summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_sync.c
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2011-09-22 03:23:13 -0400
committerDavid S. Miller <davem@davemloft.net>2011-09-22 03:23:13 -0400
commit8decf868790b48a727d7e7ca164f2bcd3c1389c0 (patch)
treeb759a5f861f842af7ea76f9011b579d06e9d5508 /fs/xfs/xfs_sync.c
parent3fc72370186be2f9d4d6ef06d99e1caa5d92c564 (diff)
parentd93dc5c4478c1fd5de85a3e8aece9aad7bbae044 (diff)
downloadlwn-8decf868790b48a727d7e7ca164f2bcd3c1389c0.tar.gz
lwn-8decf868790b48a727d7e7ca164f2bcd3c1389c0.zip
Merge branch 'master' of github.com:davem330/net
Conflicts: MAINTAINERS drivers/net/Kconfig drivers/net/ethernet/broadcom/bnx2x/bnx2x_link.c drivers/net/ethernet/broadcom/tg3.c drivers/net/wireless/iwlwifi/iwl-pci.c drivers/net/wireless/iwlwifi/iwl-trans-tx-pcie.c drivers/net/wireless/rt2x00/rt2800usb.c drivers/net/wireless/wl12xx/main.c
Diffstat (limited to 'fs/xfs/xfs_sync.c')
-rw-r--r--fs/xfs/xfs_sync.c1065
1 files changed, 1065 insertions, 0 deletions
diff --git a/fs/xfs/xfs_sync.c b/fs/xfs/xfs_sync.c
new file mode 100644
index 000000000000..4604f90f86a3
--- /dev/null
+++ b/fs/xfs/xfs_sync.c
@@ -0,0 +1,1065 @@
+/*
+ * Copyright (c) 2000-2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it would be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_types.h"
+#include "xfs_bit.h"
+#include "xfs_log.h"
+#include "xfs_inum.h"
+#include "xfs_trans.h"
+#include "xfs_trans_priv.h"
+#include "xfs_sb.h"
+#include "xfs_ag.h"
+#include "xfs_mount.h"
+#include "xfs_bmap_btree.h"
+#include "xfs_inode.h"
+#include "xfs_dinode.h"
+#include "xfs_error.h"
+#include "xfs_filestream.h"
+#include "xfs_vnodeops.h"
+#include "xfs_inode_item.h"
+#include "xfs_quota.h"
+#include "xfs_trace.h"
+#include "xfs_fsops.h"
+
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+
+struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
+
+/*
+ * The inode lookup is done in batches to keep the amount of lock traffic and
+ * radix tree lookups to a minimum. The batch size is a trade off between
+ * lookup reduction and stack usage. This is in the reclaim path, so we can't
+ * be too greedy.
+ */
+#define XFS_LOOKUP_BATCH 32
+
+STATIC int
+xfs_inode_ag_walk_grab(
+ struct xfs_inode *ip)
+{
+ struct inode *inode = VFS_I(ip);
+
+ ASSERT(rcu_read_lock_held());
+
+ /*
+ * check for stale RCU freed inode
+ *
+ * If the inode has been reallocated, it doesn't matter if it's not in
+ * the AG we are walking - we are walking for writeback, so if it
+ * passes all the "valid inode" checks and is dirty, then we'll write
+ * it back anyway. If it has been reallocated and still being
+ * initialised, the XFS_INEW check below will catch it.
+ */
+ spin_lock(&ip->i_flags_lock);
+ if (!ip->i_ino)
+ goto out_unlock_noent;
+
+ /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
+ if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
+ goto out_unlock_noent;
+ spin_unlock(&ip->i_flags_lock);
+
+ /* nothing to sync during shutdown */
+ if (XFS_FORCED_SHUTDOWN(ip->i_mount))
+ return EFSCORRUPTED;
+
+ /* If we can't grab the inode, it must on it's way to reclaim. */
+ if (!igrab(inode))
+ return ENOENT;
+
+ if (is_bad_inode(inode)) {
+ IRELE(ip);
+ return ENOENT;
+ }
+
+ /* inode is valid */
+ return 0;
+
+out_unlock_noent:
+ spin_unlock(&ip->i_flags_lock);
+ return ENOENT;
+}
+
+STATIC int
+xfs_inode_ag_walk(
+ struct xfs_mount *mp,
+ struct xfs_perag *pag,
+ int (*execute)(struct xfs_inode *ip,
+ struct xfs_perag *pag, int flags),
+ int flags)
+{
+ uint32_t first_index;
+ int last_error = 0;
+ int skipped;
+ int done;
+ int nr_found;
+
+restart:
+ done = 0;
+ skipped = 0;
+ first_index = 0;
+ nr_found = 0;
+ do {
+ struct xfs_inode *batch[XFS_LOOKUP_BATCH];
+ int error = 0;
+ int i;
+
+ rcu_read_lock();
+ nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
+ (void **)batch, first_index,
+ XFS_LOOKUP_BATCH);
+ if (!nr_found) {
+ rcu_read_unlock();
+ break;
+ }
+
+ /*
+ * Grab the inodes before we drop the lock. if we found
+ * nothing, nr == 0 and the loop will be skipped.
