung +static inline pte_t pte_sw_mkyoung(pte_t pte) +{ + return pte; +} +#define pte_sw_mkyoung pte_sw_mkyoung +#endif + +#ifndef pte_savedwrite +#define pte_savedwrite pte_write +#endif + +#ifndef pte_mk_savedwrite +#define pte_mk_savedwrite pte_mkwrite +#endif + +#ifndef pte_clear_savedwrite +#define pte_clear_savedwrite pte_wrprotect +#endif + +#ifndef pmd_savedwrite +#define pmd_savedwrite pmd_write +#endif + +#ifndef pmd_mk_savedwrite +#define pmd_mk_savedwrite pmd_mkwrite +#endif + +#ifndef pmd_clear_savedwrite +#define pmd_clear_savedwrite pmd_wrprotect +#endif + +#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +static inline void pmdp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pmd_t *pmdp) +{ + pmd_t old_pmd = *pmdp; + set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); +} +#else +static inline void pmdp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pmd_t *pmdp) +{ + BUILD_BUG(); +} +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif +#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT +#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD +static inline void pudp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pud_t *pudp) +{ + pud_t old_pud = *pudp; + + set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); +} +#else +static inline void pudp_set_wrprotect(struct mm_struct *mm, + unsigned long address, pud_t *pudp) +{ + BUILD_BUG(); +} +#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ +#endif + +#ifndef pmdp_collapse_flush +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp); +#else +static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, + unsigned long address, + pmd_t *pmdp) +{ + BUILD_BUG(); + return *pmdp; +} +#define pmdp_collapse_flush pmdp_collapse_flush +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +#endif + +#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT +extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, + pgtable_t pgtable); +#endif + +#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW +extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); +#endif + +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* + * This is an implementation of pmdp_establish() that is only suitable for an + * architecture that doesn't have hardware dirty/accessed bits. In this case we + * can't race with CPU which sets these bits and non-atomic aproach is fine. + */ +static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, + unsigned long address, pmd_t *pmdp, pmd_t pmd) +{ + pmd_t old_pmd = *pmdp; + set_pmd_at(vma->vm_mm, address, pmdp, pmd); + return old_pmd; +} +#endif + +#ifndef __HAVE_ARCH_PMDP_INVALIDATE +extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, + pmd_t *pmdp); +#endif + +#ifndef __HAVE_ARCH_PTE_SAME +static inline int pte_same(pte_t pte_a, pte_t pte_b) +{ + return pte_val(pte_a) == pte_val(pte_b); +} +#endif + +#ifndef __HAVE_ARCH_PTE_UNUSED +/* + * Some architectures provide facilities to virtualization guests + * so that they can flag allocated pages as unused. This allows the + * host to transparently reclaim unused pages. This function returns + * whether the pte's page is unused. + */ +static inline int pte_unused(pte_t pte) +{ + return 0; +} +#endif + +#ifndef pte_access_permitted +#define pte_access_permitted(pte, write) \ + (pte_present(pte) && (!(write) || pte_write(pte))) +#endif + +#ifndef pmd_access_permitted +#define pmd_access_permitted(pmd, write) \ + (pmd_present(pmd) && (!(write) || pmd_write(pmd))) +#endif + +#ifndef pud_access_permitted +#define pud_access_permitted(pud, write) \ + (pud_present(pud) && (!(write) || pud_write(pud))) +#endif + +#ifndef p4d_access_permitted +#define p4d_access_permitted(p4d, write) \ + (p4d_present(p4d) && (!(write) || p4d_write(p4d))) +#endif + +#ifndef pgd_access_permitted +#define pgd_access_permitted(pgd, write) \ + (pgd_present(pgd) && (!(write) || pgd_write(pgd))) +#endif + +#ifndef __HAVE_ARCH_PMD_SAME +static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) +{ + return pmd_val(pmd_a) == pmd_val(pmd_b); +} + +static inline int pud_same(pud_t pud_a, pud_t pud_b) +{ + return pud_val(pud_a) == pud_val(pud_b); +} +#endif + +#ifndef __HAVE_ARCH_P4D_SAME +static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) +{ + return p4d_val(p4d_a) == p4d_val(p4d_b); +} +#endif + +#ifndef __HAVE_ARCH_PGD_SAME +static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) +{ + return pgd_val(pgd_a) == pgd_val(pgd_b); +} +#endif + +/* + * Use set_p*_safe(), and elide TLB flushing, when confident that *no* + * TLB flush will be required as a result of the "set". For example, use + * in scenarios where it is known ahead of time that the routine is + * setting non-present entries, or re-setting an existing entry to the + * same value. Otherwise, use the typical "set" helpers and flush the + * TLB. + */ +#define set_pte_safe(ptep, pte) \ +({ \ + WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ + set_pte(ptep, pte); \ +}) + +#define set_pmd_safe(pmdp, pmd) \ +({ \ + WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ + set_pmd(pmdp, pmd); \ +}) + +#define set_pud_safe(pudp, pud) \ +({ \ + WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ + set_pud(pudp, pud); \ +}) + +#define set_p4d_safe(p4dp, p4d) \ +({ \ + WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ + set_p4d(p4dp, p4d); \ +}) + +#define set_pgd_safe(pgdp, pgd) \ +({ \ + WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ + set_pgd(pgdp, pgd); \ +}) + +#ifndef __HAVE_ARCH_DO_SWAP_PAGE +/* + * Some architectures support metadata associated with a page. When a + * page is being swapped out, this metadata must be saved so it can be + * restored when the page is swapped back in. SPARC M7 and newer + * processors support an ADI (Application Data Integrity) tag for the + * page as metadata for the page. arch_do_swap_page() can restore this + * metadata when a page is swapped back in. + */ +static inline void arch_do_swap_page(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long addr, + pte_t pte, pte_t oldpte) +{ + +} +#endif + +#ifndef __HAVE_ARCH_UNMAP_ONE +/* + * Some architectures support metadata associated with a page. When a + * page is being swapped out, this metadata must be saved so it can be + * restored when the page is swapped back in. SPARC M7 and newer + * processors support an ADI (Application Data Integrity) tag for the + * page as metadata for the page. arch_unmap_one() can save this + * metadata on a swap-out of a page. + */ +static inline int arch_unmap_one(struct mm_struct *mm, + struct vm_area_struct *vma, + unsigned long addr, + pte_t orig_pte) +{ + return 0; +} +#endif + +#ifndef __HAVE_ARCH_PGD_OFFSET_GATE +#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) +#endif + +#ifndef __HAVE_ARCH_MOVE_PTE +#define move_pte(pte, prot, old_addr, new_addr) (pte) +#endif + +#ifndef pte_accessible +# define pte_accessible(mm, pte) ((void)(pte), 1) +#endif + +#ifndef flush_tlb_fix_spurious_fault +#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) +#endif + +#ifndef pgprot_nx +#define pgprot_nx(prot) (prot) +#endif + +#ifndef pgprot_noncached +#define pgprot_noncached(prot) (prot) +#endif + +#ifndef pgprot_writecombine +#define pgprot_writecombine pgprot_noncached +#endif + +#ifndef pgprot_writethrough +#define pgprot_writethrough pgprot_noncached +#endif + +#ifndef pgprot_device +#define pgprot_device pgprot_noncached +#endif + +#ifndef pgprot_modify +#define pgprot_modify pgprot_modify +static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) +{ + if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) + newprot = pgprot_noncached(newprot); + if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) + newprot = pgprot_writecombine(newprot); + if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) + newprot = pgprot_device(newprot); + return newprot; +} +#endif + +/* + * When walking page tables, get the address of the next boundary, + * or the end address of the range if that comes earlier. Although no + * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. + */ + +#define pgd_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) + +#ifndef p4d_addr_end +#define p4d_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) +#endif + +#ifndef pud_addr_end +#define pud_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) +#endif + +#ifndef pmd_addr_end +#define pmd_addr_end(addr, end) \ +({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ + (__boundary - 1 < (end) - 1)? __boundary: (end); \ +}) +#endif + +/* + * When walking page tables, we usually want to skip any p?d_none entries; + * and any p?d_bad entries - reporting the error before resetting to none. + * Do the tests inline, but report and clear the bad entry in mm/memory.c. + */ +void pgd_clear_bad(pgd_t *); + +#ifndef __PAGETABLE_P4D_FOLDED +void p4d_clear_bad(p4d_t *); +#else +#define p4d_clear_bad(p4d) do { } while (0) +#endif + +#ifndef __PAGETABLE_PUD_FOLDED +void pud_clear_bad(pud_t *); +#else +#define pud_clear_bad(p4d) do { } while (0) +#endif + +void pmd_clear_bad(pmd_t *); + +static inline int pgd_none_or_clear_bad(pgd_t *pgd) +{ + if (pgd_none(*pgd)) + return 1; + if (unlikely(pgd_bad(*pgd))) { + pgd_clear_bad(pgd); + return 1; + } + return 0; +} + +static inline int p4d_none_or_clear_bad(p4d_t *p4d) +{ + if (p4d_none(*p4d)) + return 1; + if (unlikely(p4d_bad(*p4d))) { + p4d_clear_bad(p4d); + return 1; + } + return 0; +} + +static inline int pud_none_or_clear_bad(pud_t *pud) +{ + if (pud_none(*pud)) + return 1; + if (unlikely(pud_bad(*pud))) { + pud_clear_bad(pud); + return 1; + } + return 0; +} + +static inline int pmd_none_or_clear_bad(pmd_t *pmd) +{ + if (pmd_none(*pmd)) + return 1; + if (unlikely(pmd_bad(*pmd))) { + pmd_clear_bad(pmd); + return 1; + } + return 0; +} + +static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, + unsigned long addr, + pte_t *ptep) +{ + /* + * Get the current pte state, but zero it out to make it + * non-present, preventing the hardware from asynchronously + * updating it. + */ + return ptep_get_and_clear(vma->vm_mm, addr, ptep); +} + +static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, + unsigned long addr, + pte_t *ptep, pte_t pte) +{ + /* + * The pte is non-present, so there's no hardware state to + * preserve. + */ + set_pte_at(vma->vm_mm, addr, ptep, pte); +} + +#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION +/* + * Start a pte protection read-modify-write transaction, which + * protects against asynchronous hardware modifications to the pte. + * The intention is not to prevent the hardware from making pte + * updates, but to prevent any updates it may make from being lost. + * + * This does not protect against other software modifications of the + * pte; the appropriate pte lock must be held over the transation. + * + * Note that this interface is intended to be batchable, meaning that + * ptep_modify_prot_commit may not actually update the pte, but merely + * queue the update to be done at some later time. The update must be + * actually committed before the pte lock is released, however. + */ +static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, + unsigned long addr, + pte_t *ptep) +{ + return __ptep_modify_prot_start(vma, addr, ptep); +} + +/* + * Commit an update to a pte, leaving any hardware-controlled bits in + * the PTE unmodified. + */ +static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, + unsigned long addr, + pte_t *ptep, pte_t old_pte, pte_t pte) +{ + __ptep_modify_prot_commit(vma, addr, ptep, pte); +} +#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ +#endif /* CONFIG_MMU */ + +/* + * No-op macros that just return the current protection value. Defined here + * because these macros can be used used even if CONFIG_MMU is not defined. + */ +#ifndef pgprot_encrypted +#define pgprot_encrypted(prot) (prot) +#endif + +#ifndef pgprot_decrypted +#define pgprot_decrypted(prot) (prot) +#endif + +/* + * A facility to provide lazy MMU batching. This allows PTE updates and + * page invalidations to be delayed until a call to leave lazy MMU mode + * is issued. Some architectures may benefit from doing this, and it is + * beneficial for both shadow and direct mode hypervisors, which may batch + * the PTE updates which happen during this window. Note that using this + * interface requires that read hazards be removed from the code. A read + * hazard could result in the direct mode hypervisor case, since the actual + * write to the page tables may not yet have taken place, so reads though + * a raw PTE pointer after it has been modified are not guaranteed to be + * up to date. This mode can only be entered and left under the protection of + * the page table locks for all page tables which may be modified. In the UP + * case, this is required so that preemption is disabled, and in the SMP case, + * it must synchronize the delayed page table writes properly on other CPUs. + */ +#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE +#define arch_enter_lazy_mmu_mode() do {} while (0) +#define arch_leave_lazy_mmu_mode() do {} while (0) +#define arch_flush_lazy_mmu_mode() do {} while (0) +#endif + +/* + * A facility to provide batching of the reload of page tables and + * other process state with the actual context switch code for + * paravirtualized guests. By convention, only one of the batched + * update (lazy) modes (CPU, MMU) should be active at any given time, + * entry should never be nested, and entry and exits should always be + * paired. This is for sanity of maintaining and reasoning about the + * kernel code. In this case, the exit (end of the context switch) is + * in architecture-specific code, and so doesn't need a generic + * definition. + */ +#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH +#define arch_start_context_switch(prev) do {} while (0) +#endif + +#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY +#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION +static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) +{ + return pmd; +} + +static inline int pmd_swp_soft_dirty(pmd_t pmd) +{ + return 0; +} + +static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) +{ + return pmd; +} +#endif +#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ +static inline int pte_soft_dirty(pte_t pte) +{ + return 0; +} + +static inline int pmd_soft_dirty(pmd_t pmd) +{ + return 0; +} + +static inline pte_t pte_mksoft_dirty(pte_t pte) +{ + return pte; +} + +static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) +{ + return pmd; +} + +static