diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2019-12-09 09:48:27 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2020-02-08 11:39:19 -0800 |
commit | 0ddad21d3e99c743a3aa473121dc5561679e26bb (patch) | |
tree | ddd1b61099a17e8afe0074f20130722f99090abf /fs/coredump.c | |
parent | d5226fa6dbae0569ee43ecfc08bdcd6770fc4755 (diff) | |
download | lwn-0ddad21d3e99c743a3aa473121dc5561679e26bb.tar.gz lwn-0ddad21d3e99c743a3aa473121dc5561679e26bb.zip |
pipe: use exclusive waits when reading or writing
This makes the pipe code use separate wait-queues and exclusive waiting
for readers and writers, avoiding a nasty thundering herd problem when
there are lots of readers waiting for data on a pipe (or, less commonly,
lots of writers waiting for a pipe to have space).
While this isn't a common occurrence in the traditional "use a pipe as a
data transport" case, where you typically only have a single reader and
a single writer process, there is one common special case: using a pipe
as a source of "locking tokens" rather than for data communication.
In particular, the GNU make jobserver code ends up using a pipe as a way
to limit parallelism, where each job consumes a token by reading a byte
from the jobserver pipe, and releases the token by writing a byte back
to the pipe.
This pattern is fairly traditional on Unix, and works very well, but
will waste a lot of time waking up a lot of processes when only a single
reader needs to be woken up when a writer releases a new token.
A simplified test-case of just this pipe interaction is to create 64
processes, and then pass a single token around between them (this
test-case also intentionally passes another token that gets ignored to
test the "wake up next" logic too, in case anybody wonders about it):
#include <unistd.h>
int main(int argc, char **argv)
{
int fd[2], counters[2];
pipe(fd);
counters[0] = 0;
counters[1] = -1;
write(fd[1], counters, sizeof(counters));
/* 64 processes */
fork(); fork(); fork(); fork(); fork(); fork();
do {
int i;
read(fd[0], &i, sizeof(i));
if (i < 0)
continue;
counters[0] = i+1;
write(fd[1], counters, (1+(i & 1)) *sizeof(int));
} while (counters[0] < 1000000);
return 0;
}
and in a perfect world, passing that token around should only cause one
context switch per transfer, when the writer of a token causes a
directed wakeup of just a single reader.
But with the "writer wakes all readers" model we traditionally had, on
my test box the above case causes more than an order of magnitude more
scheduling: instead of the expected ~1M context switches, "perf stat"
shows
231,852.37 msec task-clock # 15.857 CPUs utilized
11,250,961 context-switches # 0.049 M/sec
616,304 cpu-migrations # 0.003 M/sec
1,648 page-faults # 0.007 K/sec
1,097,903,998,514 cycles # 4.735 GHz
120,781,778,352 instructions # 0.11 insn per cycle
27,997,056,043 branches # 120.754 M/sec
283,581,233 branch-misses # 1.01% of all branches
14.621273891 seconds time elapsed
0.018243000 seconds user
3.611468000 seconds sys
before this commit.
After this commit, I get
5,229.55 msec task-clock # 3.072 CPUs utilized
1,212,233 context-switches # 0.232 M/sec
103,951 cpu-migrations # 0.020 M/sec
1,328 page-faults # 0.254 K/sec
21,307,456,166 cycles # 4.074 GHz
12,947,819,999 instructions # 0.61 insn per cycle
2,881,985,678 branches # 551.096 M/sec
64,267,015 branch-misses # 2.23% of all branches
1.702148350 seconds time elapsed
0.004868000 seconds user
0.110786000 seconds sys
instead. Much better.
[ Note! This kernel improvement seems to be very good at triggering a
race condition in the make jobserver (in GNU make 4.2.1) for me. It's
a long known bug that was fixed back in June 2017 by GNU make commit
b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to
avoid hangs.").
But there wasn't a new release of GNU make until 4.3 on Jan 19 2020,
so a number of distributions may still have the buggy version. Some
have backported the fix to their 4.2.1 release, though, and even
without the fix it's quite timing-dependent whether the bug actually
is hit. ]
Josh Triplett says:
"I've been hammering on your pipe fix patch (switching to exclusive
wait queues) for a month or so, on several different systems, and I've
run into no issues with it. The patch *substantially* improves
parallel build times on large (~100 CPU) systems, both with parallel
make and with other things that use make's pipe-based jobserver.
All current distributions (including stable and long-term stable
distributions) have versions of GNU make that no longer have the
jobserver bug"
Tested-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'fs/coredump.c')
-rw-r--r-- | fs/coredump.c | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/fs/coredump.c b/fs/coredump.c index b1ea7dfbd149..f8296a82d01d 100644 --- a/fs/coredump.c +++ b/fs/coredump.c @@ -517,7 +517,7 @@ static void wait_for_dump_helpers(struct file *file) pipe_lock(pipe); pipe->readers++; pipe->writers--; - wake_up_interruptible_sync(&pipe->wait); + wake_up_interruptible_sync(&pipe->rd_wait); kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); pipe_unlock(pipe); @@ -525,7 +525,7 @@ static void wait_for_dump_helpers(struct file *file) * We actually want wait_event_freezable() but then we need * to clear TIF_SIGPENDING and improve dump_interrupted(). */ - wait_event_interruptible(pipe->wait, pipe->readers == 1); + wait_event_interruptible(pipe->rd_wait, pipe->readers == 1); pipe_lock(pipe); pipe->readers--; |