+ */
+ for (i = 0; i < nr_found; i++) {
+ struct xfs_inode *ip = batch[i];
+
+ if (done || xfs_inode_ag_walk_grab(ip))
+ batch[i] = NULL;
+
+ /*
+ * Update the index for the next lookup. Catch
+ * overflows into the next AG range which can occur if
+ * we have inodes in the last block of the AG and we
+ * are currently pointing to the last inode.
+ *
+ * Because we may see inodes that are from the wrong AG
+ * due to RCU freeing and reallocation, only update the
+ * index if it lies in this AG. It was a race that lead
+ * us to see this inode, so another lookup from the
+ * same index will not find it again.
+ */
+ if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
+ continue;
+ first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
+ if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
+ done = 1;
+ }
+
+ /* unlock now we've grabbed the inodes. */
+ rcu_read_unlock();
+
+ for (i = 0; i < nr_found; i++) {
+ if (!batch[i])
+ continue;
+ error = execute(batch[i], pag, flags);
+ IRELE(batch[i]);
+ if (error == EAGAIN) {
+ skipped++;
+ continue;
+ }
+ if (error && last_error != EFSCORRUPTED)
+ last_error = error;
+ }
+
+ /* bail out if the filesystem is corrupted. */
+ if (error == EFSCORRUPTED)
+ break;
+
+ cond_resched();
+
+ } while (nr_found && !done);
+
+ if (skipped) {
+ delay(1);
+ goto restart;
+ }
+ return last_error;
+}
+
+int
+xfs_inode_ag_iterator(
+ struct xfs_mount *mp,
+ int (*execute)(struct xfs_inode *ip,
+ struct xfs_perag *pag, int flags),
+ int flags)
+{
+ struct xfs_perag *pag;
+ int error = 0;
+ int last_error = 0;
+ xfs_agnumber_t ag;
+
+ ag = 0;
+ while ((pag = xfs_perag_get(mp, ag))) {
+ ag = pag->pag_agno + 1;
+ error = xfs_inode_ag_walk(mp, pag, execute, flags);
+ xfs_perag_put(pag);
+ if (error) {
+ last_error = error;
+ if (error == EFSCORRUPTED)
+ break;
+ }
+ }
+ return XFS_ERROR(last_error);
+}
+
+STATIC int
+xfs_sync_inode_data(
+ struct xfs_inode *ip,
+ struct xfs_perag *pag,
+ int flags)
+{
+ struct inode *inode = VFS_I(ip);
+ struct address_space *mapping = inode->i_mapping;
+ int error = 0;
+
+ if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
+ goto out_wait;
+
+ if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
+ if (flags & SYNC_TRYLOCK)
+ goto out_wait;
+ xfs_ilock(ip, XFS_IOLOCK_SHARED);
+ }
+
+ error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
+ 0 : XBF_ASYNC, FI_NONE);
+ xfs_iunlock(ip, XFS_IOLOCK_SHARED);
+
+ out_wait:
+ if (flags & SYNC_WAIT)
+ xfs_ioend_wait(ip);
+ return error;
+}
+
+STATIC int
+xfs_sync_inode_attr(
+ struct xfs_inode *ip,
+ struct xfs_perag *pag,
+ int flags)
+{
+ int error = 0;
+
+ xfs_ilock(ip, XFS_ILOCK_SHARED);
+ if (xfs_inode_clean(ip))
+ goto out_unlock;
+ if (!xfs_iflock_nowait(ip)) {
+ if (!(flags & SYNC_WAIT))
+ goto out_unlock;
+ xfs_iflock(ip);
+ }
+
+ if (xfs_inode_clean(ip)) {
+ xfs_ifunlock(ip);
+ goto out_unlock;
+ }
+
+ error = xfs_iflush(ip, flags);
+
+ /*
+ * We don't want to try again on non-blocking flushes that can't run
+ * again immediately. If an inode really must be written, then that's
+ * what the SYNC_WAIT flag is for.