inline pte_t pte_clear_soft_dirty(pte_t pte) +{ + return pte; +} + +static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) +{ + return pmd; +} + +static inline pte_t pte_swp_mksoft_dirty(pte_t pte) +{ + return pte; +} + +static inline int pte_swp_soft_dirty(pte_t pte) +{ + return 0; +} + +static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) +{ + return pte; +} + +static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) +{ + return pmd; +} + +static inline int pmd_swp_soft_dirty(pmd_t pmd) +{ + return 0; +} + +static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) +{ + return pmd; +} +#endif + +#ifndef __HAVE_PFNMAP_TRACKING +/* + * Interfaces that can be used by architecture code to keep track of + * memory type of pfn mappings specified by the remap_pfn_range, + * vmf_insert_pfn. + */ + +/* + * track_pfn_remap is called when a _new_ pfn mapping is being established + * by remap_pfn_range() for physical range indicated by pfn and size. + */ +static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn, unsigned long addr, + unsigned long size) +{ + return 0; +} + +/* + * track_pfn_insert is called when a _new_ single pfn is established + * by vmf_insert_pfn(). + */ +static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, + pfn_t pfn) +{ +} + +/* + * track_pfn_copy is called when vma that is covering the pfnmap gets + * copied through copy_page_range(). + */ +static inline int track_pfn_copy(struct vm_area_struct *vma) +{ + return 0; +} + +/* + * untrack_pfn is called while unmapping a pfnmap for a region. + * untrack can be called for a specific region indicated by pfn and size or + * can be for the entire vma (in which case pfn, size are zero). + */ +static inline void untrack_pfn(struct vm_area_struct *vma, + unsigned long pfn, unsigned long size) +{ +} + +/* + * untrack_pfn_moved is called while mremapping a pfnmap for a new region. + */ +static inline void untrack_pfn_moved(struct vm_area_struct *vma) +{ +} +#else +extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, + unsigned long pfn, unsigned long addr, + unsigned long size); +extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, + pfn_t pfn); +extern int track_pfn_copy(struct vm_area_struct *vma); +extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, + unsigned long size); +extern void untrack_pfn_moved(struct vm_area_struct *vma); +#endif + +#ifdef __HAVE_COLOR_ZERO_PAGE +static inline int is_zero_pfn(unsigned long pfn) +{ + extern unsigned long zero_pfn; + unsigned long offset_from_zero_pfn = pfn - zero_pfn; + return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); +} + +#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) + +#else +static inline int is_zero_pfn(unsigned long pfn) +{ + extern unsigned long zero_pfn; + return pfn == zero_pfn; +} + +static inline unsigned long my_zero_pfn(unsigned long addr) +{ + extern unsigned long zero_pfn; + return zero_pfn; +} +#endif + +#ifdef CONFIG_MMU + +#ifndef CONFIG_TRANSPARENT_HUGEPAGE +static inline int pmd_trans_huge(pmd_t pmd) +{ + return 0; +} +#ifndef pmd_write +static inline int pmd_write(pmd_t pmd) +{ + BUG(); + return 0; +} +#endif /* pmd_write */ +#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ + +#ifndef pud_write +static inline int pud_write(pud_t pud) +{ + BUG(); + return 0; +} +#endif /* pud_write */ + +#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) +static inline int pmd_devmap(pmd_t pmd) +{ + return 0; +} +static inline int pud_devmap(pud_t pud) +{ + return 0; +} +static inline int pgd_devmap(pgd_t pgd) +{ + return 0; +} +#endif + +#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ + (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ + !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) +static inline int pud_trans_huge(pud_t pud) +{ + return 0; +} +#endif + +/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ +static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) +{ + pud_t pudval = READ_ONCE(*pud); + + if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) + return 1; + if (unlikely(pud_bad(pudval))) { + pud_clear_bad(pud); + return 1; + } + return 0; +} + +/* See pmd_trans_unstable for discussion. */ +static inline int pud_trans_unstable(pud_t *pud) +{ +#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ + defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) + return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); +#else + return 0; +#endif +} + +#ifndef pmd_read_atomic +static inline pmd_t pmd_read_atomic(pmd_t *pmdp) +{ + /* + * Depend on compiler for an atomic pmd read. NOTE: this is + * only going to work, if the pmdval_t isn't larger than + * an unsigned long. + */ + return *pmdp; +} +#endif + +#ifndef arch_needs_pgtable_deposit +#define arch_needs_pgtable_deposit() (false) +#endif +/* + * This function is meant to be used by sites