summaryrefslogtreecommitdiff
path: root/include/linux/memcontrol.h
diff options
context:
space:
mode:
authorJakub Kicinski <kuba@kernel.org>2020-06-01 21:49:52 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2020-06-02 10:59:09 -0700
commit4b82ab4f28836646eca12cb37f408568d3cdc5c3 (patch)
treebf2cda64795d153f2512914de9f4f7d79b05aed2 /include/linux/memcontrol.h
parentd1663a907bd348f912b7f7088e83ca1b6fd3309f (diff)
downloadlwn-4b82ab4f28836646eca12cb37f408568d3cdc5c3.tar.gz
lwn-4b82ab4f28836646eca12cb37f408568d3cdc5c3.zip
mm/memcg: automatically penalize tasks with high swap use
Add a memory.swap.high knob, which can be used to protect the system from SWAP exhaustion. The mechanism used for penalizing is similar to memory.high penalty (sleep on return to user space). That is not to say that the knob itself is equivalent to memory.high. The objective is more to protect the system from potentially buggy tasks consuming a lot of swap and impacting other tasks, or even bringing the whole system to stand still with complete SWAP exhaustion. Hopefully without the need to find per-task hard limits. Slowing misbehaving tasks down gradually allows user space oom killers or other protection mechanisms to react. oomd and earlyoom already do killing based on swap exhaustion, and memory.swap.high protection will help implement such userspace oom policies more reliably. We can use one counter for number of pages allocated under pressure to save struct task space and avoid two separate hierarchy walks on the hot path. The exact overage is calculated on return to user space, anyway. Take the new high limit into account when determining if swap is "full". Borrowing the explanation from Johannes: The idea behind "swap full" is that as long as the workload has plenty of swap space available and it's not changing its memory contents, it makes sense to generously hold on to copies of data in the swap device, even after the swapin. A later reclaim cycle can drop the page without any IO. Trading disk space for IO. But the only two ways to reclaim a swap slot is when they're faulted in and the references go away, or by scanning the virtual address space like swapoff does - which is very expensive (one could argue it's too expensive even for swapoff, it's often more practical to just reboot). So at some point in the fill level, we have to start freeing up swap slots on fault/swapin. Otherwise we could eventually run out of swap slots while they're filled with copies of data that is also in RAM. We don't want to OOM a workload because its available swap space is filled with redundant cache. Signed-off-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Chris Down <chris@chrisdown.name> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Hugh Dickins <hughd@google.com> Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'include/linux/memcontrol.h')
-rw-r--r--include/linux/memcontrol.h1
1 files changed, 1 insertions, 0 deletions
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h
index 95a09a7ec412..bfe9533bb67e 100644
--- a/include/linux/memcontrol.h
+++ b/include/linux/memcontrol.h
@@ -45,6 +45,7 @@ enum memcg_memory_event {
MEMCG_MAX,
MEMCG_OOM,
MEMCG_OOM_KILL,
+ MEMCG_SWAP_HIGH,
MEMCG_SWAP_MAX,
MEMCG_SWAP_FAIL,
MEMCG_NR_MEMORY_EVENTS,