+ */
+ if (error == EAGAIN) {
+ ASSERT(!(flags & SYNC_WAIT));
+ error = 0;
+ }
+
+ out_unlock:
+ xfs_iunlock(ip, XFS_ILOCK_SHARED);
+ return error;
+}
+
+/*
+ * Write out pagecache data for the whole filesystem.
+ */
+STATIC int
+xfs_sync_data(
+ struct xfs_mount *mp,
+ int flags)
+{
+ int error;
+
+ ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
+
+ error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
+ if (error)
+ return XFS_ERROR(error);
+
+ xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
+ return 0;
+}
+
+/*
+ * Write out inode metadata (attributes) for the whole filesystem.
+ */
+STATIC int
+xfs_sync_attr(
+ struct xfs_mount *mp,
+ int flags)
+{
+ ASSERT((flags & ~SYNC_WAIT) == 0);
+
+ return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags);
+}
+
+STATIC int
+xfs_sync_fsdata(
+ struct xfs_mount *mp)
+{
+ struct xfs_buf *bp;
+
+ /*
+ * If the buffer is pinned then push on the log so we won't get stuck
+ * waiting in the write for someone, maybe ourselves, to flush the log.
+ *
+ * Even though we just pushed the log above, we did not have the
+ * superblock buffer locked at that point so it can become pinned in
+ * between there and here.
+ */
+ bp = xfs_getsb(mp, 0);
+ if (xfs_buf_ispinned(bp))
+ xfs_log_force(mp, 0);
+
+ return xfs_bwrite(mp, bp);
+}
+
+/*
+ * When remounting a filesystem read-only or freezing the filesystem, we have
+ * two phases to execute. This first phase is syncing the data before we
+ * quiesce the filesystem, and the second is flushing all the inodes out after
+ * we've waited for all the transactions created by the first phase to
+ * complete. The second phase ensures that the inodes are written to their
+ * location on disk rather than just existing in transactions in the log. This
+ * means after a quiesce there is no log replay required to write the inodes to
+ * disk (this is the main difference between a sync and a quiesce).
+ */
+/*
+ * First stage of freeze - no writers will make progress now we are here,
+ * so we flush delwri and delalloc buffers here, then wait for all I/O to
+ * complete. Data is frozen at that point. Metadata is not frozen,
+ * transactions can still occur here so don't bother flushing the buftarg
+ * because it'll just get dirty again.
+ */
+int
+xfs_quiesce_data(
+ struct xfs_mount *mp)
+{
+ int error, error2 = 0;
+
+ xfs_qm_sync(mp, SYNC_TRYLOCK);
+ xfs_qm_sync(mp, SYNC_WAIT);
+
+ /* force out the newly dirtied log buffers */
+ xfs_log_force(mp, XFS_LOG_SYNC);
+
+ /* write superblock and hoover up shutdown errors */
+ error = xfs_sync_fsdata(mp);
+
+ /* make sure all delwri buffers are written out */
+ xfs_flush_buftarg(mp->m_ddev_targp, 1);
+
+ /* mark the log as covered if needed */
+ if (xfs_log_need_covered(mp))
+ error2 = xfs_fs_log_dummy(mp);
+
+ /* flush data-only devices */
+ if (mp->m_rtdev_targp)
+ XFS_bflush(mp->m_rtdev_targp);
+
+ return error ? error : error2;
+}
+
+STATIC void
+xfs_quiesce_fs(
+ struct xfs_mount *mp)
+{
+ int count = 0, pincount;
+
+ xfs_reclaim_inodes(mp, 0);
+ xfs_flush_buftarg(mp->m_ddev_targp, 0);
+
+ /*
+ * This loop must run at least twice. The first instance of the loop
+ * will flush most meta data but that will generate more meta data
+ * (typically directory updates). Which then must be flushed and
+ * logged before we can write the unmount record. We also so sync
+ * reclaim of inodes to catch any that the above delwri flush skipped.