walking pagetables with + * the mmap_sem hold in read mode to protect against MADV_DONTNEED and + * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd + * into a null pmd and the transhuge page fault can convert a null pmd + * into an hugepmd or into a regular pmd (if the hugepage allocation + * fails). While holding the mmap_sem in read mode the pmd becomes + * stable and stops changing under us only if it's not null and not a + * transhuge pmd. When those races occurs and this function makes a + * difference vs the standard pmd_none_or_clear_bad, the result is + * undefined so behaving like if the pmd was none is safe (because it + * can return none anyway). The compiler level barrier() is critically + * important to compute the two checks atomically on the same pmdval. + * + * For 32bit kernels with a 64bit large pmd_t this automatically takes + * care of reading the pmd atomically to avoid SMP race conditions + * against pmd_populate() when the mmap_sem is hold for reading by the + * caller (a special atomic read not done by "gcc" as in the generic + * version above, is also needed when THP is disabled because the page + * fault can populate the pmd from under us). + */ +static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) +{ + pmd_t pmdval = pmd_read_atomic(pmd); + /* + * The barrier will stabilize the pmdval in a register or on + * the stack so that it will stop changing under the code. + * + * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, + * pmd_read_atomic is allowed to return a not atomic pmdval + * (for example pointing to an hugepage that has never been + * mapped in the pmd). The below checks will only care about + * the low part of the pmd with 32bit PAE x86 anyway, with the + * exception of pmd_none(). So the important thing is that if + * the low part of the pmd is found null, the high part will + * be also null or the pmd_none() check below would be + * confused. + */ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + barrier(); +#endif + /* + * !pmd_present() checks for pmd migration entries + * + * The complete check uses is_pmd_migration_entry() in linux/swapops.h + * But using that requires moving current function and pmd_trans_unstable() + * to linux/swapops.h to resovle dependency, which is too much code move. + * + * !pmd_present() is equivalent to is_pmd_migration_entry() currently, + * because !pmd_present() pages can only be under migration not swapped + * out. + * + * pmd_none() is preseved for future condition checks on pmd migration + * entries and not confusing with this function name, although it is + * redundant with !pmd_present(). + */ + if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || + (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) + return 1; + if (unlikely(pmd_bad(pmdval))) { + pmd_clear_bad(pmd); + return 1; + } + return 0; +} + +/* + * This is a noop if Transparent Hugepage Support is not built into + * the kernel. Otherwise it is equivalent to + * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in + * places that already verified the pmd is not none and they want to + * walk ptes while holding the mmap sem in read mode (write mode don't + * need this). If THP is not enabled, the pmd can't go away under the + * code even if MADV_DONTNEED runs, but if THP is enabled we need to + * run a pmd_trans_unstable before walking the ptes after + * split_huge_pmd returns (because it may have run when the pmd become + * null, but then a page fault can map in a THP and not a regular page). + */ +static inline int pmd_trans_unstable(pmd_t *pmd) +{ +#ifdef CONFIG_TRANSPARENT_HUGEPAGE + return pmd_none_or_trans_huge_or_clear_bad(pmd); +#else + return 0; +#endif +} + +#ifndef CONFIG_NUMA_BALANCING +/* + * Technically a PTE can be PROTNONE even when not doing NUMA balancing but + * the only case the kernel cares is for NUMA balancing and is only ever set + * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked + * _PAGE_PROTNONE so by by default, implement the helper as "always no". It + * is the responsibility of the caller to distinguish between PROT_NONE + * protections and NUMA hinting fault protections. + */ +static inline int pte_protnone(pte_t pte) +{ + return 0; +} + +static inline int pmd_protnone(pmd_t pmd) +{ + return 0; +} +#endif /* CONFIG_NUMA_BALANCING */ + +#endif /* CONFIG_MMU */ + +#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP + +#ifndef __PAGETABLE_P4D_FOLDED +int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); +int p4d_clear_huge(p4d_t *p4d); +#else +static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int p4d_clear_huge(p4d_t *p4d) +{ + return 0; +} +#endif /* !