summaryrefslogtreecommitdiff
path: root/include/linux/bpf_verifier.h
diff options
context:
space:
mode:
authorKumar Kartikeya Dwivedi <memxor@gmail.com>2022-11-18 07:26:03 +0530
committerAlexei Starovoitov <ast@kernel.org>2022-11-17 19:22:14 -0800
commit958cf2e273f0929c66169e0788031310e8118722 (patch)
treee0259b38435f90858dd6c8bcccee3df0045f22ad /include/linux/bpf_verifier.h
parenta50388dbb328a4267c2b91ad4aefe81b08e49b2d (diff)
downloadlwn-958cf2e273f0929c66169e0788031310e8118722.tar.gz
lwn-958cf2e273f0929c66169e0788031310e8118722.zip
bpf: Introduce bpf_obj_new
Introduce type safe memory allocator bpf_obj_new for BPF programs. The kernel side kfunc is named bpf_obj_new_impl, as passing hidden arguments to kfuncs still requires having them in prototype, unlike BPF helpers which always take 5 arguments and have them checked using bpf_func_proto in verifier, ignoring unset argument types. Introduce __ign suffix to ignore a specific kfunc argument during type checks, then use this to introduce support for passing type metadata to the bpf_obj_new_impl kfunc. The user passes BTF ID of the type it wants to allocates in program BTF, the verifier then rewrites the first argument as the size of this type, after performing some sanity checks (to ensure it exists and it is a struct type). The second argument is also fixed up and passed by the verifier. This is the btf_struct_meta for the type being allocated. It would be needed mostly for the offset array which is required for zero initializing special fields while leaving the rest of storage in unitialized state. It would also be needed in the next patch to perform proper destruction of the object's special fields. Under the hood, bpf_obj_new will call bpf_mem_alloc and bpf_mem_free, using the any context BPF memory allocator introduced recently. To this end, a global instance of the BPF memory allocator is initialized on boot to be used for this purpose. This 'bpf_global_ma' serves all allocations for bpf_obj_new. In the future, bpf_obj_new variants will allow specifying a custom allocator. Note that now that bpf_obj_new can be used to allocate objects that can be linked to BPF linked list (when future linked list helpers are available), we need to also free the elements using bpf_mem_free. However, since the draining of elements is done outside the bpf_spin_lock, we need to do migrate_disable around the call since bpf_list_head_free can be called from map free path where migration is enabled. Otherwise, when called from BPF programs migration is already disabled. A convenience macro is included in the bpf_experimental.h header to hide over the ugly details of the implementation, leading to user code looking similar to a language level extension which allocates and constructs fields of a user type. struct bar { struct bpf_list_node node; }; struct foo { struct bpf_spin_lock lock; struct bpf_list_head head __contains(bar, node); }; void prog(void) { struct foo *f; f = bpf_obj_new(typeof(*f)); if (!f) return; ... } A key piece of this story is still missing, i.e. the free function, which will come in the next patch. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20221118015614.2013203-14-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Diffstat (limited to 'include/linux/bpf_verifier.h')
-rw-r--r--include/linux/bpf_verifier.h2
1 files changed, 2 insertions, 0 deletions
diff --git a/include/linux/bpf_verifier.h b/include/linux/bpf_verifier.h
index fb146b0ce006..3dc72d396dfc 100644
--- a/include/linux/bpf_verifier.h
+++ b/include/linux/bpf_verifier.h
@@ -433,6 +433,8 @@ struct bpf_insn_aux_data {
*/
struct bpf_loop_inline_state loop_inline_state;
};
+ u64 obj_new_size; /* remember the size of type passed to bpf_obj_new to rewrite R1 */
+ struct btf_struct_meta *kptr_struct_meta;
u64 map_key_state; /* constant (32 bit) key tracking for maps */
int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
u32 seen; /* this insn was processed by the verifier at env->pass_cnt */