+ */
+ do {
+ xfs_reclaim_inodes(mp, SYNC_WAIT);
+ xfs_sync_attr(mp, SYNC_WAIT);
+ pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
+ if (!pincount) {
+ delay(50);
+ count++;
+ }
+ } while (count < 2);
+}
+
+/*
+ * Second stage of a quiesce. The data is already synced, now we have to take
+ * care of the metadata. New transactions are already blocked, so we need to
+ * wait for any remaining transactions to drain out before proceeding.
+ */
+void
+xfs_quiesce_attr(
+ struct xfs_mount *mp)
+{
+ int error = 0;
+
+ /* wait for all modifications to complete */
+ while (atomic_read(&mp->m_active_trans) > 0)
+ delay(100);
+
+ /* flush inodes and push all remaining buffers out to disk */
+ xfs_quiesce_fs(mp);
+
+ /*
+ * Just warn here till VFS can correctly support
+ * read-only remount without racing.
+ */
+ WARN_ON(atomic_read(&mp->m_active_trans) != 0);
+
+ /* Push the superblock and write an unmount record */
+ error = xfs_log_sbcount(mp);
+ if (error)
+ xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
+ "Frozen image may not be consistent.");
+ xfs_log_unmount_write(mp);
+ xfs_unmountfs_writesb(mp);
+}
+
+static void
+xfs_syncd_queue_sync(
+ struct xfs_mount *mp)
+{
+ queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
+ msecs_to_jiffies(xfs_syncd_centisecs * 10));
+}
+
+/*
+ * Every sync period we need to unpin all items, reclaim inodes and sync
+ * disk quotas. We might need to cover the log to indicate that the
+ * filesystem is idle and not frozen.
+ */
+STATIC void
+xfs_sync_worker(
+ struct work_struct *work)
+{
+ struct xfs_mount *mp = container_of(to_delayed_work(work),
+ struct xfs_mount, m_sync_work);
+ int error;
+
+ if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
+ /* dgc: errors ignored here */
+ if (mp->m_super->s_frozen == SB_UNFROZEN &&
+ xfs_log_need_covered(mp))
+ error = xfs_fs_log_dummy(mp);
+ else
+ xfs_log_force(mp, 0);
+ error = xfs_qm_sync(mp, SYNC_TRYLOCK);
+
+ /* start pushing all the metadata that is currently dirty */
+ xfs_ail_push_all(mp->m_ail);
+ }
+
+ /* queue us up again */
+ xfs_syncd_queue_sync(mp);
+}
+
+/*
+ * Queue a new inode reclaim pass if there are reclaimable inodes and there
+ * isn't a reclaim pass already in progress. By default it runs every 5s based
+ * on the xfs syncd work default of 30s. Perhaps this should have it's own
+ * tunable, but that can be done if this method proves to be ineffective or too
+ * aggressive.
+ */
+static void
+xfs_syncd_queue_reclaim(
+ struct xfs_mount *mp)
+{
+
+ /*
+ * We can have inodes enter reclaim after we've shut down the syncd
+ * workqueue during unmount, so don't allow reclaim work to be queued
+ * during unmount.
+ */
+ if (!(mp->m_super->s_flags & MS_ACTIVE))
+ return;
+
+ rcu_read_lock();
+ if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
+ queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
+ msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
+ }
+ rcu_read_unlock();
+}
+
+/*
+ * This is a fast pass over the inode cache to try to get reclaim moving on as
+ * many inodes as possible in a short period of time. It kicks itself every few
+ * seconds, as well as being kicked by the inode cache shrinker when memory
+ * goes low. It scans as quickly as possible avoiding locked inodes or those
+ * already being flushed, and once done schedules a future pass.
+ */
+STATIC void
+xfs_reclaim_worker(
+ struct work_struct *work)
+{
+ struct xfs_mount *mp = container_of(to_delayed_work(work),
+ struct xfs_mount, m_reclaim_work);
+
+ xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
+ xfs_syncd_queue_reclaim(mp);
+}
+
+/*
+ * Flush delayed allocate data, attempting to free up reserved space
+ * from existing allocations. At this point a new allocation attempt
+ * has failed with ENOSPC and we are in the process of scratching our
+ * heads, looking about for more room.
