summaryrefslogtreecommitdiff
path: root/drivers/oprofile/buffer_sync.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 15:20:36 -0700
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/oprofile/buffer_sync.c
downloadlwn-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.gz
lwn-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/oprofile/buffer_sync.c')
-rw-r--r--drivers/oprofile/buffer_sync.c547
1 files changed, 547 insertions, 0 deletions
diff --git a/drivers/oprofile/buffer_sync.c b/drivers/oprofile/buffer_sync.c
new file mode 100644
index 000000000000..55720dc6ec43
--- /dev/null
+++ b/drivers/oprofile/buffer_sync.c
@@ -0,0 +1,547 @@
+/**
+ * @file buffer_sync.c
+ *
+ * @remark Copyright 2002 OProfile authors
+ * @remark Read the file COPYING
+ *
+ * @author John Levon <levon@movementarian.org>
+ *
+ * This is the core of the buffer management. Each
+ * CPU buffer is processed and entered into the
+ * global event buffer. Such processing is necessary
+ * in several circumstances, mentioned below.
+ *
+ * The processing does the job of converting the
+ * transitory EIP value into a persistent dentry/offset
+ * value that the profiler can record at its leisure.
+ *
+ * See fs/dcookies.c for a description of the dentry/offset
+ * objects.
+ */
+
+#include <linux/mm.h>
+#include <linux/workqueue.h>
+#include <linux/notifier.h>
+#include <linux/dcookies.h>
+#include <linux/profile.h>
+#include <linux/module.h>
+#include <linux/fs.h>
+
+#include "oprofile_stats.h"
+#include "event_buffer.h"
+#include "cpu_buffer.h"
+#include "buffer_sync.h"
+
+static LIST_HEAD(dying_tasks);
+static LIST_HEAD(dead_tasks);
+static cpumask_t marked_cpus = CPU_MASK_NONE;
+static DEFINE_SPINLOCK(task_mortuary);
+static void process_task_mortuary(void);
+
+
+/* Take ownership of the task struct and place it on the
+ * list for processing. Only after two full buffer syncs
+ * does the task eventually get freed, because by then
+ * we are sure we will not reference it again.
+ */
+static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
+{
+ struct task_struct * task = data;
+ spin_lock(&task_mortuary);
+ list_add(&task->tasks, &dying_tasks);
+ spin_unlock(&task_mortuary);
+ return NOTIFY_OK;
+}
+
+
+/* The task is on its way out. A sync of the buffer means we can catch
+ * any remaining samples for this task.
+ */
+static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
+{
+ /* To avoid latency problems, we only process the current CPU,
+ * hoping that most samples for the task are on this CPU
+ */
+ sync_buffer(_smp_processor_id());
+ return 0;
+}
+
+
+/* The task is about to try a do_munmap(). We peek at what it's going to
+ * do, and if it's an executable region, process the samples first, so
+ * we don't lose any. This does not have to be exact, it's a QoI issue
+ * only.
+ */
+static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
+{
+ unsigned long addr = (unsigned long)data;
+ struct mm_struct * mm = current->mm;
+ struct vm_area_struct * mpnt;
+
+ down_read(&mm->mmap_sem);
+
+ mpnt = find_vma(mm, addr);
+ if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
+ up_read(&mm->mmap_sem);
+ /* To avoid latency problems, we only process the current CPU,
+ * hoping that most samples for the task are on this CPU
+ */
+ sync_buffer(_smp_processor_id());
+ return 0;
+ }
+
+ up_read(&mm->mmap_sem);
+ return 0;
+}
+
+
+/* We need to be told about new modules so we don't attribute to a previously
+ * loaded module, or drop the samples on the floor.
