diff options
author | Dave Jiang <dave.jiang@intel.com> | 2017-02-24 14:56:59 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-24 17:46:54 -0800 |
commit | a2d581675d485eb7188f521f36efc114639a3096 (patch) | |
tree | ae566f77b965fed344458698fe6bb01280558647 /include/linux/mm.h | |
parent | bd233f538d51c2cae6f0bfc2cf7f0960e1683b8a (diff) | |
download | lwn-a2d581675d485eb7188f521f36efc114639a3096.tar.gz lwn-a2d581675d485eb7188f521f36efc114639a3096.zip |
mm,fs,dax: change ->pmd_fault to ->huge_fault
Patch series "1G transparent hugepage support for device dax", v2.
The following series implements support for 1G trasparent hugepage on
x86 for device dax. The bulk of the code was written by Mathew Wilcox a
while back supporting transparent 1G hugepage for fs DAX. I have
forward ported the relevant bits to 4.10-rc. The current submission has
only the necessary code to support device DAX.
Comments from Dan Williams: So the motivation and intended user of this
functionality mirrors the motivation and users of 1GB page support in
hugetlbfs. Given expected capacities of persistent memory devices an
in-memory database may want to reduce tlb pressure beyond what they can
already achieve with 2MB mappings of a device-dax file. We have
customer feedback to that effect as Willy mentioned in his previous
version of these patches [1].
[1]: https://lkml.org/lkml/2016/1/31/52
Comments from Nilesh @ Oracle:
There are applications which have a process model; and if you assume
10,000 processes attempting to mmap all the 6TB memory available on a
server; we are looking at the following:
processes : 10,000
memory : 6TB
pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB
pmd @ 2M page size: 120,000 / 512 = ~240GB
pud @ 1G page size: 240GB / 512 = ~480MB
As you can see with 2M pages, this system will use up an exorbitant
amount of DRAM to hold the page tables; but the 1G pages finally brings
it down to a reasonable level. Memory sizes will keep increasing; so
this number will keep increasing.
An argument can be made to convert the applications from process model
to thread model, but in the real world that may not be always practical.
Hopefully this helps explain the use case where this is valuable.
This patch (of 3):
In preparation for adding the ability to handle PUD pages, convert
vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The
vm_fault structure is extended to include a union of the different page
table pointers that may be needed, and three flag bits are reserved to
indicate which type of pointer is in the union.
[ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()]
Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com
[dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path]
Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com
Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/mm.h')
-rw-r--r-- | include/linux/mm.h | 10 |
1 files changed, 9 insertions, 1 deletions
diff --git a/include/linux/mm.h b/include/linux/mm.h index 3dd80ba6568a..035a688e5472 100644 --- a/include/linux/mm.h +++ b/include/linux/mm.h @@ -285,6 +285,11 @@ extern pgprot_t protection_map[16]; #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ +#define FAULT_FLAG_SIZE_MASK 0x7000 /* Support up to 8-level page tables */ +#define FAULT_FLAG_SIZE_PTE 0x0000 /* First level (eg 4k) */ +#define FAULT_FLAG_SIZE_PMD 0x1000 /* Second level (eg 2MB) */ +#define FAULT_FLAG_SIZE_PUD 0x2000 /* Third level (eg 1GB) */ + #define FAULT_FLAG_TRACE \ { FAULT_FLAG_WRITE, "WRITE" }, \ { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ @@ -314,6 +319,9 @@ struct vm_fault { unsigned long address; /* Faulting virtual address */ pmd_t *pmd; /* Pointer to pmd entry matching * the 'address' */ + pud_t *pud; /* Pointer to pud entry matching + * the 'address' + */ pte_t orig_pte; /* Value of PTE at the time of fault */ struct page *cow_page; /* Page handler may use for COW fault */ @@ -351,7 +359,7 @@ struct vm_operations_struct { void (*close)(struct vm_area_struct * area); int (*mremap)(struct vm_area_struct * area); int (*fault)(struct vm_fault *vmf); - int (*pmd_fault)(struct vm_fault *vmf); + int (*huge_fault)(struct vm_fault *vmf); void (*map_pages)(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff); |