+ *
+ * Queue a new data flush if there isn't one already in progress and
+ * wait for completion of the flush. This means that we only ever have one
+ * inode flush in progress no matter how many ENOSPC events are occurring and
+ * so will prevent the system from bogging down due to every concurrent
+ * ENOSPC event scanning all the active inodes in the system for writeback.
+ */
+void
+xfs_flush_inodes(
+ struct xfs_inode *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
+
+ queue_work(xfs_syncd_wq, &mp->m_flush_work);
+ flush_work_sync(&mp->m_flush_work);
+}
+
+STATIC void
+xfs_flush_worker(
+ struct work_struct *work)
+{
+ struct xfs_mount *mp = container_of(work,
+ struct xfs_mount, m_flush_work);
+
+ xfs_sync_data(mp, SYNC_TRYLOCK);
+ xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
+}
+
+int
+xfs_syncd_init(
+ struct xfs_mount *mp)
+{
+ INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
+ INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
+ INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
+
+ xfs_syncd_queue_sync(mp);
+ xfs_syncd_queue_reclaim(mp);
+
+ return 0;
+}
+
+void
+xfs_syncd_stop(
+ struct xfs_mount *mp)
+{
+ cancel_delayed_work_sync(&mp->m_sync_work);
+ cancel_delayed_work_sync(&mp->m_reclaim_work);
+ cancel_work_sync(&mp->m_flush_work);
+}
+
+void
+__xfs_inode_set_reclaim_tag(
+ struct xfs_perag *pag,
+ struct xfs_inode *ip)
+{
+ radix_tree_tag_set(&pag->pag_ici_root,
+ XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
+ XFS_ICI_RECLAIM_TAG);
+
+ if (!pag->pag_ici_reclaimable) {
+ /* propagate the reclaim tag up into the perag radix tree */
+ spin_lock(&ip->i_mount->m_perag_lock);
+ radix_tree_tag_set(&ip->i_mount->m_perag_tree,
+ XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+ XFS_ICI_RECLAIM_TAG);
+ spin_unlock(&ip->i_mount->m_perag_lock);
+
+ /* schedule periodic background inode reclaim */
+ xfs_syncd_queue_reclaim(ip->i_mount);
+
+ trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
+ -1, _RET_IP_);
+ }
+ pag->pag_ici_reclaimable++;
+}
+
+/*
+ * We set the inode flag atomically with the radix tree tag.
+ * Once we get tag lookups on the radix tree, this inode flag
+ * can go away.
+ */
+void
+xfs_inode_set_reclaim_tag(
+ xfs_inode_t *ip)
+{
+ struct xfs_mount *mp = ip->i_mount;
+ struct xfs_perag *pag;
+
+ pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
+ spin_lock(&pag->pag_ici_lock);
+ spin_lock(&ip->i_flags_lock);
+ __xfs_inode_set_reclaim_tag(pag, ip);
+ __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
+ spin_unlock(&ip->i_flags_lock);
+ spin_unlock(&pag->pag_ici_lock);
+ xfs_perag_put(pag);
+}
+
+STATIC void
+__xfs_inode_clear_reclaim(
+ xfs_perag_t *pag,
+ xfs_inode_t *ip)
+{
+ pag->pag_ici_reclaimable--;
+ if (!pag->pag_ici_reclaimable) {
+ /* clear the reclaim tag from the perag radix tree */
+ spin_lock(&ip->i_mount->m_perag_lock);
+ radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
+ XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
+ XFS_ICI_RECLAIM_TAG);
+ spin_unlock(&ip->i_mount->m_perag_lock);
+ trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
+ -1, _RET_IP_);
+ }
+}
+
+void
+__xfs_inode_clear_reclaim_tag(
+ xfs_mount_t *mp,
+ xfs_perag_t *pag,
+ xfs_inode_t *ip)
+{
+ radix_tree_tag_clear(&pag->pag_ici_root,
+ XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
+ __xfs_inode_clear_reclaim(pag, ip);
+}
+
+/*
+ * Grab the inode for reclaim exclusively.
+ * Return 0 if we grabbed it, non-zero otherwise.
+ */
+STATIC int
+xfs_reclaim_inode_grab(
+ struct xfs_inode *ip,
+ int flags)
+{
+ ASSERT(rcu_read_lock_held());
+
+ /* quick check for stale RCU freed inode */
+ if (!ip->i_ino)
+ return 1;
+
+ /*
+ * do some unlocked checks first to avoid unnecessary lock traffic.
