diff options
author | Peter Zijlstra <peterz@infradead.org> | 2022-10-08 11:54:24 +0530 |
---|---|---|
committer | Peter Zijlstra <peterz@infradead.org> | 2022-10-27 20:12:16 +0200 |
commit | bd27568117664b8b3e259721393df420ed51f57b (patch) | |
tree | f87b8d9e35a7a1bdd058c43e49371e6f39b2037b /drivers/perf | |
parent | 247f34f7b80357943234f93f247a1ae6b6c3a740 (diff) | |
download | lwn-bd27568117664b8b3e259721393df420ed51f57b.tar.gz lwn-bd27568117664b8b3e259721393df420ed51f57b.zip |
perf: Rewrite core context handling
There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
- HW breakpoint PMU
- ARM big.little PMU / Intel ADL PMU
- Intel Branch Monitoring PMU
- AMD IBS PMU
- S390 cpum_cf PMU
- PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
^ | ^ | ^
`---------------------------------' | `--> pmu ---'
v ^
perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
^ | ^ ^
`---------------------------' | |
| | perf_cpu_pmu_context <--.
| `----. ^ |
| | | |
| v v |
| ,--> perf_event_pmu_context |
| | |
| | |
v v |
perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
{cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
Diffstat (limited to 'drivers/perf')
-rw-r--r-- | drivers/perf/arm_pmu.c | 16 |
1 files changed, 7 insertions, 9 deletions
diff --git a/drivers/perf/arm_pmu.c b/drivers/perf/arm_pmu.c index 3f07df5a7e95..5ece3f132d80 100644 --- a/drivers/perf/arm_pmu.c +++ b/drivers/perf/arm_pmu.c @@ -550,15 +550,14 @@ static void armpmu_disable(struct pmu *pmu) * microarchitecture, and aren't suitable for another. Thus, only match CPUs of * the same microarchitecture. */ -static int armpmu_filter_match(struct perf_event *event) +static bool armpmu_filter(struct pmu *pmu, int cpu) { - struct arm_pmu *armpmu = to_arm_pmu(event->pmu); - unsigned int cpu = smp_processor_id(); - int ret; + struct arm_pmu *armpmu = to_arm_pmu(pmu); + bool ret; ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); - if (ret && armpmu->filter_match) - return armpmu->filter_match(event); + if (ret && armpmu->filter) + return armpmu->filter(pmu, cpu); return ret; } @@ -885,14 +884,13 @@ static struct arm_pmu *__armpmu_alloc(gfp_t flags) .start = armpmu_start, .stop = armpmu_stop, .read = armpmu_read, - .filter_match = armpmu_filter_match, + .filter = armpmu_filter, .attr_groups = pmu->attr_groups, /* * This is a CPU PMU potentially in a heterogeneous * configuration (e.g. big.LITTLE). This is not an uncore PMU, * and we have taken ctx sharing into account (e.g. with our - * pmu::filter_match callback and pmu::event_init group - * validation). + * pmu::filter callback and pmu::event_init group validation). */ .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS, }; |