+ */
+static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
+{
+#ifdef CONFIG_MODULES
+ if (val != MODULE_STATE_COMING)
+ return 0;
+
+ /* FIXME: should we process all CPU buffers ? */
+ down(&buffer_sem);
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(MODULE_LOADED_CODE);
+ up(&buffer_sem);
+#endif
+ return 0;
+}
+
+
+static struct notifier_block task_free_nb = {
+ .notifier_call = task_free_notify,
+};
+
+static struct notifier_block task_exit_nb = {
+ .notifier_call = task_exit_notify,
+};
+
+static struct notifier_block munmap_nb = {
+ .notifier_call = munmap_notify,
+};
+
+static struct notifier_block module_load_nb = {
+ .notifier_call = module_load_notify,
+};
+
+
+static void end_sync(void)
+{
+ end_cpu_work();
+ /* make sure we don't leak task structs */
+ process_task_mortuary();
+ process_task_mortuary();
+}
+
+
+int sync_start(void)
+{
+ int err;
+
+ start_cpu_work();
+
+ err = task_handoff_register(&task_free_nb);
+ if (err)
+ goto out1;
+ err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
+ if (err)
+ goto out2;
+ err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
+ if (err)
+ goto out3;
+ err = register_module_notifier(&module_load_nb);
+ if (err)
+ goto out4;
+
+out:
+ return err;
+out4:
+ profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
+out3:
+ profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
+out2:
+ task_handoff_unregister(&task_free_nb);
+out1:
+ end_sync();
+ goto out;
+}
+
+
+void sync_stop(void)
+{
+ unregister_module_notifier(&module_load_nb);
+ profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
+ profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
+ task_handoff_unregister(&task_free_nb);
+ end_sync();
+}
+
+
+/* Optimisation. We can manage without taking the dcookie sem
+ * because we cannot reach this code without at least one
+ * dcookie user still being registered (namely, the reader
+ * of the event buffer). */
+static inline unsigned long fast_get_dcookie(struct dentry * dentry,
+ struct vfsmount * vfsmnt)
+{
+ unsigned long cookie;
+
+ if (dentry->d_cookie)
+ return (unsigned long)dentry;
+ get_dcookie(dentry, vfsmnt, &cookie);
+ return cookie;
+}
+
+
+/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
+ * which corresponds loosely to "application name". This is
+ * not strictly necessary but allows oprofile to associate
+ * shared-library samples with particular applications
+ */
+static unsigned long get_exec_dcookie(struct mm_struct * mm)
+{
+ unsigned long cookie = 0;
+ struct vm_area_struct * vma;
+
+ if (!mm)
+ goto out;
+
+ for (vma = mm->mmap; vma; vma = vma->vm_next) {
+ if (!vma->vm_file)
+ continue;
+ if (!(vma->vm_flags & VM_EXECUTABLE))
+ continue;
+ cookie = fast_get_dcookie(vma->vm_file->f_dentry,
+ vma->vm_file->f_vfsmnt);
+ break;
+ }
+
+out:
+ return cookie;
+}
+
+
+/* Convert the EIP value of a sample into a persistent dentry/offset
+ * pair that can then be added to the global event buffer. We make
+ * sure to do this lookup before a mm->mmap modification happens so
+ * we don't lose track.
+ */
+static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
+{
+ unsigned long cookie = 0;
+ struct vm_area_struct * vma;
+
+ for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
+
+ if (!vma->vm_file)
+ continue;
+
+ if (addr < vma->vm_start || addr >= vma->vm_end)
+ continue;
+
+ cookie = fast_get_dcookie(vma->vm_file->f_dentry,
+ vma->vm_file->f_vfsmnt);
+ *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - vma->vm_start;
+ break;
+ }
+
+ return cookie;
+}
+
+
+static unsigned long last_cookie = ~0UL;
+
+static void add_cpu_switch(int i)
+{
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(CPU_SWITCH_CODE);
+ add_event_entry(i);
+ last_cookie = ~0UL;
+}
+
+static void add_kernel_ctx_switch(unsigned int in_kernel)
+{
+ add_event_entry(ESCAPE_CODE);
+ if (in_kernel)
+ add_event_entry(KERNEL_ENTER_SWITCH_CODE);
+ else
+ add_event_entry(KERNEL_EXIT_SWITCH_CODE);
+}
+
+static void
+add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
+{
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(CTX_SWITCH_CODE);
+ add_event_entry(task->pid);
+ add_event_entry(cookie);
+ /* Another code for daemon back-compat */
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(CTX_TGID_CODE);
+ add_event_entry(task->tgid);
+}
+
+
+static void add_cookie_switch(unsigned long cookie)
+{
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(COOKIE_SWITCH_CODE);
+ add_event_entry(cookie);
+}
+
+
+static void add_trace_begin(void)
+{
+ add_event_entry(ESCAPE_CODE);
+ add_event_entry(TRACE_BEGIN_CODE);
+}
+
+
+static void add_sample_entry(unsigned long offset, unsigned long event)
+{
+ add_event_entry(offset);
+ add_event_entry(event);
+}
+
+
+static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
+{
+ unsigned long cookie;
+ off_t offset;
+
+ cookie = lookup_dcookie(mm, s->eip, &offset);
+
+ if (!cookie) {
+ atomic_inc(&oprofile_stats.sample_lost_no_mapping);
+ return 0;
+ }
+
+ if (cookie != last_cookie) {
+ add_cookie_switch(cookie);
+ last_cookie = cookie;
+ }
+
+ add_sample_entry(offset, s->event);
+
+ return 1;
+}
+
+
+/* Add a sample to the global event buffer. If possible the
+ * sample is converted into a persistent dentry/offset pair
+ * for later lookup from userspace.
+ */
+static int
+add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
+{
+ if (in_kernel) {
+ add_sample_entry(s->eip, s->event);
+ return 1;
+ } else if (mm) {
+ return add_us_sample(mm, s);
+ } else {
+ atomic_inc(&oprofile_stats.sample_lost_no_mm);
+ }
+ return 0;
+}
+
+
+static void release_mm(struct mm_struct * mm)
+{
+ if (!mm)
+ return;
+ up_read(&mm->mmap_sem);
+ mmput(mm);
+}
+
+
+static struct mm_struct * take_tasks_mm(struct task_struct * task)
+{
+ struct mm_struct * mm = get_task_mm(task);
+ if (mm)
+ down_read(&mm->mmap_sem);
+ return mm;
+}
+
+
+static inline int is_code(unsigned long val)
+{
+ return val == ESCAPE_CODE;
+}
+
+
+/* "acquire" as many cpu buffer slots as we can */
+static unsigned long get_slots(struct oprofile_cpu_buffer * b)
+{
+ unsigned long head = b->head_pos;
+ unsigned long tail = b->tail_pos;
+
+ /*
+ * Subtle. This resets the persistent last_task
+ * and in_kernel values used for switching notes.