+ * The first is a flush lock check, the second is a already in reclaim
+ * check. Only do these checks if we are not going to block on locks.
+ */
+ if ((flags & SYNC_TRYLOCK) &&
+ (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) {
+ return 1;
+ }
+
+ /*
+ * The radix tree lock here protects a thread in xfs_iget from racing
+ * with us starting reclaim on the inode. Once we have the
+ * XFS_IRECLAIM flag set it will not touch us.
+ *
+ * Due to RCU lookup, we may find inodes that have been freed and only
+ * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
+ * aren't candidates for reclaim at all, so we must check the
+ * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
+ */
+ spin_lock(&ip->i_flags_lock);
+ if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
+ __xfs_iflags_test(ip, XFS_IRECLAIM)) {
+ /* not a reclaim candidate. */
+ spin_unlock(&ip->i_flags_lock);
+ return 1;
+ }
+ __xfs_iflags_set(ip, XFS_IRECLAIM);
+ spin_unlock(&ip->i_flags_lock);
+ return 0;
+}
+
+/*
+ * Inodes in different states need to be treated differently, and the return
+ * value of xfs_iflush is not sufficient to get this right. The following table
+ * lists the inode states and the reclaim actions necessary for non-blocking
+ * reclaim:
+ *
+ *
+ * inode state iflush ret required action
+ * --------------- ---------- ---------------
+ * bad - reclaim
+ * shutdown EIO unpin and reclaim
+ * clean, unpinned 0 reclaim
+ * stale, unpinned 0 reclaim
+ * clean, pinned(*) 0 requeue
+ * stale, pinned EAGAIN requeue
+ * dirty, delwri ok 0 requeue
+ * dirty, delwri blocked EAGAIN requeue
+ * dirty, sync flush 0 reclaim
+ *
+ * (*) dgc: I don't think the clean, pinned state is possible but it gets
+ * handled anyway given the order of checks implemented.
+ *
+ * As can be seen from the table, the return value of xfs_iflush() is not
+ * sufficient to correctly decide the reclaim action here. The checks in
+ * xfs_iflush() might look like duplicates, but they are not.
+ *
+ * Also, because we get the flush lock first, we know that any inode that has
+ * been flushed delwri has had the flush completed by the time we check that
+ * the inode is clean. The clean inode check needs to be done before flushing
+ * the inode delwri otherwise we would loop forever requeuing clean inodes as
+ * we cannot tell apart a successful delwri flush and a clean inode from the
+ * return value of xfs_iflush().
+ *
+ * Note that because the inode is flushed delayed write by background
+ * writeback, the flush lock may already be held here and waiting on it can
+ * result in very long latencies. Hence for sync reclaims, where we wait on the
+ * flush lock, the caller should push out delayed write inodes first before
+ * trying to reclaim them to minimise the amount of time spent waiting. For
+ * background relaim, we just requeue the inode for the next pass.
+ *
+ * Hence the order of actions after gaining the locks should be:
+ * bad => reclaim
+ * shutdown => unpin and reclaim
+ * pinned, delwri => requeue
+ * pinned, sync => unpin
+ * stale => reclaim
+ * clean => reclaim
+ * dirty, delwri => flush and requeue
+ * dirty, sync => flush, wait and reclaim
+ */
+STATIC int
+xfs_reclaim_inode(
+ struct xfs_inode *ip,
+ struct xfs_perag *pag,
+ int sync_mode)
+{
+ int error;
+
+restart:
+ error = 0;
+ xfs_ilock(ip, XFS_ILOCK_EXCL);
+ if (!xfs_iflock_nowait(ip)) {
+ if (!(sync_mode & SYNC_WAIT))
+ goto out;
+ xfs_iflock(ip);
+ }
+
+ if (is_bad_inode(VFS_I(ip)))
+ goto reclaim;
+ if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+ xfs_iunpin_wait(ip);
+ goto reclaim;
+ }
+ if (xfs_ipincount(ip)) {
+ if (!(sync_mode & SYNC_WAIT)) {
+ xfs_ifunlock(ip);
+ goto out;
+ }
+ xfs_iunpin_wait(ip);
+ }
+ if (xfs_iflags_test(ip, XFS_ISTALE))
+ goto reclaim;
+ if (xfs_inode_clean(ip))
+ goto reclaim;
+
+ /*
+ * Now we have an inode that needs flushing.
