diff options
author | Christian Brauner <christian.brauner@ubuntu.com> | 2021-01-21 14:19:54 +0100 |
---|---|---|
committer | Christian Brauner <christian.brauner@ubuntu.com> | 2021-01-24 14:43:45 +0100 |
commit | 9caccd41541a6f7d6279928d9f971f6642c361af (patch) | |
tree | c9fd1a3ffe04a19e0b44ca1007fba8a40f2c451e /fs/proc_namespace.c | |
parent | 2a1867219c7b27f928e2545782b86daaf9ad50bd (diff) | |
download | lwn-9caccd41541a6f7d6279928d9f971f6642c361af.tar.gz lwn-9caccd41541a6f7d6279928d9f971f6642c361af.zip |
fs: introduce MOUNT_ATTR_IDMAP
Introduce a new mount bind mount property to allow idmapping mounts. The
MOUNT_ATTR_IDMAP flag can be set via the new mount_setattr() syscall
together with a file descriptor referring to a user namespace.
The user namespace referenced by the namespace file descriptor will be
attached to the bind mount. All interactions with the filesystem going
through that mount will be mapped according to the mapping specified in
the user namespace attached to it.
Using user namespaces to mark mounts means we can reuse all the existing
infrastructure in the kernel that already exists to handle idmappings
and can also use this for permission checking to allow unprivileged user
to create idmapped mounts in the future.
Idmapping a mount is decoupled from the caller's user and mount
namespace. This means idmapped mounts can be created in the initial
user namespace which is an important use-case for systemd-homed,
portable usb-sticks between systems, sharing data between the initial
user namespace and unprivileged containers, and other use-cases that
have been brought up. For example, assume a home directory where all
files are owned by uid and gid 1000 and the home directory is brought to
a new laptop where the user has id 12345. The system administrator can
simply create a mount of this home directory with a mapping of
1000:12345:1 and other mappings to indicate the ids should be kept.
(With this it is e.g. also possible to create idmapped mounts on the
host with an identity mapping 1:1:100000 where the root user is not
mapped. A user with root access that e.g. has been pivot rooted into
such a mount on the host will be not be able to execute, read, write, or
create files as root.)
Given that mapping a mount is decoupled from the caller's user namespace
a sufficiently privileged process such as a container manager can set up
an idmapped mount for the container and the container can simply pivot
root to it. There's no need for the container to do anything. The mount
will appear correctly mapped independent of the user namespace the
container uses. This means we don't need to mark a mount as idmappable.
In order to create an idmapped mount the caller must currently be
privileged in the user namespace of the superblock the mount belongs to.
Once a mount has been idmapped we don't allow it to change its mapping.
This keeps permission checking and life-cycle management simple. Users
wanting to change the idmapped can always create a new detached mount
with a different idmapping.
Link: https://lore.kernel.org/r/20210121131959.646623-36-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Mauricio Vásquez Bernal <mauricio@kinvolk.io>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Diffstat (limited to 'fs/proc_namespace.c')
-rw-r--r-- | fs/proc_namespace.c | 3 |
1 files changed, 3 insertions, 0 deletions
diff --git a/fs/proc_namespace.c b/fs/proc_namespace.c index eafb75755fa3..392ef5162655 100644 --- a/fs/proc_namespace.c +++ b/fs/proc_namespace.c @@ -79,6 +79,9 @@ static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt) if (mnt->mnt_flags & fs_infop->flag) seq_puts(m, fs_infop->str); } + + if (mnt_user_ns(mnt) != &init_user_ns) + seq_puts(m, ",idmapped"); } static inline void mangle(struct seq_file *m, const char *s) |