summaryrefslogtreecommitdiff
path: root/fs/crypto/hooks.c
diff options
context:
space:
mode:
authorEric Biggers <ebiggers@google.com>2020-09-16 21:11:35 -0700
committerEric Biggers <ebiggers@google.com>2020-09-22 06:48:49 -0700
commitac4acb1f4b2b6b7e8d913537cccec8789903e164 (patch)
treee6999a5cae6cb884d844450d19b59da6049186e5 /fs/crypto/hooks.c
parent31114726b69364f3bf8dd945c600ceed4c430f4f (diff)
downloadlwn-ac4acb1f4b2b6b7e8d913537cccec8789903e164.tar.gz
lwn-ac4acb1f4b2b6b7e8d913537cccec8789903e164.zip
fscrypt: handle test_dummy_encryption in more logical way
The behavior of the test_dummy_encryption mount option is that when a new file (or directory or symlink) is created in an unencrypted directory, it's automatically encrypted using a dummy encryption policy. That's it; in particular, the encryption (or lack thereof) of existing files (or directories or symlinks) doesn't change. Unfortunately the implementation of test_dummy_encryption is a bit weird and confusing. When test_dummy_encryption is enabled and a file is being created in an unencrypted directory, we set up an encryption key (->i_crypt_info) for the directory. This isn't actually used to do any encryption, however, since the directory is still unencrypted! Instead, ->i_crypt_info is only used for inheriting the encryption policy. One consequence of this is that the filesystem ends up providing a "dummy context" (policy + nonce) instead of a "dummy policy". In commit ed318a6cc0b6 ("fscrypt: support test_dummy_encryption=v2"), I mistakenly thought this was required. However, actually the nonce only ends up being used to derive a key that is never used. Another consequence of this implementation is that it allows for 'inode->i_crypt_info != NULL && !IS_ENCRYPTED(inode)', which is an edge case that can be forgotten about. For example, currently FS_IOC_GET_ENCRYPTION_POLICY on an unencrypted directory may return the dummy encryption policy when the filesystem is mounted with test_dummy_encryption. That seems like the wrong thing to do, since again, the directory itself is not actually encrypted. Therefore, switch to a more logical and maintainable implementation where the dummy encryption policy inheritance is done without setting up keys for unencrypted directories. This involves: - Adding a function fscrypt_policy_to_inherit() which returns the encryption policy to inherit from a directory. This can be a real policy, a dummy policy, or no policy. - Replacing struct fscrypt_dummy_context, ->get_dummy_context(), etc. with struct fscrypt_dummy_policy, ->get_dummy_policy(), etc. - Making fscrypt_fname_encrypted_size() take an fscrypt_policy instead of an inode. Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> Acked-by: Jeff Layton <jlayton@kernel.org> Link: https://lore.kernel.org/r/20200917041136.178600-13-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
Diffstat (limited to 'fs/crypto/hooks.c')
-rw-r--r--fs/crypto/hooks.c30
1 files changed, 12 insertions, 18 deletions
diff --git a/fs/crypto/hooks.c b/fs/crypto/hooks.c
index a399c54947f2..42f5ee9f592d 100644
--- a/fs/crypto/hooks.c
+++ b/fs/crypto/hooks.c
@@ -193,30 +193,24 @@ int fscrypt_prepare_symlink(struct inode *dir, const char *target,
unsigned int len, unsigned int max_len,
struct fscrypt_str *disk_link)
{
- int err;
+ const union fscrypt_policy *policy;
- if (!IS_ENCRYPTED(dir) && !fscrypt_get_dummy_context(dir->i_sb)) {
+ /*
+ * To calculate the size of the encrypted symlink target we need to know
+ * the amount of NUL padding, which is determined by the flags set in
+ * the encryption policy which will be inherited from the directory.
+ */
+ policy = fscrypt_policy_to_inherit(dir);
+ if (policy == NULL) {
+ /* Not encrypted */
disk_link->name = (unsigned char *)target;
disk_link->len = len + 1;
if (disk_link->len > max_len)
return -ENAMETOOLONG;
return 0;
}
-
- /*
- * To calculate the size of the encrypted symlink target we need to know
- * the amount of NUL padding, which is determined by the flags set in
- * the encryption policy which will be inherited from the directory.
- * The easiest way to get access to this is to just load the directory's
- * fscrypt_info, since we'll need it to create the dir_entry anyway.
- *
- * Note: in test_dummy_encryption mode, @dir may be unencrypted.
- */
- err = fscrypt_get_encryption_info(dir);
- if (err)
- return err;
- if (!fscrypt_has_encryption_key(dir))
- return -ENOKEY;
+ if (IS_ERR(policy))
+ return PTR_ERR(policy);
/*
* Calculate the size of the encrypted symlink and verify it won't
@@ -229,7 +223,7 @@ int fscrypt_prepare_symlink(struct inode *dir, const char *target,
* counting it (even though it is meaningless for ciphertext) is simpler
* for now since filesystems will assume it is there and subtract it.
*/
- if (!fscrypt_fname_encrypted_size(dir, len,
+ if (!fscrypt_fname_encrypted_size(policy, len,
max_len - sizeof(struct fscrypt_symlink_data),
&disk_link->len))
return -ENAMETOOLONG;