+ *
+ * We do a nonblocking flush here even if we are doing a SYNC_WAIT
+ * reclaim as we can deadlock with inode cluster removal.
+ * xfs_ifree_cluster() can lock the inode buffer before it locks the
+ * ip->i_lock, and we are doing the exact opposite here. As a result,
+ * doing a blocking xfs_itobp() to get the cluster buffer will result
+ * in an ABBA deadlock with xfs_ifree_cluster().
+ *
+ * As xfs_ifree_cluser() must gather all inodes that are active in the
+ * cache to mark them stale, if we hit this case we don't actually want
+ * to do IO here - we want the inode marked stale so we can simply
+ * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
+ * just unlock the inode, back off and try again. Hopefully the next
+ * pass through will see the stale flag set on the inode.
+ */
+ error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
+ if (sync_mode & SYNC_WAIT) {
+ if (error == EAGAIN) {
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ /* backoff longer than in xfs_ifree_cluster */
+ delay(2);
+ goto restart;
+ }
+ xfs_iflock(ip);
+ goto reclaim;
+ }
+
+ /*
+ * When we have to flush an inode but don't have SYNC_WAIT set, we
+ * flush the inode out using a delwri buffer and wait for the next
+ * call into reclaim to find it in a clean state instead of waiting for
+ * it now. We also don't return errors here - if the error is transient
+ * then the next reclaim pass will flush the inode, and if the error
+ * is permanent then the next sync reclaim will reclaim the inode and
+ * pass on the error.
+ */
+ if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
+ xfs_warn(ip->i_mount,
+ "inode 0x%llx background reclaim flush failed with %d",
+ (long long)ip->i_ino, error);
+ }
+out:
+ xfs_iflags_clear(ip, XFS_IRECLAIM);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+ /*
+ * We could return EAGAIN here to make reclaim rescan the inode tree in
+ * a short while. However, this just burns CPU time scanning the tree
+ * waiting for IO to complete and xfssyncd never goes back to the idle
+ * state. Instead, return 0 to let the next scheduled background reclaim
+ * attempt to reclaim the inode again.
+ */
+ return 0;
+
+reclaim:
+ xfs_ifunlock(ip);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL);
+
+ XFS_STATS_INC(xs_ig_reclaims);
+ /*
+ * Remove the inode from the per-AG radix tree.
+ *
+ * Because radix_tree_delete won't complain even if the item was never
+ * added to the tree assert that it's been there before to catch
+ * problems with the inode life time early on.
+ */
+ spin_lock(&pag->pag_ici_lock);
+ if (!radix_tree_delete(&pag->pag_ici_root,
+ XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
+ ASSERT(0);
+ __xfs_inode_clear_reclaim(pag, ip);
+ spin_unlock(&pag->pag_ici_lock);
+
+ /*
+ * Here we do an (almost) spurious inode lock in order to coordinate
+ * with inode cache radix tree lookups. This is because the lookup
+ * can reference the inodes in the cache without taking references.
+ *
+ * We make that OK here by ensuring that we wait until the inode is
+ * unlocked after the lookup before we go ahead and free it. We get
+ * both the ilock and the iolock because the code may need to drop the
+ * ilock one but will still hold the iolock.
+ */
+ xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
+ xfs_qm_dqdetach(ip);
+ xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
+
+ xfs_inode_free(ip);
+ return error;
+
+}
+
+/*
+ * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
+ * corrupted, we still want to try to reclaim all the inodes. If we don't,
+ * then a shut down during filesystem unmount reclaim walk leak all the
+ * unreclaimed inodes.