+ * BUT, there is a small window between reading
+ * head_pos, and this call, that means samples
+ * can appear at the new head position, but not
+ * be prefixed with the notes for switching
+ * kernel mode or a task switch. This small hole
+ * can lead to mis-attribution or samples where
+ * we don't know if it's in the kernel or not,
+ * at the start of an event buffer.
+ */
+ cpu_buffer_reset(b);
+
+ if (head >= tail)
+ return head - tail;
+
+ return head + (b->buffer_size - tail);
+}
+
+
+static void increment_tail(struct oprofile_cpu_buffer * b)
+{
+ unsigned long new_tail = b->tail_pos + 1;
+
+ rmb();
+
+ if (new_tail < b->buffer_size)
+ b->tail_pos = new_tail;
+ else
+ b->tail_pos = 0;
+}
+
+
+/* Move tasks along towards death. Any tasks on dead_tasks
+ * will definitely have no remaining references in any
+ * CPU buffers at this point, because we use two lists,
+ * and to have reached the list, it must have gone through
+ * one full sync already.
+ */
+static void process_task_mortuary(void)
+{
+ struct list_head * pos;
+ struct list_head * pos2;
+ struct task_struct * task;
+
+ spin_lock(&task_mortuary);
+
+ list_for_each_safe(pos, pos2, &dead_tasks) {
+ task = list_entry(pos, struct task_struct, tasks);
+ list_del(&task->tasks);
+ free_task(task);
+ }
+
+ list_for_each_safe(pos, pos2, &dying_tasks) {
+ task = list_entry(pos, struct task_struct, tasks);
+ list_del(&task->tasks);
+ list_add_tail(&task->tasks, &dead_tasks);
+ }
+
+ spin_unlock(&task_mortuary);
+}
+
+
+static void mark_done(int cpu)
+{
+ int i;
+
+ cpu_set(cpu, marked_cpus);
+
+ for_each_online_cpu(i) {
+ if (!cpu_isset(i, marked_cpus))
+ return;
+ }
+
+ /* All CPUs have been processed at least once,
+ * we can process the mortuary once
+ */
+ process_task_mortuary();
+
+ cpus_clear(marked_cpus);
+}
+
+
+/* FIXME: this is not sufficient if we implement syscall barrier backtrace
+ * traversal, the code switch to sb_sample_start at first kernel enter/exit
+ * switch so we need a fifth state and some special handling in sync_buffer()
+ */
+typedef enum {
+ sb_bt_ignore = -2,
+ sb_buffer_start,
+ sb_bt_start,
+ sb_sample_start,
+} sync_buffer_state;
+
+/* Sync one of the CPU's buffers into the global event buffer.
+ * Here we need to go through each batch of samples punctuated
+ * by context switch notes, taking the task's mmap_sem and doing
+ * lookup in task->mm->mmap to convert EIP into dcookie/offset
+ * value.
+ */
+void sync_buffer(int cpu)
+{
+ struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
+ struct mm_struct *mm = NULL;
+ struct task_struct * new;
+ unsigned long cookie = 0;
+ int in_kernel = 1;
+ unsigned int i;
+ sync_buffer_state state = sb_buffer_start;
+ unsigned long available;
+
+ down(&buffer_sem);
+
+ add_cpu_switch(cpu);
+
+ /* Remember, only we can modify tail_pos */
+
+ available = get_slots(cpu_buf);
+
+ for (i = 0; i < available; ++i) {
+ struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
+
+ if (is_code(s->eip)) {
+ if (s->event <= CPU_IS_KERNEL) {
+ /* kernel/userspace switch */
+ in_kernel = s->event;
+ if (state == sb_buffer_start)
+ state = sb_sample_start;
+ add_kernel_ctx_switch(s->event);
+ } else if (s->event == CPU_TRACE_BEGIN) {
+ state = sb_bt_start;
+ add_trace_begin();
+ } else {
+ struct mm_struct * oldmm = mm;
+
+ /* userspace context switch */
+ new = (struct task_struct *)s->event;
+
+ release_mm(oldmm);
+ mm = take_tasks_mm(new);
+ if (mm != oldmm)
+ cookie = get_exec_dcookie(mm);
+ add_user_ctx_switch(new, cookie);
+ }
+ } else {
+ if (state >= sb_bt_start &&
+ !add_sample(mm, s, in_kernel)) {
+ if (state == sb_bt_start) {
+ state = sb_bt_ignore;
+ atomic_inc(&oprofile_stats.bt_lost_no_mapping);
+ }
+ }
+ }
+
+ increment_tail(cpu_buf);
+ }
+ release_mm(mm);
+
+ mark_done(cpu);
+
+ up(&buffer_sem);
+}