summaryrefslogtreecommitdiff
path: root/include/linux/blkdev.h
diff options
context:
space:
mode:
authorJens Axboe <axboe@fb.com>2016-11-09 12:38:14 -0700
committerJens Axboe <axboe@fb.com>2016-11-10 13:53:40 -0700
commit87760e5eef359788047d6fd54fc12eec74ce0d27 (patch)
tree0c394ea517cc093d8fe837ad5a7201d0d30c7afe /include/linux/blkdev.h
parente34cbd307477ae07c5d8a8d0bd15e65a9ddaba5c (diff)
downloadlwn-87760e5eef359788047d6fd54fc12eec74ce0d27.tar.gz
lwn-87760e5eef359788047d6fd54fc12eec74ce0d27.zip
block: hook up writeback throttling
Enable throttling of buffered writeback to make it a lot more smooth, and has way less impact on other system activity. Background writeback should be, by definition, background activity. The fact that we flush huge bundles of it at the time means that it potentially has heavy impacts on foreground workloads, which isn't ideal. We can't easily limit the sizes of writes that we do, since that would impact file system layout in the presence of delayed allocation. So just throttle back buffered writeback, unless someone is waiting for it. The algorithm for when to throttle takes its inspiration in the CoDel networking scheduling algorithm. Like CoDel, blk-wb monitors the minimum latencies of requests over a window of time. In that window of time, if the minimum latency of any request exceeds a given target, then a scale count is incremented and the queue depth is shrunk. The next monitoring window is shrunk accordingly. Unlike CoDel, if we hit a window that exhibits good behavior, then we simply increment the scale count and re-calculate the limits for that scale value. This prevents us from oscillating between a close-to-ideal value and max all the time, instead remaining in the windows where we get good behavior. Unlike CoDel, blk-wb allows the scale count to to negative. This happens if we primarily have writes going on. Unlike positive scale counts, this doesn't change the size of the monitoring window. When the heavy writers finish, blk-bw quickly snaps back to it's stable state of a zero scale count. The patch registers a sysfs entry, 'wb_lat_usec'. This sets the latency target to me met. It defaults to 2 msec for non-rotational storage, and 75 msec for rotational storage. Setting this value to '0' disables blk-wb. Generally, a user would not have to touch this setting. We don't enable WBT on devices that are managed with CFQ, and have a non-root block cgroup attached. If we have a proportional share setup on this particular disk, then the wbt throttling will interfere with that. We don't have a strong need for wbt for that case, since we will rely on CFQ doing that for us. Signed-off-by: Jens Axboe <axboe@fb.com>
Diffstat (limited to 'include/linux/blkdev.h')
-rw-r--r--include/linux/blkdev.h3
1 files changed, 3 insertions, 0 deletions
diff --git a/include/linux/blkdev.h b/include/linux/blkdev.h
index 303723a2e5b8..15da9e430f90 100644
--- a/include/linux/blkdev.h
+++ b/include/linux/blkdev.h
@@ -38,6 +38,7 @@ struct bsg_job;
struct blkcg_gq;
struct blk_flush_queue;
struct pr_ops;
+struct rq_wb;
#define BLKDEV_MIN_RQ 4
#define BLKDEV_MAX_RQ 128 /* Default maximum */
@@ -383,6 +384,8 @@ struct request_queue {
int nr_rqs[2]; /* # allocated [a]sync rqs */
int nr_rqs_elvpriv; /* # allocated rqs w/ elvpriv */
+ struct rq_wb *rq_wb;
+
/*
* If blkcg is not used, @q->root_rl serves all requests. If blkcg
* is used, root blkg allocates from @q->root_rl and all other