+ */
+int
+xfs_reclaim_inodes_ag(
+ struct xfs_mount *mp,
+ int flags,
+ int *nr_to_scan)
+{
+ struct xfs_perag *pag;
+ int error = 0;
+ int last_error = 0;
+ xfs_agnumber_t ag;
+ int trylock = flags & SYNC_TRYLOCK;
+ int skipped;
+
+restart:
+ ag = 0;
+ skipped = 0;
+ while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
+ unsigned long first_index = 0;
+ int done = 0;
+ int nr_found = 0;
+
+ ag = pag->pag_agno + 1;
+
+ if (trylock) {
+ if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
+ skipped++;
+ xfs_perag_put(pag);
+ continue;
+ }
+ first_index = pag->pag_ici_reclaim_cursor;
+ } else
+ mutex_lock(&pag->pag_ici_reclaim_lock);
+
+ do {
+ struct xfs_inode *batch[XFS_LOOKUP_BATCH];
+ int i;
+
+ rcu_read_lock();
+ nr_found = radix_tree_gang_lookup_tag(
+ &pag->pag_ici_root,
+ (void **)batch, first_index,
+ XFS_LOOKUP_BATCH,
+ XFS_ICI_RECLAIM_TAG);
+ if (!nr_found) {
+ done = 1;
+ rcu_read_unlock();
+ break;
+ }
+
+ /*
+ * Grab the inodes before we drop the lock. if we found
+ * nothing, nr == 0 and the loop will be skipped.
+ */
+ for (i = 0; i < nr_found; i++) {
+ struct xfs_inode *ip = batch[i];
+
+ if (done || xfs_reclaim_inode_grab(ip, flags))
+ batch[i] = NULL;
+
+ /*
+ * Update the index for the next lookup. Catch
+ * overflows into the next AG range which can
+ * occur if we have inodes in the last block of
+ * the AG and we are currently pointing to the
+ * last inode.
+ *
+ * Because we may see inodes that are from the
+ * wrong AG due to RCU freeing and
+ * reallocation, only update the index if it
+ * lies in this AG. It was a race that lead us
+ * to see this inode, so another lookup from
+ * the same index will not find it again.
+ */
+ if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
+ pag->pag_agno)
+ continue;
+ first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
+ if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
+ done = 1;
+ }
+
+ /* unlock now we've grabbed the inodes. */
+ rcu_read_unlock();
+
+ for (i = 0; i < nr_found; i++) {
+ if (!batch[i])
+ continue;
+ error = xfs_reclaim_inode(batch[i], pag, flags);
+ if (error && last_error != EFSCORRUPTED)
+ last_error = error;
+ }
+
+ *nr_to_scan -= XFS_LOOKUP_BATCH;
+
+ cond_resched();
+
+ } while (nr_found && !done && *nr_to_scan > 0);
+
+ if (trylock && !done)
+ pag->pag_ici_reclaim_cursor = first_index;
+ else
+ pag->pag_ici_reclaim_cursor = 0;
+ mutex_unlock(&pag->pag_ici_reclaim_lock);
+ xfs_perag_put(pag);
+ }
+
+ /*
+ * if we skipped any AG, and we still have scan count remaining, do
+ * another pass this time using blocking reclaim semantics (i.e
+ * waiting on the reclaim locks and ignoring the reclaim cursors). This
+ * ensure that when we get more reclaimers than AGs we block rather
+ * than spin trying to execute reclaim.
+ */
+ if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
+ trylock = 0;
+ goto restart;
+ }
+ return XFS_ERROR(last_error);
+}
+
+int
+xfs_reclaim_inodes(
+ xfs_mount_t *mp,
+ int mode)
+{
+ int nr_to_scan = INT_MAX;
+
+ return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
+}
+
+/*
+ * Scan a certain number of inodes for reclaim.
+ *
+ * When called we make sure that there is a background (fast) inode reclaim in
+ * progress, while we will throttle the speed of reclaim via doing synchronous
+ * reclaim of inodes. That means if we come across dirty inodes, we wait for
+ * them to be cleaned, which we hope will not be very long due to the
+ * background walker having already kicked the IO off on those dirty inodes.
+ */
+void
+xfs_reclaim_inodes_nr(
+ struct xfs_mount *mp,
+ int nr_to_scan)
+{
+ /* kick background reclaimer and push the AIL */
+ xfs_syncd_queue_reclaim(mp);
+ xfs_ail_push_all(mp->m_ail);
+
+ xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
+}
+
+/*
+ * Return the number of reclaimable inodes in the filesystem for
+ * the shrinker to determine how much to reclaim.
+ */
+int
+xfs_reclaim_inodes_count(
+ struct xfs_mount *mp)
+{
+ struct xfs_perag *pag;
+ xfs_agnumber_t ag = 0;
+ int reclaimable = 0;
+
+ while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
+ ag = pag->pag_agno + 1;
+ reclaimable += pag->pag_ici_reclaimable;
+ xfs_perag_put(pag);
+ }
+ return reclaimable;
+}
+