__PAGETABLE_P4D_FOLDED */ + +int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); +int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); +int pud_clear_huge(pud_t *pud); +int pmd_clear_huge(pmd_t *pmd); +int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); +int pud_free_pmd_page(pud_t *pud, unsigned long addr); +int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); +#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ +static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) +{ + return 0; +} +static inline int p4d_clear_huge(p4d_t *p4d) +{ + return 0; +} +static inline int pud_clear_huge(pud_t *pud) +{ + return 0; +} +static inline int pmd_clear_huge(pmd_t *pmd) +{ + return 0; +} +static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) +{ + return 0; +} +static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) +{ + return 0; +} +static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) +{ + return 0; +} +#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ + +#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +/* + * ARCHes with special requirements for evicting THP backing TLB entries can + * implement this. Otherwise also, it can help optimize normal TLB flush in + * THP regime. stock flush_tlb_range() typically has optimization to nuke the + * entire TLB TLB if flush span is greater than a threshold, which will + * likely be true for a single huge page. Thus a single thp flush will + * invalidate the entire TLB which is not desitable. + * e.g. see arch/arc: flush_pmd_tlb_range + */ +#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) +#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) +#else +#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() +#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() +#endif +#endif + +struct file; +int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, + unsigned long size, pgprot_t *vma_prot); + +#ifndef CONFIG_X86_ESPFIX64 +static inline void init_espfix_bsp(void) { } +#endif + +extern void __init pgtable_cache_init(void); + +#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED +static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) +{ + return true; +} + +static inline bool arch_has_pfn_modify_check(void) +{ + return false; +} +#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ + +/* + * Architecture PAGE_KERNEL_* fallbacks + * + * Some architectures don't define certain PAGE_KERNEL_* flags. This is either + * because they really don't support them, or the port needs to be updated to + * reflect the required functionality. Below are a set of relatively safe + * fallbacks, as best effort, which we can count on in lieu of the architectures + * not defining them on their own yet. + */ + +#ifndef PAGE_KERNEL_RO +# define PAGE_KERNEL_RO PAGE_KERNEL +#endif + +#ifndef PAGE_KERNEL_EXEC +# define PAGE_KERNEL_EXEC PAGE_KERNEL +#endif + +/* + * Page Table Modification bits for pgtbl_mod_mask. + * + * These are used by the p?d_alloc_track*() set of functions an in the generic + * vmalloc/ioremap code to track at which page-table levels entries have been + * modified. Based on that the code can better decide when vmalloc and ioremap + * mapping changes need to be synchronized to other page-tables in the system. + */ +#define __PGTBL_PGD_MODIFIED 0 +#define __PGTBL_P4D_MODIFIED 1 +#define __PGTBL_PUD_MODIFIED 2 +#define __PGTBL_PMD_MODIFIED 3 +#define __PGTBL_PTE_MODIFIED 4 + +#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) +#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) +#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) +#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) +#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) + +/* Page-Table Modification Mask */ +typedef unsigned int pgtbl_mod_mask; + +#endif /* !__ASSEMBLY__ */ + +#ifndef io_remap_pfn_range +#define io_remap_pfn_range remap_pfn_range +#endif + +#ifndef has_transparent_hugepage +#ifdef CONFIG_TRANSPARENT_HUGEPAGE +#define has_transparent_hugepage() 1 +#else +#define has_transparent_hugepage() 0 +#endif +#endif + +/* + * On some architectures it depends on the mm if the p4d/pud or pmd + * layer of the page table hierarchy is folded or not. + */ +#ifndef mm_p4d_folded +#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) +#endif + +#ifndef mm_pud_folded +#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) +#endif + +#ifndef mm_pmd_folded +#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) +#endif + +/* + * p?d_leaf() - true if this entry is a final mapping to a physical address. + * This differs from p?d_huge() by the fact that they are always available (if + * the architecture supports large pages at the appropriate level) even + * if CONFIG_HUGETLB_PAGE is not defined. + * Only meaningful when called on a valid entry. + */ +#ifndef pgd_leaf +#define pgd_leaf(x) 0 +#endif +#ifndef p4d_leaf +#define p4d_leaf(x) 0 +#endif +#ifndef pud_leaf +#define pud_leaf(x) 0 +#endif +#ifndef pmd_leaf +#define pmd_leaf(x) 0 +#endif + +#endif /* _LINUX_PGTABLE_H */ |